## LOGIC SYNTHESIS OF VLSI CIRCUITS

© Giovanni De Micheli

Stanford University

- Enabling and strategic *technology*.
- Primary markets:
  - Information systems.
  - Telecommunications.
  - Consumer.
- Secondary markets:
  - Systems (e.g., transportation).
  - Manufacturing (e.g., robots).
- Application of VSLI circuit technology.

### **Computer-Aided Design**

- Enabling design *methodology*.
- Makes electronic design possible:
  - Large scale design management.
  - Design optimization.
  - Reduced design time.
- Key strategic importance.

## **Electronic** market

- © GDM



## **Trends in microelectronics**

- Improvements in device technology:
  - Smaller circuits.
  - Higher performance.
  - More devices on a chip.
- Higher degree of integration.
  - More complex systems.
  - Lower cost of computation.
  - Higher reliability.



#### **Integration-scale limitations**

🗕 © GDM

- Intrinsic physical scaling limits.
- Capital investment for fabrication.
  - Use of appropriate design styles.
- Large-scale design management.
  - Use of CAD design tools.

#### Microelectronic design problems

- © GDM

• Use most recent technologies.

- To be competitive in performance.

• Reduce design cost.

- To be competitive in price.

• Speed-up design time.

- Time-to-market is critical.

## **Microelectronic economics**

- Design cost:
  - Design time and fabrication cost.
  - Large *capital investment*.
  - Near impossibility to repair.
- Recapture costs:
  - Large volume production is beneficial.
  - Zero-defect designs are essential.
  - Follow market evolution.

## **Microelectronic circuits**

- General-purpose processors:
  - High-volume sales.
  - High performance.
- Application-Specific Integrated Circuits (ASICs):
  - Varying volumes and performances.
- Prototypes.
- Special applications (e.g. space).

## Microelectronic design styles

- Adapt circuit design style to market requirements:
- Parameters:
  - Cost.
  - Performance.
  - Volume.
- Custom and semi-custom design.



## Standard cells

- Cell library:
  - Cells are designed once.
  - Cells are highly optimized.
- Layout style:
  - Cells are placed in rows.
  - Channels are used for wiring.
  - Over the cell routing.
- Compatible with macro-cells (e.g. RAMs).

#### Macro-cells

- Module generators:
  - Synthesized layout.
  - Variable area and aspect-ratio.
- Examples:
  - RAMs, ROMs, PLAs, general logic blocks.
- Features:
  - Layout can be highly optimized.
  - Structured-custom design.

#### Array-based design

- *Pre-diffused* arrays:
  - Personalization by metalization/contacts.
  - Mask-Programmable Gate-Arrays.
- *Pre-wired* arrays:
  - Personalization on the field.
  - Field-Programmable Gate-Arrays.

#### **MPGAs**

C GDM

- Array of *sites*:
  - Each site is a set of transistors.
- Batches of wafers can be pre-fabricated.
- Few masks to personalize chip.
- Lower cost than cell-based design.

### **FPGAs**

\_\_\_\_\_ © GDM \_\_\_\_

• Array of cells:

- Each cell performs a logic function.

- Personalization:
  - Soft: memory cell (e.g. Xilinx).
  - Hard: Anti-fuse (e.g. Actel).
- Immediate turn-around (for low volumes).
- Inferior performances and density.
- Good for prototyping.

## Semi-custom style trade-off

© GDM

|             | Custom    | Cell-based | Pre-diff. | Pre-wired  |
|-------------|-----------|------------|-----------|------------|
| Density     | Very High | High       | High      | Medium-Low |
| Performance | Very High | High       | High      | Medium-Low |
| Flexibility | Very High | High       | Medium    | Low        |
| Design time | Very Long | Short      | Short     | Very Short |
| Man. time   | Medium    | Medium     | Short     | Very Short |
| Cost - Iv   | Very High | High       | High      | Low        |

# Microelectronic circuit design and production



## Microelectronic circuit design

\_\_\_\_\_ © GDM \_\_\_\_

• Conceptualization and modeling:

- Hardware Description Languages (HDLs).

• Synthesis and optimization:

– Model refinement.

- Validation:
  - Check for correctness.

## **Modeling abstractions**

- © GDM







## **Modeling abstractions**

© GDM

• Architectural level:

- Operations implemented by resources.

• Logic level:

- Logic functions implemented by gates.

- Geometrical level:
  - Devices are geometrical objects.

## Modeling views

© GDM



### Modeling views

© GDM

• Behavioral view:

- Abstract function.

• Structural view:

- An interconnection of parts.

- Physical view:
  - Physical objects with size and positions.



#### **Circuit synthesis**

- Architectural-level synthesis:
  - Determine the macroscopic structure:
    - \* Interconnection of major building blocks.
- Logic-level synthesis:
  - Determine the microscopic structure:
    - \* Interconnection of logic gates.
- Geometrical-level synthesis: (Physical design)
  - Determine positions and connections.



## Microelectronic circuit optimization

- Performance:
  - Delay and cycle-time.
  - Latency.
  - Throughput (for pipeline applications).
- Power consumption.
- Area (yield and packaging cost).
- Testability.



© GDM





C GDM



## Optimization trade-off in sequential circuits



## Pareto points

— © GDM

- Multi-criteria optimization.
- Multiple objectives.
- Pareto point:
  - A point of the design space is a Pareto point if there is no other point with:
    - \* at least one inferior objectives.
    - \* all other objectives inferior or equal.

## Example design space

— © GDM



- Implement f = p q r s with:
  - 2-input or 3-input AND gates.
- Area and delay proportional to number of inputs.



## Summary

- Computer-aided design methodology:
  - Capture design by HDL models.
  - Synthesize more detailed abstractions.
  - Optimize circuit parameters.
- Logic synthesis and optimization:
  - Manipulate and optimize circuit models at the logic abstraction levels.