SCHEDULING

© Giovanni De Micheli

Stanford University

Outline

- The scheduling problem.
- Scheduling without constraints.
- Scheduling under timing constraints.
 - Relative scheduling.
- Scheduling under resource constraints.
 - The ILP model.
 - Heuristic methods.

C GDM

- Circuit model:
 - Sequencing graph.
 - Cycle-time is given.
 - Operation delays expressed in cycles.
- Scheduling:
 - Determine the start times for the operations.
 - Satisfying all the sequencing (timing and resource) constraint.
- Goal:
 - Determine *area/latency* trade-off.

© GDM NOP 0 10 2 8 + * 11 < _ NOP n 0 NOP ****** 8 10 2 TIME 1 * * * + 9 11 3 TIME 2 ÷ * * < TIME 3 4 _ 5 TIME 4 NOP

- Unconstrained scheduling.
- Scheduling with timing constraints:
 - Latency.
 - Detailed timing constraints.
- Scheduling with resource constraints.
- Related problems:
 - Chaining.
 - Synchronization.
 - Pipeline scheduling.

Simplest model

C GDM

- All operations have bounded delays.
- All delays are in cycles.

- Cycle-time is given.

- No constraints no bounds on area.
- Goal:
 - Minimize latency.

Minimum-latency unconstrained scheduling problem

© GDM

- Given a set of ops V with integer delays D and a partial order on the operations E:
- Find an integer labeling of the operations $\varphi: V \to Z^+$, such that:

 $-t_i = \varphi(v_i)$,

- $-t_i \ge t_j + d_j \qquad \forall \ i,j \ s.t. \ (v_j, v_i) \in E$
- and t_n is minimum.

ASAP scheduling algorithm

C GDM

```
\begin{array}{l} \textit{ASAP} ( \ G_s(V, E)) \ \{ \\ & \text{Schedule } v_0 \text{ by setting } t_0^S = 1; \\ & \textbf{repeat} \ \{ \\ & \text{Select a vertex } v_i \text{ whose pred. are all scheduled}; \\ & \text{Schedule } v_i \text{ by setting } t_i^S = \max_{j:(v_j, v_i) \in E} \ t_j^S + d_j; \\ & \text{} \\ & \text{until } (v_n \text{ is scheduled}) \text{ ;} \\ & \textbf{return } (\mathbf{t}^S); \end{array}
```


ALAP scheduling algorithm

C GDM

 $\begin{array}{l} \textit{ALAP(} \ G_s(V, E), \overline{\lambda}) \ \{ \\ & \text{Schedule } v_n \text{ by setting } t_n^L = \overline{\lambda} + 1; \\ & \text{repeat } \{ \\ & \text{Select vertex } v_i \text{ whose succ. are all scheduled}; \\ & \text{Schedule } v_i \text{ by setting } t_i^L = \min_{j:(v_i, v_j) \in E} t_j^L - d_i \text{ ;} \\ & \text{} \\ & \text{until } (v_0 \text{ is scheduled}) \text{ ;} \\ & \text{return } (\mathbf{t}^L); \end{array}$

Remarks

- ALAP solves a latency-constrained problem.
- Latency bound can be set to latency computed by ASAP algorithm.
- Mobility:
 - Defined for each operation.
 - Diff. between ALAP and ASAP schedule.
- Slack on the start time.

Example

© GDM

- Operations with zero mobility:
 - $\{v_1, v_2, v_3, v_4, v_5\}.$
 - Critical path.
- Operations with mobility one:
 - $\{v_6, v_7\}.$
- Operations with mobility two:

 $- \{v_8, v_9, v_{10}, v_{11}\}.$

Scheduling under detailed timing constraints

- Motivation:
 - Interface design.
 - Control over operation start time.
- Constraints:
 - Upper/lower bounds on start-time difference of any operation pair.
- Feasibility of a solution.

_____ © GDM _____

- Start from sequencing graph.
- Model delays as weights on edges.
- Add forward edges for *minimum* constraints.

- Edge (v_i, v_j) with weight $l_{ij} \Rightarrow t_j \ge t_i + l_{ij}$.

• Add backward edges for maximum constraints.

- Edge (v_j, v_i) with weight:

* $-u_{ij} \Rightarrow t_j \le t_i + u_{ij}$

- because $t_j \leq t_i + u_{ij} \Rightarrow t_i \geq t_j - u_{ij}$.

Vertex	Start time		
v_0	1		
v_1	1		
v_2	3		
v_3	1		
v_4	5		
v_n	6		

Methods for scheduling under detailed timing constraints

© GDM

• Assumption:

- All delays are fixed and known.

- Set of linear inequalities.
- Longest path problem.
- Algorithms:
 - Bellman-Ford, Liao-Wong.

Method for scheduling with unbounded-delay operations

_____ © GDM ____

- Unbounded delays:
 - Synchronization.
 - Unbounded-delay operations (e.g. loops).
- Anchors.
 - Unbounded-delay operations.
- Relative scheduling:
 - Schedule ops w.r. to the anchors.
 - Combine schedules.

• $t_3 = \max\{t_1 + d_1; t_a + d_a\}$

Relative scheduling method

– © GDM –

- For each vertex:
 - Determine relevant anchor set $R(\cdot)$.
 - Anchors affecting start time.
 - Determine time offset from anchors.
- Start-time:
 - Expressed by: $t_i = \max_{a \in R(v_i)} \{t_a + d_a + t_i^a\}$
 - Computed only at run-time because delays of anchors are unknown.

Relative scheduling under timing constraints

- Problem definition:
 - Detailed timing constraints.
 - Unbounded delay operations.
- Solution:
 - May or may not exist.
 - Problem may be ill-specified.

Relative scheduling under timing constraints

- Feasible problem:
 - A solution exists
 when unknown delays are zero.
- Well-posed problem:
 - A solution exists
 for any value of the unknown delays.
- Theorem:
 - A constraint graph can be made well-posed iff there are no cycles with unbounded weights.

Relative scheduling approach

C GDM

- Analyze graph:
 - Detect anchors.
 - Well-posedness test.
 - Determine dependencies from anchors.
- Schedule ops with respect to relevant anchors:
 - Bellman-Ford, Liao-Wong, Ku algorithms.
- Combine schedules to determine start times:

$$-t_i = \max_{a \in R(v_i)} \{t_a + d_a + t_i^a\} \quad \forall i$$

Vertex	Relevant Anchor Set	Offsets	
v_i	$R(v_i)$	t_0	t_a
a	$\{v_0\}$	0	-
v_1	$\{v_0\}$	0	-
v_2	$\{v_0\}$	2	-
v_3	$\{v_0,a\}$	3	0

Scheduling under resource constraints

- © GDM

- Classical scheduling problem.
 - Fix area bound minimize latency.
- The amount of available resources affects the achievable latency.
- Dual problem:
 - Fix latency bound minimize resources.
- Assumption:
 - All delays bounded and known.

Minimum latency resource-constrained scheduling problem

— © GDM —

- Given a set of ops V with integer delays D a partial order on the operations E, and upper bounds {a_k; k = 1, 2, ..., n_{res}}:
- Find an integer labeling of the operations $\varphi: V \to Z^+$
- such that :

$$-t_i=\varphi(v_i),$$

- $-t_i \ge t_j + d_j \forall i, j s.t. (v_j, v_i) \in E,$
- $|\{v_i | \mathcal{T}(v_i) = k \text{ and } t_i \leq l < t_i + d_i\}| \leq a_k$ $\forall \text{types } k = 1, 2, \dots, n_{res} \text{ and } \forall \text{ steps } l$
- and t_n is minimum.

Scheduling under resource constraints

- Intractable problem.
- Algorithms:
 - Exact:
 - * Integer linear program.
 - * Hu (restrictive assumptions).
 - Approximate:
 - * List scheduling.
 - * Force-directed scheduling.

ILP formulation:

_____ © GDM ____

- Binary decision variables:
 - $X = \{x_{il}; i = 1, 2, \dots, n; l = 1, 2, \dots, \overline{\lambda} + 1\}.$
 - x_{il} , is TRUE only when operation v_i starts in step l of the schedule (i.e. $l = t_i$).
 - $-\overline{\lambda}$ is an upper bound on latency.
- Start time of operation v_i :

$$-\sum_{l} l \cdot x_{il}$$

—— © GDM ——

• Operations start only once.

$$-\sum_{l} x_{il} = 1$$
 $i = 1, 2, ..., n$

• Sequencing relations must be satisfied.

$$-t_i \ge t_j + d_j \qquad \forall (v_j, v_i) \in E$$
$$-\sum_l l \cdot x_{il} - \sum_l l \cdot x_{jl} - d_j \ge 0 \quad \forall (v_j, v_i) \in E$$

- Resource bounds must be satisfied.
 - Simple case (unit delay)

$$-\sum_{i:\mathcal{T}(v_i)=k} x_{il} \leq a_k \quad k = 1, 2, \dots, n_{res}; \quad \forall l$$

ILP Formulation

C GDM

© GDM

- Resource constraints:
 - 2 ALUs; 2 Multipliers.

$$-a_1 = 2; a_2 = 2.$$

• Single-cycle operation.

$$-d_i = 1 \ \forall i.$$

Example

© GDM

- Operations start only once.
 - $-x_{11} = 1$
 - $-x_{61} + x_{62} = 1$
 - ...

— ...

- Sequencing relations must be satisfied.
 - $x_{61} + 2x_{62} 2x_{72} 3x_{73} + 1 \le 0$ $- 2x_{92} + 3x_{93} + 4x_{94} - 5x_{N5} + 1 \le 0$ $- \dots$
- Resource bounds must be satisfied.

$$- x_{11} + x_{21} + x_{61} + x_{81} \le 2$$
$$- x_{32} + x_{62} + x_{72} + x_{82} \le 2$$

Dual ILP formulation

_____ © GDM ____

- Minimize resource usage under latency constraint
- Additional constraint:
 - Latency bound must be satisfied.

$$-\sum_{l} l x_{nl} \leq \overline{\lambda} + 1$$

- Resource usage is unknown in the constraints.
- Resource usage is the objective to minimize.

© GDM

- Multiplier area = 5. ALU area = 1.
- Objective function: $5a_1 + a_2$.

ILP Solution

- Use standard ILP packages.
- Transform into LP problem [Gebotys].
- Advantages:
 - Exact method.
 - Others constraints can be incorporated.
- Disadvantages:
 - Works well up to few thousand variables.