ALGEBRAIC METHODS

© Giovanni De Micheli

Stanford University

Outline

Algebraic model.

Division and substitution.

Kernel theory.

— Kernel and cube extraction.

Decomposition.

© GDM =—

Algebraic model

© GDM e

e Boolean algebra:
— Complement.
— Symmetric distribution laws.

— Don't care sets.

e Algebraic methods:
— Boolean functions —polynomials.

— Expressions (sum of product forms).

Algebraic division

© GDM =

e Given two algebraic expressions:

o fquotient — fdividend/fdivisor when:
— Sdividend = Jdivisor - fquotient + Jremainder
T fdz'vz'sor) fquotient 7& 0

— and the support of fdivisor and fquotient
IS disjoint.

Example

© GDM e

e Algebraic division:

— Let fiuuidend = ac+ ad 4+ bc + bd + €
and fgivisor = a1 b

— Then fquotient =c+d fremainder = €
— Because (a+0b) - (c+d) + e = fiividend
and {a,b} Nn{c,d} =0.
e Non-algebraic division:
— Let f; =a+bc and f; =a—+0b.

— Then (a+b) - (a+c)=f;
but {a,b} N {a,c} # 0.

An algorithm for division

© GDM = =—

o A= {C;4 . j=1,2,...,1} set of cubes
(monomials) of the dividend.

e B={CFP ,i=1,2,...,n} set of cubes
(monomials) of the divisor.

e Quotient @ and remainder R are sum of
cubes (monomials).

An algorithm for division
© GDM s

ALGEBRAIC DIVISION(A, B) {
for i =1ton){
D = {C# such that C# D CF},
if (D==10) return(0, A);
D; = D with var. in sup(CP) dropped ;

iIf:=1

Q = Dy;
else

Q= QnNDy;

h
R=A-Q x B;
return(Q, R);

Example
fdz'vz'dend = ac + ad + bc + bd + €;
fdivisor = a+b;

© GDM =

A = {ac,ad,bc,bd,e}and B = {a,b}.

1 = 1:

— Cf =a, D ={ac,ad} and D1 = {c,d}.
— Then Q = {c,d}.

1 =2 =n:

— C8 =b, D = {bc,bd} and Dy = {c,d}.
— Then Q = {c¢,d} N{c,d} = {c,d}.
Result:

— @Q = {c,d} and R = {e}.
fquotient = c+d and fremainder = €.

T heorem

© GDM =

e Given f; and f;, then f;/f; is empty when:
— fj contains a variable not in f;.

— fj contains a cube whose support is not
contained in that of any cube of f;.

— f; contains more terms than f;.

— The count of any variable in f; than in f;.

Substitution

© GDM e

Consider expression pairs.

Apply division (in any order).

If quotient is not void:

— Evaluate area/delay gain

— Substitute fdividend by j'fquotient+fremainder
where j = fgivisor-

Use filters to reduce divisions.

Substitution algorithm

© GDM =

SUBSTITUTE(Gn(V,E)){
for 1 =1,2,...,|V] {
for (j =1,2,...,[V];j #1) {
A = set of cubes of f;;
B = set of cubes of f;;
if (A, B pass the filter test) {
(Q,R) = ALGEBRAIC_DIVISION(A, B)
if (Q#0) {
fquotient = Sum of cubes of Q);
fremainder = SUM oOf cubes of R;
if (substitution is favorable)

fz' —] . fquotz'ent + fremainder;

Extraction

© GDM =~ =—

e Search for common sub-expressions:
— Single-cube extraction: monomial.

— Multiple-cube (kernel) extraction.

e Search for appropriate divisors.

Definitions

© GDM =

e Cube-free expression:

— Cannot be factored by a cube.

e Kernel of an expression:
— Cube-free quotient of the expression
divided by a cube, called co-kernel.
e Kernel set K(f) of an expression:

— Set of kernels.

Example
fr = ace + bce + de + g

© GDM =
Divide f, by a. Get ce. Not cube free.

Divide f, by b. Get ce. Not cube free.

Divide f, by c. Get ae + be. Not cube free.

Divide f, by ce. Get a +b. Cube free. Kernel!
Divide f, by d. Get e. Not cube free.

Divide f, by e. Get ac+bc+d. Cube free. Kernel!
Divide f, by g. Get 1. Not cube free.

Expression f, is a kernel of itself because cube free.

K(f:) = {(a+b); (ac+bc+d); (ace+bce+de+g)}.

Theorem
(Brayton and McMullen)

© GDM

e T WO expressions f, and f; have a common
multiple-cube divisor f; if and only if:

— there exist kernels kg € K(fqa)
and ky € K(fy) s.t. fzis the sum
of 2 (or more) cubes in kq N k.

e Consequence:

— If kernel intersection is void, then the
search for common sub-expression
can be dropped.

Example

fa
Ty
I

© GDM e

ace + bce + de + g
ad 4+ bd + cde + ge

abc

K(fz) ={(a+b); (ac+bc+d); (ace+bce+de+g)}.

K(fy) ={(a+b+ce); (cd+g); (ad+bd+ cde+ ge)}.

The kernel set of f, is empty.

Select intersection (a + b)

Jfuw
e
Ty
I

a-+b
wce + de + g
wd + cde + ge

abc

Kernel set computation

© GDM =

e Naive method:

— Divide function by elements in power
set of its support set.

— Weed out non cube-free quotients.

e Smart way:

— Use recursion:

*x Kernels of kernels are kernels.

— Exploit commutativity of multiplication.

Recursive kernel computation
simple algorithm

© GDM = =—

R_KERNELS(f){
K =10,
foreach variable z € sup(f) {
if(ICUBES(f,x)| > 2) {
f¢ = largest cube containing =,
s.t. CUBES(f,C) = CUBES(f,x);
K = KUR KERNELS(f/f©);

}

K=KUf;
return(K);

CUBES(f,C){
return the cubes of f whose support O C;

Analysis

© GDM =

e Some computation may be redundant:

— Example:

x Divide by a and then by b.
x Divide by b and then by a.

— Obtain duplicate kernels.

e Improvement:

— Keep a pointer to literals used so far.

Recursive kernel computation
© GDM s

KERNELS(f,5){
K =0
for i =j ton {
if((CUBES(f,z)| > 2) {
f¢ = largest cube containing =,
s.t. CUBES(f,C) = CUBES(f,x;);
iIf (x, & C Vk < 1)
K =KUKERNELS(f/f%,i+1);

}
K=KUf,
return(K);

Example
f = ace 4+ bce + de + g

© GDM s
Literals a or b. No action required.

Literal ¢. Select cube ce:

— Recursive call with arguments: (ace—+bce)/ce =
a + b; pointer j =34 1.

— Call considers variables {d,e,g}. No kernel.

— Adds a + b to the kernel set at the last step.
Literal d. No action required.

Literal e. Select cube e:

— Recursive call with arguments: ac + bc + d and
pointer y =54 1.

— Call considers variable {g}. No kernel.

— Adds ac 4+ bec + d to the kernel set at the last
step.

Literal g. No action required.

Adds ace + bce 4+ de + g to the kernel set.

K = {(ace 4+ bce 4+ de + g), (ac+ bc + d), (a + b)}.

Matrix representation of kernels

© GDM =

Boolean matrix:

— Rows: cubes. Columns: variables.

Rectangle (R, C):

— Subset of rows and columns
with all entries equal to 1.

Prime rectangle:

— Rectangle not inside any other rectangle.

Co-rectangle (R, C") of a rectangle (R, C):

— C" are the columns not in C.

A co-kernel corresponds to a
prime rectangle with at least two rows.

Example
fr = ace + bce + de + g

© GDM =
var a b c d e g
cube | R\C |1 2 3 4 5 6
ace 1 1 01 0 1 O
bce 2 O 1 1 0 1 O
de 3 O 0 0O1 1 O
g 4 O 0O 0O 0O 0O 1

e Rectangle (prime): ({1,2},{3,5})

— Co-kernel ce.

e Co-rectangle: ({1,2},{1,2,4,6}).

— Kernel a + b.

Single-cube extraction

© GDM

x =t (a+b) +de +g '—

—| x = ace + bce +de + g '— 3 T
| |
—' s=cde+b '—

S=Wd+Db -

Single-cube extraction

© GDM =

e Form auxiliary function:

— Sum of all local functions.

e Form matrix representation:

— A rectangle with two rows represents a
common cube.

— Best choice is a prime rectangle.

e Use function ID for cubes:

— Cube intersection from different
functions.

Example

© GDM =
e EXpressions:
— fr =ace+ bce +de+ g
— fs=cde+b
e Auxiliary function:
— faur = ace + bce + de + g + cde + b
e Matrix:
var a b ¢ d e g
cube |ID | R\C |1 2 3 4 5 6
ace X 1 1 0 1 0 1 O
bce X 2 O 1 1 0 1 O
de X 3 O 0 O 1 1 O
g X 4 O 0O 0 O 0 1
cde S 5 O 0 1 1 1 oO
b S 6 O 1 0 O 0 O

e Prime rectangle: ({1,2,5},{3,5})

e Extract cube ce.

Cube extraction algorithm
© GDM =

CUBE EXTRACT(Gn(V,E)){
while (some favorable common cube exist) {
C = select common cube to extract;
Generate new label [;
Add to network v; and f; = f¢;
Replace all functions f, where f; is a divisor,

by [- fquotient + fremainder;

}

Multiple-cube extraction
© GDM =

—' X = ace+bce+de+g '—
: —| y = ad+bd+cde+ge '— j y = wd+cde+ge |—
—| z=abc '—

X = wce+de+g |—

| z = abc |—

Multiple-cube extraction

© GDM =

We need a kernel/cube matrix.

Relabeling:
— Cubes by new variables.

— Kernels by cubes.

Form auxiliary function:

— Sum of all kernels.

Extend cube intersection algorithm.

Example

© GDM =

e fp = ace + bce.

— K(fp) ={(a+0b)}.

o fqg =ae—+ be—+d.

— K(fq) ={(a+0b); (ae+be+d)}.

e Relabeling:

— x4 = a;xp = b; x4 = ae; Ty = be; xq = d;

* K(fp) = {{za, 2p}}

* K(fq) = {{%a, Tp}; {Tae, Tpe, Td}}-

Example (2)

© GDM e

® faour = TaTp + TaTp + TaeXpeTq-

o Co-kernel: zqxp.

— xqxp COrresponds to kernel intersection
a -+ b.

— Extract a + b from fp, and fq.

Kernel extraction algorithm
© GDM =

KERNEL_EXTRACT(Go(V,E) , n,k){
while (some favorable common kernel intersection exist)
Compute kernel set of level < k;
for (i=1ton) {
Compute kernel intersections;
f = select kernel intersection to extract;
Generate new label I;
Add v; to the network with expression f; = f;
Replace all functions f where f; is a divisor

by [- fquotient + fremainder;

}
}

Decomposition

© GDM e

Ei—|x:ace+bce+de+g '— ?

Decomposition

© GDM =

e Different ways:
— Method of Ashenhurst and Curtis.

— NAND/NOR decomposition.

e Kernel-based decomposition:

— Divide expression recursively.

Example
fr = ace + bce + de + g

© GDM =

e Select kernel ac + be 4 d.

e Decompose: fr=te+4+g, fi =ac+bc—Hd,

e Recur on the quotient f;:
— Select kernel a + b:

— Decompose: fy =sc+d, fs =a-+b;

Decomposition algorithm
© GDM

DECOMPOSE(Gn(V,E) , k){
repeat {
ve = Selected vertex with expression
whose size is above k;
if (ve =0) return;
decompose expression fi;

Summary
Algebraic transformations

© GDM e

View Boolean functions as algebraic
expression.

Fast manipulation algorithms.

Some optimality lost,
because Boolean properties are neglected.

Useful to reduce large networks.

