
TIMING ISSUES IN

MULTI-LEVEL LOGIC

OPTIMIZATION

cGiovanni De Micheli

Stanford University

Outline

c GDM

� Timing veri�cation.

{ Delay modeling.

{ Critical paths.

{ The false path problem.

� Algorithms for timing optimization.

Timing veri�cation and optimization

c GDM

� Veri�cation:

{ Check that a circuit runs at speed:

� Satis�es I/O delay constraints.

� Satis�es cycle-time constraints.

� Optimization:

{ Minimum area

� subject to delay constraints.

{ Minimum delay

� (subject to area constraints).

Delay modeling

c GDM

� Gate delay modeling:

{ Straightforward for bound networks.

{ Approximations for unbound networks.

� Network delay modeling:

{ Compute signal propagation:

� Topological methods.

� Logic/topological methods.

Gate delay modeling

unbound networks

c GDM

� Virtual gates:

{ Logic expressions.

� Stage delay model:

{ Unit delay per vertex.

� Re�ned models:

{ Depending on fanout.

Network delay modeling

c GDM

� For each vertex vi.

� Propagation delay di.

{ I/O propagation delays are usually zero.

� Data-ready time ti.

{ Input data-ready times denote when

inputs are available.

{ Computed elsewhere by forward traversal:

{ ti = di + max
jj(vj;vi)2E

tj

Example

c GDM

0 5 10 15 20 25

a

b

x

y

g

h

k l

m

n

p q

data−ready

� Propagation delays:

{ dg = 3; dh = 8; dm = 1; dk = 10; dl = 3;

{ dn = 5; dp = 2; dq = 2; dx = 2; dy = 3;

Network delay modeling

c GDM

� For each vertex vi.

� Required data-ready time tx.

{ Speci�ed at the primary outputs.

{ Computed elsewhere by backward traversal:

{ ti = min
jj(vi;vj)2E

tj � dj

� Slack si.

{ Di�erence between required and

actual data-ready times si = ti � ti.

Example

c GDM

0 5 10 15 20 25

a

b

x

y

g

h

k l

m

n

p q

data−ready

� Required data-ready times:

{ tx = 25 and ty = 25.

Example

c GDM

� sx = 2; sy = 0

� tm = 25� 2 = 23; sm = 23� 21 = 2;

� tq = 25� 3 = 22; sq = 22� 22 = 0;

� tl = minf23� 1; 22� 2g = 20; sl = 20� 20 = 0;

� th = 23� 1 = 22; sh = 22� 11 = 11;

� tk = 20� 3 = 17; sk = 17� 13 = 4;

� tp = 20� 3 = 17; sp = 17� 17 = 0;

� tn = 17� 2 = 15; sn = 15� 15 = 0;

� tb = 15� 5 = 10; sb = 10� 10 = 0;

� tg = minf22� 11; 17� 10; 17� 2g = 7; sg = 7� 3 = 4;

� ta = 7� 3 = 4; sb = 4� 0 = 4.

Topological critical path

c GDM

� Assume topologic computation of:

{ Data-ready by forward traversal.

{ Required data-ready by backward traversal.

� Topological critical path:

{ Input/output path with zero slacks.

{ Any increase in the vertex propagation

delay a�ects the output data-ready time.

� A topological critical path may be false.

{ No event can propagate along that path.

Example

c GDM

0 5 10 15 20 25

a

b

x

y

g

h

k l

m

n

p q

data−ready

s=0 s=0

s=0

s=0

s=0s=0

s=11 s=2 s=2

s=4s=4s=4

Example

c GDM

y
a

b

c

z

d

e

� All gates have unit delay.

� All inputs ready at time 0.

� Longest topological path: (va; vc; vd; vy; vz).

{ Path delay: 4 units.

� Critical true path: (va; vc; vd; vy).

{ Path delay: 3 units.

Sensitizable paths

c GDM

� A path in a logic network is sensitizable if

an event can propagate from its tail to its

head.

� A critical path is a sensitizable path of

maximum weight.

� Only sensitizable paths should be

considered.

� Non-sensitizable paths are false

and can be discarded.

Sensitizable paths

c GDM

� Path:

{ Ordered set of vertices.

� Inputs to a vertex:

{ Direct predecessors.

� Side-inputs of a vertex:

{ Inputs not on the path.

Dynamic sensitization condition

c GDM

� Path: P = (vx0; vx1; : : : ; vxm).

� An event propagates along P if

{ @fxi=@xi�1 = 1 8i= 1;2; : : : ;m.

� Remark:

{ Boolean di�erences are function of the

side-inputs and values on the side-inputs

may change.

{ Boolean di�erences must be true

at the time that the event propagates.

Example

c GDM

y
a

b

c

z

d

e

� Path: (va; vc; vd; vy; vz)

{ @fy=@d= e = 1 at time 2.

{ @fz=@y = e0 = 1 at time 3.

� Not dynamically sensitizable

because e settles at time 1.

Static sensitization

c GDM

� Simpler, weaker model.

� We neglect the requirement on when the

Boolean di�erences must be true to

propagate an event.

� There is an assignment of primary inputs c

such that @fxi(c)=@xi�1 = 1 8i= 1;2; : : : ;m.

� May lead to underestimate delays.

Example

c GDM

y
a

b

c

z

d

e

� Not statically sensitizable.

Example

c GDM

a

b

c

d

e

g

o

� All gates have unit propagation delay.

Example

c GDM

� Topological critical paths:

{ f(va; vd; vg; vo); (vb; vd; vg; vo)g

{ Path delay: 3.

{ Not statically sensitizable.

� Other path:

{ (va; ve; vo)

{ Path delay: 2.

� Assume:

{ c = 0 and a; b dropping from 1 to 0.

{ Event propagates to output !!!

Modes for delay computation

c GDM

� Transition mode:

{ Variables assumed to hold previous values.

� Model circuit node capacitances.

{ Need two input vectors to test.

� Floating mode:

{ Circuit is assumed to be memoryless.

{ Need only one test vector.

{ Variables have unknown value until set

by input test vector.

Modes for delay computation

c GDM

� Floating mode delay computation is

simpler than transition mode computation.

� Floating mode is a pessimistic approach.

� Floating mode is more robust:

{ Transition mode may not have the

monotone speed-up property.

Monotone speed-up property

c GDM

� Propagation delays are upper bounds.

{ What happens if gates are faster

than expected?

� We must insure that speeding-up a gate

does not slow-down the circuit.

{ Topological critical paths are robust.

{ What about dynamically sensitizable paths

in transition mode?

Example

c GDM

y

a

x

u

v

o

w

a

u

x

v

y

o

w

0 1 2 3 4 5 6 7

time

a

u

x

v

y

o

w

0 1 2 3 4 5 6 7

time

(a)

(b) (c)

� Propagation delays: 2 units.

� Shaded gate: 3 units and 1 unit.

Static co-sensitization

c GDM

� Assumption:

{ Circuit modeled by AND;OR; INV gates.

{ INV are irrelevant to the analysis.

{ Floating mode.

� Controlling values:

{ 0 for AND gate.

{ 1 for OR gate.

� Gate has controlled value.

Static co-sensitization

c GDM

� Path: P = (vx0; vx1; : : : ; vxm).

� A vector statically co-sensitizes a path to 1

(or to 0) if

{ xm = 1 or (0) and

{ vxi�1 has a controlling value whenever

vxi has a controlled value.

� Necessary condition for a path to be true.

False path detection test

c GDM

� For all input vectors, one of the following is true:

{ (1) A gate is controlled and

� the path provides a non-controlling value

� a side-input provides a controlling value.

{ (2) A gate is controlled and

� the path and a side-input have controlling
values

� the side-input presents the controlling value
�rst.

{ (3) A gate is not controlled and

� a side-input presents the non-controlling value

last.

Example

c GDM

y
a

b

c

z

d

e

� Path: (va; vc; vd; vy; vz).

� For a = 0; b = 0

{ condition (1) occurs at the OR gate.

� For a = 0; b = 1

{ condition (2) occurs at the AND gate.

� For a = 1; b = 0

{ condition (2) occurs at the OR gate.

� For a = 1; b = 1

{ condition (1) occurs at the AND gate.

Important problems

c GDM

� Check if circuit works at speed t.

{ Verify that all true paths are faster than t.

{ Show that all paths slower than t are

false.

� Compute groups of false paths.

� Compute critical true path:

{ Binary search for values of t.

{ Show that all paths slower than t are

false.

Algorithms for delay minimization

c GDM

� Alternate:

{ Critical path computation.

{ Logic transformation on critical vertices.

� Consider quasi critical paths:

{ Paths with near-critical delay.

{ Small slacks.

Algorithms for delay minimization

c GDM

REDUCE DELAY (Gn(V;E) ; �)f

repeat f

Compute critical paths and critical delay � ;

Set output required data-ready times to � ;

Compute slacks;

U = vertex subset with slack lower than �;

W = select vertices in U ;

Apply transformations to vertices W ;

guntil (no transformation can reduce �);

g

Transformations for delay reduction

c GDM

� Reduce propagation delay.

� Reduce dependencies from critical inputs.

� Favorable transformation:

{ Reduces local data-ready time.

{ Any data-ready time increase at other

vertices is bounded by the local slack.

Example

c GDM

� Unit gate delay.

� Transformation:

{ Elimination.

� Always favorable.

� Obtain several area/delay trade-o� points.

Example

c GDM

a

b

c

d

e

g

h
k

l

m

x

y

w

z

p

q

r

s

t

u

(a)

a

b

c

d

e

g

h
k

l

m

x

y

w

z

r

s

t

(b)

� Iteration 1: eliminate vp; vq. (No literal increase.)

� Iteration 2: eliminate vu. (No literal increase.)

� Iteration 3: eliminate vr; vs; vt. (Literals increase.)

More re�ned delay models

c GDM

� Elimination:

{ Reduces one stage.

{ Yields more complex and slower gates.

{ May slow other paths.

� Substitution:

{ Adds one dependency.

{ Loads and slows a gate.

{ May slow other paths.

Example

c GDM

k j i

j

k i

x

y

z

c

a

b

e

d

x

y

z

c

a

b

e

d

(a) (b)

(c) (d)

m m

k k

Example

c GDM

y

a
b
c x

d
e

g

y

a
b
c

x

d
e

g

a’+b’+c’+d’+e’

y

a

b
c x

d

e

g

e

d

� NAND delay =2. INVERTER delay =1.

� All input data-ready are 0, except td = 3.

Speed-up algorithm

c GDM

� Determine a subnetwork W of depth d.

� Collapse subnetwork by elimination.

� Duplicate vertices with successors outside W :

{ Record area penalty.

� Resynthesize W by timing-driven

decomposition.

� Heuristics:

{ Choice of W .

{ Monitor area penalty and potential speed-up.

Algorithms for minimal-area synthesis

under delay constraints

c GDM

� Make network timing feasible.

{ May not be possible.

� Minimize area while preserving timing

feasibility.

{ Use area optimization algorithms.

{ Monitor delays and slacks.

{ Reject transformations yielding

negative slacks.

Making a network timing feasible.

c GDM

� Naive approach:

{ Mark vertices with negative slacks.

{ Apply transformations to marked vertices.

� Re�ned approach.

{ Transform multiple I/O delay constraints

into single constraint by delay padding.

{ Apply algorithms for CP minimization.

{ Stop when constraints are satis�ed.

Example

t = [2332]T

c GDM

a

b

c

d

e

g

h
k

l

m

x

y

w

z

p

q

r

s

t

(a)

a

b

c

d

e

g

h
k

l

m

x

y

w

z

r

s

t

(b)

u

u

Summary

c GDM

� Timing optimization is crucial for

achieving competitive logic design.

� Timing optimization problems are hard:

{ Detection of critical paths.

� Elimination of false paths.

{ Network transformations.

