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Outline
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The scheduling problem.

Scheduling without constraints.

Scheduling under timing constraints.

— Relative scheduling.

Scheduling under resource constraints.
— The ILP model.

— Heuristic methods.



Scheduling
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e Circuit model:
— Sequencing graph.
— Cycle-time is given.

— Operation delays expressed in cycles.

e Scheduling:
— Determine the start times for the operations.

— Satisfying all the sequencing
(timing and resource) constraint.

e Goal:

— Determine area/latency trade-off.
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Taxonomy
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Unconstrained scheduling.

Scheduling with timing constraints:
— Latency.

— Detailed timing constraints.

Scheduling with resource constraints.

Related problems:
— Chaining.
— Synchronization.

— Pipeline scheduling.



Simplest model
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All operations have bounded delays.

All delays are in cycles.

— Cycle-time is given.

No constraints - no bounds on area.

Goal:

— Minimize latency.



Minimum-latency unconstrained
scheduling problem
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Given a set of ops V with integer delays D
and a partial order on the operations E:

Find an integer labeling of the operations
0V — Z7T, such that:

— ti = p(v;),
— tith—Fdj Vi, s.t. (’Uj,’l)i)EE

— and t, IS minimum.



ASAP scheduling algorithm
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ASAP ( Gy(V, E)) {
Schedule vg by setting t3 = 1;
repeat {
Select a vertex v; whose pred. are all scheduled:;

Schedule v; by setting ¢/ = max  t} 4+ d;;
} j:(v;v)EE

until (v, is scheduled) ;
return (t°);
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ALAP scheduling algorithm
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ALAP( G4(V,E),\) { B
Schedule v, by setting t = X4 1;

repeat {
Select vertex v; whose succ. are all scheduled:;
Schedule v; by setting t! = min  t&—d; ;
j:(viv;)EE J
}

until (vo is scheduled) ;
return (t1);



Example
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Remarks
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ALAP solves a latency-constrained problem.

Latency bound can be set to latency
computed by ASAP algorithm.

Mobility:
— Defined for each operation.

— Diff. between ALAP and ASAP schedule.

Slack on the start time.



Example
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e Operations with zero mobility:

_ {’U]_, U2, V3, V4, U5}'

— Critical path.

e Operations with mobility one:

o {’06,’07}.

e Operations with mobility two:

— {vs,v9,v10,v11}-



Scheduling under detailed timing
constraints
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e Motivation:
— Interface design.

— Control over operation start time.

e Constraints:

— Upper/lower bounds on start-time difference
of any operation pair.

e Feasibility of a solution.



Constraint graph model
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Start from sequencing graph.

Model delays as weights on edges.

Add forward edges for minimum constraints.

— Edge (vi,vj) with weight lij = t; > t; -+ lij-

Add backward edges for maximum constraints.
— Edge (vj,v;) with weight:
* =Uij = tj <t;+ Uj

— because t; < t; + u;; = t; > t; — uyy.
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Methods for scheduling
under detailed timing constraints
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Assumption:

— All delays are fixed and known.

Set of linear inequalities.

[Longest path problem.

Algorithms:

— Bellman-Ford, Liao-Wong.



Method for scheduling
with unbounded-delay operations
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e Unbounded delays:
— Synchronization.

— Unbounded-delay operations (e.g. 1oops).

e Anchors.

— Unbounded-delay operations.

e Relative scheduling:
— Schedule ops w.r. to the anchors.

— Combine schedules.
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Example

to + da}

max{t1 + d1;

.t3



Relative scheduling method
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e For each vertex:
— Determine relevant anchor set R(-).
— Anchors affecting start time.

— Determine time offset from anchors.

e Start-time:

— Expressed by: t; = max {tq + dq + 7}

ac€R(v;)

— Computed only at run-time
because delays of anchors are unknown.



Relative scheduling under timing
constraints

© GDM e

e Problem definition:
— Detailed timing constraints.

— Unbounded delay operations.

e Solution:
— May or may not exist.

— Problem may be ill-specified.



Relative scheduling under timing
constraints
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e Feasible problem:
— A solution exists
when unknown delays are zero.
e \Well-posed problem:
— A solution exists
for any value of the unknown delays.
e [ heorem:

— A constraint graph can be made well-posed
iff there are no cycles with unbounded
weights.
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Relative scheduling approach
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e Analyze graph:
— Detect anchors.
— Well-posedness test.

— Determine dependencies from anchors.

e Schedule ops with respect to relevant anchors:

— Bellman-Ford, Liao-Wong, Ku algorithms.

e Combine schedules to determine start times:

acR(v;)



Example
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Vertex | Relevant Anchor Set | Offsets
Ug R(’Ui) to | ta
a {vo} 0 |-
v1 {vo} 0 |-
v {vo} 2 |-
v3 {vg, a} 3|0




Example of control-unit
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start Completion of (a)

counter
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Scheduling under resource constraints
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e Classical scheduling problem.

— Fix area bound - minimize latency.

e | he amount of available resources
affects the achievable latency.

e Dual problem:

— Fix latency bound - minimize resources.

e Assumption:

— All delays bounded and known.



Minimum latency resource-constrained
scheduling problem

© GDM =

e Given a set of ops V with integer delays D
a partial order on the operations F,
and upper bounds {ay; k= 1,2,...,nres}:

e Find an integer labeling of the operations
oV = ZT

e such that :
— ti = ¢(v;),
— t; > t; —|—dj V1,7 s.t. (vj,vi) c F,

— | T(v;)) =k and t;, <l < t; + d;}| < ap
Vtypes k= 1,2,...,nres and V steps [

— and t,, IS minimum.



Scheduling under resource constraints
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e Intractable problem.

e Algorithms:

— EXxact:

« Integer linear program.
* Hu (restrictive assumptions).

— Approximate:

x List scheduling.

x Force-directed scheduling.



ILP formulation:
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e Binary decision variables:
— X =Ax;;1=1,2,...,n;l = 1,2,..., 2+ 1}.

— x;;, IS TRUE only when operation v;
starts in step [ of the schedule (i.e. [ =t;).

— A IS an upper bound on latency.

e Start time of operation v;:

— > Ly
l



ILP formulation constraints
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e Operations start only once.

- Y zy=1i=1,2,...,n
[

e Sequencing relations must be satisfied.
— t; > 1 -+ dj V(vj,vi) ck

— Zl'xil_zl'le_djzo V(vj,vi) ck

e Resource bounds must be satisfied.
— Simple case (unit delay)

- Z $Zl§ak k:1,2,...,n7"63; \V/l
1.7 (v;)=k



ILP Formulation
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min ||t|| such that
Y wy = 1i=1,2,...,n

04,57=12,...,n,(vj,v;) € E

8
|
8
Q{\:
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'V

> Y mm < ark=1,2,.. el =0,1,...,1,
i T(v)=k m=l—d+1



Example
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NOP

o,

<1 <2 f6 8 10
53 i7 ig iu

{NOP',

e Resource constraints:

— 2 ALUs; 2 Multipliers.

— a1 = 2;ap = 2.

e Single-cycle operation.

— d; =1 Vi.



Example
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e Operations start only once.
- I11 = 1

— Te1 t+ T2 =1

e Sequencing relations must be satisfied.
— Te1 + 2we2 — 2272 — 3273 + 1 <0
— 2x92 + 393 + 4294 — Sxns +1 <0

e Resource bounds must be satisfied.
— 211 + 221 + 61 + 281 < 2
— x32 + 62 + x72 + 82 < 2
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Dual ILP formulation
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Minimize resource usage under latency constraint

Additional constraint:

— Latency bound must be satisfied.

- > lzy<A+1
[

Resource usage is unknown in the constraints.

Resource usage is the objective to minimize.



Example
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{NoP

{NOPK™

e Multiplier area = 5. ALU area = 1.

e Objective function: 5a1 + a».



ILP Solution

Use standard ILP packages.

Transform into LP problem [Gebotys].

Advantages:
— Exact method.

— Others constraints can be incorporated.

Disadvantages:

— Works well up to few thousand variables.



