
RESOURCE SHARING

cGiovanni De Micheli

Stanford University

Outline

c GDM

� Resource-dominated circuits.

{ Flat and hierarchical graphs.

{ Functional and memory resources.

� Extensions.

{ Non resource-dominated circuits.

{ Concurrent scheduling and binding.

{ Module selection.

Allocation and binding

c GDM

� Allocation:

{ Number of resources available.

� Binding:

{ Relation between operations and resources.

� Sharing:

{ Many-to-one relation.

� Optimum binding/sharing:

{ Minimize the resource usage.

Binding

c GDM

� Limiting cases:

{ Dedicated resources:

� One resource per operation.

� No sharing.

{ One multi-task resource:

� ALU.

{ One resource per type.

Optimum sharing problem

c GDM

� Scheduled sequencing graphs.

{ Operation concurrency well de�ned.

� Consider operation types independently.

{ Problem decomposition.

{ Perform analysis for each resource type.

Compatibility and conicts

c GDM

� Operation compatibility:

{ Same type.

{ Non concurrent.

� Compatibility graph:

{ Vertices: operations.

{ Edges: compatibility relation.

� Conict graph:

{ Complement of compatibility graph.

Example

c GDM

* *

*

**

−

−

1 2

3

4

5

6

7

10

*

+

8

9

+

<
11

0
NOP

NOP

TIME 1

TIME 2

TIME 3

TIME 4

n

1

2

3 4

5 6 7

8

9

11

10

� Multiplier ALU

Algorithmic solution to

the optimum binding problem

c GDM

� Compatibility graph.

{ Partition the graph

into a minimum number of cliques.

{ Find clique cover number �(G+).

� Conict graph.

{ Color the vertices

by a minimum number of colors.

{ Find chromatic number �(G�).

� NP-complete problems { Heuristic algorithms.

Example

c GDM

Conflict Compatibility

Coloring Covering

1 2 1 2

55

3 4 3 4

ALU1: 1,3,5

ALU2: 2,4

y=c+dx=a+b

t2 s=x+y t=x−y

t3 z=a+t

t1 1 2

3 4

5

Perfect graphs

c GDM

� Comparability graph:

{ Graph G(V;E) has an orientation G(V; F)

with the transitive property.

{ (vi; vj) 2 F [(vj; vk) 2 F) (vi; vk) 2 F .

� Interval graph:

{ Vertices correspond to intervals.

{ Edges correspond to interval intersection.

{ Subset of chordal graphs:

� Every loop with more than three edges

has a chord.

Data-ow graphs

(at sequencing graphs)

c GDM

� The compatibility/conict graphs

have special properties.

{ Compatibility:

� Comparability graph.

{ Conict:

� Interval graph.

� Polynomial time solutions:

{ Golumbic's algorithm.

{ Left-edge algorithm.

Example

c GDM

* *

*

**

−

−

1 2

3

4

5

6

7

10

*

+

8

9

+

<
11

0
NOP

NOP

TIME 1

TIME 2

TIME 3

TIME 4

n

7

1

2

3 4

5 6

8

9

11

10

Example

c GDM

* *

*

**

−

−

1 2

3

4

5

6

7

10

*

+

8

9

+

<
11

0
NOP

NOP

TIME 1

TIME 2

TIME 3

TIME 4

n

1 2

3

4

5

6

7 8

9

10

11

Left-edge algorithm

c GDM

� Input:

{ Set of intervals with left and right edge.

� Rationale:

{ Sort intervals by left edge.

{ Assign non overlapping intervals to �rst

color using the sorted list.

{ When possible intervals are exhausted

increase color counter and repeat.

Left-edge algorithm

c GDM

LEFT EDGE(I) f
Sort elements of I in a list L in ascending order of li;
c = 0;
while (some interval has not been colored) do f

S = ;;
r = 0;
while (9s 2 L such that ls > r) dof

s = First element in the list L with ls > r;
S = S [fsg;
r = rs;
Delete s from L;

g
c = c+1;
Label elements of S with color c;

g
g

Example

c GDM

1

2

34

5

6

7

(a)

6

1

2

3

4

5

7

(b)

0 1 2 3 4 5 6 7 8

1

2

34

5

6

7

(c)

6

1 2 3

4

57

(d)

3

0 1 2 3 4 5 6 7 8

ILP formulation of binding

c GDM

� Boolean variables bir

{ Operation i bound to resource r.

� Boolean variables xil

{ Operation i scheduled to start at step
l.

aX

r=1

bir = 1 8i

nopsX

i=1

bir

lX

m=l�di+1

xim � 1 8l 8r

Hierarchical sequencing graphs

c GDM

� Hierarchical conict/compatibility graphs.

{ Easy to compute.

{ Prevent sharing across hierarchy.

� Flatten hierarchy.

{ Bigger graphs.

{ Destroy nice properties.

Example

c GDM

a

*

*

*a

TIME 1

TIME 2

TIME 3

TIME 4

TIME 5

2

3

4

(a)

*

*

+

+

*

*

*

a

a

a

a

2

3

4

(b)

a 2

34

(c)

TIME 6

TIME 7

Example

c GDM

a

b

BR

NOP

NOP

c d

a

b

c d c d

a

b

(a) (b) (c)

NOP

NOP

TIME 2

TIME 3

TIME 4

TIME 1

Register binding problem

c GDM

� Given a schedule:

{ Lifetime intervals for variables.

{ Lifetime overlaps.

� Conict graph (interval graph).

{ Vertices $ variables.

{ Edges $ overlaps.

{ Interval graph.

� Compatibility graph (comparability graph).

{ Complement of conict graph.

Register sharing

data-ow graphs

c GDM

� Given:

{ Variable lifetime conict graph.

� Find:

{ Minimum number of registers

storing all the variables.

� Key point:

{ Interval graph:

� Left-edge algorithm. (Polynomial-time).

Example

c GDM

* *

*

**

−

−

1 2

3

4

5

6

TIME 1

TIME 2

TIME 3

TIME 4

7

(a) (b) (c)

z1
z2

z3 z4

z5 z6

z1
z2

z3z4

z5 z6

z2

z4

z1

z3

z5 z6

Register sharing

general case

c GDM

� Iterative constructs:

{ Preserve values across iterations.

{ Circular-arc conict graph:

� Coloring is intractable.

� Hierarchical graphs:

{ General conict graphs:

� Coloring is intractable.

� Heuristic algorithms.

Example

c GDM

* *

*

**

−

−

1 2

3

4

5

6

TIME 1

TIME 2

TIME 3

TIME 4

7

(a) (b)

*

+

<

+
10

11

8

9

3

u u dx3 x y x dx

a

c

u
y

u
y

x

dx

y

u

u y

y x

x

dxu

z1 z2

z3 z4

z5 z6 z7

z1 z2

z3 z4

z5 z6 z7

Example

Variable-lifetimes and circular-arc

conict graph

c GDM

u y

x

1

2

3

4

z1
z2

z3z4

z5
z6
z7

u

x y

z1 z2

z3 z4

z5 z6

z7

Multiport-memory binding

c GDM

� Find minimum number of ports

to access the required number of variables.

� Variables use the same port:

{ Port compatibility/conict.

{ Similar to resource binding.

� Variables can use any port:

{ Decision variable xil is TRUE

when variable i is accessed at step l.

{ Optimum: max
1�l��+1

nvarX

i=1

xil.

Multiport-memory binding

c GDM

� Find maximum number of variables to be

stored through a �xed number of ports a.

{ Boolean variables fbi; i = 1;2; : : : ; nvarg:

� Variable i is stored in array.

{ max
Pnvar
i=1 bi such that

{
Pnvar
i=1 bi xil � a l = 1;2; : : : ; �+1

Example

formulation

c GDM

Time� step 1 : r3 = r1+ r2 ; r12 = r1
Time� step 2 : r5 = r3+ r4 ; r7 = r3 � r6 ; r13 = r3
Time� step 3 : r8 = r3+ r5 ; r9 = r1+ r7 ; r11 = r10=r5
Time� step 4 : r14 = r11 ^ r8 ; r15 = r12 _ r9
Time� step 5 : r1 = r14 ; r2 = r15

max
P15

i=1
bi such that

b1+ b2+ b3+ b12 � a

b3+ b4+ b5+ b6+ b7+ b13 � a

b1+ b3+ b5+ b7+ b8+ b9+ b10+ b11 � a

b8+ b9+ b11+ b12+ b14+ b15 � a

b1+ b2+ b14+ b15 � a

Example

solution

c GDM

� One port a = 1:

{ fb2; b4; b8g non-zero.

{ 3 variables stored: v2; v4; v8.

� Two ports a = 2:

{ 6 variables stored: v2; v4; v5; v10; v12; v14

� Three ports a = 3:

{ 9 variables stored: v1; v2; v4; v6; v8; v10; v12; v13;

Bus sharing and binding

c GDM

� Find the minimum number of busses

to accommodate all data transfer.

� Find themaximum number of data transfers

for a �xed number of busses.

� Similar to memory binding problem.

� ILP formulation or heuristic algorithms.

Example

c GDM

* *

*

**

−

−

1 2

3

4

5

6

TIME 1

TIME 2

TIME 3

TIME 4

7

(a) (b) (c)

z1
z2

z3 z4

z5 z6

z1
z2

z3z4

z5 z6

z2

z4

z1

z3

z5 z6

� One bus:

{ 3 variables can be transferred.

� Two busses:

{ All variables can be transferred.

Scheduling and binding

Resource dominated circuits

c GDM

� Area and delay of resources dominate.

� Strategy:

{ Scheduling under area constraints:

� Minimize latency.

{ Binding.

� Share resource within bounds.

� Decoupling between scheduling and binding.

Scheduling and binding

General circuits

c GDM

� Area and delay inuenced by:

{ Sparse logic, wiring, registers

and control circuit.

� Binding a�ects the cycle-time:

{ It may invalidate a schedule.

� Scheduling after binding:

{ Binding under restrictive assumptions.

{ Time-frame of operations not yet known.

Scheduling and binding

approaches

c GDM

� Concurrent scheduling and binding.

{ ILP model- exact.

{ Some heuristic algorithms.

� Scheduling before binding:

{ Good for DSP application.

� Binding before scheduling:

� Iterative techniques.

Module selection problem

c GDM

� Library of resources:

{ More than one resource per type.

� Example:

{ Ripple-carry adder.

{ Carry look-ahead adder.

� Resource modeling:

{ Resource subtypes with:

� (area, delay) parameters.

Module selection solution

c GDM

� ILP formulation:

{ Decision variables:

� Select resource sub-type.

� Determine (area, delay).

� Heuristic algorithms:

{ Determine minimum latency

with fastest resource subtypes.

{ Recover area by using slower resources

on non-critical paths.

Example

c GDM

*

*

*

*

*

−

−

1

2

3

4

5

6

7

10

*

+

8

9

+

<
11

TIME 1

TIME 2

TIME 3

TIME 4

n

0

NOP

(1,1)

(2,1)

(2,2)

(1,2)

NOP

TIME 5

� Multipliers with:

{ (Area, delay) = (5,1) and (2,2)

� Latency bound of 5.

Example (2)

c GDM

* *

*

**

−

−

1 2

3

4

5

6

7

10

*

+

8

9

+

<
11

0
NOP

TIME 1

TIME 2

TIME 3

TIME 4

n

(1,1) (2,1)

(2,2)

(1,2)

NOP

� Latency bound of 4.

{ Fast multipliers for fv1; v2; v3g.

{ Slower multipliers can be used elsewhere.

� Less sharing.

� Minimum-area design uses fast multipliers

only.

Summary

c GDM

� Resource sharing is reducible to

coloring/clique-covering.

� Simple for at graphs.

� Intractable, but still easy in practice, for

other graphs.

� More complicated for non resource-dominated

circuits.

� Extension: module selection.

