BOOLEAN METHODS

© Giovanni De Micheli

Stanford University

Boolean methods

© GDM

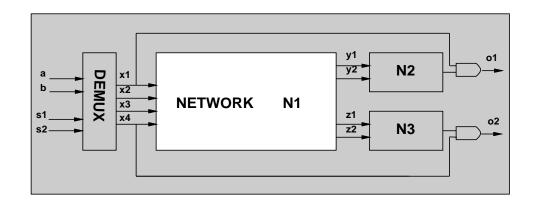
- Exploit Boolean properties.
 - Don't care conditions.
- Minimization of the local functions.
- Slower algorithms, better quality results.

External don't care conditions

<u> —</u> © GDM

- Controllability don't care set CDC_{in} :
 - Input patterns never produced by the environment at the network's input.
- Observability don't care set ODC_{out} :
 - Input patterns representing conditions when an output is not observed by the environment.
 - Relative to each output.
 - Vector notation used: \mathbf{ODC}_{out} .

© GDM



- Inputs driven by a de-multiplexer.
- $CDC_{in} = x_1'x_2'x_3'x_4' + x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4$.
- ullet Outputs observed when $\left[egin{array}{c} x_1 \\ x_4 \end{array} \right] = {f 1}$

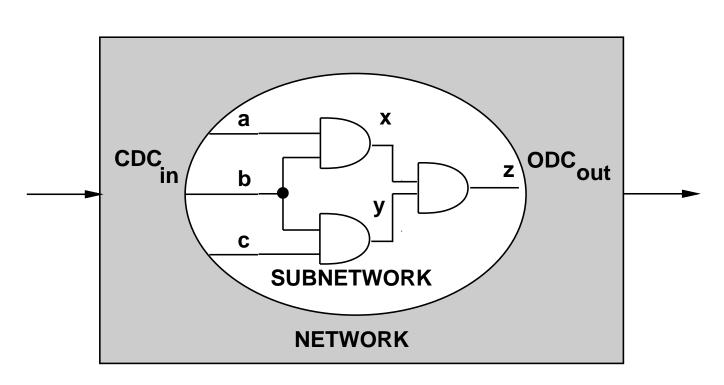
$$\mathbf{ODC}_{out} \ = \left[egin{array}{c} x_1' \ x_4' \ x_4' \end{array}
ight]$$

Example overall external *don't care* **set**

– © GDM —

$$\mathbf{DC}_{ext} = \mathbf{CDC}_{in} + \mathbf{ODC}_{out} = \begin{bmatrix} x_1' + x_2 + x_3 + x_4 \\ x_1' + x_2 + x_3 + x_4 \\ x_4' + x_2 + x_3 + x_1 \\ x_4' + x_2 + x_3 + x_1 \end{bmatrix}$$

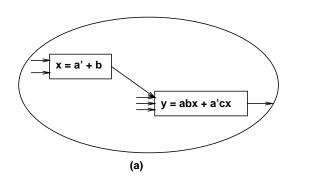
Internal don't care conditions

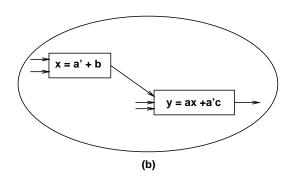


Internal don't care conditions

— © GDM

- Induced by the network structure.
- Controllability don't care conditions:
 - Patterns never produced at the inputs of a subnetwork.
- Observability don't care conditions:
 - Patterns such that the outputs of a subnetwork are not observed.





- CDC of v_y includes ab'x + a'x'.
- Minimize f_y to obtain: $\widetilde{f_y} = ax + a'c$.

Satisfiability don't care conditions

© GDM

• Invariant of the network:

$$-x = f_x \to x \neq f_x \subseteq SDC.$$

$$\bullet \ SDC = \sum_{v_x \in V^G} x \oplus f_x$$

Useful to compute controllability don't cares.

CDC computation

— © GDM

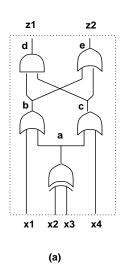
- Network traversal algorithm:
 - Consider different cuts
 moving from input to output.
- ullet Initial CDC is CDC_{in} .
- Move cut forward.
 - Consider SDC contributions of predecessors.
 - Remove unneded variables by consensus.

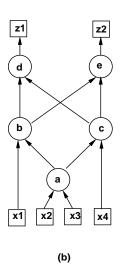
CDC computation

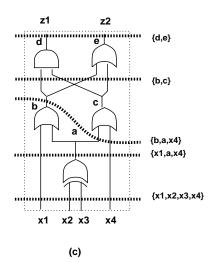
— © GDM

```
CONTROLLABILITY(G_n(V, E) , CDC_{in}) {
C = V^I;
CDC_{cut} = CDC_{in};
foreach vertex v_x \in V in topological order {
C = C \cup v_x;
CDC_{cut} = CDC_{cut} + f_x \oplus x;
D = \{v \in C \text{ s.t. all dir. succ. of } v \text{ are in } C\}
foreach vertex v_y \in D
CDC_{cut} = \mathcal{C}_y(CDC_{cut});
C = C - D;
};
CDC_{out} = CDC_{cut};
```

© GDM







© GDM

- Assume $CDC_{in} = x_1'x_4'$.
- Select vertex v_a :
 - Contribution to CDC_{cut} : $a \oplus (x_2 \oplus x_3)$.
 - Drop variables $D = \{x_2, x_3\}$ by consensus:
 - $CDC_{cut} = x_1'x_4'.$
- Select vertex v_b :
 - Contribution to CDC_{cut} : $b \oplus (x_1 + a)$.

*
$$CDC_{cut} = x_1'x_4' + b \oplus (x_1 + a).$$

- Drop variable x_1 by consensus:
 - $* CDC_{cut} = b'x_4' + b'a.$

• ...

 $\bullet CDC_{out} = e' = z'_2.$

CDC computation by image computation

_____ © GDM

- Network behavior at cut: f.
- CDC_{cut} is just the complement of the image of $(CDC_{in})'$ with respect to **f**.
- CDC_{cut} is just the complement of the range of **f** when $CDC_{in} = \emptyset$.
- Range can be computed recursively.
 - Terminal case: scalar function.
 - * Range of $y = f(\mathbf{x})$ is y+y' (any value) unless f (or f') is a tautology and the range is y (or y').

© GDM

RANGE VECTORS

0 0 1

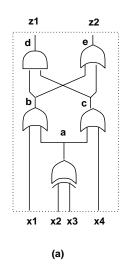
$$\stackrel{\mathsf{b}}{=}$$
 — e

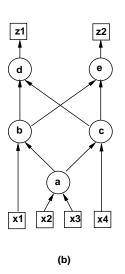
0 1 1

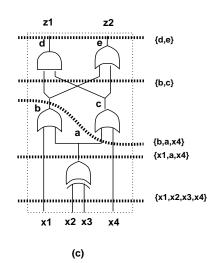
- $range(\mathbf{f}) = d \ range((b+c)|_{d=bc=1}) + d' \ range((b+c)|_{d=bc=0})$
- When d=1, then $bc=1 \rightarrow b+c=1$ is TAUTOLOGY.
- If I choose 1 as top entry in output vector:
 - the bottom entry is also 1.

$$- \left[\begin{array}{c} 1 \\ ? \end{array}\right] \rightarrow \left[\begin{array}{c} 1 \\ 1 \end{array}\right]$$

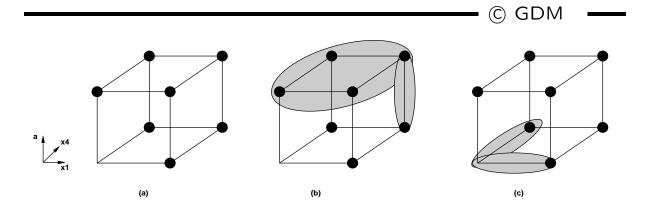
- When d=0, then $bc=0 \rightarrow b+c=\{0,1\}$.
- If I choose 0 as top entry in output vector:
 - the bottom entry can be 0 or 1.
- $range(\mathbf{f}) = de + d'(e + e') = de + d' = d' + e$







$$\mathbf{f} = \begin{bmatrix} f^1 \\ f^2 \end{bmatrix} = \begin{bmatrix} (x_1 + a)(x_4 + a) \\ (x_1 + a) + (x_4 + a) \end{bmatrix} = \begin{bmatrix} x_1x_4 + a \\ x_1 + x_4 + a \end{bmatrix}$$



$$range(\mathbf{f}) = \\ = d \ range(f^2|_{(x_1x_4+a)=1}) + \\ d' \ range(f^2|_{(x_1x_4+a)=0}) \\ = d \ range(x_1 + x_4 + a|_{(x_1x_4+a)=1}) + \\ d' \ range(x_1 + x_4 + a|_{(x_1x_4+a)=0}) \\ = d \ range(1) + d' \ range(a'(x_1 \oplus x_4)) \\ = de + d'(e + e') \\ = e + d'$$

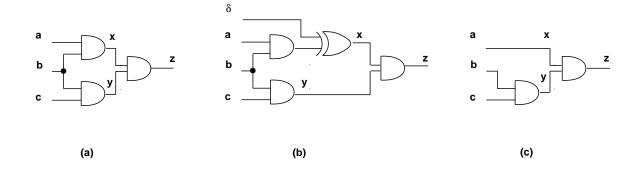
•
$$CDC_{out} = (e + d')' = de' = z_1 z_2'$$
.

Perturbation method

_____ © GDM ____

- ullet Modify network by adding an extra input δ .
- ullet Extra input can flip polarity of a signal x.
- ullet Replace local function f_x by $f_x \oplus \delta$.
- Perturbed terminal behavior: $\mathbf{f}^x(\delta)$.

© GDM



Observability don't care conditions

—— © GDM ——

- ullet Conditions under which a change in polarity of a signal x is not perceived at the outputs.
- Complement of the Boolean difference:

$$-\partial f/\partial x = f|_{x=1} \oplus f|_{x=0}$$
.

• Equivalence of perturbed function: $\mathbf{f}^x(0) \oplus \mathbf{f}^x(1)$.

Observability don't care computation

—— © GDM ——

• Problem:

- Outputs are not expressed as function of all variables.
- If network is flattened to obtain f,
 it may explode in size.

• Requirement:

- Local rules for ODC computation.
- Network traversal.

Single-output network with tree structure

—— © GDM

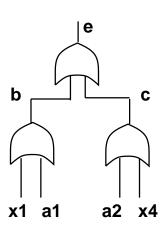
- Traverse network tree.
- At root:
 - ODC_{out} is given.
- At internal vertices:

$$- ODC_x = (\partial f_y/\partial x)' + ODC_y$$

$$e = b + c$$

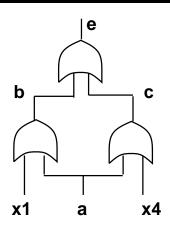
$$b = x_1 + a_1$$

$$c = x_4 + a_2$$



- Assume $ODC_{out} = ODC_e = 0$.
- $ODC_b = (\partial f_e/\partial b)' = (b+c)|_{b=1} \overline{\oplus} (b+c)|_{b=0} = c.$
- $ODC_c = (\partial f_e/\partial c)' = b$.
- $ODC_{x_1} = ODC_b + (\partial f_b/\partial x_1)' = c + a_1.$

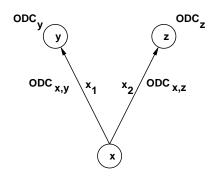
• ...



- Fanout reconvergence.
- For each vertex with two (or more) fanout stems:
 - The contribution of the ODC along the stems cannot be added tout court.
 - Interplay of different paths.
- More elaborate analysis.

Two-way fanout stem

- © GDM



- Compute ODC sets associated with edges.
- Combine ODCs at vertex.
- Formula derivation:
 - Assume two equal perturbations on the edges.
 - $\ \mathbf{ODC}_x = \mathbf{f}^{x_1, x_2}(1, 1) \ \ \overline{\oplus} \ \ \mathbf{f}^{x_1, x_2}(0, 0)$

ODC formula derivation

— © GDM —

$$\begin{array}{lll}
\mathbf{ODC}_{x} &=& \mathbf{f}^{x_{1},x_{2}}(1,1) & \overline{\oplus} & \mathbf{f}^{x_{1},x_{2}}(0,0) \\
&=& \mathbf{f}^{x_{1},x_{2}}(1,1) & \overline{\oplus} & \mathbf{f}^{x_{1},x_{2}}(0,0) \\
&\overline{\oplus} & (\mathbf{f}^{x_{1},x_{2}}(0,1) & \overline{\oplus} & \mathbf{f}^{x_{1},x_{2}}(0,1)) \\
&=& (\mathbf{f}^{x_{1},x_{2}}(1,1) & \overline{\oplus} & \mathbf{f}^{x_{1},x_{2}}(0,1)) \\
&\overline{\oplus} & (\mathbf{f}^{x_{1},x_{2}}(0,1) & \overline{\oplus} & \mathbf{f}^{x_{1},x_{2}}(0,0)) \\
&=& \mathbf{ODC}_{x,y}|_{\delta_{2}=1} & \overline{\oplus} & \mathbf{ODC}_{x,z}|_{\delta_{1}=0} \\
&=& \mathbf{ODC}_{x,y}|_{x_{2}=x'} & \overline{\oplus} & \mathbf{ODC}_{x,z}|_{x_{1}=x} \\
&=& \mathbf{ODC}_{x,y}|_{x=x'} & \overline{\oplus} & \mathbf{ODC}_{x,z}
\end{array}$$

• Because $x = x_1 = x_2$.

Multi-way stems Theorem

— © GDM

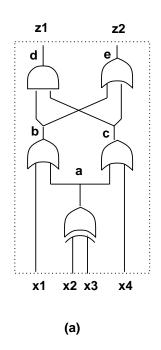
- Let $v_x \in V$ be any internal or input vertex.
- Let $\{x_i, i = 1, 2, ..., p\}$ be the edge vars corresponding to $\{(x, y_i) ; i = 1, 2, ..., p\}$.
- Let \mathbf{ODC}_{x,y_i} , $i=1,2,\ldots,p$ the edge ODCs.
- ODC $_x = \overline{\bigoplus}_{i=1}^p \text{ODC}_{x,y_i}|_{x_{i+1} = \cdots = x_p} = x'$

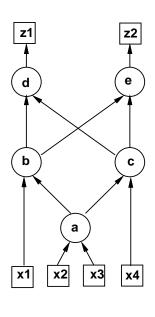
Observability don't care algorithm

- © GDM

```
OBSERVABILITY(G_n(V,E), \mathbf{ODC}_{out}) {
	foreach vertex v_x \in V in reverse topological order {
	for (i=1 \text{ to } p)
	\mathbf{ODC}_{\underline{x},y_i} = (\partial f_{y_i}/\partial x)'\mathbf{1} + \mathbf{ODC}_{y_i};
	\mathbf{ODC}_x = \overline{\bigoplus}_{i=1}^p \mathbf{ODC}_{x,y_i}|_{x_{i+1} = \cdots = x_p} = x';
}
```

© GDM





(b)

$$\begin{aligned} \mathbf{ODC}_{d} &= \begin{pmatrix} 0 \\ 1 \end{pmatrix} ; \mathbf{ODC}_{e} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} ; \mathbf{ODC}_{c} = \begin{pmatrix} b' \\ b \end{pmatrix} ; \mathbf{ODC}_{b} = \begin{pmatrix} c' \\ c \end{pmatrix} \\ \mathbf{ODC}_{a,b} &= \begin{pmatrix} c' + x_1 \\ c + x_1 \end{pmatrix} = \begin{pmatrix} a'x'_4 + x_1 \\ a + x_4 + x_1 \end{pmatrix} \\ \mathbf{ODC}_{a,c} &= \begin{pmatrix} b' + x_4 \\ b + x_4 \end{pmatrix} = \begin{pmatrix} a'x'_1 + x_4 \\ a + x_1 + x_4 \end{pmatrix} \\ \mathbf{ODC}_{a} &= \mathbf{ODC}_{a,b}|_{a=a'} \overline{\oplus} \mathbf{ODC}_{a,c} = \begin{pmatrix} ax'_4 + x_1 \\ a' + x_4 + x_1 \end{pmatrix} \overline{\oplus} \begin{pmatrix} a'x'_1 + x_4 \\ a + x_1 + x_4 \end{pmatrix} = \\ &= \begin{pmatrix} x_1x_4 \\ x_1 + x_4 \end{pmatrix} \end{aligned}$$

Transformations with don't cares

—— © GDM

- Boolean simplification:
 - Use standard minimizer (Espresso).
 - Minimize the number of literals.
- Boolean substitution:
 - Simplify a function by adding an extra input.
 - Equivalent to simplification
 with global don't care conditions.

Example Boolean substitution

— © GDM

- Substitute q = a + cd into $f_h = a + bcd + e$ to get $f_h = a + bq + e$.
- SDC set: $q \oplus (a+cd) = q'a + q'cd + qa'(cd)'$.
- Simplify $f_h = a + bcd + e$ with q'a + q'cd + qa'(cd)' as don't care .
- Simplification yields $f_h = a + bq + e$.
- ullet One literal less by changing the support of f_h .

Single-vertex optimization

— © GDM —

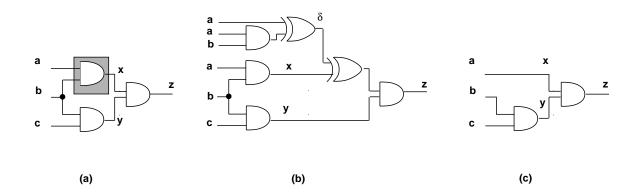
```
SIMPLIFY\_SV(\ G_n(V,E)\ )\{
v_x= selected vertex;
Compute the local \ don't \ care \ set \ DC_x;
Optimize the function \ f_x \ ;
\{until \ (no \ more \ reduction \ is \ possible)\}
```

Optimization and perturbations

🗕 © GDM

- Replace f_x by g_x .
- Perturbation $\delta_x = f_x \oplus g_x$.
- Condition for feasible replacement:
 - Perturbation bounded by local don't care set
 - $-\delta_x \subseteq \mathbf{DC}_{ext} + \mathbf{ODC}_x$
 - If x not a primary input consider also CDC set.

© GDM



- No external don't care set.
- Replace AND by wire: $g_x = a$
- Analysis:

$$-\delta = f_x \oplus g_x = ab \oplus a = ab'.$$

$$-ODC_x = y' = b' + c'.$$

$$-\delta = ab' \subseteq DC_x = b' + c' \Rightarrow$$
 feasible!

Degrees of freedom

── © GDM

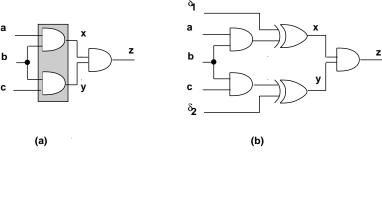
- Fully represented by don't care conditions:
 - External don't cares .
 - Internal observability and controllability.
- Don't cares represent an upper bound on the perturbation.
- Approximations:
 - Use smaller don't care sets to speed-up the computation.

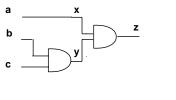
Multiple-vertex optimization

(C)	G	D	M
(C)	G	D	IV

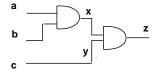
- Simplify more than one local function at a time.
- Potentially better (more general) approach.
- Analysis:
 - Multiple perturbations.
- Condition for feasible replacement:
 - Upper and lower bounds on the perturbation.
 - Boolean relation model.

Example





(c)

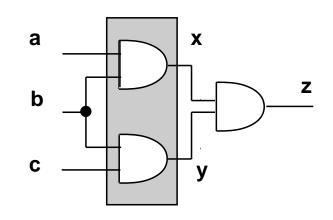


(d)

- The two perturbations are related.
- Cannot change simultaneously:
 - $-ab \rightarrow a$.
 - $-cb \rightarrow c$.

Multiple-vertex optimization Boolean relation model

── © GDM



a	b	c	x,y
0	0	0	{ 00, 01, 10 }
0	0	1	$\{00, 01, 10\}$
0	1	0	{ 00, 01, 10 }
0	1	1	$\{00, 01, 10\}$
1	0	0	{ 00, 01, 10 }
1	0	1	$\{00, 01, 10\}$
1	1	0	$\{00, 01, 10\}$
1	1	1	{ 11 }

Multiple-vertex optimization Boolean relation model

—— © GDM

- Compute Boolean relation:
 - Flatten the network. Analyze patterns.
 - Derive equivalence relation from ODCs.
- Use relation minimizer.

Multiple-vertex optimization Boolean relation model

```
SIMPLIFY\_MVR(\ G_n(V,E)\ )\{
repeat\ \{
U = \text{selected vertex subset};
foreach\ vertex\ v_x \in U
Compute\ OCD_x;
Determine\ the\ equiv.\ classes\ of\ the\ Boolean\ relation
of\ the\ subnetwork\ induced\ by\ U;
Find\ an\ optimal\ function\ compatible\ with\ the\ relation
using\ a\ relation\ minimizer;
\{until\ (no\ more\ reduction\ is\ possible);
```

- ◎ GDM

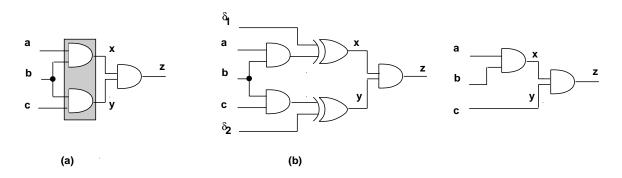
Multiple-vertex optimization compatible don't cares

- Determine compatible don't cares :
 - CODCs: subset of ODCs.
 - Decouple dependencies.
 - Reduced degrees of freedom.
- Using compatible ODCs, only *upper bounds* on the perturbation need to be satisfied.

Example two perturbations

- First vertex:
 - CODC equal to its ODC set.
 - $-CODC_{x_1} = ODC_{x_1}.$
- The second vertex:
 - CODC smaller than its ODC to be safe enough to allow transformations permitted by the first ODC.
 - $-CODC_{x_2} = C_{x_1}(ODC_{x_2}) + ODC_{x_2}ODC'_{x_1}$
- Order dependence.

Example first vertex v_y



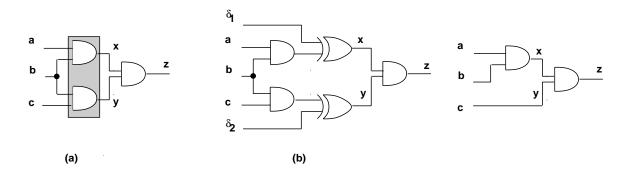
•
$$CODC_y = ODC_y = x' = b' + a'$$

•
$$ODC_x = y' = b' + c'$$

•
$$CODC_x = C_y(ODC_x) + ODC_x(ODC_y)' = C_y(y') + y'x = y'x = (b' + c')ab = abc'.$$

Example (2)

• © GDM



Allowed perturbation:

$$-f_y = bc \to g_y = c.$$

$$-\delta_y = bc \oplus c = b'c \subseteq CODC_y = b' + a'.$$

• Disallowed perturbation:

$$-f_x = ab \to g_x = a.$$

$$-\delta_x = ab \oplus a = ab' \not\subseteq CODC_x = abc'.$$

ullet The converse holds if v_x is the first vertex.

Multiple-vertex optimization compatible don't cares

C GDM

```
SIMPLIFY\_MV(\ G_n(V,E)\ )\{
repeat\ \{
U = \text{selected vertex subset};
foreach\ vertex\ v_x \in U
Compute\ COCD_x\ and\ the\ corresponding\ local\ don't\ care\ subset\ \widetilde{DC}_x;
Optimize\ simultaneously\ the\ functions\ at\ U;
\} until\ (no\ more\ reduction\ is\ possible);
```

Summary Boolean methods

—— © GDM

- Boolean methods exploit *don't care* sets and simplification of logic representations.
- Don't care set computation:
 - Controllability and observability.
- Single and multiple transformations.

Synthesis and testability

■ © GDM •

- Testability:
 - Ease of testing a circuit.
- Assumptions:
 - Combinational circuit.
 - Single or multiple stuck-at faults.
- Full testability:
 - Possible to generate test set for all faults.
 - Restrictive interpretation.

Test for stuck-ats

____ © GDM ___

- Net y stuck-at 0.
 - Input pattern that sets y to true.
 - Observe output.
 - Output of faulty circuit differs.
- Net y stuck-at 1.
 - Same, but set y to false.
- Need controllability and observability.

Test sets don't care interpretation

© GDM

ullet Stuck-at 0 on net y.

$$- \{\mathbf{t}|y(\mathbf{t}) \cdot ODC'_y(\mathbf{t}) = 1\}.$$

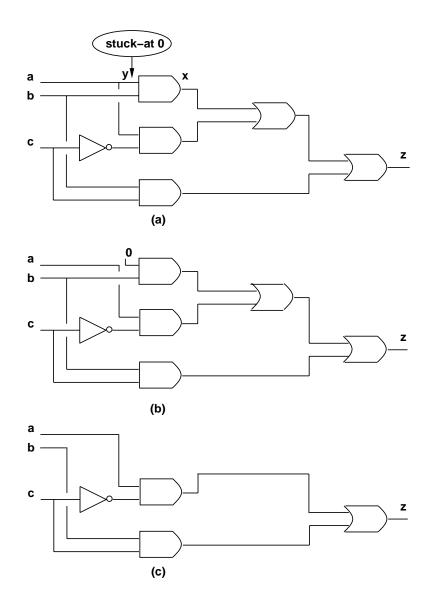
ullet Stuck-at 1 on net y.

$$- \{\mathbf{t}|y'(\mathbf{t}) \cdot ODC'_y(\mathbf{t}) = 1\}.$$

Using testing methods for synthesis

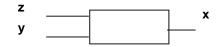
- Redundancy removal.
 - Use TPG to search for untestable faults.
- If stuck-at 0 on net y is untestable:
 - Set y = 0.
 - Propagate constant.
- ullet If stuck-at 1 on y is untestable:
 - Set y = 1.
 - Propagate constant.

Example



Redundancy removal and perturbation analysis

<u> —</u> © GDM —



- \bullet Stuck-at 0 on y.
 - y set to 0. Namely $g_x = f_x|_{y=0}$.
 - Perturbation:

*
$$\delta = f_x \oplus f_x|_{y=0} = y \cdot \partial f_x/\partial y$$
.

- Perturbation is feasible ⇔ fault is untestable.
 - No input vector \mathbf{t} can make $y(\mathbf{t}) \cdot ODC'_y(\mathbf{t})$ true.
 - No input vector can make $y(\mathbf{t}) \cdot ODC_x'(\mathbf{t}) \cdot \partial f_x/\partial y$ true.
 - * because $ODC_y = ODC_x + (\partial f_x/\partial y)'$.

Redundancy removal and perturbation analysis

— © GDM

Assume untestable stuck-at 0 fault.

•
$$y \cdot ODC'_x \cdot \partial f_x / \partial y \subseteq SDC$$
.

• Local don't care set:

$$-DC_x \supseteq ODC_x + y \cdot ODC'_x \cdot \partial f_x / \partial y.$$

$$-DC_x \supseteq ODC_x + y \cdot \partial f_x/\partial y$$
.

- Perturbation $\delta = y \cdot \partial f_x/\partial y$.
 - Included in the local don't care set.

Synthesis for testability

- Synthesize networks that are fully testable.
 - Single stuck-at faults.
 - Multiple stuck-at faults.
- Two-level forms.
- Multiple-level networks.

Two-level forms

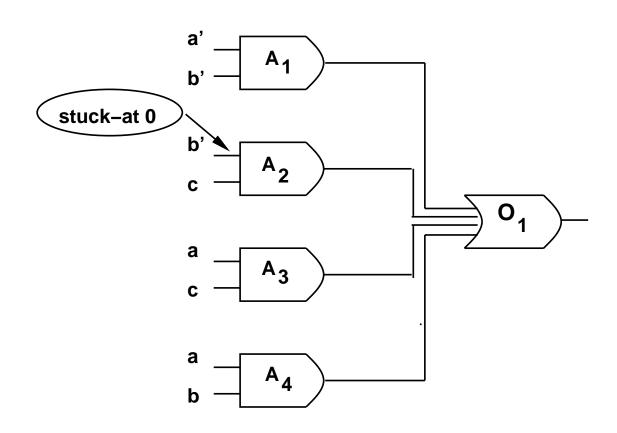
(C)	GD	M
(\mathbf{c})	\cup	1 V I

- Full testability for single stuck-at faults:
 - Prime and irredundant cover.
- Full testability for multiple stuck-at faults:
 - Prime and irredundant cover when:
 - * Single-output function.
 - * No product term sharing.
 - * Each component is PI.

Example

$$f = a'b' + b'c + ac + ab$$

© GDM —



Multiple-level networks Definitions

——— (C) GDM

- A logic network $G_n(V, E)$, with local functions in sum of product form.
- Prime and irredundant (PI):
 - No literal nor implicant of any local function can be dropped.
- Simultaneously prime and irredundant (SPI):
 - No subset of literals and/or implicants can be dropped.

Multiple-level networks Theorems

____ © GDM

- A logic network is PI and only if:
 - its AND-OR implementation is fully testable for single stuck-at faults.
- A logic network is SPI if and only if:
 - its AND-OR implementation is fully testable for multiple stuck-at faults.

Multiple-level networks Synthesis

C GDM

- Compute full local don't care sets.
 - Make all local functions PI w.r. to don't care sets.
- Pitfall:
 - Don't cares change as functions change.
- Solution:
 - Iteration (Espresso-MLD).
- If iteration converges, network is fully testable.

Multiple-level networks Synthesis

_____ © GDM

- Flatten to two-level form.
 - When possible no size explosion.
- Make SPI by disjoint logic minimization.
- Reconstruct multiple-level network:
 - Algebraic transformations preserve multifault testability.

Summary

____ © GDM

- Synergy between synthesis and testing.
- Testable networks correlate to small-area networks.
- Don't care conditions play a major role.