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Outline

c GDM

� Structural optimization methods:

{ Peripheral retiming

{ Synchronous-logic transformations.

{ Synchronous don't cares .

� Relations between state-based models and

structural models.



Peripheral retiming

c GDM

� Alternate retiming and comb. synthesis.

� Move register position to periphery:

{ Maximize the scope of combinational

logic.

{ Borrow and release synchronous delays.

� Optimize combinational logic.

� Return borrowed synchronous delays.



Example

c GDM
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Assumption for peripheral retiming

c GDM

� The network graph is acyclic.

� There are no two paths from an input to

an output vertex with di�erent weights.

� There exists integer vectors

{ a 2 ZjV I j and b 2 ZjV Oj, such that

{ w(vi; : : : ; vj) = ai + bj for all paths

(vi; : : : ; vj) with vi 2 V I ; vj 2 V O.

� Remarks:

{ Applicable to pipelined networks.

{ Extensible to circuits with feedback

by using partitioning.



Logic transformations

and peripheral retiming

c GDM

� Apply combinational logic transformations.

� Requirement:

{ No negative weight on I/O paths

to guarantee that circuit can be

retimed again.

� Reject some transformations.



Example

c GDM
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Algebraic synchronous logic

transformations

c GDM

� Combine transformations with retiming.

� Transform combinational logic expressions:

{ Within register boundaries.

{ Across register boundaries.

� Extension of algebraic transformations.



Example of synchronous elimination

c GDM
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Example of synchronous substitution

c GDM

a

b

c

x

y

a

b

c

x

y

x = a@1+ b; y = a@2c+ b@1c

x= a@1+ b; y = x@1c



Boolean synchronous logic

transformations

c GDM

� Boolean function minimization:

{ Functions of delayed variables.

{ Explicit synchronous don't care

conditions.

{ Extension of combinational methods.

� Boolean relation minimization:

{ Problem generalization.

{ Implicit don't care conditions.



Extension of classic don't care conditions

to the synchronous domain

c GDM

� Controllability don't care sets:

{ Conditions that cannot occur:

� Due to external connections.

� Due to internal connections.

� Observability don't care sets:

{ Conditions such that a variable is not

observed at present or in the future.

� At some external port.

� At some internal gate.



Explicit don't care representation

c GDM

� Synchronous literal: literal with time label.

� Synchronous product: product of sync.

literals.

� Don't care sets:

{ Sums of synchronous products.

{ Time invariant component.

{ Time dependent component.



Example

c GDM
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� Initialization:

{ (b(�4); b(�3); b(�2)) = (1;0;1).

� Transient don't care condition:

{ v0
(�3)+ v0

(�1).

� Time-invariant don't care condition:

{ u(n)v0
(n+1)

.



Synchronous logic optimization

using explicit don't care sets.

c GDM

� Compute local don't care sets:

{ Extensions of controllability, observability

algorithms for combinational circuits.

� Optimize functions w.r. to local don't

care sets:

{ Rename time-labeled variables.

{ Use two-level minimizers.



Example

c GDM
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� Replace EXNOR gate by an AND gate.

{ Perturbation:

� Æ(n) = (u(n)v(n)+u0(n)v0(n))�(u(n)v(n)) = u0(n)v0(n)

� Compute local don't care set:

{ gDCy contains u0
(n�1)

u0
(n)

+u(n�1)v0
(n)

.

� Perturbation is bounded by don't care set:

{ Replacement feasible !



Example

c GDM
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Implicit don't care conditions

c GDM

� Explicit don't care sets do not represent

all degrees of freedom for optimization.

� There are some feasible simpli�cations

that require a more complex model.

{ Synchronous Boolean relation models.

{ Implicit don't care condition

representations.

� Specialized algorithms.



Example

Path reconvergence with unequal delays

c GDM
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Example of implicit representation

c GDM

 x y F

� Equating terminal behavior:

{ F = x0n � x0n�1 = yn � yn�1

{ (x0n � x0n�1)�(yn � yn�1) = 1

� Example of solutions:

{ yn = xn

{ yn = x0n

{ yn = xn � xn�1 � yn�1



Relating the structural to the

state-based models.

c GDM

� State encoding:

{ Maps the state-based representation into

a structural one.

� State extraction:

{ Recovers the state information from a

structural model.

� Remark:

{ A circuit with n register may have 2n

states.

{ Unreachable states.



State Extraction

c GDM
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� State variables: p; q.

� Initial state: p = 0; q = 0.

� Four possible states.



State Extraction

c GDM

� Reachability analysis.

{ Given a state

determine which states are reachable

for some inputs.

{ Given a state subset

determine the reachable state subset.

{ Start from initial state.

{ Stop when convergence is reached.

� Notation:

{ A state (or state subset) is an

expression over the state variables.



Reachability analysis

c GDM

� State transition function: f

� Initial state: r0.

� States reachable from r0:

{ Image of r0 under f.

� States reachable from set rk:

{ Image of rk under f.

� Iteration:

{ rk+1 = rk[ ( image of rk under f ).

� Convergence:

{ rk+1 = rk for some k.



Example

c GDM
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� Initial state r0 = p0q0.

� The state transition function f =

"
x0p0q0+ pq

xp0+ pq0

#
.



Example

c GDM

� Image of p0q0 under f:

{ When (p = 0; q = 0), f reduces to

"
x0

x

#

{ Range is

"
0
1

#
and

"
1
0

#

� States reachable from the reset state:

{ (p = 1; q = 0) and (p = 0; q = 1).

{ r1 = p0q0+ pq0+ p0q = p0+ q0.

� States reachable from r1:

"
0
0

#
,

"
0
1

#
,

"
1
0

#

� Convergence: s0 = p0q0; s1 = pq0; s2 = p0q.



Completing the extraction

c GDM

� Determine state set (vertex set).

� Determine transitions (edge set) and

I/O labels.

{ Inverse image computation.

{ Look at conditions that lead you into

a given state.



Example

c GDM
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� Transitions into s0 = p0q0.

{ Patterns that make f =

"
0
0

#

{ (x0p0q0+ pq)0(xp0+ pq0)0 = x0p0q

{ Transition from state s2 = p0q under

input x0.



Remarks

c GDM

� Extraction is performed eÆciently with BDDs.

� Model the transition relation �(i;x;y) with

BDD.

{ Links possible triples of

� (input, state, next-state).

� Image of rk (where rk depends on x).

{ Si;x(�(i;x;y) � rk(x)).



Summary

Optimization of synchronous circuits

c GDM

� State-based models:

{ Classic FSM optimization.

� Structural models:

{ Retiming.

{ Peripheral retiming.

{ Algebraic and Boolean transformations.

� Still area of active research.


