HEURISTIC TWO-LEVEL LOGIC OPTIMIZATION

© Giovanni De Micheli

Stanford University

Outline

C GDM

- Heuristic logic minimization.
- Principles.
- Operators on logic covers.
- Espresso.

Heuristic minimization

C GDM

- Provide irredundant covers with 'reasonably small' cardinality.
- Fast and applicable to many functions.
- Avoid bottlenecks of exact minimization:
 - Prime generation and storage.
 - Covering.

Heuristic minimization Principles

GDM

- Local minimum cover:
 - Given initial cover.
 - Make it prime.
 - Make it irredundant.
- Iterative improvement:
 - Improve on cardinality by 'modifying' the implicants.

Heuristic minimization Operators

© GDM

• Expand:

- Make implicants prime.

- Remove covered implicants.

• Reduce:

 Reduce size of each implicant while preserving cover.

• Reshape:

 Modify implicant pairs: enlarge one and reduce the other.

• Irredundant:

- Make cover irredundant.

Example					
			— © GDM —		
(0000	1			
(010	1			
(0100	1			
(0110	1			
-	L000	1			
-	L010	1			
(0101	1			
()111	1			
-	L001	1			
-	LO11	1			
-	L101	1			
	0**0	1			
a B	*0*0	⊥ 1			
ρ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1			
γ s		1			
0		1			
ϵ		1			
ζ	101	T			

Example

Example Expansion

🗕 🛈 GDM

- Expand 0000 to α = 0 * *0.
 Drop 0100, 0010, 0110 from the cover.
- Expand 1000 to $\beta = *0 * 0$.

- Drop 1010 from the cover.

- Expand 0101 to $\gamma = 01 * *$.
 - Drop 0111 from the cover.
- Expand 1001 to δ = 10 * *.
 Drop 1011 from the cover.
- Expand 1101 to $\epsilon = 1 * 01$.
- Cover is: $\{\alpha, \beta, \gamma, \delta, \epsilon\}$.

Example Reduction

C GDM

- Reduce 0**0 to nothing.
- Reduce $\beta = *0 * 0$ to $\tilde{\beta} = 00 * 0$
- Reduce $\epsilon = 1 * 01$ to $\tilde{\epsilon} = 1101$
- Cover is: $\{\widetilde{\beta}, \gamma, \delta, \widetilde{\epsilon}\}.$

C GDM

Example Reshape

© GDM

• Reshape $\{\widetilde{\beta},\delta\}$ to: $\{\beta,\widetilde{\delta}\}$

– where $\widetilde{\delta} = 10 * 1$.

• Cover is: $\{\beta, \gamma, \tilde{\delta}, \tilde{\epsilon}\}.$

© GDM

Example Second expansion

— © GDM

- Expand $\tilde{\delta} = 10 * 1$ to $\delta = 10 * *$.
- Expand $\tilde{\epsilon} = 1101$ to $\epsilon = 1 * 01$.

Example (MINI summary)

– © GDM

- Expansion:
 - Cover: $\{\alpha, \beta, \gamma, \delta, \epsilon\}$.
 - Prime, redundant, minimal w.r. to scc.
- Reduction:
 - α eliminated.
 - $\beta = *0 * 0$ reduced to $\widetilde{\beta} = 00 * 0$.
 - $\epsilon = 1 * 01$ reduced to: $\widetilde{\epsilon} = 1101$.
 - Cover: $\{\widetilde{\beta}, \gamma, \delta, \widetilde{\epsilon}\}.$
- Reshape:

– $\{\widetilde{\beta},\delta\}$ reshaped to: $\{\beta,\widetilde{\delta}\}$ where $\widetilde{\delta}=10*1$.

- Second expansion:
 - Cover: $\{\beta, \gamma, \delta, \epsilon\}$.
 - Prime, irredundant.

Alternative example (ESPRESSO)

- Expansion:
 - Cover: $\{\alpha, \beta, \gamma, \delta, \epsilon\}$.
 - Prime, redundant, minimal w.r. to scc.
- Irredundant:
 - Cover: $\{\beta, \gamma, \delta, \epsilon\}$.
 - Prime, irredundant.

Example

Expand naive implementation

- For each implicant
 - For each *care* literal
 - * Raise it to *don't care* if possible.
 - Remove all covered implicants.
- Problems:
 - Validity check.
 - Order of expansions.

Validity check

- Espresso, MINI:
 - Check *intersection* of expanded implicant with OFF-set.
 - Requires complementation.
- Presto:
 - Check *inclusion* of expanded implicant in the union of the ON-set and DC-set.
 - Can be reduced to recursive tautology check.

Heuristics

C GDM

- Expand first cubes that are unlikely to be covered by other cubes.
- Selection:
 - Compute vector of column sums.
 - Weight: inner product of cube and vector.
 - Sort implicants in ascending order of weight.
- Rationale:
 - Low weight correlates to having few 1s in densely populated columns.

Example

🗕 © GDM

- f = a'b'c' + ab'c' + a'bc' + a'b'cDC-set = abc'
 - 101010011010100110101001
- Ordering:
 - Vector: $[313131]^T$
 - Weights: (9,7,7,7).
- Select second implicant.

(c)

(d)

Example (3)

© GDM

• OFF-set:

01	11	01
11	01	01

- Expand 01 10 10:
 - 11 10 10 valid.
 - 11 11 10 valid.
 - 11 11 11 invalid.
- Update cover to:
 - 11 11 10 10 10 01

Expand

— © GDM

- Smarter heuristics for choosing literals to be expanded.
- Four step procedure in Espresso.
- Rationale:
 - Raise literals so that expanded implicant:
 - * Covers a maximal set of cubes.
 - * Making it as large as possible.

Definitions

- free:
 - Set of entries that can be raised to 1.
- Overexpanded cube
 - Cube whose entries in *free* are raised.
- Feasible cover
 - Expand a cube to cover another one while keeping it as an implicant of the function.

- © GDM

- Determine the essential parts.
 Determine which entries care
 - Determine which entries can never be raised, and remove them from free.
 - Determine which parts can always be raised, raise them, and remove them from *free*.
- Detection of feasibly covered cubes.
 - If there is an implicant β whose supercube with α is feasible, repeat the following steps.
 - * Raise the appropriate entry of α and remove it from *free*.
 - * Remove from *free* entries that can never be raised or that can always be raised and update α .
- Expansion guided by the overexpanded cube.
 While the overexpanded cube of α covers some other cubes of F, repeat the following steps.
 - * Raise a single entry of α as to overlap a maximum number of those cubes.
 - * Remove from free entries that can never be raised or that can always be raised and update α .
- Find the largest prime implicant.
 - Formulate a covering problem and solve it by
 - a heuristic method.

Reduce

_____ © GDM ____

• Sort implicants:

- Heuristic: sort by descending weight.

- For each implicant:
- Lower as many * as possible to 1 or 0.
- Theorem:
 - Let $\alpha \in F$ and $Q = F \cup D \{\alpha\}$. Then, the maximally reduced cube is: $\tilde{\alpha} = \alpha \cap supercube(Q'_{\alpha}).$

– © GDM

• Expanded cover:

11	11	10
10	10	11

• Select first implicant:

- cannot be reduced.

• Select second implicant:

- Reduced to 10 10 01

• Reduced cover:

Irredundant cover

Irredundant cover

- Relatively essential set E^r
 - Implicants covering some minterms of the function not covered by other implicants.
- Totally redundant set R^t
 - Implicants covered by the relatively essentials.
- Partially redundant set R^p
 - Remaining implicants.

Irredundant cover

- Find a subset of R^p that, together with E^r , covers the function.
- Modification of the tautology algorithm:
 - Each cube in \mathbb{R}^p is covered by other cubes.
 - Find mutual covering relations.
- Reduces to a covering problem:
 - Heuristic algorithm.

Example

© GDM

lpha	10	10	11
eta	11	10	01
γ	01	11	01
δ	01	01	11
ϵ	11	01	10

•
$$E^r = \{\alpha, \epsilon\}$$

•
$$R^t = \emptyset$$

• $R^p = \{\beta, \gamma, \delta\}.$

Example (2)

C GDM

- Covering relations:
 - β is covered by $\{\alpha, \gamma\}$.
 - γ is covered by $\{\beta, \delta\}$.
 - δ is covered by $\{\gamma, \epsilon\}$.
- Minimum cover: $\gamma \cup E^r$

Espresso algorithm

_____ © GDM ____

- Compute the complement.
- Extract essentials.
- Iterate:
 - Expand, irredundant, reduce.
- Cost functions:
 - Cover cardinality ϕ_1 .
 - Weighed sum of cube and literal count ϕ_2 .

Espresso algorithm

© GDM

espresso(F, D){ $R = complement(F \cup D);$ F = expand(F, R);F = irredundant(F, D);E = essentials(F, D);F = F - E; $D = D \cup E;$ repeat { $\phi_2 = cost(F);$ repeat { $\phi_1 = |F|;$ F = reduce(F, D);F = expand(F, R);F = irredundant(F, D);} until ($|F| \ge \phi_1$); $F = last_gasp(F, D, R);$ } until ($cost(F) \ge \phi_2$); $F = F \cup E;$ D = D - E; $F = make_sparse(F, D, R);$ }

Summary heuristic minimization

_____ © GDM ____

- Heuristic minimization is iterative.
- Few operators applied to covers.
- Underlying mechanism:
 - Cube operation.
 - Unate recursive paradigm.
- Efficient algorithms.