
ARCHITECTURAL-LEVEL

SYNTHESIS

c
Giovanni De Micheli

Stanford University

Outline

c
 GDM

� Motivation.

� Compiling language models

into abstract models.

� Behavioral-level optimization

and program-level transformations.

� Architectural synthesis: an overview.

Synthesis

c
 GDM

� Transform behavioral into structural view.

� Architectural-level synthesis:

{ Architectural abstraction level.

{ Determine macroscopic structure.

{ Example: major building blocks.

� Logic-level synthesis:

{ Logic abstraction level.

{ Determine microscopic structure.

{ Example: logic gate interconnection.

Synthesis and optimization

c
 GDM

HDL

HDL

HDL
translation

synthesis &
optimization

logic
synthesis &
optimization

LANGUAGE MODELS ABSTRACT MODELS

B
E

H
A

V
IO

R
A

L
V

IE
W

S
T

R
U

C
T

U
R

A
L

V
IE

W

LO
G

IC
 L

E
V

E
L

A
R

C
H

IT
E

C
T

U
R

A
L

LE
V

E
L

architectural

FSMs − Logic functions

Operations and dependencies

compilation

compilation

Interconnected logic blocks

(State−diagrams & logic networks)

(Logic networks)

(Data−flow & sequencing graphs)

Example

c
 GDM

di�eq f

read (x; y; u; dx; a);

repeat f

xl = x+ dx;

ul = u� (3 � x � u � dx)� (3 � y � dx);

yl = y+ u � dx;

c = x < a;

x = xl;u = ul; y = yl;

g

until (c) ;

write (y);

g

Example of structures

c
 GDM

* ALU
STEERING

&
MEMORY

CONTROL

UNIT

* ALU
STEERING

&
MEMORY

CONTROL

UNIT* ALU

Example

c
 GDM

Area

13

12

8

7

1 2 3 4 5 6 7 8

5

10

15

Latency

(2,2)

(2,1)

(1,2)

(1,1)

Architectural-level synthesis

motivation

c
 GDM

� Raise input abstraction level.

{ Reduce speci�cation of details.

{ Extend designer base.

{ Self-documenting design speci�cations.

{ Ease modi�cations and extensions.

� Reduce design time.

� Explore and optimize macroscopic structure:

{ Series/parallel execution of operations.

Architectural-level synthesis

c
 GDM

� Translate HDL models into sequencing graphs.

� Behavioral-level optimization:

{ Optimize abstract models independently

from the implementation parameters.

� Architectural synthesis and optimization:

{ Create macroscopic structure:

� data-path and control-unit.

{ Consider area and delay information

of the implementation.

Compilation and behavioral optimization

c
 GDM

� Software compilation:

{ Compile program into intermediate form.

{ Optimize intermediate form.

{ Generate target code for an architecture.

� Hardware compilation:

{ Compile HDL model into sequencing

graph.

{ Optimize sequencing graph.

{ Generate gate-level interconnection

for a cell library.

Hardware and software compilation.

c
 GDM

parselex

intermediate form

codegenoptimization

front−end back−end

parselex

intermediate form

optimization

front−end back−end

behavioral
l−synthesis

(a)

(b)

l−binding

a−synthesis

Compilation

c
 GDM

� Front-end:

{ Lexical and syntax analysis.

{ Parse-tree generation.

{ Macro-expansion.

{ Expansion of meta-variables.

� Semantic analysis:

{ Data-
ow and control-
ow analysis.

{ Type checking.

{ Resolve arithmetic and relational operators.

Parse tree example

a = p+ q � r

c
 GDM

assignment
=

identifier expression

expression

identifier identifier

identifier

+

*p

q r

a

Behavioral-level optimization

c
 GDM

� Semantic-preserving transformations

aiming at simplifying the model.

� Applied to parse-trees

or during their generation.

� Taxonomy:

{ Data-
ow based transformations.

{ Control-
ow based transformations.

Data-
ow based transformations

c
 GDM

� Tree-height reduction.

� Constant and variable propagation.

� Common subexpression elimination.

� Dead-code elimination.

� Operator-strength reduction.

� Code motion.

Tree-height reduction

c
 GDM

� Applied to arithmetic expressions.

� Goal:

{ Split into two-operand expressions

to exploit hardware parallelism at best.

� Techniques:

{ Balance the expression tree.

{ Exploit commutativity, associativity

and distributivity.

Example of tree-height reduction

using commutativity and associativity

c
 GDM

*

*

+

+

a b c d a d b c

+

+

(a) (b)

� x = a+ b � c+ d) x = (a+ d) + b � c

Example of tree-height reduction

using distributivity

c
 GDM

*

*

+

a b c d a db c

+

(a) (b)

*

*

e

*

*

ea

*

� x = a�(b� c�d+e)) x = a� b� c�d+a�e;

Examples of propagation

c
 GDM

� Constant propagation:

{ a = 0; b = a+1; c = 2 � b;

{ a = 0; b = 1; c = 2;

� Variable propagation:

{ a = x; b = a+1; c = 2 � a;

{ a = x; b = x+1; c = 2 � x;

Sub-expression elimination

c
 GDM

� Logic expressions:

{ Performed by logic optimization.

{ Kernel-based methods.

� Arithmetic expressions:

{ Search isomorphic patterns in the parse

trees.

{ Example:

� a = x+ y; b = a+1; c = x+ y;

� a = x+ y; b = a+1; c = a;

Examples of other transformations

c
 GDM

� Dead-code elimination:

{ a = x; b = x+1; c = 2 � x;

{ a = x; can be removed if not referenced.

� Operator-strength reduction:

{ a = x2; b = 3 � x;

{ a = x � x; t = x << 1; b = x+ t;

� Code motion:

{ for (i = 1; i � a � b)f g

{ t = a � b; for (i = 1; i � t)f g

Control-
ow based transformations

c
 GDM

� Model expansion.

� Conditional expansion.

� Loop expansion.

� Block-level transformations.

Model expansion

c
 GDM

� Expand subroutine {
atten hierarchy.

� Useful to expand scope of other optimization

techniques.

� Problematic when routine is called more

than once.

� Example:

{ x = a+ b; y = a � b; z = foo(x; y);

{ foo(p; q)ft = q � p; return(t); g

{ By expanding foo:

{ x = a+ b; y = a � b; z = y � x;

Conditional expansion

c
 GDM

� Transform conditional into parallel execution

with test at the end.

� Useful when test depends on late signals.

� May preclude hardware sharing.

� Always useful for logic expressions.

� Example:

{ y = ab; if (a) fx = b + d; g else

fx = bd; g

{ can be expanded to: x = a(b+d)+a0bd

{ and simpli�ed as: y = ab; x = y+ d(a+ b)

Loop expansion

c
 GDM

� Applicable to loops with data-independent

exit conditions.

� Useful to expand scope of other optimization

techniques.

� Problematic when loop has many iterations.

� Example:

{ x = 0;

for (i = 1; i � 3; i++) fx = x+1; g

� Expanded to:

{ x = 0; x = x+1; x = x+2; x = x+3

Architectural synthesis and optimization

c
 GDM

� Synthesize macroscopic structure

in terms of building-blocks.

� Explore area/performance trade-o�:

{ maximum performance implementations

subject to area constraints.

{ minimum area implementations

subject to performance constraints.

� Determine an optimal implementation.

� Create logic model for data-path and control.

Design space and objectives

c
 GDM

� Design space:

{ Set of all feasible implementations.

� Implementation parameters:

{ Area.

{ Performance:

� Cycle-time.

� Latency.

� Throughput (for pipelined implementations)

{ Power consumption

Design evaluation space

c
 GDM

Area

Area
Max

Latency

Latency
Max

Area

Latency

Area

Latency

Cyc
le−tim

e

Cyc
le−tim

e

Hardware modeling

c
 GDM

� Circuit behavior:

{ Sequencing graphs.

� Building blocks:

{ Resources.

� Constraints:

{ Timing and resource usage.

Resources

c
 GDM

� Functional resources:

{ Perform operations on data.

{ Example: arithmetic and logic blocks.

� Memory resources:

{ Store data.

{ Example: memory and registers.

� Interface resources:

{ Example: busses and ports.

Functional resources

c
 GDM

� Standard resources:

{ Existing macro-cells.

{ Well characterized (area/delay).

{ Example: adders, multipliers, ...

� Application-speci�c resources:

{ Circuits for speci�c tasks.

{ Yet to be synthesized.

{ Example: instruction decoder.

Resources and circuit families

c
 GDM

� Resource-dominated circuits.

{ Area and performance depend on few,

well-characterized blocks.

{ Example: DSP circuits.

� Non resource-dominated circuits.

{ Area and performance are strongly in
uenced

by sparse logic, control and wiring.

{ Example: some ASIC circuits.

Implementation constraints

c
 GDM

� Timing constraints:

{ Cycle-time.

{ Latency of a set of operations.

{ Time spacing between operation pairs.

� Resource constraints:

{ Resource usage (or allocation).

{ Partial binding.

Synthesis in the temporal domain

c
 GDM

� Scheduling:

{ Associate a start-time with each operation.

{ Determine latency and parallelism

of the implementation.

� Scheduled sequencing graph:

{ Sequencing graph with start-time annotation.

Example

c
 GDM

* * * * +

<+**

−

−

1 2

3

4

5

6

7

8

9

10

11

0
NOP

NOP

TIME 1

TIME 2

TIME 3

TIME 4

n

Synthesis in the spatial domain

c
 GDM

� Binding:

{ Associate a resource with each operation

with the same type.

{ Determine area of the implementation.

� Sharing:

{ Bind a resource to more than one operation.

{ Operations must not execute concurrently.

� Bound sequencing graph:

{ Sequencing graph with resource annotation.

Example

c
 GDM

* * * * +

<+**

−

−

1 2

3

4

5

6

7

8

9

10

11

0
NOP

NOP

TIME 1

TIME 2

TIME 3

TIME 4

(1,2)(1,1) (1,4)

(2,1)

(2,2)(1,3)

n

Binding speci�cation

c
 GDM

� Mapping from the vertex set to the set of

resource instances, for each given type.

� Partial binding:

{ Partial mapping, given as design constraint.

� Compatible binding:

{ Binding satisfying the constraints

of the partial binding.

Example

c
 GDM

* * * +

<**

−

−

1 2

3

4

5

6

7 8

*

+
9

10

11

0
NOP

NOP

TIME 1

TIME 2

TIME 3

TIME 4

n

Estimation

c
 GDM

� Resource-dominated circuits.

{ Area = sum of the area of the resources

bound to the operations.

� Determined by binding.

{ Latency = start time of the sink operation

(minus start time of the source operation).

� Determined by scheduling

� Non resource-dominated circuits.

{ Area also a�ected by:

� registers, steering logic, wiring and control.

{ Cycle-time also a�ected by:

� steering logic, wiring and (possibly) control.

Approaches to architectural optimization

c
 GDM

� Multiple-criteria optimization problem:

{ area, latency, cycle-time.

� Determine Pareto optimal points:

{ Implementations such that no other has

all parameters with inferior values.

� Draw trade-o� curves:

{ discontinuous and highly nonlinear.

Approaches to architectural optimization

c
 GDM

� Area/latency trade-o�,

{ for some values of the cycle-time.

� Cycle-time/latency trade-o�,

{ for some binding (area).

� Area/cycle-time trade-o�,

{ for some schedules (latency).

Area/latency trade-o�

c
 GDM

Area

13

12

8

7

1 2 3 4 5 6 7 8

5

10

15

Latency

(2,1)

(3,2)18

(2,2)

(2,1)

(1,2)

(1,1)

Cyc
le−

tim
e

30

40

20

(3,1)17

Area-latency trade-o�

c
 GDM

� Rationale:

{ Cycle-time dictated by system constraints.

� Resource-dominated circuits:

{ Area is determined by resource usage.

� Approaches:

{ Schedule for minimum latency

under resource constraints

{ Schedule for minimum resource usage

under latency constraints

� for varying constraints.

Summary

c
 GDM

� Behavioral optimization:

{ Create abstract models from HDL models.

{ Optimize models without considering

implementation parameters.

� Architectural synthesis and optimization.

{ Consider resource parameters.

{ Multiple-criteria optimization problem:

� area, latency, cycle-time.

