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(57) ABSTRACT

A method for optimizing an implementation of a logic
circuit, comprising steps of providing an interpretation of
the logic circuit in terms of 3 Boolean variable majority
operators M, with each of the majority operators being a
function of a plurality of variables that returns a logic value
assumed by more than half of the plurality of variables, and
a single Boolean variable complementation operator '. The
method further comprises providing a commutativity, a
majority (€2.M), an associativity (€2.A), a distributivity
(Q.D), an inverter propagation (.I), a relevance (W.R), a
complementary associativity (W.C), and a substitution (W.S)
transformation; and combining the Q.M, Q.C, Q.A, Q.D,
QI W.R, W.C and W.S transformations to reduce an area of
the logic circuit via (i) a reshaping procedure consisting of
the Q.A, Q.C, Q.D, Q.I, W.R, W.S and W.C transformations,
applied either left-to-right or right-to-left moving identical
or complemented variables in neighbor locations of the logic
circuit, (ii) an elimination procedure consisting of the Q.M
transformation, applied left-to-right, and the Q.D transfor-
mation, applied right-to-left, that simplify redundant opera-
tors, or (iii) an iteration of steps (i) and (ii) till a reduction
in area is achieved.
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1
MAJORITY LOGIC SYNTHESIS

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application is a U.S. national stage applica-
tion of International patent application PCT/IB2014/059133
filed on Feb. 20, 2014 that designated the United States, the
contents of thereof being herewith incorporated by reference
in its entirety.

TECHNICAL FIELD

The invention concerns logic synthesis tools that are used
to improve the performance of digital integrated circuits.

BACKGROUND

The performance of today’s digital integrated circuits
largely depends on the capabilities of logic synthesis tools.
In this context, eflicient representation and optimization of
Boolean functions are key features. Some data structures and
algorithms have been proposed for these tasks (see refer-
ences [1]-[8]). Most of them consider, as basis operations,
inversion (INV), conjunction (AND), disjunction (OR) (see
references [2]-[5]) and if-then-else (MUX) (see references
[6], [7]). Other Boolean operations are derived by compo-
sition. Even though existing design automation tools, based
on original optimization techniques (see references [1]-[8]),

produce good results and handle large circuits, the possibil- 3

ity to push further the efficacy of logic synthesis continues
to be of paramount interest to the Electronic Design Auto-
mation (EDA) community.

With this aim in mind, the invention approaches the logic
optimization problem from a new angle.

SUMMARY OF INVENTION

The present invention proposes a novel method to repre-
sent and optimize a logic circuit.

Accordingly, in a first aspect the invention provide a
method for optimizing an implementation of a logic circuit,
comprising providing an interpretation of the logic circuit in
terms of 3 Boolean variable majority operators M, with each
of the majority operators being a function of a plurality of
variables that returns a logic value assumed by more than
half of the plurality of variables, and a single Boolean
variable complementation operator '. The method further
comprises providing a commutativity transformation
defined by M(x,y,z)=M(y,X,2)=M(z,y.Xx), wherein x.,y,z are
Boolean variables; providing a majority transformation
(€2.M) defined by if(x==y) then M(x,y,z)=x else if(x==y")
then M(x,y,z)=z, wherein y' is the Boolean complement of'y;
providing an associativity transformation (£2.A) defined by
M(x,u,M(y,u,2))=M(z,u,M(y,u,x)), wherein also u is a Bool-
ean variable; providing a distributivity transformation (€.D)
defined by M(x,y.M(u,v,z))=M(M(x,y,u),M(X,y,v),Z),
wherein also z and v are Boolean variables; providing an
inverter propagation transformation (€2.I) defined by (M(x,
y,2))=M(x"y',z'), wherein X' is the Boolean complement of
x and 7' is the Boolean complement of z; providing a
relevance transformation (W.R) defined by M(x,y,z)=M(x,
YsZy ), Wherein the symbol z_,,, represents the logic circuit
for variable z wherein the variable x is substituted by
variable y' in all its appearance in the circuit of z; providing
a complementary associativity transformation (W.C) defined
by M(x,u,M(y,u",z))=M(x,u,M(y,x,z)), wherein u' is the
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Boolean complement of u; providing a substitution trans-
formation (W.S) defined by M(x,y,z2)=M(v,M(V'M,,(X.y,Z),
u),M(', M, ,(x.y,2),u")), wherein v' is the Boolean comple-
ment of v, M, ,,(X,y,z) represents the logic circuit for M(x,
y,z) having the variable v substituted by the variable u in all
its appearance in the circuit of M(x,y,z) and M, (X.y,Z)
represents the logic circuit for M(x,y,z) having variable v is
substituted by variable u' in all its appearance in the circuit
of M(x,y,z). The Q.M, Q.C, Q.A, Q.D, Q.I, WR, W.C and
W.S transformations are combined to reduce an area of the
logic circuit via (i) a reshaping procedure consisting of the
QA, Q.C, QD, QI WR, W.S and W.C transformations,
applied either left-to-right or right-to-left moving identical
or complemented variables in neighbor locations of the logic
circuit, (ii) an elimination procedure consisting of the Q.M
transformation, applied left-to-right, and the Q.D transfor-
mation, applied right-to-left, that simplify redundant opera-
tors, or (iii) an iteration of steps (i) and (ii) till a reduction
in area is achieved.

In a second aspect the invention provide a method for
optimizing an implementation of a logic circuit, comprising
providing an interpretation of the logic circuit in terms of 3
Boolean variable majority operators M, with each of the
majority operators being a function of a plurality of vari-
ables that returns a logic value assumed by more than half
of the plurality of variables, and a single Boolean variable
complementation operator '. The method further comprises
providing a commutativity transformation defined by M(x,
y,2)=M(y.X,2)=M(z.,y,x), wherein x,y,z are Boolean vari-
ables; providing a majority transformation (2.M) defined by
if(x==y) then M(x,y,z)=x else if(x==y") then M(X,y,z)=z,
wherein y' is the Boolean complement of y; providing an
associativity transformation (€.A) defined by M(x,u,M(y,u,
7))=M(z,u,M(y,u,x)), wherein also u is a Boolean variable;
providing a distributivity transformation (£2.D) defined by
M(x,y,M(1,v,z) ) =M(M(X,y,u),M(X,y,v),z), wherein also z
and v are Boolean variables; providing an inverter propa-
gation transformation (€2.I) defined by (M(x,y,z))'=M(x"y",
7'), wherein x' is the Boolean complement of x and 7' is the
Boolean complement of z; providing a relevance transfor-
mation (‘V.R) defined by M(x,y,2)=M(X,y,Z,,,), wherein the
symbol z_ . represents the logic circuit for variable z
wherein the variable x is substituted by variable y' in all its
appearance in the circuit of z; providing a complementary
associativity transformation (W.C) defined by M(x,u,M(y,u',
z))=M(x,u,M(y,x,z)), wherein u' is the Boolean complement
of u; and providing a substitution transformation (W.S)
defined by M(x,y,z)=M(v,M(V'\M, ,,,(x,y,2),u),M(V', M, ,,,(X,
y,z),u')), wherein v' is the Boolean complement of v, M

v

0 (x,y,2) represents the logic circuit for M(X,y,z) having the

variable v substituted by the variable u in all its appearance
in the circuit of M(x,y,z) and M, ,,, {X,y,Z) represents the logic
circuit for M(x,y,z) having variable v is substituted by
variable u' in all its appearance in the circuit of M(x,y,z). The
QM, QC, QA, QD, QI WR, W.C and W.S transforma-
tions are combined to reduce a delay of a logic circuit via (i)
a reshaping procedure consisting of the Q.A, Q.C, Q.D, Q.1,
WR, W.S and W.C transformations, applied either left-to-
right or right-to-left moving identical or complemented
variables in neighbor locations of the circuit, (ii) a push-up
procedure consisting of the Q.M transformation, applied
left-to-right, and the Q.D transformation, applied left-to-
right, the Q.A transformation and the W.C transformation,
applied either left-to-right or right-to-left, that move critical
late arrival variables close to the circuit outputs, or (iii) an
iteration of steps (i) and (ii) till a reduction in delay is
achieved.
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In a third aspect the invention provides a method for
optimizing an implementation of a logic circuit, comprising
providing an interpretation of the logic circuit in terms of 3
Boolean variable majority operators M, with each of the
majority operators being a function of a plurality of vari-
ables that returns a logic value assumed by more than half
of the plurality of variables, and a single Boolean variable
complementation operator '. The method further comprises
providing a commutativity transformation defined by M(X,
y,2)=M(y.X,2)=M(z.,y,x), wherein x,y,z are Boolean vari-
ables; providing a majority transformation (€2.M) defined by
if(x==y) then M(x,y,z)=x else if(x==y") then M(X,y,z)=z,
wherein y' is the Boolean complement of y; providing an
associativity transformation (€2.A) defined by M(x,u,M(y,u,
7))=M(z,u,M(y,u.x)), wherein also u is a Boolean variable;
providing a distributivity transformation (€2.D) defined by
M(x,y,M(u,v,z))=M(M(X,y,u),M(X,y,v),z), wherein also z
and v are Boolean variables; providing an inverter propa-
gation transformation (€2.1) defined by (M(x,y,z))'=M(x"y',
'), wherein x' is the Boolean complement of x and 7' is the
Boolean complement of z; providing a relevance transfor-
mation (W.R) defined by M(x,y,z)=M(X,y,z,,,.), Wherein the
symbol z,. represents the logic circuit for variable z
wherein the variable x is substituted by variable y' in all its
appearance in the circuit of z; providing a complementary
associativity transformation (W.C) defined by M(x,u,M(y,u',
2))=M(x,u,M(y,X,z)), wherein u' is the Boolean complement
of u; and providing a substitution transformation (W.S)
defined by M(x,y,2)=-M(v,M(V'\M, ,,(X,y,Z),u),M(Vv', M, (X,
y,z),u")), wherein v' is the Boolean complement of v, M, ,,
(x,y,z) represents the logic circuit for M(x,y,z) having the
variable v substituted by variable u in all its appearance in
the circuit of M(x,y,z) and M, , (X,y,z) represents the logic
circuit for M(x,y,z) having variable v is substituted by

variable u' in all its appearance in the circuit of M(x,y,z). The 3

QM, QC, QA, QD, QI WR, W.C and W.S transforma-
tions are combined to reduce a power consumption of a logic
circuit via (i) a switching activity reduction procedure
consisting of the Q.C, W.R, W.S transformations, applied
either left-to-right or right-to-left substituting variables with
a probability p,,, of assuming the logic 1 value with neigh-
bor variables having a probability P,,,, of assuming the logic
1 value if and only if Ip,,,,~0.51>Ip,,,~0.51, (ii) a reshaping
procedure consisting of the Q.A, Q.C, Q.D, Q.I, W.R, W.S
and W.C transformations, applied either left-to-right or
right-to-left moving identical or complemented variables in
neighbor locations of the circuit, (iii) an elimination proce-
dure consisting of the Q.M transformation, applied left-to-
right, and the ©.D transformation, applied right-to-left, that
simplify redundant operators or (iv) an iteration of steps (i),
(i) and (iii), in any sequence, till a reduction in power
consumption is achieved.

BRIEF DESCRIPTION OF THE DRAWINGS
AND TABLES

The invention will be better understood in light of the
description of the detailed description of preferred embodi-
ments and in reference to the drawings and tables, wherein

FIG. 1 depicts two logic representation examples for
MIGs;

FIG. 2 represents examples of MIG optimization for (a)
size, (b-¢) depth and (c¢) switching activity. The initial MIGs
appear in purple, and the final MIGs are in blue;

FIG. 3 shows the optimization space for logic circuits
optimized with MIG (Blue), AIG (violet) and decomposed
BDD (red);
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FIG. 4 shows the synthesis space for logic circuits opti-
mized with MIG (blur), AIG (violet) and Commercial Syn-
thesis Tool (CST) (brown); and

FIG. 5A shows a table containing Logic Optimization
results and and FIG. 5B shows a table containing synthesis
results.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The invention proposes a method to represent and opti-
mize logic by using only majority (MAJ) and inversion
(INV) as basis operations. The method makes use of a
Majority-Inverter Graph (MIG), a logic representation struc-
ture consisting of three-input majority nodes and regular/
complemented edges. MIGs include any AND/OR/Inverter
Graphs (AOIGs), therefore containing also AIGs (see ref-
erence [8]). To provide native manipulation of MIGs, a
novel Boolean algebra is introduced, based exclusively on

0 majority and inverter operations. A set of five primitive

transformations forms a complete axiomatic system. Using
a sequence of such primitive axioms, it is possible to explore
the entire MIG representation space. This remarkable prop-
erty opens up great opportunities in logic optimization and
synthesis. The potential of MIGs is shown by proposing a
delay-oriented optimization technique. Experimental
results, over the MCNC benchmark suite, show that MIG
optimization decreases the number of logic levels by 18%,
on average, with respect to AIG optimization run by ABC

0 academic tool. Applied in a standard optimization-mapping

circuit synthesis flow, MIG optimization enables a reduction
in the estimated {delay, area, power} metrics of {22%, 14%,
11%]}, on average before physical design, as compared to
academic/commercial synthesis flows.

The study of majority-inverter logic synthesis is also
motivated by the design of circuits in emerging technolo-
gies. In the quest for increasing computational performance
per unit area (see reference [9]), majority/minority gates are
natively implemented in different nanotechnologies (see
references [10]-[12]) and also extend the functionality of
traditional NAND/NOR gates. In this scenario, MIGs and
their algebra represent the natural methodology to synthe-
size majority logic circuits in emerging technologies. In the
present description, we focus on standard CMOS, to first
showcase the interest of MIGs in an ordinary design flow.
Background and Motivation

This section presents relevant background on logic rep-
resentations and optimization for logic synthesis. Notations
and definitions for Boolean algebra and logic networks are

0 also introduced.

Logic Representation and Optimization

Virtually, all digital integrated circuits are synthesized
thanks to eflicient logic representation forms and associated
optimization algorithms (see reference [1]). Early data struc-
tures and related optimization algorithms (see reference [2])
are based on two-level representation of Boolean functions
in Sum Of Product (SOP) form, which is a disjunction (OR)
of conjunctions (AND) where variables can be comple-
mented (INV). Another pioneering data structure is the
Binary Decision Diagram (BDD) (see reference [6]): a
canonical representation form based on nested if-then-else
(MUX) formulas. Later on, multi-level logic networks (see
references [3], [4]) emerged, employing AND, OR, INV,
MUX operations as basis functions, with more scalable
optimization and synthesis tools (see references [4], [7]). To
deal with the continuous increase in logic designs complex-
ity, a step further is enabled by reference [5], where multi-
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level logic networks are made homogenous, i.e., consisting
of only AND nodes interconnected by regular/complement
(INV) edges. The tool ABC (see reference [8]), which is
based on the AND-Inverter Graphs (AIGs), is considered the
state-of-art academic software for (large) optimization and
synthesis.

The present invention is directed at a new logic optimi-
zation paradigm that aims at extending the capabilities of
modern synthesis tools.

Notations and Definitions

1) Boolean Algebra: In the binary Boolean domain, the
symbol B indicates the set of binary values {0,1}, the
symbols o and v represent the conjunction (AND) and
disjunction (OR) operators, the symbol ' represents the
complementation (INV) operator and 0/1 are the false/true
logic values. A standard Boolean algebra is a non-empty
set (B, o, v,', 0, 1) subject to commutativity, associativity,
distributivity, identity and complement axioms over o, v
and ' (see reference [16]). Boolean algebra is the ground
to operate on logic networks.

2) Logic Network: A logic network is a Directed Acyclic
Graph (DAG) with nodes corresponding to logic func-
tions and directed edges interconnecting the nodes. The
direction of the edges follow the natural computation
from inputs to outputs. The terms logic network, Boolean
network, and logic circuit are used interchangeably in this
description. The incoming edges of a node link either to

other nodes, to input variables or to logic constants 0/1. 3

Two logic networks are said equivalent when they repre-
sent the same Boolean function. A logic network is said
irredundant if no node can be removed without altering
the represented Boolean function. A logic network is said

homogeneous if each node has an indegree (number of 3

incoming edges, fan-in) equal to k and represents the
same logic function. In a homogeneous logic network,
edges can have a regular or complemented attribute, to
support local complementation. The depth of a node is the
length of the longest path from any input variable to the
node. The depth of a logic network is the largest depth of
anode. The size of a logic network is its number of nodes.
3) Majority Function: The n-input (n odd) majority function

M returns the logic value assumed by more than half of

the inputs.
Majority-Inverter Graph

In this section, we present MIGs and their associated
Boolean algebra. Notable properties of MIGs are discussed.
A. MIG Logic Representation

Definition: an MIG is a homogeneous logic network with
indegree equal to 3 and with each node representing the
majority function. In an MIG, edges are marked by a regular
or complemented attribute.

We show the properties of MIGs by comparison to the
general AND/OR/Inverter Graphs (AOIGs), that are also
including the popular AlIGs (see reference [8]). For this
purpose, note that the majority operator M(a, b, ¢) behaves
as the conjunction operator AND(a, b) when ¢=0 and as the
disjunction operator OR(a,b) when c¢=1. Therefore, majority
can be seen as a generalization of conjunction and disjunc-
tion. This property leads to the following theorem.
Theorem 3.1:

MIGs > AOIGs.

Proof:

In both AOIGs and MIGs, inverters are represented by
complemented edge markers. An AOIG node can be seen as
a special case of an MIG node, with the third input biased
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to logic O or 1 to realize an AND or OR, respectively. On the
other hand, a MIG node is not a special case of an AOIG
node, as the functionality of the three input majority cannot
be realized by a single AND or OR.

FIG. 1 depicts two logic representation examples for
MIGs. They are obtained by translating their optimal AOIG
representations into MIGs. Note that even if such logic
networks are optimal for AOIGs, they can be further opti-
mized with MIGs, as detailed later. More precisely FIG. 1
show examples of MIG representations (right) for (a)
f=x@yPz and (b) g=x(y+uv) derived by transposing their
optimal AOIG representations (left). Complement attributes
are represented by bubbles on the edges.

As a corollary of Theorem 3.1, MIGs include also AIGs
and are capable to represent any logic function (universal
representation). This is formalized in the following.
Corollary 3.2:

MIGs o AIGs.

Proof:

MIGs = AOIGs = AIGs= = MIGs = AIGs
Corollary 3.3:

MIG is a universal representation form.

Proof:

MIGs = AIGs that is a universal representation (see ref-
erence [5]).

So far, we have shown that MIGs can be configured to
behave as AOIGs. Hence, in principle, they can be manipu-
lated using traditional AND/OR techniques. However, the
potential of MIGs goes beyond standard AOIGs and, in
order to unlock their full expressive power, we introduce a
new Boolean algebra, natively supporting the majority/
inverter functionality.

B. MIG Boolean Algebra

We propose here a novel Boolean algebra 1, defined over
the set (B, M, ', 0, 1), where M is the majority operator of
three variables and ' is the complementation operator. The
following set of five primitive transformation rules, referred
to as Q, is an axiomatic system for (B, M, ', 0, 1). All the
variables considered hereafter belong to B.

Commutativity— Q.C

M(x,y,z2)=M(y, x,2) =

Majority - Q.M
if(x=yrM(x, y,2)=x=y

{ if(x=yrMx, y,2)=2

Associativity = .A

M(x, u, M(y, u, 2)) = M(z, u, M(y, u, X))

Distributivity— Q.D

M(x,y, M(u, v, 2)) = M(M(x, y, u), M(x, y, v), )

Inverter Propagation— €./

M (x, y,2)= MK, Y, )

We prove that (B, M, ', 0, 1) axiomatized by € is a
Boolean algebra by showing that it induces a complemented
distributive lattice (see reference [17]).

Theorem 3.4:

The set (B, M, ', 0, 1) subject to axioms in €2 is a Boolean
algebra.
Proof:

The system €2 embed median algebra axioms (see refer-
ence [13]). In such scheme, M(0,x,1)=x follows by .M. In
reference [18], it is proved that a median algebra with
elements 0 and 1 satisfying M(0,x,1)=x is a distributive
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lattice. Moreover, in our scenario, complementation is well
defined and propagates through the operator M (£2.1). Thus,
a complemented distributive lattice arises. Every comple-
mented distributive lattice is a Boolean algebra (see refer-
ence [17]).

Note that there are other possible axiomatic systems. For
example, it is possible to show that in the presence of Q.C,
Q.A and Q.M, the rule in Q.D is redundant (see reference
[14]). In this work, we consider €2.D as part of the axiomatic
system for the sake of simplicity. Desirable properties for a
logic system are soundness and completeness. Soundness
ensures that if a formula is derivable from the system, then
it is valid. Completeness guarantees that each valid formula
is derivable from the system. We prove that the proposed
Boolean algebra is sound and complete by linking back to
Stone’s theorem (see reference [19]).

Theorem 3.5:

The Boolean algebra (B, M, ', 0, 1) axiomatized by € is
sound and complete.

Sketch of the Proof:

Owing to Stone’s representation theorem, every Boolean
algebra is isomorphic to a field of sets (see reference [19]).
Stone’s theorem implies soundness and completeness in the
original logic system (see reference [20]). Since the pro-
posed system is a Boolean algebra, Stone’s duality applies
and soundness and completeness are true.

Intuitively, every (M,',0,1)-formula can be interpreted as 3

an MIG. Thus, the Boolean algebra induced by  is natu-
rally applicable in MIG manipulations. We show hereafter
that any two equivalent MIGs can be transformed one into
the other by Q.

Theorem 3.6:

It is possible to transform any MIG o into any other
logically equivalent MIG f, by a sequence of transforma-
tions in €.

Proof:

Say that o is one-to-one equivalent to the (M, ', 0,
1)—formula A and f3 is one-to-one equivalent to the (M, ', 0,
1)—formula B. All tautologies in (B, M, ', 0, 1) are theorems
provable by Q [ Theorem 3.5]. The statement A=B is equiva-
lent to the tautology M(1, M(A', B', 0), M(A, B, 0))=1 (that
means ADB=1). Using the sequence in €2 proving M(1,
M(A', B, 0), M(A, B, 0))=1 we can then transform MIG o
into MIG f.

As a consequence of Theorem 3.6, it is possible to
traverse the entire MIG representation space just by using Q.
From a logic optimization perspective, it means that we can
always reach a desired MIG starting from any other equiva-
lent MIG. However, the length of the exact transformation
sequence might be impractical for modern computers. To
alleviate this problem, we derive from Q three powerful
transformations, referred to as W, that facilitate the MIG
manipulation task. The first, relevance (W.R), replaces and
simplifies reconvergent variables. The second, complemen-
tary associativity (W.C), deals with variables appearing in
both polarities. The third and last, substitution (W.S),
extends variable replacement also in the non-reconvergent
case. We represent a general variable replacement operation,
say replace x with y in all its appearence in z, with the
symbol zx/y.

w
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Relevance = W.R 2)
M(x, y,2) = M(X, Y, Zyyt)
Complementary Associativity—¥.C
W M (X, uy M(y, o 2) = M(x, u, M(y, X, 2))
Substitution— .S
M(x, y,z) =
My, M(V'y Myp (X, Y, 2), 0, MOV, My (X509, 2), ')

By showing that W can be derived from €2, the validity of

W follows from €2 soundness.
Theorem 3.7:

The transformations in W follow from €.
Proof:

Relevance (W.R): Let S be the set of all the possible
primary input combinations for M (x, y, z). Let Sx=y (Sx=y")
be the subset of S such that x=y(x=y'). Note that
Sx=yNSx=y'=p and Sx=yUSx=y'=S. According to Q.M,
variable z in M(x, y, z) is only relevant for Sx=y'. Thus, it
is possible to replace x with y' (x/y") in all its appearance in
z, preserving the original functionality.

Complementary Associativity (W.C):

M(x, u, M(u', v, 2))=M(M(x, u, u'), M(x, u, v), z) (Q2.D)
MM, u, u"), M(x, u, v), z2)=M(X, z, M(X, u, v)) (Q.M)
Substitution (W.S): We set M(X, y, z)=k for brevity. k=M(v,
v.k)=(2.M)

=M(M(u, u', v), v', K)=(Q2.M)

=M(M(V', k, u), M(Vv', k, u"), v)=(R2.D)

Then, M(V', k, u)=M(V', kv/u, u) (W.R) and

M, k, ' )y=M'", kviu', u) (W.R)

Recalling that k=M (x, y, z), we finally obtain: M(x,y,z)=M
(v, M(V', Mv/u(x, y, z), u), M(v', MV/At' (%, y, z), u'))

So far, we have presented the theory for MIGs and their
native Boolean algebra. We show now how to optimize an
MIG accordingly.

MIG Optimization

The optimization of an MIG, representing a Boolean
function, ultimately consists of its transformation into a
different MIG, with better figures of merit in terms of area
(size), delay (depth), and power (switching activity). In the
rest of this section, we present heuristic algorithms to
optimize the size, depth and activity of an MIG using
transformations from €2 and W.

A. Optimizing the Size of an MIG

To optimize the size of an MIG, we aim at reducing its
number of nodes. Node reduction can be done, at first
instance, by applying the majority rule. In the novel Boolean
algebra domain, that is the ground to operate on MIGs, this
corresponds to the evaluation of the majority axiom (€2.M)
from Left to Right (L—=R), as M (x, x, z)=x. A different node
elimination opportunity arises from the distributivity axiom
(Q.D), evaluated from Right to Left (R—L), as M(x,y,M(u,
v,Z2))=M(M(x,y,u),M(x,y.v),z). By applying repeatedly
Q.ML—R and Q.DR-L over an entire MIG, we can actually
eliminate nodes and thus reduce its size. Note that the
applicability of majority and distributivity depends on the
peculiar MIG structure. Indeed, there may be MIGs where
no direct node elimination is evident. This is because (i) the
optimal size is reached or (ii) we are stuck in a local minima.
In the latter case, we want to reshape the MIG in order to
enforce new reduction opportunities. The rationale driving
the reshaping process is to locally increase the number of
common inputs/variables to MIG nodes. For this purpose,
the associativity axioms (Q.A, W.C) allow us to move
variables between adjacent levels and the relevance axiom



US 10,394,988 B2

9

(W.R) to exchange reconvergent variables. When a more
radical transformation is beneficial, the substitution axiom
(W.S) replaces pairs of independent variables, temporarily
inflating the MIG. Once the reshaping process created new
reduction opportunities, majority (€2.M ) and distributivity
(L2.D ) run again over the MIG simplifying it. Reshape and
elimination processes can be iterated over a user-defined
number of cycles, called effort. Such MIG-size optimization
strategy is summarized in Alg. 1.

Algorithm 1

MIG-size Optimization Pseudocode

INPUT: MIG a OUTPUT: Optimized MIG a.
for (cycles=0; cycles<effort; cycles++) do

QM r(@); Q.Dgo(@);
Q.A(@); ¥.Cla),
Y.R(a); ¥.S(a);
QM g(@); QDo (@);

}reshape eliminate

end for

For the sake of clarity, we comment on the MIG-size
optimization procedure of a simple example, reported in
FIG. 2(a). The input MIG is equivalent to the formula
M(x,M(x,2',w),M(X,y,z)), which has no evident simplifica-
tion by majority and distributivity axioms. Consequently, the
reshape process is invoked to locally increase the number of
common inputs. Associativity Q.A swap w and M (x, y, z)
in the original formula obtaining M(x, M(x, 7', M(x, v, 2)),
w), where variables x and z are close to the each other. Later,
relevance W.R applies to the inner formula M(x, z', M(x, v,
7)), exchanging variable z with x and obtaining M(x, M(x,
7', M(X, y, X)), w). At this point, the final elimination process
runs, simplifying the reshaped representation as M(x, M(x,
7', M(X, y, X)), W)=M(x, M(x, 7, X), W)=M(X, X, W)=x by
using Q2.ML—R. The obtained result is optimal.

Note that MIGs resulting from Alg. 1 are irredundant,
thanks to the final elimination step. Portions of Alg. 1 can be
interlaced with other optimization methods, to achieve a
size-recovery phase.

B. Optimizing the Depth of an MIG

To optimize the depth of an MIG, we aim at reducing the
length of'its critical path. A valid strategy for this purpose is
to move late arrival (critical) variables close to the outputs.
In order to explain how critical variables can be moved
preserving the original functionality, we consider the general
case in which a part of the critical path appears in the form
M(x,y.M(u,v,z)). If the critical variable is x, or y, no simple
move reduce the depth of M(x,y,M(u,v,z)). Whereas,
instead, the critical variable belongs to M(u,v,z), say z, depth
reduction is achievable. We focus on the latter case, with
order tz>tuztv>txzty for the variables arrival time (depth).
Such order arises from (i) an unbalanced MIG whose inputs
have equal arrival times or (i) a balanced MIG whose inputs
have different arrival times. In both cases, z is the critical
variable arriving later than u, v, X, y, hence the local depth
is tz+2. If we apply the distributivity axiom Q.D from left to
right (L—=R), we obtain M(x,y,M(u,v,2))=M(M(x,y,u), M(x,
y,v),z) where z is pushed one level up, reducing the local
depth to tz+1. Such technique is applicable to a broad range
of cases, as all the variables appearing in M (x, y, M (u, v,
7)) are distinct and independent. However, a size penalty of
one node is introduced. In the favorable cases for which
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associativity axioms (Q2.A, W.C) apply, critical variables can
be pushed up with no penalty. Furthermore, where majority
axiom applies Q.ML—+R, it is possible to reduce both depth
and size. As noted earlier, there exist cases for which moving
critical variables cannot improve the overall depth. This is
because (i) the optimal depth is reached or (ii) we are stuck
in a local minima. To move away from a local minima, the
reshape process is useful. Reshape and critical variable
push-up processes can be iterated over a user-defined num-
ber of cycles, called effort. Such MIG-depth optimization
strategy is summarized in Alg. 2.

Algorithm 2

MIG-depth Optimization Pseudocode

INPUT: MIG a OUTPUT: Optimized MIG .
for (cycles=0; cycles=effort; cycles++) do

QM k(@) QD p(@); Q.A@); Y.Cla),;
OQ.A(@); ¥.C(a),
Y.R(a); ¥.5(a);
QM k(@) QD p(@); QA(@); ¥.C(a);

}reshape push-up

end for

We comment on the MIG-depth optimization procedure
using two examples depicted by FIG. 2(b-¢). The considered
functions are f=x@yPz and f=x(y+uv) with initial MIG

0 representations translated from their optimal AOIGs. In both

of'them, all inputs have 0 arrival time, thus no direct push-up
operation is advantageous. The reshape process is invoked to
move away from local minima. For f=x(y+uv), complemen-
tary associativity W.C enforces variable x to appear in two
adjacent levels, while for f=x@y®z substitution P.S
replaces x with y, temporarily inflating the MIG. After this
reshaping, the push-up procedure is applicable. For f=x(y+
uv), associativity Q.A exchanges 1' with M(u, 1', v) in the
top node, reducing by one level the MIG depth. For
f=x@y®z, majority QML—R heavily simplifies the struc-
ture and reduces by two levels the original MIG depth. The
optimized MIGs are much shorter than their optimal AOIGs
counterparts. Note that the depth of MIGs resulting from
Alg. 2 cannot be reduced by any direct push-up operation.
C. Optimizing the Activity of an MIG

To optimize the overall switching activity of an MIG, we
aim at reducing (i) its size and (ii) the probability for nodes
to switch from logic 0 to 1, or viceversa. For the size
reduction task, we can run the MIG-size optimization algo-

0 rithm described previously. To minimize the switching prob-

ability, we want that nodes do not change values often, i.e.,
the probability of a node to be logic 1 (pl) is close to 0 or
1. For this purpose, relevance W.R and substitution W.S can
exchange variables with not desirable p1~0.5 with more
favorable variables having p1~1 or p1~0. FIG. 2(d) shows
an example where relevance W.R replaces a variable x
having pl1=0.5 with a reconvergent variable y having
p1=0.1, thus reducing the overall MIG switching activity.

Experimental Results

In this section, we show the advantage of MIG optimi-
zation and synthesis as compared to state-of-art academic/
commercial tools.

A. MIG Optimization

We present here the experimental method and results for

logic optimization based on the MIG theory.
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1) Methodology: We developed MIGhty a logic manipula-
tion package for MIGs, consisting of about 6 k lines of C
code. Different optimization methods are implemented in
MIGhty. In this paper, we employ depth-optimization
interlaced with size and activity recovery phases. The
MIGhty package reads a Verilog description of a com-
binational logic circuit, flattened into Boolean primitives,
and writes back a Verilog description of the optimized
MIG. The benchmarks are the largest circuits from the
MCNC suite, ranging from 0.1 k and 15 k nodes. For the
sake of illustration, we considered separately a large logic
compression circuit having (unoptimized) 0.3M nodes.
We compare MIGs with AIGs optimized by ABC tool (see
reference [8]) and BDDs decomposed by BDS tool (see
reference [7]). The resyn2 script is used for ABC, while
the default execution options are used for BDS.

2) Results: Table I-top summarizes experimental results for
logic optimization. The average depth of MIGs is 18.6%
smaller than AIGs and 23.7% smaller than decomposed
BDDs. The average size of MIGs is roughly the same than
AlGs, just 0.9% of difference, but 2.1% smaller than
decomposed BDDs. The average activity of MIGs is again
the same as AIGs, just 0.3% of difference, but 3.1%
smaller than decomposed BDDs. FIG. 3 depicts these
results in a 3D (size,depth,activity) space. Using a
size“depth” activity figure of merit, MIGs are 17.5%
better than AIGs and 27.7% better than decomposed
BDDs. The runtime for MIGs is slightly longer than

B. MIG-Based Synthesis
Experimental methods and results for MIG-based logic

synthesis are presented hereafter.

1. Methodology: We employ MIGhty in a traditional opti-
mization-mapping synthesis flow and we compare its
results to state-of-art academic and commercial tools. For
this purpose, a standard cell library consisting of MIN-3,
MAJ-3, XOR-2, XNOR-2, NAND-2, NOR-2 and INV
logic gates is characterized for CMOS 22 nm technology
(see reference [15]). Technology mapping after MIG-
optimization is carried out using a proprietary mapping
tool. The academic counterpart is ABC (see reference [8])
(AlGs optimization) followed by the same proprietary
technology mapping tool as for MIGs. Physical design is
not taken into account in any synthesis flow. Hence,
{delay, area, power} metrics are estimated from the
synthesized gate-level netlist.

2. Results: Table 1(b) summarizes experimental results for
MIG-based logic synthesis and its counterpart flows. On
average, the MIG flow generates {delay, area, power}
estimated metrics that are {22%, 14%, 11%} smaller than
the best academic/commercial counterpart. FIG. 4 shows
the dominance of MIGs synthesis results over AIGs and
commercial synthesis tool, in a 3D (area,delay,power)
space. While, in logic optimization, MIGs were mainly
shorter than AlGs, in logic synthesis they enable also
remarkable area and power savings. The reason for such
improvement is twofold. On the one hand, the structure of
MIGs is further simplifiable by technology mapping algo-
rithms based on Boolean techniques, such as equivalence
checking using BDDs, internal flexibilities computation
(don’t cares), and others. This is especially effective when
MIG nodes are partially fed by logic 1/0. One the other
hand, the presence of MAIJ-3 and MIN-3 gates in the
standard-cell library allows us to natively recognize and
preserve MIG nodes, when their decomposition in simpler
functions is not advantageous.
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C. Discussions

Experimental results validate the potential of MIGs in
logic optimization and synthesis. Even though the proposed
algorithms are simple as compared to elaborated state-of-art
techniques, they produce already competitive results, thanks
to the expressive power of MIGs and their associated
algebra. Indeed, there exist logic circuits, for example the
ones in FIG. 1 and FIGS. 2(b-¢), for which traditional
optimization reaches its limits while the proposed method-
ology can optimize further. In particular, MIGs open the
opportunity for eflicient synthesis of datapath circuits, where
majority logic is dominant.

CONCLUSIONS

As presented in the present description, Majority-Inverter
Graph (MIG) is a novel logic representation structure for
efficient optimization of Boolean functions. To natively
optimize MIGs, we propose a new Boolean algebra, based
solely on majority and inverter operations, with a complete
axiomatic system. Experimental results, over the MCNC
benchmark suite, show that delay-oriented MIG optimiza-
tion reduces the number of logic levels by 18%, on average,
with respect to AIG optimization run by ABC academic tool.
Employed in a standard optimization-mapping circuit syn-
thesis flow, MIG optimization enables a reduction in the
estimated {delay, area, power} metrics of {22%, 14%,
11%}, on average before physical design, as compared to
academic/commercial counterparts. MIGs extend the capa-
bilities of modern synthesis tools, especially with respect to
datapath circuits, as majority functions are the ground for
arithmetic operations.
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The invention claimed is:

1. A method for optimizing an implementation of a logic
circuit for reducing an area of the logic circuit on a chip
performed on a computer, the method comprising steps of:

providing a logic synthesis tool for optimizing the logic

circuit;

expressing the logic circuit based on

three (3) Boolean variable majority operators M, with
each of the majority operators being a function of a
plurality of variables that returns a logic value
assumed by more than half of the plurality of vari-
ables, and
a single Boolean variable complementation operator ';
providing a commutativity transformation by the com-
puter defined by MXy,z*M (v,x,2)=M (z,y,X),
wherein X, y, z are Boolean variables;
providing a majority transformation (£2.M) by the com-
puter defined by if(x==y) then M(x)y,z)=x else
if(x==y") then M(X,y,z)=z, wherein y' is the Boolean
complement of y;

providing an associativity transformation (£2.A) by the
computer defined by M(x,u,M(y,u,2))=M(z,u,M(y,u,
X)), wherein u is a Boolean variable;

providing a distributivity transformation (Q.D) by the
computer defined by M(x,y,M(u,v,z))=M(M(x,y,u),M
(X,y,V),z), wherein also z and v are Boolean variables;

providing an inverter propagation transformation (€2.1) by
the computer defined by (M(x,y,z))=M(xy",z"),
wherein x' is the Boolean complement of x and 7' is the
Boolean complement of z;

providing a relevance transformation (W.R) by the com-
puter defined by M(X,y.z)=M(X,y,z,,,), Wherein the
symbol z,,' represents the logic circuit for variable z
wherein the variable x is substituted by variable y' in all
appearances in the circuit of z;

providing a complementary associativity transformation
(W.C) by the computer defined by M(x,u,M(y,u',z))=M
(x,u,M(y,x,z)), wherein u' is the Boolean complement
of u;

providing a substitution transformation (\V.S) by the com-
puter defined by M(x,y,z)=M(v,M(V',M, ,,(X,y,z),u),M
v, M, , (x.y,z),u")), wherein V' is the Boolean comple-
ment of v, M, ,(x,y,z) represents the logic circuit for
M(x,y,z) having the variable v substituted by the vari-
able u in all appearances in the circuit of M(x,y,z) and
M, ,, A(x,y.z) represents the logic circuit for M(x,y,z)
having variable v substituted by variable u' in all
appearances in the circuit of M(x,y,z); and
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combining the Q.M, Q.C, Q.A, Q.D, Q.I, W.R, W.C and

W.S transformations by the computer to reduce an area

of the logic circuit to provide for an optimized logic

circuit by the steps of,

(1) reshaping including the Q.A, Q.C, Q.D, Q.I, W.R,
W.C and W.S transformations, applied either left-to-
right or right-to-left moving identical or comple-
mented variables in neighbor locations of the logic
circuit,

(i) eliminating of the Q.M transformation, applied
left-to-right, and the €.D transformation, applied
right-to-left, to simplify redundant operators, or

(iii) an iteration of steps (i) and (ii) until a reduction in
area of the logic circuit is achieved.

2. The method for optimizing the implementation of the
logic circuit of claim 1, wherein in the step of expressing the
logic circuit, the logic circuit is provided as a Verilog
description of a combinational logic circuit.

3. The method for optimizing the implementation of the
logic circuit of claim 1, further comprising the step of:

writing a Verilog description of the optimized logic circuit

by the computer after the step of combining.

4. The method for optimizing the implementation of the
logic circuit of claim 1, further comprising the step of:

synthesizing a gate-level netlist of the optimized logic

circuit by the computer after the step of combining.

5. A method for optimizing an implementation of a logic
circuit to reduce a delay of the logic circuit performed on a
computer, the method comprising steps of:

providing a logic synthesis tool for optimizing the logic

circuit;

expressing the logic circuit based on

three (3) Boolean variable majority operators M, with
each of the majority operators being a function of a
plurality of variables that returns a logic value
assumed by more than half of the plurality of vari-
ables, and

a single Boolean variable complementation operator ';

providing a commutativity transformation by the com-

puter defined by M(x,y,2)=M(y.X,z)=M(z,y,x), wherein

X,y,z are Boolean variables;

providing a majority transformation (€2.M) by the com-

puter defined by if(x==y) then M(x,y,z)=x else

if(x==y") then M(x,y,z)=z, wherein y' is the Boolean

complement of y;

providing an associativity transformation (£2.A) by the

computer defined by M(x,u,M(y,u,2))=M(z,u,M(y,u,

X)), wherein u is a Boolean variable;

providing a distributivity transformation (.D) by the

computer defined by M(x,y,M(u,v,z))=M(M(x,y,u),M

(X,y,V),Z), wherein z and v are Boolean variables;

providing an inverter propagation transformation (€.1) by

the computer defined by (M(x,y,z))=M(xy',z"),
wherein x' is the Boolean complement of x and 7' is the

Boolean complement of z;

providing a relevance transformation (¥.R) by the com-

puter defined by M(x,y,z2)=M(x.y.z,,), wherein the

symbol z,' represents the logic circuit for variable z

wherein the variable x is substituted by variable y' in all

appearances in the circuit of z;
providing a complementary associativity transformation

(W.C) by the computer defined by M(x,u,M(y,u',z))=M

(x,u,M(y,x,z)), wherein u' is the Boolean complement

of u;
providing a substitution transformation (\V'.S) by the com-

puter defined by M(x.y,z)=M(v,M(Vv',M,,,(X,y,Z),u),

M(V'\M,,,(x.y,2),d)), wherein v' is the Boolean comple-
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ment of v, M, ,(x,y,z) represents the logic circuit for

M(x,y,z) having the variable v substituted by the vari-

able u in all appearances in the circuit of M(x,y,z) and

M,,, (x,y.z) represents the logic circuit for M(x,y,z)

having variable v is substituted by variable u' in appear-

ances in the circuit of M(x,y,z); and

combining the Q.M, Q.C, Q.A, Q.D, Q.I, W.R, ¥.C and

W.S transformations by the computer to reduce a delay

of a logic circuit to provide for an optimized logic

circuit by the steps of,

(i) reshaping the Q.A, Q.C, Q.D, Q.I, WR, W.S and
W.C transformations, applied either left-to-right or
right-to-left moving identical or complemented vari-
ables in neighbor locations of the circuit,

(ii) pushing-up the Q.M transformation, applied left-
to-right, and the Q.D transformation, applied left-to-
right, the Q.A transformation and the W.C transfor-
mation, applied either left-to-right or right-to-left, to
move critical late arrival variables close to the circuit
outputs, or

(iii) iterating steps (i) and (ii) until a reduction in the
delay of the logic circuit is achieved.

6. The method for optimizing the implementation of the
logic circuit of claim 5, wherein in the step of expressing the
logic circuit, the logic circuit is provided as a Verilog
description of a combinational logic circuit.

7. The method for optimizing the implementation of the
logic circuit of claim 5, further comprising the step of:

writing a Verilog description of the optimized logic circuit

by the computer after the step of combining.

8. The method for optimizing the implementation of the
logic circuit of claim 5, further comprising the step of:

synthesizing a gate-level netlist of the optimized logic

circuit by the computer after the step of combining.

9. A method for optimizing an implementation of a logic 3

circuit to reduce a power consumption of the logic circuit
performed on a computer, comprising steps of:
providing a logic synthesis tool for optimizing the logic
circuit;
expressing the logic circuit based on
three (3) Boolean variable majority operators M, with
each of the majority operators being a function of a
plurality of variables that returns a logic value
assumed by more than half of the plurality of vari-
ables, and
a single Boolean variable complementation operator ';
providing a commutativity transformation by the com-
puter defined by M(x,y,2)=M(y,x,2)=M(z,y,x), wherein
X,y,Z are Boolean variables;
providing a majority transformation (£2.M) by the com-
puter defined by if(x==y) then M(x,y,z)=x else
if(x==y") then M(x,y,z)=z, wherein y' is the Boolean
complement of y;
providing an associativity transformation (£2.A) by the
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computer defined by M(x,u,M(y,u,2))=M(z,u,M(y,u, 55

X)), wherein u is a Boolean variable;

providing a distributivity transformation (€2.D) by the
computer defined by M(x,y,M(u,v,z))=M(M(x,y,u),M
(X,y,V),z), wherein also z and v are Boolean variables;
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providing an inverter propagation transformation (€2.1) by
the computer defined by (M(x,y,2))'=M(x'y",z),
wherein x' is the Boolean complement of x and z' is the

Boolean complement of z;
providing a relevance transformation (W.R) by the com-

puter defined by M(x,y,2)=M(x.y.z,,,), wherein the
symbol z,,,' represents the logic circuit for variable z

wherein the variable x is substituted by variable y' in all
its appearance in the circuit of z;

providing a complementary associativity transformation
(W.C) by the computer defined by M(x,u,M(y,u',z))=M
(x,u,M(y,x,z)), wherein u' is the Boolean complement
of u;

providing a substitution transformation (W.S) by the com-
puter defined by M(x,y,z)=M(v,M(V',M, ,,(X,y,z),u),M
', M, Ax.y,2),d)), wherein V' is the Boolean comple-
ment of v, M, ,(x.y,z) represents the logic circuit for
M(x,y,z) having the variable v substituted by variable u
in all appearances in the circuit of M(x,y,z) and M, ,,,
(x,y,z) represents the logic circuit for M(x,y,z) having
variable v is substituted by variable u' in all appear-
ances in the circuit of M(x,y,z); and

combining the Q.M, Q.C, Q.A, Q.D, Q.I, R, W.C and

W.S transformations by the computer to reduce a power
consumption of a logic circuit to provide for an opti-
mized logic circuit with the steps of,

(i) reducing switching activity including the Q.C, Q.R,
Q.S transformations, applied either left-to-right or
right-to-left substituting variables with a probability
Porz Of assuming the logic 1 value with neighbor
variables having a probability p,,.,, of assuming the
logic 1 value only if Ip,,,,,~0.51>-0.5I,

(i1) reshaping including the Q.A, Q.C, Q.D, Q.I, W.R,
W.S and W.C transformations, applied either left-to-
right or right-to-left moving identical or comple-
mented variables in neighbor locations of the circuit,

(iii) eliminating including the Q.M transformation,
applied left-to-right, and the Q.D transformation,
applied right-to-left, to simplify redundant operators,
or

an iteration of steps (i), (ii) and (iii), in any sequence, until

a reduction in power consumption of the logic circuit is

achieved.

10. The method for optimizing the implementation of the
logic circuit of claim 9, wherein in the step of expressing the
logic circuit, the logic circuit is provided as a Verilog
description of a combinational logic circuit.

11. The method for optimizing the implementation of the
logic circuit of claim 9, further comprising the step of:

writing a Verilog description of the optimized logic circuit

by the computer after the step of combining,.

12. The method for optimizing the implementation of the
logic circuit of claim 9, further comprising the step of:

synthesizing a gate-level netlist of the optimized logic

circuit by the computer after the step of combining.
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