ARCHITECTURAL-LEVEL
SYNTHESIS

© Giovanni De Micheli

Stanford University

Outline

Motivation.

Compiling language models
into abstract models.

Behavioral-level optimization
and program-level transformations.

© GDM ==

Architectural synthesis: an overview.

Synthesis

e Transform behavioral into structural view.

e Architectural-level synthesis:
— Architectural abstraction level.
— Determine macroscopic structure.

— Example: major building blocks.

e [ ogic-level synthesis:
— Logic abstraction level.
— Determine microscopic structure.

— Example: logic gate interconnection.

Synthesis and optimization

BEHAVIORAL VIEW

i

STRUCTURAL VIEW |

© GDM ==

‘ LANGUAGE MODELS ‘

ABSTRACT MODELS

compilation

Operations and dependencies
(Data-flow & sequencing graphs)

architectural
synthesis &
optimization

ARCHITECTURAL LEVEL

compilation

FSMs - Logic functions

(State-diagrams &

logic networks)

logic
synthesis &
optimization

translation
A—

Interconnected

logic blocks

(Logic networks)

LOGIC LEVEL




Example

©Gbm — Example of structures
) © GDM ==
diffeq {
read (z,y,u,dz,a);
repeat { l [ H
ol =+ d ][] [
ul=u— (3 -z -u-dr)— (3 -y-dzx); ’ i T
yl=9y 4+ u - dz;
c=x < a,
r=uxl;u=ul,y =yl ‘
} * ALU * ALU STEERING CONTROL
it (e ] B C ]
write (y);
}
Architectural-level synthesis
Example motivation
© GDM  —— © GDM  —
Raise input abstraction level.
Area
LT @2 — Reduce specification of details.
13
o L @D
£ — Extend designer base.
10 +—
s |- — Self-documenting design specifications.
7 1
5+ — Ease modifications and extensions.
T Latency
T S S S S N S Reduce design time.

Explore and optimize macroscopic structure:

— Series/parallel execution of operations.



Architectural-level synthesis
© GDM —

e Translate HDL models into sequencing graphs.

e Behavioral-level optimization:
— Optimize abstract models independently
from the implementation parameters.
e Architectural synthesis and optimization:

— Create macroscopic structure:

* data-path and control-unit.

— Consider area and delay information
of the implementation.

Compilation and behavioral optimization

© GDM ==

e Software compilation:
— Compile program into intermediate form.
— Optimize intermediate form.

— Generate target code for an architecture.

e Hardware compilation:

— Compile HDL model into sequencing
graph.

— Optimize sequencing graph.

— Generate gate-level interconnection
for a cell library.

Hardware and software compilation.

© GDM ==
front-end intermediate form back-end
., lex | |parse optimization codegen | o
(@)
front-end intermediate form back-end

behavioral "

arse i -

— lex __p optimization Isynthfs&_s ——
I-binding

(b)

Compilation

© GDM  =—

e Front-end:
— Lexical and syntax analysis.
— Parse-tree generation.
— Macro-expansion.

— EXxpansion of meta-variables.

e Semantic analysis:
— Data-flow and control-flow analysis.
— Type checking.

— Resolve arithmetic and relational operators.



Parse tree example
a = p+qgxr

© GDM ==

assignment

identifier expression
a +

identifier expression
*
p

identifier identifier
q r

Behavioral-level optimization

© GDM ==

e Semantic-preserving transformations
aiming at simplifying the model.

e Applied to parse-trees
or during their generation.
e Taxonomy:
— Data-flow based transformations.

— Control-flow based transformations.

Data-flow based transformations

© GDM  =—

Tree-height reduction.

Constant and variable propagation.

Common subexpression elimination.

Dead-code elimination.

Operator-strength reduction.

Code motion.

Tree-height reduction

© GDM  =—

e Applied to arithmetic expressions.

e Goal:
— Split into two-operand expressions
to exploit hardware parallelism at best.
e Techniques:
— Balance the expression tree.

— Exploit commutativity, associativity
and distributivity.



Example of tree-height reduction
using commutativity and associativity
© GDM —

A\ AR

(a) (b)

erx=a+brxc+d=z=(a+d)+bx*xc

Example of tree-height reduction
using distributivity

/®
) ) ©)
AN AR

© GDM ==

)
N
/(Q

0,

(@

ez =ax(bxcxd+e) = r=axbxcxd+axe;

Examples of propagation
© GDM —

e Constant propagation:

—a=0;, b=a+1, ¢c=2xb;

e Variable propagation:
—a=x b=a+1, c=2%a;

—a=x b=zxz+1, c=2xx;

Sub-expression elimination

© GDM  =—

e Logic expressions:
— Performed by logic optimization.

— Kernel-based methods.

e Arithmetic expressions:

— Search isomorphic patterns in the parse
trees.

— Example:

*a::];-|-y; b=a-+ 1; c=m+y;

ra=z+y, b=a+1;, c=a;



Examples of other transformations

© GDM ==

e Dead-code elimination:

Control-flow based transformations

© GDM —
—a=x b=zxz+1, c=2xx;
e Model expansion.
— a = z; can be removed if not referenced.
e Conditional expansion.
e Operator-strength reduction:
—a=2% b=3xuz; e Loop expansion.
—a=z*zx, t=x<<1l, b=x+41t;
e Block-level transformations.
e Code motion:
—for 1 =1;i<axb){ }
—t=axb;, for i=1;:<t){ }
Model expansion Conditional expansion
© GDM  =—— © GDM =

e Expand subroutine — flatten hierarchy.

e Useful to expand scope of other optimization
techniques.

e Problematic when routine is called more
than once.

e Example:
—z=a+b y=axb z= foo(z,y);
— foo(p,){t =q—p; return(t);}
— By expanding foo:

—x=a+b, y=axb, z=y—ux

Transform conditional into parallel execution
with test at the end.

Useful when test depends on late signals.

May preclude hardware sharing.

Always useful for logic expressions.

Example:

—y=uab;, if(a) {z=0b+4+d;} else
{x =bd; }

— can be expanded to: = = a(b+d)+a'bd

— and simplified as: y = ab; z =y + d(a + b)



Loop expansion

© GDM ==

Applicable to loops with data-independent
exit conditions.

Useful to expand scope of other optimization
techniques.

Problematic when loop has many iterations.

e Example:
— x =0;
for i=1,i<3;i++) {s=z+1;}
e Expanded to:

—2x=0;, z=z41, z=z24+2;, z=z2+3

Architectural synthesis and optimization
© GDM ==

e Synthesize macroscopic structure
in terms of building-blocks.
e Explore area/performance trade-off:

— maximum performance implementations
subject to area constraints.

— minimum area implementations
subject to performance constraints.

e Determine an optimal implementation.

e Create logic model for data-path and control.

Design space and objectives
© GDM =

e Design space:

— Set of all feasible implementations.

e Implementation parameters:
— Area.

— Performance:

* Cycle-time.
x Latency.
x Throughput (for pipelined implementations

— Power consumption

Design evaluation space

© GDM ==
Area
@
z’.\\@
N
Area Iy
Area
g2
[ w m
it 2
4 ¥
i o)
L] . Latency
Latency
Latency

Latenc
Max y



Resources

© GDM —
Hardware modeling
© GDM ==
e Functional resources:
e Circuit behavior: — Perform operations on data.
— Sequencing graphs. — Example: arithmetic and logic blocks.
e Building blocks: e Memory resources:
— Resources. — Store data.
— Example: memory and registers.
e Constraints:
— Timing and resource usage. e Interface resources:
— Example: busses and ports.
Functional resources
© GDM — Resources and circuit families

e Standard resources:
— Existing macro-cells.
— Well characterized (area/delay).

— Example: adders, multipliers, ...

e Application-specific resources:
— Circuits for specific tasks.
— Yet to be synthesized.

— Example: instruction decoder.

© GDM ==

e Resource-dominated circuits.

— Area and performance depend on few,
well-characterized blocks.

— Example: DSP circuits.

e Non resource-dominated circuits.

— Area and performance are strongly influenced
by sparse logic, control and wiring.

— Example: some ASIC circuits.



Implementation constraints

e Timing constraints:

— Cycle-time.

© GDM  =—

— Latency of a set of operations.

— Time spacing between operation pairs.

e Resource constraints:

— Resource usage (or allocation).

— Partial binding.

Synthesis in the temporal domain

© GDM ==

e Scheduling:
— Associate a start-time with each operation.
— Determine latency and parallelism
of the implementation.
e Scheduled sequencing graph:

— Sequencing graph with start-time annotation.

Example

TIME 1

TIME 2

TIME 3

TIME 4

Synthesis in the spatial domain

© GDM  =—

e Binding:

— Associate a resource with each operation
with the same type.

— Determine area of the implementation.

e Sharing:
— Bind a resource to more than one operation.

— Operations must not execute concurrently.

e Bound sequencing graph:

— Sequencing graph with resource annotation.



Example

© GDM ==

Binding specification

© GDM ==

e Mapping from the vertex set to the set of
resource instances, for each given type.

e Partial binding:

— Partial mapping, given as design constraint.

e Compatible binding:

— Binding satisfying the constraints
of the partial binding.

Example

© GDM  =—

TIME 1

TIME 2

TIME 3

TIME 4

Estimation

© GDM ==

e Resource-dominated circuits.

— Area = sum of the area of the resources
bound to the operations.

x Determined by binding.

— Latency = start time of the sink operation
(minus start time of the source operation).

x Determined by scheduling

e Non resource-dominated circuits.
— Area also affected by:

* registers, steering logic, wiring and control.

— Cycle-time also affected by:

* steering logic, wiring and (possibly) control.



Approaches to architectural optimization

© GDM  =—

e Multiple-criteria optimization problem:

— area, latency, cycle-time.

e Determine Pareto optimal points:

— Implementations such that no other has
all parameters with inferior values.

e Draw trade-off curves:

— discontinuous and highly nonlinear.

Approaches to architectural optimization

© GDM ==

e Area/latency trade-off,

— for some values of the cycle-time.

e Cycle-time/latency trade-off,

— for some binding (area).

e Area/cycle-time trade-off,

— for some schedules (latency).

Area/latency trade-off

© GDM  =—

@1

(1.2)
11)

1 2 3 4 5 6 7 8

Area-latency trade-off

© GDM  =—

e Rationale:

— Cycle-time dictated by system constraints.

e Resource-dominated circuits:

— Area is determined by resource usage.

e Approaches:

— Schedule for minimum latency
under resource constraints

— Schedule for minimum resource usage
under latency constraints

* for varying constraints.



e Behavioral optimization:

— Create abstract models from HDL models.
— Optimize models without considering
implementation parameters.
e Architectural synthesis and optimization.
— Consider resource parameters.

— Multiple-criteria optimization problem:

* area, latency, cycle-time.




