

Example

— © GDM —

- Algebraic division:
 - Let $f_{dividend} = ac + ad + bc + bd + e$ and $f_{divisor} = a + b$
 - Then $f_{quotient} = c + d$ $f_{remainder} = e$
 - Because $(a + b) \cdot (c + d) + e = f_{dividend}$ and $\{a, b\} \cap \{c, d\} = \emptyset$.
- Non-algebraic division:
 - Let $f_i = a + bc$ and $f_j = a + b$.
 - Then $(a+b) \cdot (a+c) = f_i$ but $\{a,b\} \cap \{a,c\} \neq \emptyset$.

🗕 © GDM

- $A = \{C_j^A, j = 1, 2, ..., l\}$ set of cubes (monomials) of the dividend.
- $B = \{C_i^B, i = 1, 2, ..., n\}$ set of cubes (monomials) of the divisor.
- Quotient Q and remainder R are sum of cubes (monomials).

An algorithm for division

— © GDM —

```
ALGEBRAIC_DIVISION(A, B) {

for (i = 1 to n) {

D = \{C_j^A \text{ such that } C_j^A \supseteq C_i^B\};

if (D == \emptyset) return(\emptyset, A);

D_i = D with var. in sup(C_i^B) dropped ;

if i = 1

Q = D_i;

else

Q = Q \cap D_i;

}

R = A - Q \times B;

return(Q, R);

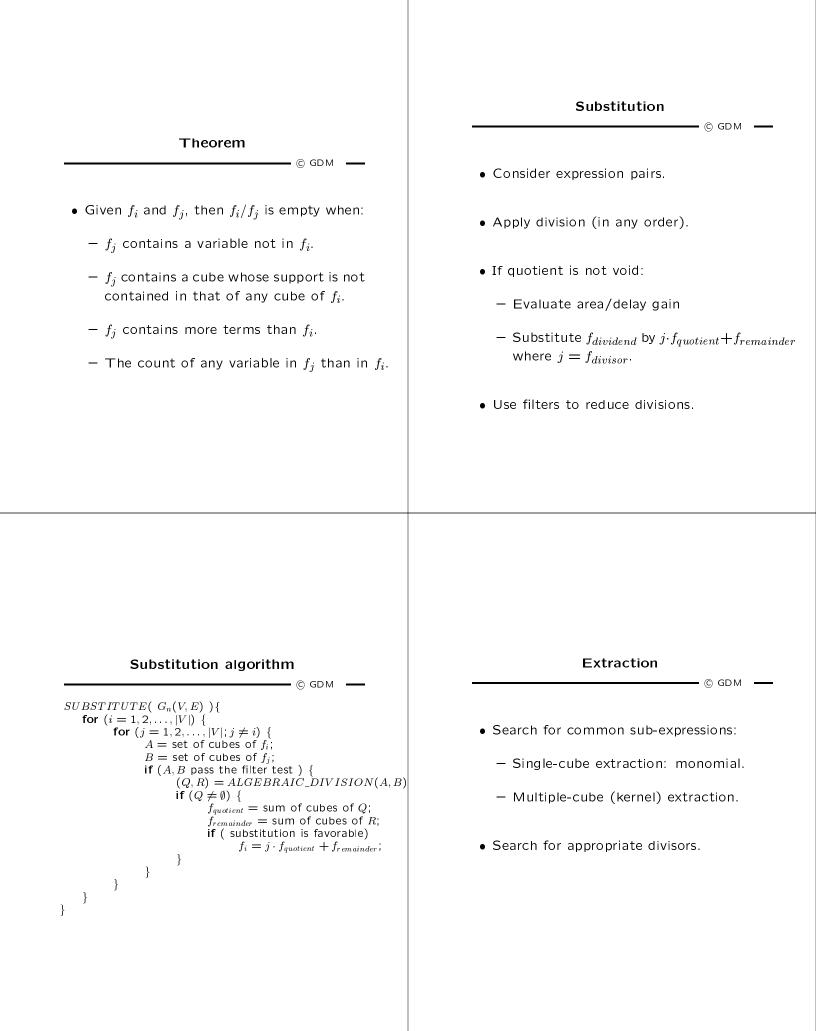
}
```

Example $f_{dividend} = ac + ad + bc + bd + e;$ $f_{divisor} = a + b;$ © GDM -

- $A = \{ac, ad, bc, bd, e\}$ and $B = \{a, b\}$.
- i = 1: - $C_1^B = a$, $D = \{ac, ad\}$ and $D_1 = \{c, d\}$. - Then $Q = \{c, d\}$.
- i = 2 = n: - $C_2^B = b$, $D = \{bc, bd\}$ and $D_2 = \{c, d\}$.

- Then
$$Q = \{c, d\} \cap \{c, d\} = \{c, d\}.$$

- Result:
 - $-Q = \{c, d\} \text{ and } R = \{e\}.$ $f_{quotient} = c + d \text{ and } f_{remainder} = e.$



Definitions

— © GDM —

- Cube-free expression:
 - Cannot be factored by a cube.
- Kernel of an expression:
 - Cube-free quotient of the expression divided by a cube, called *co-kernel*.
- Kernel set K(f) of an expression:
 - Set of kernels.

Example $f_x = ace + bce + de + g$

- © GDM

- Divide f_x by a. Get ce. Not cube free.
- Divide f_x by b. Get ce. Not cube free.
- Divide f_x by c. Get ae + be. Not cube free.
- Divide f_x by *ce*. Get a + b. Cube free. Kernel!
- Divide f_x by d. Get e. Not cube free.
- Divide f_x by e. Get ac+bc+d. Cube free. Kernel!
- Divide f_x by g. Get 1. Not cube free.
- Expression f_x is a kernel of itself because cube free.
- $K(f_x) = \{(a+b); (ac+bc+d); (ace+bce+de+g)\}.$

Theorem (Brayton and McMullen)

____ © GDM __

• Two expressions f_a and f_b have a common multiple-cube divisor f_d if and only if:

- there exist kernels $k_a \in K(f_a)$ and $k_b \in K(f_b)$ s.t. f_d is the sum of 2 (or more) cubes in $k_a \cap k_b$.
- Consequence:
 - If kernel intersection is void, then the search for common sub-expression can be dropped.

Example

- © GDM -

- $f_x = ace + bce + de + g$ $f_y = ad + bd + cde + ge$ $f_z = abc$
- $K(f_x) = \{(a+b); (ac+bc+d); (ace+bce+de+g)\}.$
- $K(f_y) = \{(a+b+ce); (cd+g); (ad+bd+cde+ge)\}.$
- The kernel set of f_z is empty.
- Select intersection (a + b)

 $\begin{array}{rcl} f_w &=& a+b\\ f_x &=& wce+de+g\\ f_y &=& wd+cde+ge\\ f_z &=& abc \end{array}$

Kernel set computation

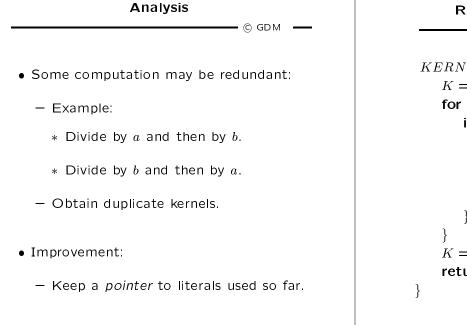
- Naive method:
 - Divide function by elements in power set of its support set.

_____ © GDM __

- Weed out non cube-free quotients.
- Smart way:
 - Use recursion:
 - * Kernels of kernels are kernels.
 - Exploit commutativity of multiplication.

Recursive kernel computation simple algorithm


```
R\_KERNELS(f) \{ K = \emptyset; \\ \text{foreach variable } x \in sup(f) \{ \\ if(|CUBES(f, x)| \ge 2) \{ \\ f^{C} = \text{largest cube containing } x, \\ s.t. \ CUBES(f, C) = CUBES(f, x); \\ K = K \cup R\_KERNELS(f/f^{C}); \\ \} \\ \\ \\ K = K \cup f; \\ return(K); \\ \} \\ CUBES(f, C) \{ \\ return \ the \ cubes \ of \ f \ whose \ support \supseteq C; \\ \} \\
```



Recursive kernel computation

— © GDM -

```
KERNELS(f, j) \{
K = \emptyset;
for i = j to n \{
if(|CUBES(f, x_i)| \ge 2) {
f^C = \text{largest cube containing } x,
s.t. CUBES(f, C) = CUBES(f, x_i);
if (x_k \notin C \ \forall k < i)
K = K \cup KERNELS(f/f^C, i + 1);
}
K = K \cup f;
return(K);
```

Example

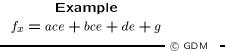
f = ace + bce + de + g

— © GDM —

- Literals a or b. No action required.
- Literal c. Select cube ce:
 - Recursive call with arguments: (ace+bce)/ce = a+b; pointer j = 3 + 1.
 - Call considers variables $\{d, e, g\}$. No kernel.
 - Adds a + b to the kernel set at the last step.
- Literal d. No action required.
- Literal e. Select cube e:
 - Recursive call with arguments: ac + bc + d and pointer j = 5 + 1.
 - Call considers variable $\{g\}$. No kernel.
 - Adds ac + bc + d to the kernel set at the last step.
- Literal g. No action required.
- Adds ace + bce + de + g to the kernel set.
- $K = \{(ace + bce + de + g), (ac + bc + d), (a + b)\}.$

Matrix representation of kernels

- © GDM
- Boolean matrix:
 - Rows: cubes. Columns: variables.
- Rectangle (R, C):
 - Subset of rows and columns with all entries equal to 1.
- Prime rectangle:
 - Rectangle not inside any other rectangle.
- Co-rectangle (R, C') of a rectangle (R, C):
 - -C' are the columns not in C.
- A co-kernel corresponds to a prime rectangle with at least two rows.



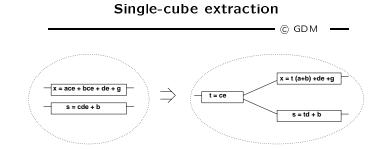
	var	a	b	c	d	e	g
cube	$R \backslash C$	1	2	3	4	5	6
ace	1	1	0	1	0	1	0
bce	2	0	1	1	0	1	0
de	3	0	0	0	1	1	0
g	4	0	0	0	0	0	1

• Rectangle (prime): ({1,2}, {3,5})

- Co-kernel ce.

• Co-rectangle: ({1,2}, {1,2,4,6}).

- Kernel a + b.



Single-cube extraction

_____ © GDM ____

- Form *auxiliary* function:
 - Sum of all local functions.
- Form matrix representation:
 - A rectangle with two rows represents a common cube.
 - Best choice is a prime rectangle.
- Use function ID for cubes:
 - Cube intersection from different functions.

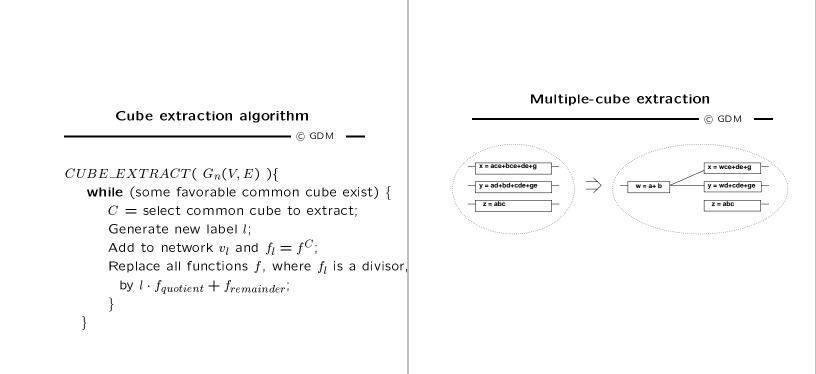
Example

- © GDM •

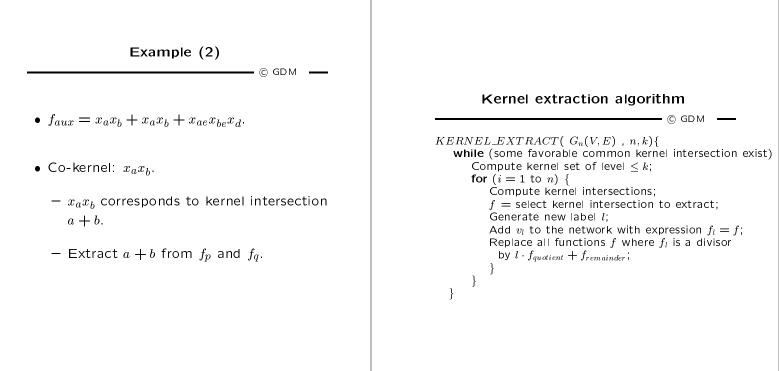
- Expressions:
 - $-f_x = ace + bce + de + g$
 - $-f_s = cde + b$
- Auxiliary function:
 - $f_{aux} = ace + bce + de + g + cde + b$
- Matrix:

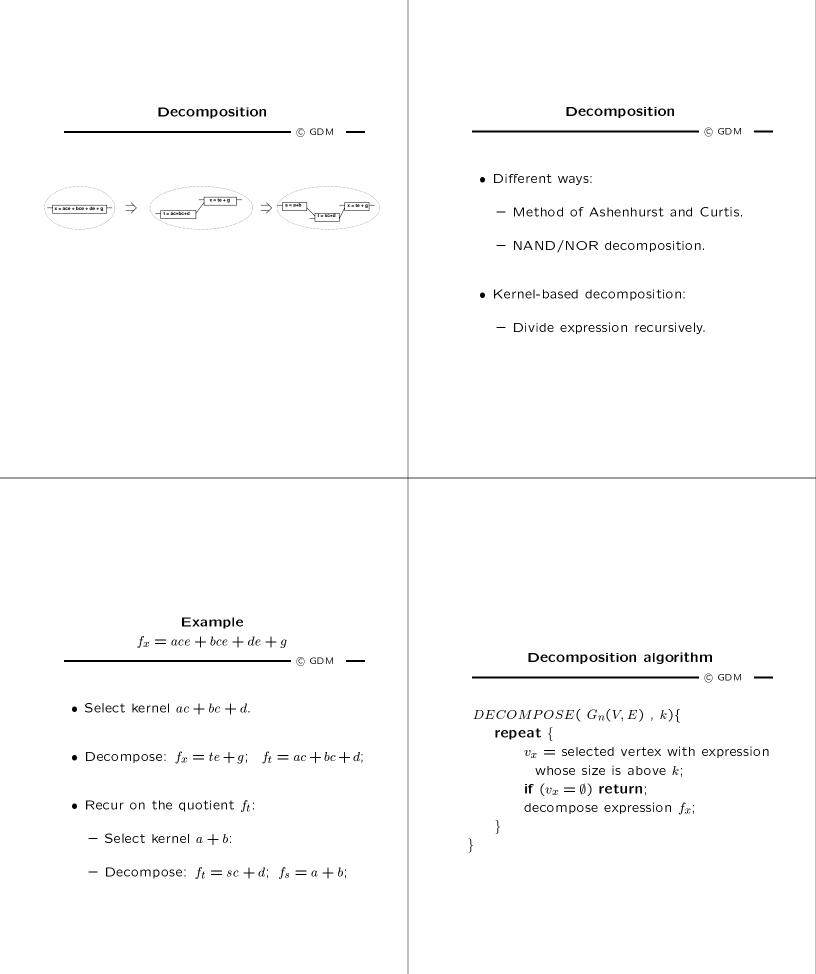
		var	a	b	c	d	e	g
cube	ID	$R \backslash C$	1	2	3	4	5	6
ace	Х	1	1	0	1	0	1	0
bce	Х	2	0	1	1	0	1	0
de	х	3	0	0	0	1	1	0
g	х	4	0	0	0	0	0	1
cde	S	5	0	0	1	1	1	0
b	S	6	0	1	0	0	0	0

- Prime rectangle: ({1, 2, 5}, {3, 5})
- Extract cube ce.



Multiple-cube extraction	Example © GDM
• We need a kernel/cube matrix.	• $f_p = ace + bce$. - $K(f_p) = \{(a + b)\}.$
Relabeling:	
— Cubes by new variables. — Kernels by cubes.	• $f_q = ae + be + d$. - $K(f_q) = \{(a + b); (ae + be + d)\}.$
 Form <i>auxiliary</i> function: – Sum of all kernels. 	• Relabeling: - $x_a = a; x_b = b; x_{ae} = ae; x_{be} = be; x_d = d;$ * $K(f_p) = \{\{x_a, x_b\}\}$
 Extend cube intersection algorithm. 	* $K(f_q) = \{\{x_a, x_b\}; \{x_{ae}, x_{be}, x_d\}\}.$





Summary Algebraic transformations

_____ © GDM ____

- View Boolean functions as algebraic expression.
- Fast manipulation algorithms.
- Some optimality lost, because Boolean properties are neglected.
- Useful to reduce large networks.