TIMING ISSUES IN
MULTI-LEVEL LOGIC

OP

IMIZA

ION

© Giovanni De Micheli

Stanford University

Outline

© GDM =

e Timing verification.
— Delay modeling.
— Critical paths.

— The false path problem.

e Algorithms for timing optimization.

Timing verification and optimization

© GDM =

e Verification:

— Check that a circuit runs at speed:

x Satisfies I/O delay constraints.

x Satisfies cycle-time constraints.

e Optimization:

— Minimum area

x subject to delay constraints.

— Minimum delay

* (subject to area constraints).

Delay modeling

© GDM =

e Gate delay modeling:
— Straightforward for bound networks.

— Approximations for unbound networks.

e Network delay modeling:

— Compute signal propagation:

x Topological methods.

*x Logic/topological methods.

Gate delay modeling
unbound networks

© GDM =—

e Virtual gates:

— Logic expressions.

e Stage delay model:

— Unit delay per vertex.

e Refined models:

— Depending on fanout.

Network delay modeling

© GDM =

For each vertex v;.

Propagation delay d;.

— I/O propagation delays are usually zero.

Data-ready time t;.

— Input data-ready times denote when
inputs are available.

— Computed elsewhere by forward traversal:

—t = d; + max ¢,
' " jl(vje)€E Y

Example

e Propagation delays:
— dg = 3;dp, = 8;dm = 1,d;, = 10, d; = 3;

Network delay modeling
© GDM =

e For each vertex v;.

e Required data-ready time t,.
— Specified at the primary outputs.
— Computed elsewhere by backward traversal:

— fz = min t; —d;
ilwiwjee 7

e Slack s;.

— Difference between required and
actual data-ready times s; = ¢t; — t;.

Example

© GDM = =—

0 5 10 15 20 25 data-ready

e Required data-ready times:

Example

© GDM =
Sg = 2,8, =0

tm =25 —2 =23;5, =23 -21 = 2;
tg=25-3=22;5,=22-22=0;

t; = min{23 —1;22 — 2} = 20;s; = 20 — 20 = 0;
tp =23 —-1=22;5,=22—-11=11;

t, =20—-3=17;s8, = 17 — 13 = 4,

tp =20-3=17;s, =17 - 17 = 0;

t, =17 -2 =15;s, = 15 —-15 = 0;

tp, =15 —-5=10;s,=10—- 10 = O;

min{22 — 11,17 —10;17 -2} =7;,s, =7 — 3 = 4;

~
Q
|

to=7—-3=4;5=4—-0=24.

Topological critical path

© GDM = =—

e Assume topologic computation of:
— Data-ready by forward traversal.

— Required data-ready by backward traversal.

e Jopological critical path:
— Input/output path with zero slacks.
— Any increase in the vertex propagation
delay affects the output data-ready time.
e A topological critical path may be false.

— No event can propagate along that path.

Example

© GDM = =—

0 5 10 15 20 25 data-ready

Example

=i

All gates have unit delay.

All inputs ready at time O.

Longest topological path: (va, ve, vg, vy, vz).

— Path delay: 4 units.

Critical true path: (vq,ve, vy, vy).

— Path delay: 3 units.

Sensitizable paths

© GDM = =—

A path in a logic network is sensitizable if
an event can propagate from its tail to its
head.

A critical path is a sensitizable path of
maximum weight.

Only sensitizable paths should be
considered.

Non-sensitizable paths are false
and can be discarded.

Sensitizable paths

© GDM e

e Path:

— Ordered set of vertices.

e Inputs to a vertex:

— Direct predecessors.

e Side-inputs of a vertex:

— Inputs not on the path.

Dynamic sensitization condition

© GDM =

L Path P = (Umo,vml,...,vxm).

e An event propagates along P if

— Ofy, /0w =1Vi=1,2,...,m.

e Remark:

— Boolean differences are function of the
side-inputs and values on the side-inputs
may change.

— Boolean differences must be true
at the time that the event propagates.

Example

>

© GDM

-

b >Ce

o Path: (vq,ve, vy, vy, vz2)

— 0f,/0d = e =1 at time 2.

— 0f,/0y = ¢’ = 1 at time 3.

e Not dynamically sensitizable
because e settles at time 1.

Static sensitization

© GDM =

Simpler, weaker model.

We neglect the requirement on when the
Boolean differences must be true to
propagate an event.

Thereis an assignment of primary inputs C
such that 9f;,(c)/0x;—1 =1Vi=1,2,...,m.

May lead to underestimate delays.

Example

-

e Not statically sensitizable.

Example

© GDM =

d
e
-

e All gates have unit propagation delay.

Example

© GDM =

e [opological critical paths:

- {(’Uaa’Uda’Uga’UO); (’Uba’Uda’Uga’UO)}
— Path delay: 3.

— Not statically sensitizable.

e Other path:

- (’Ua, Ve, ’UO)

— Path delay: 2.

e Assume:

— c¢c=0 and a, b dropping from 1 to O.

— Event propagates to output !!!

Modes for delay computation

© GDM =

e Transition mode:

— Variables assumed to hold previous values.

* Model circuit node capacitances.

— Need two input vectors to test.

e Floating mode:
— Circuit is assumed to be memoryless.
— Need only one test vector.

— Variables have unknown value until set
by input test vector.

Modes for delay computation

© GDM =

e Floating mode delay computation is
simpler than transition mode computation.

e Floating mode is a pessimistic approach.

e Floating mode is more robust:

— Transition mode may not have the
monotone speed-up property.

Monotone speed-up property

© GDM e

e Propagation delays are upper bounds.
— What happens if gates are faster
than expected?
e \We must insure that speeding-up a gate
does not slow-down the circuit.

— Topological critical paths are robust.

— What about dynamically sensitizable paths
in transition mode~

Example

© GDM

01 23 456 7 01 23 456 7
(b) (c)

e Propagation delays: 2 units.

e Shaded gate: 3 units and 1 unit.

Static co-sensitization

© GDM =—

e Assumption:
— Circuit modeled by AND,OR,INV gates.
— INYV are irrelevant to the analysis.

— Floating mode.

e Controlling values:
— O for AND gate.

— 1 for OR gate.

e Gate has controlled value.

Static co-sensitization

© GDM =

L Path P = (Umo,vml,...,vxm).

e A vector statically co-sensitizes a path to 1
(or to 0) if
— zm =1 or (0) and
— vz, _;, has a controlling value whenever

vy; has a controlled value.

e Necessary condition for a path to be true.

False path detection test

© GDM =

e For all input vectors, one of the following is true:

— (1) A gate is controlled and
x the path provides a non-controlling value

x a side-input provides a controlling value.

— (2) A gate is controlled and

x the path and a side-input have controlling
values

x the side-input presents the controlling value
first.

— (3) A gate is not controlled and

x a Side-input presents the non-controlling value
last.

Example

e
b >oe

Path: (vq,ve, vg, vy, vs).

Fora=0,b=0
— condition (1) occurs at the OR gate.

Fora=0,b=1
— condition (2) occurs at the AND gate.

Fora=1,b=0
— condition (2) occurs at the OR gate.

Fora=1,b=1
— condition (1) occurs at the AND gate.

Important problems

© GDM =

e Check if circuit works at speed ¢t.
— Verify that all true paths are faster than ¢t.
— Show that all paths slower than ¢t are
false.

e Compute groups of false paths.

e Compute critical true path:
— Binary search for values of t.

— Show that all paths slower than t are
false.

Algorithms for delay minimization

© GDM =

e Alternate:
— Critical path computation.

— Logic transformation on critical vertices.

e Consider quasi critical paths:
— Paths with near-critical delay.

— Small slacks.

Algorithms for delay minimization
© GDM =

REDUCE_DELAY(Gn(V, E) ,e){

repeat {
Compute critical paths and critical delay T;
Set output required data-ready times to T,
Compute slacks;
U = vertex subset with slack lower than e;
W = select vertices in U:
Apply transformations to vertices W,

huntil (no transformation can reduce 7);

Transformations for delay reduction

© GDM =

e Reduce propagation delay.

e Reduce dependencies from critical inputs.

e Favorable transformation:
— Reduces |local data-ready time.

— Any data-ready time increase at other
vertices is bounded by the local slack.

Example

© GDM =

Unit gate delay.

Transformation:

— Elimination.

Always favorable.

Obtain several area/delay trade-off points.

© GDM e

a—_lﬁ X
S LI ' v
B)

ZE - —-
k _T\)
O

(b)
e Iteration 1: eliminate vy, v,. (NoO literal increase.)
e Iteration 2: eliminate v,. (No literal increase.)

e Iteration 3: eliminate v,,vs,v:. (Literals increase.)

More refined delay models

© GDM

e Elimination:
— Reduces one stage.
— Yields more complex and slower gates.

— May slow other paths.

e Substitution:
— Adds one dependency.
— Loads and slows a gate.

— May slow other paths.

Example

(@)

(€)

=

© GDM =

o0
O—®

d ; 53

a

b

e - z
(d)

Example

© GDM =

}DOLDLX

3 y

| =

a'+b'+c’+d'+e’

D y

0

Q 09 OTw
S

D

sJsly
7YY

; i :

e NAND delay =2. INVERTER delay =1.

e All input data-ready are 0, except t; = 3.

Speed-up algorithm

© GDM e

Determine a subnetwork W of depth d.

Collapse subnetwork by elimination.

Duplicate vertices with successors outside W':

— Record area penalty.

Resynthesize W by timing-driven
decomposition.

Heuristics:
— Choice of W.

— Monitor area penalty and potential speed-up

Algorithms for minimal-area synthesis
under delay constraints

© GDM =

e Make network timing feasible.
— May not be possible.

e Minimize area while preserving timing
feasibility.
— Use area optimization algorithms.
— Monitor delays and slacks.

— Reject transformations vielding
negative slacks.

Making a network timing feasible.

© GDM e

e Naive approach:
— Mark vertices with negative slacks.

— Apply transformations to marked vertices.

e Refined approach.

— Transform multiple I/O delay constraints
into single constraint by delay padding.

— Apply algorithms for CP minimization.

— Stop when constraints are satisfied.

Example

© GDM e

t = [2332]7
;)
b JJD |
= L
=k O—1 D
[
Entd i
nl — @hD_
°)
b L)D |
i) L
i — >——
S LI

(b)

Summary

© GDM =

e Timing optimization is crucial for
achieving competitive logic design.
e Timing optimization problems are hard:

— Detection of critical paths.

x Elimination of false paths.

— Network transformations.

