RESOURCE SHARING

© Giovanni De Micheli

Stanford University

Outline

© GDM =

e Resource-dominated circuits.
— Flat and hierarchical graphs.

— Functional and memory resources.

e Extensions.
— Non resource-dominated circuits.
— Concurrent scheduling and binding.

— Module selection.

Allocation and binding

© GDM =

Allocation:

— Number of resources available.

Binding:

— Relation between operations and resources.

Sharing:

— Many-to-one relation.

Optimum binding/sharing:

— Minimize the resource usage.

Binding

© GDM =

e Limiting cases:

— Dedicated resources:

x One resource per operation.
x* NO sharing.

— One multi-task resource:

* ALU.

— One resource per type.

Optimum sharing problem

© GDM =

e Scheduled sequencing graphs.

— Operation concurrency well defined.

e Consider operation types independently.
— Problem decomposition.

— Perform analysis for each resource type.

Compatibility and conflicts

© GDM =

e Operation compatibility:
— Same type.

— Non concurrent.

e Compatibility graph:
— Vertices: operations.

— Edges: compatibility relation.

e Conflict graph:

— Complement of compatibility graph.

Example

© GDM =

W
.
W
o
\
.
v
.
o
\\\\\
\\\\
v
\
\
.
o
o
v
.
\
.
W
\

\©
- 58
- 85

o
W

Multiplier ALU

Algorithmic solution to
the optimum binding problem

© GDM

e Compatibility graph.

— Partition the graph
iInNnto a minimum number of cliques.

— Find clique cover number k(G4).

e Conflict graph.

— Color the vertices
by a minimum number of colors.

— Find chromatic number x(G_).

e NP-complete problems — Heuristic algorithms.

Exa

mple

t1 x:a+b y=C+d
Conflict

O—0O

©

O—

Coloring

P

ALU2: 2,4

O

ALU1:1,35

1 2
3 4
5
Compatibility

Covering

[

© GDM ==

Perfect graphs

© GDM =~ =—

e Comparability graph:

— Graph G(V, E) has an orientation G(V, F)
with the transitive property.

— (vj,v5) € FU(vj,vg) € F = (v;,v;) € F.

e Interval graph:
— Vertices correspond to intervals.
— Edges correspond to interval intersection.

— Subset of chordal graphs:

x Every loop with more than three edges
has a chord.

Data-flow graphs
(flat sequencing graphs)

© GDM
e The compatibility/conflict graphs
have special properties.

— Compatibility:

« Comparability graph.

— Conflict:

« Interval graph.

e Polynomial time solutions:
— Golumbic's algorithm.

— Left-edge algorithm.

Example

Example

© GDM =

NOP;

Left-edge algorithim
© GDM s

e Input:

— Set of intervals with left and right edge.

e Rationale:
— Sort intervals by left edge.

— Assign non overlapping intervals to first
color using the sorted list.

— When possible intervals are exhausted
increase color counter and repeat.

Left-edge algorithim

© GDM

LEFT EDGE(I) {
Sort elements of I in a list L in ascending order of [;;

c = 0;

while (some interval has not been colored) do {
S =0,
r = 0,

while (3s € L such that I > r) do{
s = First element in the list L with Il > r:

S =SuU{s};

r = Ts,

Delete s from L;
}
c=c—+ 1;

Label elements of S with color ¢;

Example

© GDM

01 2 34 5 6 738

A
\&J

(b)

(©

ILP formulation of binding

© GDM =

e Boolean variables b;,

— Operation 2 bound to resource r.

e Boolean variables x;;

— Operation 7z scheduled to start at step
.

i:bir = 1 Vi
r=1
> b > mim < 1 VL Vr

Hierarchical sequencing graphs

© GDM =

e Hierarchical conflict/compatibility graphs.
— Easy to compute.

— Prevent sharing across hierarchy.

e Flatten hierarchy.
— Bigger graphs.

— Destroy nice properties.

© GDM e

Example

TIME 2
U/ ’
IME 3 % |
3
TIME 4 *
4
TIME 5 ﬁ\ *
IME 6

Example

© GDM e

TIME 1

TIME 2

TIME 3

" - /N
—5-6 0 <&

TIME 4

-t
{
C

(a) (b) (c)

Register binding problem

© GDM =

e Given a schedule:
— Lifetime intervals for variables.

— Lifetime overlaps.

e Conflict graph (interval graph).
— Vertices <« variables.
— Edges < overlaps.

— Interval graph.

e Compatibility graph (comparability graph).

— Complement of conflict graph.

Register sharing
data-flow graphs

© GDM e

e Given:

— Variable lifetime conflict graph.

e Find:
— Minimum number of registers
storing all the variables.
e Key point:

— Interval graph:

*x Left-edge algorithm. (Polynomial-time).

Example

TIME 1

7

Ql ;2
z1\ z2
3

6
TIME 2 @
z3 z4
7
TIME 3
{)
z5 z6

TIME 4

(@)

Zl 22
z3 z4
z5 z6

(b)

(©

Register sharing
general case

© GDM =

e Iterative constructs:
— Preserve values across iterations.

— Circular-arc conflict graph:

x Coloring is intractable.

e Hierarchical graphs:

— General conflict graphs:

x Coloring is intractable.

e Heuristic algorithms.

Example

TIME 1

TIME 2

TIME 3

TIME 4

(@)

© GDM e

Example
Variable-lifetimes and circular-arc
conflict graph

© GDM

Multiport-memory binding

© GDM =

e Find minimum number of ports

to access the required number of variables.
e Variables use the same port:

— Port compatibility/conflict.

— Similar to resource binding.

e Variables can use any port:

— Decision variable z;; is TRUE
when variable ¢ is accessed at step |.

Novar

— Optimum: max €T.7.
1§l§>\—|—1i; L

Multiport-memory binding

© GDM
e Find maximum number of variables to be
stored through a fixed number of ports a.

— Boolean variables {b;,t = 1,2, ..., nyar}:

x Variable 7 is stored in array.
— max) »% b; such that

—Z?;a{ b; x;; < a [=1,2,...,2+1

Example

formulation
© GDM ==
Time—stepl | r3=ri+ry,;, rio=rm"r1
Time —step 2 . rs =r3—4174 , 77 =73%7Tg , 13 =173
Time—step3 : rg=r3+rs; ro=r1i+r7; ri1 =r10/7s5
Time —step 4 . rig =ri1Arg,; ris =ri2Vrg
Time —step 5 . ri =ri4; ro =115

max .2, b; such that

b1 + b2 + b3 + b12

b3z + ba + bs + bg + b7 + b13

b1 + b3 + bs + b7 + bg + bg + b1o + b11
bg + bog + b11 + b1o> + b1a + b1s

b1 + b2 + b1a + b1s

VAN VAN VAN VANR VAN
Q@ @ & & @

Example
solution

© GDM =

e One port a=1:
— {bo, bg,bg} non-zero.

— 3 variables stored: vy, v4, vg.

e Two ports a = 2:

— 6 variables stored: vy, v4, v, v10,v12,v14

e [hree ports a = 3:

— 9 variables stored: vy, vy, v4,vg, vg, V10, V12, V13

Bus sharing and binding

© GDM =

Find the minimum number of busses
to accommodate all data transfer.

Find the maximum number of data transfers
for a fixed number of busses.

Similar to memory binding problem.

ILP formulation or heuristic algorithms.

Example

1 2
TIME 1 Q @
z1\ z2
3 6 z1 z2
TIME 2 <;>
Z Z

TIME 3

z5 z6 75 26
5
TIME 4 M R —

@ (b) ()

e One bus:

— 3 variables can be transferred.

e [woO busses:

— All variables can be transferred.

Scheduling and binding
Resource dominated circuits

© GDM =

e Area and delay of resources dominate.

e Strategy:

— Scheduling under area constraints:

x Minimize latency.

— Binding.

* Share resource within bounds.

e Decoupling between scheduling and binding.

Scheduling and binding
General circuits

© GDM =

e Area and delay influenced by:
— Sparse logic, wiring, registers
and control circuit.
e Binding affects the cycle-time:

— It may invalidate a schedule.

e Scheduling after binding:
— Binding under restrictive assumptions.

— Time-frame of operations not yet known.

Scheduling and binding
approaches

© GDM =

Concurrent scheduling and binding.
— ILP model- exact.

— Some heuristic algorithms.

Scheduling before binding:

— Good for DSP application.

Binding before scheduling:

Iterative techniques.

Module selection problem

© GDM e

e Library of resources:

— More than one resource per type.

e Example:
— Ripple-carry adder.

— Carry look-ahead adder.

e Resource modeling:

— Resource subtypes with:

x (area, delay) parameters.

Module selection solution
© GDM e

e ILP formulation:

— Decision variables:

x Select resource sub-type.

x Determine (area, delay).

e Heuristic algorithms:

— Determine minimum latency
with fastest resource subtypes.

— Recover area by using slower resources
on non-critical paths.

© GDM e

e Multipliers with:

— (Area, delay) = (5,1) and (2,2)

e Latency bound of 5.

Example (2)

© GDM =

TTTTT

TTTTT

TTTTT

TTTTT

e Latency bound of 4.
— Fast multipliers for {vq,vo,v3}.

— Slower multipliers can be used elsewhere.

x Less sharing.

e Minimum-area design uses fast multipliers
only.

Summary

© GDM e

Resource sharing is reducible to
coloring/clique-covering.

Simple for flat graphs.

Intractable, but still easy in practice, for
other graphs.

More complicated for non resource-dominated
Circuits.

Extension: module selection.

