
Customizable On-the-�y Design Space Exploration for
Logic Optimization of Emerging Technologies

Siang-Yun Lee
LSI, EPFL

Lausanne, Switzerland

Heinz Riener
Cadence Design Systems

Munich, Germany

Giovanni De Micheli
LSI, EPFL

Lausanne, Switzerland

Abstract
Many problems in logic synthesis are intractable because of
the large number of functionally-equivalent, but structurally
di�erent ways to represent Boolean logic. Various Boolean
algebraic theorems, network manipulation operations, exact
algorithms as well as scalable heuristics have been devel-
oped, providing a widely-spanned collection of transforma-
tion steps connecting functionally-equivalent designs in the
feasible space. The problem of design space exploration is to
�nd a “good” sequence of applying these transformations,
which leads to a desired optimum in terms of the given cost
metrics. In this work, we investigate on-the-�y design space
exploration methods based on random walks in the design
space of available transformations. The best optimization
sequence is not prede�ned, but rather discovered on the �y.
Our implementation is customizable both for the cost eval-
uation metric and for the portfolio of transformation steps,
which is especially important for emerging technologies hav-
ing unconventional cost metrics and dedicated optimization
algorithms. We present new best results in majority-inverter
graph (MIG) and adiabatic quantum-�ux parametron (AQFP)
synthesis problems, improving over state of the art by 7%
and 21%, respectively.

Keywords: Logic synthesis, combinational circuits, design
space exploration, Boolean optimization

1 Introduction
Logic synthesis plays a central role in all Electronic Design Au-
tomaton (EDA) tools with the goal of translating a functional
speci�cation of a design into logic gates while meeting area,
delay, and power quality goals. In modern tool �ows, this
translation process from a functional to a structural descrip-
tion is streamlined into a sequence of e�cient, optimizing
translation steps. At the technology-independent logic level,
researchers propose the usage of simple logic representa-
tions [5, 20] devoid of timing and power information that are
subsequently mapped [6, 23] into a technology-dependent
netlist of standard cells.
The general case of the Boolean optimization problem is

intractable, such that academic as well as industrial tools rely
on well-tuned heuristics. Boolean optimization algorithms
such as rewriting, factoring, and resubstitution [13, 19] have
been revisited several times and have been improved in scal-
ability and achievable optimization quality. Combining the

individual algorithms into an e�cient Boolean optimization
�ow, however, is rarely addressed and requires careful pa-
rameter tuning.

As a remedy, recent research proposals suggest data-driven
Arti�cial Intelligence (AI) to guide logic synthesis �ows and
improve overallQuality-of-Results (QoR). An intelligent agent
powered by AI could be capable of smarter decision-making
by controlling when to run and stop logic optimization while
considering trade-o�s and con�icting QoR goals [16, 18].
Modern AI technology, however, has its own challenges:
computational demands are often extraordinarily high, large
amounts of training data are required, aggressive learning
policies may result in biased and unexplainable decision-
making, sophisticated training, and learning approaches re-
quire AI experts to design, tune, and maintain.

Moreover, with the development of beyond-CMOS emerg-
ing technologies, unconventional circuit properties, design
constraints, and cost functions need to be considered in de-
sign automation. For example, Spin Torque Majority Gate
(STMG) [17] circuits are based on majority gates and in-
verters are expensive, thus majority-inverter graph (MIG)
[2] instead of AND-inverter graph (AIG) is a better logic
network abstraction. Adiabatic Quantum-Flux Parametron
(AQFP) [22] is also based on majority gates, and it imposes
additional path-balancing and fanout-branching constraints.
Field-coupled Nanocomputing (FCN) [3] is a family of nan-
otechnologies whose physical design requires the circuit
to be planarized, in addition to path-balancing and fanout-
branching. Although these constraints may be dealt with
after technology mapping, research has shown that tailored
logic optimization algorithms considering specialized cost
metrics early on yield better QoR. However, carefully-tuned
optimization �ows for individual technologies are even more
rarely researched, as suchworkwould require experts in both
the technology and logic synthesis (and AI).
In this paper, we propose a simpler design space explo-

ration approach that takes a combinational gate-level circuit
represented as input, evaluates its characteristics, and makes
decisions about what optimizing transformations to apply
as it proceeds. Our goal is to provide an easily-adaptable
solution, customizable for various applications, when the
best-achievable QoR is of interest and higher runtime is ac-
ceptable. Restart and bailout strategies are used in the explo-
ration procedure as a mechanism to retry if a logic minimum
has been reached and to terminate optimization early if QoR

149



IWLS’23, June 5-6, 2023, EPFL, Lausanne, Switzerland Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli

deviates too much from a desired quality goal. We have im-
plemented this decision-making process in mockturtle [20],
a state-of-the-art logic synthesis package, and evaluated the
capabilities of design space exploration with optimization
problems for emerging technologies. For MIG size optimiza-
tion, our new best results are 7% better than existing works.
For the synthesis of AQFP circuits, we achieve 21% improve-
ment over the state-of-the-art approach based on Bayesian
optimization [9].

2 Background
2.1 Logic Optimization
Logic optimization is the problem of optimizing a logic rep-
resentation to minimize multiple given (and con�icting) cost
metrics. In this work, we focus on optimization of logic net-
works, which model digital combinational circuits. A logic
network is a directed acyclic graph whose nodes model logic
gates and edges model wires. Logic optimization algorithms
use simple, homogeneous logic network representations [4],
such as And-Inverter Graphs (AIGs) [11] being composed of
two-fanin AND nodes and inverters and Majority-Inverter
Graphs (MIG) [2] composed of three-fanin MAJ nodes and
inverters.

2.2 Design Space Exploration
Logic optimization �ows are �xed sequences of optimiz-
ing transformations. While many research works focus on
improving performance and quality of individual transfor-
mations, complete optimization �ows are rarely proposed.
The problem of �nding a sequence of optimizing transforma-
tions that achieves best results for a given benchmark suite
is only recently investigated using techniques from machine
learning (ML) [16, 18, 26] and Bayesian optimization [10].
These works arrange existing technology-independent opti-
mizing transformations to reduce area and delay of the �nal
netlist as much as possible, where each optimizing transfor-
mation maintains a local view on the logic, e.g., in the form
of sliding windows, and implements a well-known scalable
logic optimization. Alternatively, algorithms based on global
optimization principles such as simulated annealing [15]
and evolutionary algorithms [7, 8] achieve better logic com-
paction but are due to their high-performance requirements
rarely considered in practice.

In this paper, simple, on-the-�y methods for design space
exploration are investigated to �nd (or tune) a logic synthesis
�ow without requiring a complex search-based or AI-driven
optimization framework. Despite the simplicity, we show
that on-the-�y design space exploration can compete with
�ows designed by human experts and present best results in
the context of AQFP synthesis and MIG size optimization.

Algorithm 1: On-the-�y design space exploration
Input: Original network #0
Output: Optimized network #best
Custom functions: cost, decompress, compress
Parameters: num_restarts, max_steps, max_no_impr,

timeout, init_seed
1 #best #0.copy()
2 '1 random_engine(init_seed)
3 for restart = 1 upto num_restarts do
4 #best_inner #0.copy()
5 #curr #0.copy()
6 '2 random_engine('1.rand())
7 elapsed_time 0; start_timer(elapsed_time)
8 for step = 1 upto max_steps do
9 decompress(#curr, '2.rand())

10 compress(#curr, '2.rand())
11 if cost(#curr) < cost(#best_inner) then
12 #best_inner #curr.copy()
13 last_impr step
14 else if step � last_impr � max_no_impr then
15 break
16 else if elapsed_time � timeout then
17 break
18 if cost(#best_inner) < cost(#best) then
19 #best #best_inner.copy()
20 return #best

3 On-the-�y Design Space Exploration
3.1 Overview
An overview of the on-the-�y design space exploration al-
gorithm is outlined in Algorithm 1. Like most logic network
optimization algorithms, it takes an original network as in-
put and outputs an optimized network. Additionally, there
are three custom functions a user should specify: cost evalu-
ation, decompressing and compressing scripts, which will
be further described in Sections 3.2 and 3.5.

There are an outer loop (lines 3-19) and an inner loop (lines
8-17) in Algorithm 1. In the following, we call an iteration
of the outer loop a restart and an iteration of the inner loop
a step. Furthermore, an execution of decompress (line 9) or
compress (line 10) is called a script, which may contain one
or more algorithms or transformations.

In each restart, the network is restored to the original one,
and a new random engine seeded with a di�erent seed is
generated (line 6). The number of restarts is de�ned by the
user (parameter num_restarts). The best network having the
smallest cost in all restarts is recorded and eventually output
by the algorithm (lines 18-20). Each restart has its own timer
to upper-bound the runtime (line 7).
Each step consists of a call to a decompressing script fol-

lowed by a call to a compressing script, which are both ran-
domized. After these transformations are done, the network
cost is evaluated. The current network is recorded if its cost is

150



Customizable On-the-fly Design Space Exploration IWLS’23, June 5-6, 2023, EPFL, Lausanne, Switzerland

the best seen among the steps executed so far in the current
restart (lines 11-12). The inner loop breaks if there have been
max_no_impr steps executed without seeing better network
(lines 14-15), or if the timeout limit has reached (lines 16-17).

In the remaining of this section, we explainwhywe believe
such algorithmic design helps achieving better design space
exploration.

3.2 Escaping Local Optimum
Although a user of our algorithm has the freedom to de�ne
any set of decompressing and compressing scripts, we en-
courage them to classify possible transformation algorithms
into two categories and have good candidates in both. A
decompressing script should be a script that dramatically
restructures the network and likely increases its size and
depth. A prominent example of a decompressing script is
LUT mapping followed by naive resynthesis to convert back
into the original representation (e.g. AIG or MIG). Another
example, when the representation is an MIG, is randomly
breaking each majority gate into four using the relation

" (0,1, 2) = 01 + 2 (0 + 1)
= " (" (0,1, 0)," (2," (0,1, 1), 0), 1). (1)

The purpose of decompressing is to create possibility of
escaping from local optima. Imagine if the design space of
all feasible networks is projected to the G axis and the ~ axis
is the cost of each network. Such curve is very likely not
convex and many valleys of local minima exist. When we
are stuck at a local minimum, decompressing scripts help us
to climb up the hills and potentially reaching a better local
minimum afterwards.
In contrast, a compressing script is a sequence of algo-

rithms which attempts to optimize for the given cost met-
ric. Examples of compressing scripts include well-known
logic optimization algorithms such as rewriting, balancing,
refactoring, resubstitution, graph remapping, etc. The aim
of compressing scripts is to converge to a local minimum.
By interleaving decompressing and compressing scripts, our
algorithm may explore di�erent local optima in the design
space, instead of being trapped in the nearest local optima
when only applying one optimization algorithm.

3.3 Stretching Out in the Design Space
Consider the original network #0 and a certain optimized
network #best to be reached, they may be far away in the de-
sign space and a long sequence of transformations is required
to get from #0 to #best. Thus, our design space exploration
strategy aims at stretching far out and really performing long
transformation sequences. The key to such aim is that in the
inner loop, even if the cost is getting much worse, there is
no mechanism to backtrack to the previous best result or to
retrieve the original network. A design space exploration
strategy which tries many di�erent combinations of transfor-
mation sequences but frequently backtracks would explore

the design space more densely near the original network,
but less likely to reach out to further points.

3.4 On-the-�y Exploration
Being able to try long sequences of transformations is not
enough. The next big question is: What kind of sequence
leads to better result? Although machine-learning-based re-
search and human expert experiences give some insights, we
argue that the answer is di�erent for di�erent benchmarks
and di�erent cost metrics. Instead of pre-de�ning particular
sequences, our algorithm simply performs random walks.
The purpose of the outer loop is to mitigate the possibility of
a “bad” random seed leading to unsatisfactory result, and to
increase the chance of meeting at least one “good” random
sequence in all restarts. We call such strategy an on-the-�y
exploration because we do not know the best transforma-
tion sequence in advance, but discover it on the �y during
exploration.

3.5 Customization
Aiming at applications to emerging technologies with di-
verse logic representations, dedicated algorithms, and cost
evaluation metrics, our algorithm is customizable in these
aspects.

• Logic representation: As long as the transformation
scripts and cost evaluation function are compatible,
there is no limitation on the data structure of #0. Al-
though this paper focuses mainly on network opti-
mization, it is also possible to use other logic represen-
tations such as two-level forms.

• Decompressing and compressing scripts: To set up the
algorithm, the user must provide a nonempty set of
decompressing scripts and a nonempty set of com-
pressing scripts. When the functions decompress and
compress (line 9 and 10 in Algorithm 1) are called, one
of the scripts in the respective set is randomly chosen.
The user may also de�ne the probability of each script
being chosen, preferring some scripts over the others.
Moreover, how randomness is involved in the scripts is
also customizable. For example, a user may de�ne that
the cut size to be used in resubstitution is randomly
chosen within a range.

• Cost evaluation: Most importantly, the cost evaluation
function is customized. Such function should take a
network as input and output a number. It should not
modify the network, but it may execute complicated
algorithms to compute the cost.

Besides the custom functions, there are also some param-
eters users may set according to their needs.

• num_restarts: This parameter de�nes how many dif-
ferent transformation sequences, or exploration paths,
will be tried randomly. We will experiment on the im-
pact of this parameter in Section 4.4.

151



IWLS’23, June 5-6, 2023, EPFL, Lausanne, Switzerland Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli

• max_steps, max_no_impr, timeout: These parameters
de�ne the optimization e�ort of each restart. Particu-
larly, max_no_impr de�nes how many steps without
seeing any improvement in the cost the algorithm will
tolerate before bailing out from the current exploration
path, and timeout de�nes the runtime budget.

• init_seed is the user-speci�ed initial random seed used
to generate di�erent seeds to be used in each restart.
This parameter is only used to ensure deterministic and
reproducible results of the algorithm.When num_restarts
is su�ciently large (Section 4.4), di�erent init_seed
should give similar results and tuning of this parame-
ter should not be needed.

4 Experimental Results
The proposed design space exploration algorithm is imple-
mented in the C++ logic synthesis library mockturtle1 [20,
21]. Two benchmark suites are used for experiments tomatch
the respective state-of-the-art works in comparison. The
MCNC benchmarks [25] are used in Section 4.2 for AQFP
synthesis and the EPFL benchmarks [1] are used in Sec-
tion 4.1 for MIG size optimization.

4.1 Application to MIG Optimization
Table 1 compares a state-of-the-art MIG restructuring algo-
rithm, graph remapping [23] (Map), the current best MIG size
results seen in the literature produced by an optimization
�ow [12] (Flow), and the new best results achieved by our
design space exploration (DSE). The MIG sizes (number of
gates) are listed for all of the three as the main comparison,
and the MIG depth is additionally listed in DSE for reference.
The benchmark suite is divided into arithmetic circuits (up-
per half) and control circuits (lower half), and the sum of
arithmetic benchmarks as well as all benchmarks are listed
separately. Data of the control circuits for Map were omitted
in the table because they were not presented in [23].

From Table 1, we also observe the improvements made by
extending from a single algorithm, to a �xed �ow, and �nally
to an exploration of a portfolio of di�erent �ows. Overall,
our new best result improves over state of the art by 7.2%.

4.2 Application to AQFP Synthesis
Adiabatic quantum-�ux parametron (AQFP) is an emerg-
ing superconducting digital electronic technology featuring
ultra-low energy consumption [22]. AQFP circuits are based
on the majority logic and imposes special design constraints
on path balancing and fanout branching. To address these,
MIGs are often used as the logic representation, and bu�ers
and splitters are inserted to ful�ll the constraints. Due to
the complex interplay between equivalent logic structures,
path balancing and fanout branching, restructuring and opti-
mization of AQFP circuits is a di�cult problem and classical

1Available: h�ps://github.com/lsils/mockturtle

Table 1. Comparison on MIG size against previous works.

Map [23] Flow [12] DSE [Ours]

Bench. Size Size Size Depth

adder 384 384 384 129
bar 2588 2588 2112 14
div 36858 12532 12480 2267
hyp 137048 124177 121674 8731
log2 24295 23109 22996 187
max 2171 2210 1968 217
multiplier 19299 18440 18437 138
sin 4196 3967 3963 116
sqrt 17355 12423 12384 2193
square 11924 9498 8732 127

Total (arith.) 256118 209328 205130 14119

arbiter - 6719 3907 23
cavlc - 533 381 16
ctrl - 79 63 8
dec - 304 304 3
i2c - 932 652 22
int2�oat - 181 121 14
mem_ctrl - 34777 24029 44
priority - 431 366 34
router - 151 105 11
voter - 4561 4351 31

Total (all) - 257996 239409 14325

logic synthesis algorithms cannot be directly applied. Two
orthogonal approaches have been proposed: conventional
MIG synthesis followed by bu�er and splitter insertion and
optimization [24], and dedicated synthesis algorithms con-
sidering AQFP cost in logic restructuring [14]. The cost of
an AQFP circuit is commonly evaluated with the Josephson
junction (JJ) count (#JJs = 6 · #MAJs + 2 · #bu�ers) and the
circuit depth (length of critical path counting both gates and
bu�ers).
Table 2 presents our new best results for the AQFP syn-

thesis problem using the proposed design space exploration
algorithm and compares to the state-of-the-art approach
based on Bayesian optimization [9]. The optimization goal
is set to minimizing the energy-delay product (product of JJ
count and circuit depth) to match with the compared work
(SoTA). The JJ count (#JJs), circuit depth (Depth) and energy-
delay product (EDP) are listed, as well as the di�erence in
EDP (�). On average, our design space exploration improves
EDP by 21.4% and JJ count by 31.6%.

4.3 Design Space Exploration
We take the benchmark “5xp1” from the AQFP synthesis
experiment in Section 4.2 and plot the processes of three
restarts in Figure 1 as an example illustration of design space

152



Customizable On-the-fly Design Space Exploration IWLS’23, June 5-6, 2023, EPFL, Lausanne, Switzerland

Table 2. Comparison on JJ count, depth, and energy-delay product against state of the art AQFP synthesis.

SoTA [9] Ours

Bench. #JJs Depth EDP #JJs Depth EDP �

5xp1 726 10 7260 418 14 5852 -19%
c1908 5108 34 173672 4620 37 170940 -2%
c432 3098 34 105332 2370 38 90060 -14%
c5315 16410 30 492300 15648 30 469440 -5%
c880 3876 23 89148 3836 28 107408 +20%
chkn 3500 15 52500 2142 16 34272 -35%
count 1400 12 16800 2014 25 50350 +200%
dist 3536 14 49504 1910 21 40110 -19%
in5 3370 14 47180 1684 17 28628 -39%
in6 2884 11 31724 1862 14 26068 -18%
k2 14748 22 324456 8660 25 216500 -33%
m3 2680 12 32160 1602 15 24030 -25%
max512 4812 16 76992 2904 18 52272 -32%
misex3 11272 20 225440 2826 20 56520 -75%
mlp4 2976 14 41664 1650 17 28050 -33%
prom2 22326 20 446520 16094 21 337974 -24%
sqr6 916 10 9160 700 11 7700 -16%
x1dn 1208 11 13288 766 13 9958 -25%

Total 104846 322 2235100 71706 380 1756132 -21%

12 14 16 18 20 22 24 26

400

600

800

1,000

Depth

#J
Js

Original
Restart 1
Restart 2
Restart 3

Figure 1. Three di�erent paths in the design space taken by
three restarts.

exploration. The optimization goal is set to minimizing JJ
count (~-axis), and the circuit depth is used as the G-axis of
the plot to help distinguish di�erent networks seen in the
process. Only the networks causing an update to #best_inner
are recorded. We observe the di�erent paths taken by the
design space exploration algorithm.

60 70 80 90 100 110
3

3.5

4

4.5

·104

Depth

Si
ze

#0
Fixed �ow
#best_inner
#best

Figure 2. Local optima found by 50 restarts (⇥) compared to
a �xed �ow (4).

4.4 Importance of Random Restarts
To investigate the in�uence of di�erent random seeds used
in each restart, we plot the best-seen network in 50 restarts
in the same run. The benchmark “mem_ctrl” from the EPFL
benchmark suite is used and optimized for MIG size. In Fig-
ure 2, the ~-axis is MIG size (optimization goal) and the

153



IWLS’23, June 5-6, 2023, EPFL, Lausanne, Switzerland Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli

G-axis is MIG depth (a second network trait). Each blue cross
is a local optimum #best_inner recorded after 50 steps of trans-
formation without improvement or when the inner loop
times out, and the green square marks the best among the
50 restarts. The red circle is the initial network #0, and the
brown crosses are the results of �xed, prede�ned �ows de-
signed by human experts.
We observe from this experiment that there really exist

many di�erent local minima in the design space. Some of
them are worse in both metrics, and some of them form
a portion of the pareto curve. As the algorithm is a ran-
dom process, the order of encountering them is random. If
num_restarts was set smaller, the chance of getting the same
best local optimum is reduced.

However, there are not in�nite local minima and increas-
ing num_restarts inde�nitely may not always help �nding
a better optimum. We have observed that for some bench-
marks and settings, many restarts fall into the same few local
minima.

5 Conclusion and Discussions
This work presents an on-the-�y design space exploration
algorithm which emphasizes long transformation sequences
and restarts with di�erent random decisions. The imple-
mentation is customizable for unconventional cost functions
often seen in emerging technologies, as well as dedicated,
customized optimization scripts. With the proposed design
space exploration, we are able to improve over state-of-the-
art QoRs on MIG and AQFP optimization problems.
We study the di�erent trajectories of design space explo-

ration and experimentally show that there may be many
di�erent local optima reachable by di�erent �ows found by
the design space exploration algorithm. We argue that there
does not exist a �xed universally-good �ow that works well
for all benchmarks, so that the search of the best �ow shall
be done on the �y. As future work, we would like to experi-
mentally demonstrate this claim by applying the best �ow
found for one benchmark on another benchmark.
Randomized decision is key to the proposed algorithm

because it is the premise of forming di�erent �ows and taking
di�erent trajectories leading to di�erent local optima. The
algorithm would not work if there is only one unrandomized
script provided. However, it remains an open question how
many di�erent scripts do we need. We conjecture that the
more randomization involved, the wider distribution of local
optima we will get in a plot similar to Figure 2. In other
words, better optima would become reachable, but there
will be more worse optima as well. Further experiments are
required to answer this question.
As another future research direction, we would also like

to explore the possibility of learning from the best �ows
found by random exploration for various benchmarks. Will

there be a trend or similarities among these �ows? For exam-
ple, perhaps a certain transformation script is particularly
important and is involved in all �ows.

Acknowledgments
This workwas supported in part by the SNF grant “Supercool:
Design methods and tools for superconducting electronics”,
200021_1920981.

References
[1] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli.

2015. The EPFL combinational benchmark suite. In Proceedings of
IWLS.

[2] Luca Amaru, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli.
2015. Majority-inverter graph: A new paradigm for logic optimization.
IEEE Trans. on CAD 35, 5 (2015), 806–819.

[3] Neal G. Anderson and Sanjukta Bhanja (Eds.). 2014. Field-Coupled
Nanocomputing - Paradigms, Progress, and Perspectives. Lecture Notes
in Computer Science, Vol. 8280. Springer.

[4] Robert K. Brayton, Gary D. Hachtel, and Alberto L. Sangiovanni-
Vincentelli. 1990. Multilevel logic synthesis. Proc. IEEE 78, 2 (1990),
264–300. h�ps://doi.org/10.1109/5.52213

[5] Robert K. Brayton and Alan Mishchenko. 2010. ABC: An Academic
Industrial-Strength Veri�cation Tool. In Computer Aided Veri�cation,
22nd International Conference, CAV 2010. 24–40.

[6] Jason Cong and Yuzheng Ding. 1994. FlowMap: an optimal technology
mapping algorithm for delay optimization in lookup-table based FPGA
designs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 13, 1
(1994), 1–12. h�ps://doi.org/10.1109/43.273754

[7] Petra Färm, Elena Dubrova, and Andreas Kuehlmann. 2011. Integrated
logic synthesis using simulated annealing. In Proceedings of the 21st
edition of the great lakes symposium on Great lakes symposium on VLSI.
407–410.

[8] Petr Fiser, Jan Schmidt, Zdenek Vasícek, and Lukás Sekanina. 2010.
On logic synthesis of conventionally hard to synthesize circuits using
genetic programming. In 13th IEEE International Symposium on Design
and Diagnostics of Electronic Circuits and Systems, DDECS 2010, Vienna,
Austria, April 14-16, 2010, Elena Gramatová, Zdenek Kotásek, Andreas
Steininger, Heinrich Theodor Vierhaus, and Horst Zimmermann (Eds.).
IEEE Computer Society, 346–351. h�ps://doi.org/10.1109/DDECS.2010.
5491755

[9] Rongliang Fu, Junying Huang, Mengmeng Wang, Yoshikawa
Nobuyuki, Bei Yu, Tsung-Yi Ho, and Olivia Chen. 2023. BOMIG: A
Majority Logic Synthesis Framework for AQFP Logic. In DATE’23.

[10] Antoine Grosnit, Cédric Malherbe, Rasul Tutunov, Xingchen Wan,
Jun Wang, and Haitham Bou-Ammar. 2022. BOiLS: Bayesian Optimi-
sation for Logic Synthesis. In DATE 2022, Cristiana Bolchini, Ingrid
Verbauwhede, and Ioana Vatajelu (Eds.). IEEE, 1193–1196.

[11] Andreas Kuehlmann, Viresh Paruthi, Florian Krohm, and Malay K.
Ganai. 2002. Robust Boolean reasoning for equivalence checking and
functional property veri�cation. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 21, 12 (2002), 1377–1394. h�ps://doi.org/10.1109/TCAD.
2002.804386

[12] Siang-Yun Lee and Giovanni De Micheli. 2023. Heuristic Logic Resyn-
thesis Algorithms at the Core of Peephole Optimization. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. (2023).

[13] Siang-Yun Lee, Heinz Riener, Alan Mishchenko, Robert K. Brayton,
and Giovanni De Micheli. 2022. A Simulation-Guided Paradigm for
Logic Synthesis and Veri�cation. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 41, 8 (2022), 2573–2586.

154



Customizable On-the-fly Design Space Exploration IWLS’23, June 5-6, 2023, EPFL, Lausanne, Switzerland

[14] Dewmini Sudara Marakkalage, Heinz Riener, and Giovanni De Micheli.
2021. Optimizing Adiabatic Quantum-Flux-Parametron (AQFP) Cir-
cuits using an Exact Database. In IEEE/ACM International Symposium
on Nanoscale Architectures, NANOARCH 2021, AB, Canada, November
8-10, 2021. IEEE, 1–6. h�ps://doi.org/10.1109/NANOARCH53687.2021.
9642241

[15] Julian FMiller, Dominic Job, and Vesselin K Vassilev. 2000. Principles in
the evolutionary design of digital circuits—Part I. Genetic programming
and evolvable machines 1, 1 (2000), 7–35.

[16] Walter Lau Neto, Yingjie Li, Pierre-Emmanuel Gaillardon, and Cunxi
Yu. 2022. FlowTune: End-to-end Automatic Logic Optimization Ex-
ploration via Domain-speci�c Multi-armed Bandit. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD)
(2022).

[17] Dmitri E Nikonov, George I Bouriano�, and Tahir Ghani. 2011. Pro-
posal of a spin torque majority gate logic. IEEE Electron Device Letters
32, 8 (2011), 1128–1130.

[18] Yasasvi V. Peruvemba, Shubham Rai, Kapil Ahuja, and Akash Kumar.
2021. RL-Guided Runtime-Constrained Heuristic Exploration for Logic
Synthesis. In ICCAD 2021. IEEE, 1–9.

[19] Heinz Riener, Winston Haaswijk, Alan Mishchenko, Giovanni De
Micheli, andMathias Soeken. 2019. On-the-�y and DAG-aware: Rewrit-
ing Boolean Networks with Exact Synthesis. In Design, Automation &
Test in Europe Conference & Exhibition, DATE 2019, Florence, Italy, March
25-29, 2019, Jürgen Teich and Franco Fummi (Eds.). IEEE, 1649–1654.
h�ps://doi.org/10.23919/DATE.2019.8715185

[20] Heinz Riener, Eleonora Testa, Winston Haaswijk, Alan Mishchenko,
Luca G. Amarù, Giovanni De Micheli, and Mathias Soeken. 2019. Scal-
able Generic Logic Synthesis: One Approach to Rule Them All. In

Proceedings of the 56th Annual Design Automation Conference 2019,
DAC 2019, Las Vegas, NV, USA, June 02-06, 2019. ACM, 70. h�ps:
//doi.org/10.1145/3316781.3317905

[21] Mathias Soeken, Heinz Riener, Winston Haaswijk, Eleonora Testa,
Bruno Schmitt, Giulia Meuli, Fereshte Mozafari, Siang-Yun Lee,
Alessandro Tempia Calvino, Dewmini Sudara Marakkalage, and
Giovanni De Micheli. 2022. The EPFL Logic Synthesis Libraries.
arXiv:1805.05121 h�p://arxiv.org/abs/1805.05121

[22] Naoki Takeuchi, Dan Ozawa, Yuki Yamanashi, and Nobuyuki
Yoshikawa. 2013. An adiabatic quantum �ux parametron as an ultra-
low-power logic device. Superconductor Science and Technology 26, 3
(2013), 035010.

[23] Alessandro Tempia Calvino, Heinz Riener, Shubham Rai, Akash Kumar,
and Giovanni De Micheli. 2022. A Versatile Mapping Approach for
Technology Mapping and Graph Optimization. In ASP-DAC 2022. 410–
416.

[24] Eleonora Testa, Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli.
2021. Algebraic and Boolean Optimization Methods for AQFP Super-
conducting Circuits. In ASPDAC ’21: 26th Asia and South Paci�c Design
Automation Conference, Tokyo, Japan, January 18-21, 2021. ACM, 779–
785. h�ps://doi.org/10.1145/3394885.3431606

[25] Saeyang Yang. 1991. Logic synthesis and optimization benchmarks user
guide: version 3.0. Microelectronics Center of North Carolina (MCNC).

[26] Cunxi Yu, Houping Xiao, and Giovanni De Micheli. 2018. Develop-
ing Synthesis Flows without Human Knowledge. Design Automation
Conference (DAC’18) (June 2018).

155


	SYL-HR
	page150
	SYL-HR



