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Abstract—With beyond-CMOS circuit technologies emerging from
scientific endeavors in an effort to outperform transistor-based logic
in feature size, operation speed, and energy dissipation, it has become
apparent that besides their differences in physical implementations,
their design automation techniques also have to evolve past established
norms. While conventional logic synthesis aggressively optimizes the
number of nodes in logic networks (as a proxy criterion for area,
delay, and power improvements), this trope does not incorporate the
additional costs caused by inverters and interconnects in the form
of wire segments, signal splitters, and cross-over cells as imposed
onto novel circuit implementations such as photonic crystals and field-
coupled nanotechnologies. In this paper, we propose a scalable technology
mapping algorithm that captures these unconventional costs by utilizing
subcircuit databases that are obtained by applying technology-aware
exact physical design techniques. Hereby, we overcome the substantial
quality loss that previously inevitably occurred when generating beyond-
CMOS circuit layouts from conventionally optimized logic networks.

Index Terms—Logic Synthesis, Technology Mapping, Beyond-CMOS,
Physical Design Constraints

I. INTRODUCTION

As Moore’s Law has lost momentum, alternative circuit technolo-
gies that transcend past conventional transistor-based logic are arising
from studies into material science and physics. These beyond-CMOS
devices promise enhancements over conventional silicon circuits in
diverse aspects. While Photonic Crystals perform logic operations
via wave interference of photons at the speed of light for in-
stance [1], [2], Silicon Dangling Bonds (SiDBs) conduct logic-in-
memory computations via the repulsion of electric fields with ultra-
low power dissipation [3], [4]. Similar Field-coupled Nanotechnolo-
gies (FCN) [5] are, e. g., Quantum-dot Cellular Automata (QCA) [6],
[7] and Nanomagnet Logic (NML) [8], [9].1 While each of the above
technologies—and other unlisted ones—come with their own set of
design constraints, certain similarities continue to reappear that are
not captured by conventional optimization criteria.

To this end, an abundance of design flows for emerging circuit
technologies rely on conventional logic synthesis that aggressively
optimizes the number of nodes of any given logic network, e. g.,
represented as an And-Inverter Graph (AIG), before incorporating
technology-specific constraints on the physical design level. If ded-
icated placement and routing tools are able to legalize such sub-par

1In fact, new circuit technologies are constantly being proposed and their
physical details are not of importance for the motivation and comprehension
of this work.

logic networks, it tends to come at an increased overall layout cost
due to the prior negligence of, e. g., inverter costs or interconnects
in the form of wire segments, signal splitters, and cross-over cells
for planarization, each of which adding to the total area, delay, and
power dissipation metrics [10], [11].

It has been shown that it is not uncommon for interconnection
costs to dominate gate costs by several orders of magnitude in certain
beyond-CMOS implementations [10]. Therefore, optimizing logic
networks primarily for their number of nodes can be counterpro-
ductive as more important cost factors are completely ignored.

In this work, we propose to avoid this overhead by properly
incorporating physical design constraints into the logic synthesis step
to optimize for unconventional but realistic cost functions in emerging
domains. To this end, we present a technology mapping algorithm
that utilizes databases of exact subcircuits implemented in specific
technologies to overcome the substantial quality loss that inevitably
occurs when generating beyond-CMOS circuit layouts from conven-
tionally optimized logic networks. The proposed algorithm is not
limited to a certain target technology but is applicable to a wide
range of non-conventional circuit implementations.

The remainder of this paper is structured as follows: Section II
discusses preliminaries and related work necessary for the compre-
hension of this manuscript. Section III proposes the novel technology
mapping algorithm that constitutes the main contribution of this work.
In Section IV, a comparative experimental evaluation is conducted
against the state of the art and its results are discussed in detail.
Finally, Section V concludes the article.

II. BACKGROUND

In the following, we review the technology constraints of selected
beyond-CMOS implementations in Section II-A, discuss general
circuit-level modeling in Section II-B, and give an overview of related
work on technology mapping in Section II-C.

A. Beyond-CMOS Technologies with Unconventional Cost Functions

In conventional technology-independent logic synthesis, AND-
Inverter Graphs (AIGs) are often used as circuit representation to
optimize for area and/or delay. For NAND-based CMOS technolo-
gies, the AIG size (or depth) measured in the number of AND
gates in the network (or on the critical path) serves as a good
estimation of the post-mapping area (or delay). However, in some
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(a) QCA cells (b) NML cells (c) SiDB cells

Fig. 1: Elementary FCN building blocks

(a) Majority (b) Inverter

(c) Straight buffer (d) Bent buffer (e) Splitter

Fig. 2: QCA gates and wire segments

emerging technologies, additional design constraints are imposed,
and special cells need to be inserted to fulfill the constraints, which
largely increases the discrepancy between technology-independent
cost metrics and post-mapping layout cost metrics.

A plethora of beyond-CMOS computational technologies have
been proposed over the years. In the following, we discuss some
emerging implementations that share similar properties in the aspect
of design automation challenges and cost metrics. Due to this paper’s
brevity, the technologies cannot be discussed in-depth. Instead, a
general overview with a focus on cost functions is provided.

Field-coupled Nanocomputing (FCN): FCN is an umbrella term
for a variety of nanotechnologies that can be summarized in sim-
ilar high-level models [5]. In particular, the class of FCN con-
tains Quantum-dot Cellular Automata (QCA) [6], [7], Nanomagnet
Logic (NML) [8], [9], and Silicon Dangling Bonds (SiDBs) [3],
[4]. Although their possible physical implementations differ greatly,
their concepts are nearly identical. In all cases, information is
represented by the polarization (or magnetization in the case of NML)
of elementary nanometer-scale building blocks called cells. When
manufactured in close proximity, multiple cells influence each other’s
polarization (or magnetization) through Coulomb interaction. Thus,
it is possible to transmit information via the coupling of electric (or
magnetic) fields without the flow of current [5]. These effects greatly
reduce power dissipation and consequently require less cooling than
MOSFETs [11], [12]. Reversible FCN have been shown to be able
to operate below the Landauer limit [13], [14], a theoretical bound
for the energy dissipation of non-reversible computation.

Figure 1 displays elementary cells of the three aforementioned
FCN technologies in the two binary states 0 (left) and 1 (right).
The topological arrangements of cells lead to the formation of
wire segments and gates that conduct Boolean operations, as shown
exemplarily in Figure 2 for the QCA implementation [15]. Although
NML and SiDB gates and wire segments look slightly different, their
concepts do not fundamentally differ.

During physical design, gates and wire segments are arranged in
uniform standard tiles [16], [17], i. e., higher-level building blocks of
precisely specified Boolean functions that shift the abstraction from
physical effects to the logic design layer. Placement and routing of
standard tiles attempt to create a layout from these building blocks
that is functionally equivalent to a given logic network. Here, each tile
has the same unit cost values in both the area and the delay. In other
words, realizing a single buffer, splitter, or inverter consumes the
same area and causes the same delay as placing a gate. Furthermore,
FCN circuits are functionally sensitive to timing delays. Signal paths
of different lengths (in terms of the number of tiles) desynchronize
and cause faulty computation [18].

Photonic Crystals: As a means of realizing completely optical
logic circuits with information transmission at the speed of light,
research has focused on photonic crystals, that is, optical nanostruc-
tures with periodically changing refractive indices [1]. This property
allows or prohibits electromagnetic radiation to propagate through
a photonic crystal based on its wavelength. Within the crystal
lattice, waveguides [19] can be fabricated that restrict incoming
light to propagate along certain channels; effectively creating wires
for photons. At intersections, light originating from two different
waveguides interferes to either cancel out or amplify, based on its
phase shift. This property has been used to envision optical Boolean
gates [2]. However, interacting waveguides of different lengths can
cause signals to desynchronize and thereby distort or break gate
functionality.

Unconventional design constraints and their associated costs: In
this work, we identify and consider the following four unconven-
tional costs that are traditionally not considered in AIG-based logic
synthesis but are inherent to the technologies mentioned above.

1) Path-balancing buffers: Due to the intrinsic property of these
technologies to be sensitive to delay differences in their signal
paths, the path-balancing constraint is imposed, requiring that
all paths from a primary input leading to the fanins of the same
gate must be of the same length. When shortening longer paths
is not possible, buffer cells must be inserted into shorter paths
to equalize the delay.

2) Fanout-branching splitters: Because the design of logic gates in
these technologies does not naturally support driving multiple
fanout signals, additional splitter cells need to be inserted at
the output of multi-fanout gates to fulfill the fanout-branching
constraint. Moreover, splitters are also counted in the path
lengths of path balancing, thus, the fanout-branching and path-
balancing constraints are strongly interwoven.

3) Planarizing crossings: The physical design of these technologies
often requires special crossing cells to realize wire crossings on
a 2-dimensional layout. The placement of logic gates may be
altered to minimize such cases, but it is usually not possible
to completely planarize the input network. Similar to splitters,
crossings also contribute to the path lengths and have to be
considered together with path balancing. In some technologies,
crossing cells are hard to fabricate or lead to less robust circuits
due to their weaker signal strengths. Hence, in these cases, it is
of particular interest to minimize the number of crossings, and
unavoidable crossing cells are associated with a higher cost.

4) Non-cost-free inverters: Unlike traditional logic synthesis, where
inverters (complemented edges) in AIGs do not contribute
towards their size, inversion is not for free in these technologies.
It is not always possible to embed an inversion as a free negated
input to a gate. Mitigating the effects of such inverters has been
studied in [20]. However, these dedicated inverters not only
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increase the circuit size but also need to be considered together
with the path-balancing constraint.

Through this consideration, it becomes apparent that cost metrics of
conventional logic synthesis algorithms are not suited for the beyond-
CMOS due to their negligence of the important aspects enumerated
above.

B. Circuit Model

In this work, we propose a technology mapping algorithm that
incorporates beyond-CMOS cost metrics. We locate this work at the
intersection of logic synthesis (concerned with logic networks) and
physical design (concerned with circuit layouts). The output of the
proposed algorithm is a mixed logic network consisting of logic gates
that are supported by a given technology library and that we represent
as k-input look-up tables (k-LUTs), and special cells including
path-balancing buffers, fanout-branching splitters, and planarizing
crossings. Furthermore, to insert crossings in a meaningful way and
to ensure the network’s planarity, our mapping algorithm entails a
coarse-grained placement with relative node positions. That is, gates
and cells in the mapped network are sorted into path-balanced ranks
and are ordered within each rank.

Thereby, our algorithm outputs a partially placed, mapped network
that 1) is functionally equivalent to the input network; 2) consists
only of gates and cells supported by the given technology library; and
3) satisfies all four constraints described in the previous section (path
balancing, fanout branching, planarization, and dedicated inverters).
In addition, our mapping algorithm aims at minimizing the size and
depth of this network model, which considers both logic gates and
special cells. The area cost of each cell type can be parameterized to
reflect the target technology as precisely as possible.

By considering such a circuit model, our size and depth evaluation
is closer to the actual area and delay of the resulting layout after
physical design. As design constraints are already satisfied and cells
are ranked and ordered, the remaining placement and routing tasks
become trivial for some technologies. However, for some other
technologies, the resulting network still needs to be placed and routed
according to the target layout topology, e. g., for QCA circuit layouts
with non-linear clocking schemes [21], [22].

C. Conventional Technology Mapping

In typical logic synthesis flows, technology-aware optimizations
are performed in the technology mapping stage, which happens after
heavily optimizing the technology-independent network (e. g., AIG)
with methods such as rewriting (cf. e. g., [23], [24]). Technology
mapping is the process of transforming a technology-independent
logic representation into a technology-dependent one, where mapped
circuits are obtained by consecutively substituting small sections with
standard cells that represent the elements of the target technology.
This methodology has been well studied and numerous mapping
algorithms have been proposed over the years [25], [26]. However,
most technology mapping approaches are specific to CMOS-based
synthesis flows and produce sub-par results when synthesizing for
emerging technologies.

III. PROPOSED METHODOLOGY

In this section, we describe the proposed novel technology mapping
approach for beyond-CMOS technologies. We start with an introduc-
tion of the general idea in Section III-A and go into more detail
of the two individual steps, which are one-time optimal subcircuit
generation in Section III-B and rewriting in Section III-C.

^ _ ^

^ ^

_

^ ^

a b c d

o1 o2

^ ^ ^ ^

^ ^

a b c d

⇥ ⇥

⇥

o1 o2

Fig. 3: Two realizations of a network computing o1 = a ^ b ^ c ^ d

and o2 = ¬a^¬b^¬c^¬d. Inverters are denoted by dashed edges
and crossing cells are denoted by a ⇥ symbol.

A. General Idea

As our area of application, we particularly target unconven-
tional cost functions that arise from technology constraints of
beyond-CMOS circuits as described in Section II-A for which clas-
sical logic synthesis algorithms were not developed. As outlined
above, certain costs are hard to model or predict at the logic stage.
While it is certainly possible to, e. g., levelize a logic network in
order to estimate the overhead created by additional buffers, final
wire costs will depend on layout topology, placement, and routing.
The proposed algorithm is applicable to a wide range of beyond-
CMOS technologies that require, e. g., path-balancing, branching, or
planarization.

We propose generating a design database prior to technology
mapping of optimal subcircuits up to a certain number of inputs that
can be used as potential replacements within the context of larger
networks. Although this idea has already been successfully applied
in logic rewriting [23], it was only ever able to capture abstract
technology-independent costs such as the size or depth of subcircuits.
Instead, we propose to generate the database with optimal physical
design algorithms that are tuned to the desired target technology, thus
incorporating all elements of potential final circuit costs.

Consequently, networks rewritten with our proposed technology
mapper inherently respect (configurable) inverter, buffer, splitter, and
crossing costs.2 As such, they represent the final circuit layout much
more closely and prevent overhead at the physical design stage.

To visualize the need to consider technology-dependent optimiza-
tions in the logic synthesis stage, consider a simple circuit with
the input variables a, b, c, d that computes o1 = a ^ b ^ c ^ d

and o2 = ¬a ^ ¬b ^ ¬c ^ ¬d. Suppose that we are optimizing
for a simplified technology with AND2 and OR2 gates with no
additional cost of inversion, where no path-balancing or branching
is needed, but that requires planarization using crossings. The gate
configuration shown in Fig. 3 (left) uses 8 gates. However, a naive
technology-independent logic synthesis algorithm might give a more
compact representation with only 6 gates, but due to the planarization
constraint, it would require three crossings, thus entailing a total cost
of 9 as shown in Fig. 3 (right).

B. Generation of Optimal Subcircuits

Conventional Boolean rewriting algorithms have successfully pro-
vided the groundwork for the idea of utilizing databases of optimal
subcircuits. Usually, NPN canonization is utilized to significantly

2Although we focus on these four cost functions in this paper because
they represent important roadblocks to overcome in contemporary emerging
technologies, our general approach is applicable to arbitrary cost functions as
long as there exists a physical design algorithm for generating the optimal
design database.
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reduce the number of database entries to generate [23]. Two single-
output Boolean functions are considered to belong to the same
NPN class if they can be translated into one another by optionally
negating (N) the primary inputs, permuting (P) the primary inputs,
and optionally negating (N) the primary output. The canonical
NPN representative of each class is its lexicographically smallest
member. Since in AIGs inverters are considered to be available for
free and input permutations can be neglected because no sense of
fixed topology is employed, NPN canonization is a strong tool for
complexity reduction and optimization.

However, when considering beyond-CMOS cost functions, invert-
ers matter, and input permutations can only be altered via costly
crossing networks. Therefore, only considering NPN representatives
does not suffice. In fact, the beyond-CMOS costs of members
belonging to the same NPN class might substantially differ in the
final layouts.

Therefore, we propose exploring a middle ground between the
exhaustive enumeration of all 22

n
Boolean functions in n variables

and their n-input NPN representatives. To this end, we decided to rely
on a class that we call NN that respects input/output permutations
but not primary inversions. The number of NN classes is greater by
a factor of n! compared to NPN. For example, while the number of
NPN classes for 4-input functions is 222, the number of NN classes
is 222 · 4! = 5328, which is still a significant reduction compared to
the total number of 4-input functions that is 22

4
= 65536.

For each canonized (lexicographically smallest) NN representative,
we generate an optimal subcircuit layout in the target technology
that respects all cost functions imposed by it.3 To this end, we
modified an open-source physical design algorithm [27], [28] for the
obtainment of optimal FCN circuit layouts to respect fixed primary
input permutations. Since that algorithm is based on SMT solving,
we can enforce any input permutation ⇡ : x1 � x2 � · · · � xn

by adding an additional constraint. Let pxt be the Boolean variable
that, when set to true, represents that the logic network node x is
placed on the layout tile t. One can then enforce that if a primary
input is placed on some tile, no other primary input that follows in
the permutation order may be placed on any tile that appears at a
prior location in the layout. The constraint is defined via:

^

t2T
x2⇡

pxt =)
^

t0�t
x�x0

¬px0t0

Due to the brevity of this article, the inclined reader is referred
to [27] for an in-depth explanation of preexisting constraints for
valid node placement, wire routing, crossing insertion, path balancing,
etc. Finally, incremental SMT solver calls that iteratively increase
the available layout area for the physical design process ensure
optimality of the eventually found result. Symmetry breaking allows
for effective search space pruning, and highly specialized cardinality
constraint engines in the utilized Z3 solver [29] enable critical runtime
reductions that keep the approach scalable up to ⇡ 100 layout tiles,
which is more than enough to realize all 4-input NN representatives.

C. Rewriting

This step decomposes the input network into small logic blocks
and then substitutes them using the appropriate optimum structures
described in the previous section. The high-level pseudocode of the
algorithm is given in Algorithm 1.

3For the sake of this work’s brevity, we focus on one technology as a run-
ning example. We picked FCN, because their latest fabrication breakthroughs
make them a promising competitor in the beyond-CMOS domain [3].

Algorithm 1: Technology mapping with path-balancing,
branching, planarization, and inverter constraints

Input: Input network N and database DB
Output: A technology-mapped version of N

1 Nlut  N mapped to a 4-LUT network with ABC
2 Assign levels to nodes in Nlut and fix the ordering of nodes
3 Nbuf  buffer inserted version of Nlut
4 Nxing  crossing minimized version of Nbuf
5 L number of logic levels in Nxing
6 foreach level ` 2 {1, . . . , L} do
7 DesiredOrder  [ ]
8 foreach node n of level ` do
9 Reorder fanins of n to avoid self-crossings

10 Update node function of n
11 Append reordered fanins to DesiredOrder

12 Construct buffer/splitter/crossing layers in Nxing to achieve
the permutation dictated by DesiredOrder at the outputs of
level `� 1

13 foreach node n of level ` do
14 (S, InvConfig) find best network structure and I/O

inversion configuration for n from DB
15 Replace n in Nxing with S after applying InvConfig

16 Add buffers to Nxing to balance the outputs at level `+ 1

17 return Nxing

Decomposing into small logic blocks: Typical technology-mapping
algorithms consider small cuts rooted at different nodes in the
network and replace them with optimized versions. When replacing
a particular cut, conventional algorithms usually give only a minor
importance to other fanouts of the cut leaves. However, in order
to consider branching and planarization constraints of emerging
technologies, when replacing a cut, it is important to know the
relative positions of the other fanouts of the cut leaves with respect
to the part that is being replaced to preserve already instantiated
(partial-)planarization. To this end, we 1) fix the decomposition of
the input network into small logic blocks by mapping it to 4-LUTs
using the if -K 4 command of the logic synthesis tool ABC [30]
(Line 1), and 2) fix the relative positions of those logic blocks by
assigning levels (i. e., ranks) to LUTs and imposing an ordering of
the LUTs in each level (Line 2).

Initial path-balancing and crossing optimization: Before substitut-
ing LUTs with optimum substructure, the algorithm must know the
locations through which the lower-level signals will be propagated
to higher levels. For example, suppose there is a LUT node a in
level 1 which is a fanin of a LUT node d in level 3, and level 2 has
two LUTs b and c in that order. Then, the algorithm needs to know
whether the path connecting a to d should go through the space left
of b, between b and c, or right of c, in order to properly planarize
the output logic network. In the initial path-balancing, we thus insert
buffers to denote such path propagation locations and ensure all input-
to-output paths are of the same length (Line 3). When substituting
LUTs, these buffers will be extended to buffer chains to meet the
path-balancing constraint for the output circuit.

To minimize crossings, we insert these initial buffers in a locally
optimal way, subject to the fixed ordering of LUTs. Namely, for a
LUT a in level `, if a buffer needs to be inserted in level ` + 1,
it will be placed such that the number of level-`-to-level-` + 1
connections that cross the path from the LUT to the buffer is
minimized. After placing the buffers, we perform another round
of crossing optimization for each level (Line 4): namely, for each

15



adjacent pair of nodes in each level, we swap them if it leads to a
smaller number of crossings. We repeat this step until no more swaps
are possible.

Substituting LUTs from the database entries: In the final step, the
path-balanced network is reconstructed in a level-by-level fashion
(Lines 6-16). Reconstructing level ` + 1 consists of three main
steps: 1) for each LUT in ` + 1, their fanins are reordered to avoid
self-crossings (i. e., crossings between pairs of their own fanins), and
the node functions are rewritten accordingly (Lines 9-10); 2) zero or
more layers, each consisting of buffers/splitters/crossings, are inserted
between level ` and ` + 1 in order to obtain the fanins of level
`+ 1 in the correct order (Line 12); and 3) the LUTs in level `+ 1
are replaced with the respective optimal structures from the database
(Lines 14-15). Note that the database includes entries for all 4-input
NN classes, but does not include all input/output inverted versions
as that would entail pre-computing the entire domain of 4-input
functions. Hence, the algorithm considers all possible input/output
inversions for LUT node functions and finds a match in the database.
Then, the LUT is replaced with the found entry, after applying
appropriate input/output inversions.

Run-time and space complexity: The run-time and space com-
plexity of our algorithm is dominated by the planarization step
where crossing are inserted between two consecutive levels in
Line 12. Namely, if the number of gates in layer ` is n` and
m` = max(n`, n`�1), then the worst-case for this step would need
O(m`)-many new layers each consisting of O(m`) crossings/buffers
(consider the case where outputs of level `� 1 are connected to the
inputs of level ` in the completely opposite order). Thus the total
run-time and space needed for this step would be O

⇣PL
`=1 m

2
`

⌘
,

which can be O(n2) in the worst-case where n is the size of the
network. As the database of optimum substructures is computed for
constant-sized functions, each entry in the database has constant size,
and hence the algorithm step that replaces the LUTs with optimum
structures would increase the running time by at most a constant
factor.

The culmination of techniques outlined here is evaluated experi-
mentally in the following section.

IV. EXPERIMENTAL EVALUATION

This section constitutes a quantitative evaluation of the proposed
technology mapping algorithm. We demonstrate its applicability and
compare it against a state-of-the-art technique. First, we describe the
experimental setup in Section IV-A before presenting and discussing
the results in Section IV-B.

A. Setup
The proposed technology mapping approach was implemented in

C++ on top of the open-source tools mockturtle [34] and fiction [28]
and evaluated using the ISCAS85 benchmarks [31] and EPFL Bench-
mark Suite [32]. We generated a database of optimal FCN layouts—
reyling on state-of-the-art technology constraints [35]—implementing
all 5328 canonical NN representatives. Each entry in our database
is encoded as a Verilog module, and the complete database takes
12MB of space in the uncompressed format. We then applied the
proposed technology mapping algorithm to all circuits available in the
aforementioned benchmark suites. We measured their resulting gate-
level costs with respect to number of buffers (including splitters),
number of crossings, and critical path (CP) length, and compared
them to the—to the best of the authors’ knowledge—best available
large-scale FCN physical design algorithm that can handle layouts

with more than 100 million tiles [33]. The code of that state-of-the-
art algorithm is publicly available [28], which enabled us to run all
experiments with the exact same set of configurations. All evaluations
were run on a MacBook Pro M1 with 10 CPU cores, 16 GPU cores,
and 32 GB of RAM. The compiler was clang++ 14.0.

B. Results

We applied the proposed technology mapping to all benchmarks in
AIGER format without conducting any pre-processing. That is, we
did not alter the benchmark networks with other logic optimization
algorithms prior to technology mapping. In the same way, we also
applied the state-of-the-art FCN algorithm [33] to the unaltered
benchmarks to enable a fair comparison.

The obtained results are shown in Table I. It lists the initial
properties of the benchmarks in the part labeled Benchmark Circuit;
the columns with the caption State of the Art indicate the statistics
of the FCN layouts generated by [33]; and the last part titled
Proposed Approach provides the data obtained from our technology
mapping algorithm when applied to the FCN domain. For both
algorithms, we list the required number of total nodes, the number of
buffers (including splitters), the number of crossings, and the critical
path (CP) length. Additionally, we provide relative improvements of
buffer, crossing, and CP costs in the last three columns. The final row
states a weighted average for these three columns, which constitutes
the total reductions in costs across all benchmarks (excluding the
ones for which the state of the art could not generate a solution).

The proposed approach consistently achieves over 50% improve-
ment in the critical path length for all benchmarks except for three.
A similar level of improvement is also evident in the number of
crossings and in the number of buffers for most of the benchmarks
within a similar runtime. The average improvement for the number
of buffers, number of crossings, and critical path length is 84.5%,
74.5%, and 65.2%, respectively, which establishes a major advan-
tage over the state of the art. Moreover, our approach demonstrates to
be more scalable as it yields results for the seven EPFL benchmarks
on which the state of the art ran out of memory.

On the downside, a degradation of the critical path length for
benchmark ‘adder’, and a similar order of magnitude degradation of
the number of crossings for benchmark ‘dec’ can be noticed, which
appear to be outliers. However, it is to be noted that the benchmark
‘adder’ exhibits an improvement in the number of crossings, and the
benchmark ‘dec’ shows an improvement in the critical path length.

Generally, an increase in the number of crossings results in an
increase in the critical path length, but, as the results for the above
two benchmarks suggest, this is not always the case. The critical path
length is more related to the maximum number of crossings a single
wire has than to the total number of crossings. That is, if there is a
single wire that crosses m other wires and no other pairs of wires
cross, the planarization needs at least m crossing layers and thus
increases the critical path delay by m levels. On the other hand, even
if there are m crossings in total between two layers, but each wire
only crosses a handful of other wires, that structure can be planarized
with much fewer crossing layers, so the critical path length will be
small. Thus, to minimize the critical path length, a better objective
might be to minimize the maximum number of crossings for any
wire, rather than minimizing the total number of crossings.

Additionally, when our crossing optimization and planarization
steps are applied directly to the ‘adder’ AIG without any LUT-
mapping, it yields a much better depth. This implies that LUT map-
ping results in an increased amount of crossings among the resulting
LUT nodes, which, in turn, increases the number of logic levels
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TABLE I: Results of the proposed technology mapping approach on the ISCAS [31] and EPFL [32] benchmark suites

Benchmark Circuit State of the Art [33] Proposed Approach

Name PI PO Gates Depth Total
Nodes Buffers Crossings CP Total

Nodes Buffers Crossings CP Runtime
in sec.

Buffers
impr. %

Crossings
impr. %

CP
impr. %

[31]

c17 5 2 6 3 99 69 16 26 63 31 6 13 0.04 55.1 62.5 50.0
c432 36 7 208 26 35 776 31 131 4201 701 14 910 12 170 1973 299 0.06 60.9 53.0 57.3
c499 41 32 398 19 94 621 88 261 5456 1402 11 842 8754 1948 227 0.06 90.1 64.3 83.8
c880 60 26 325 25 70 108 61 040 8438 1062 28 920 23 055 4593 457 0.07 62.2 45.6 57.0
c1355 41 32 502 25 117 056 109 738 6198 1722 11 565 8521 1936 219 0.06 92.2 68.8 87.3
c1908 33 25 341 27 77 950 71 177 5995 1201 17 201 14 026 2187 364 0.06 80.3 63.5 69.7
c2670 157 64 716 20 323 824 281 067 41 267 2464 88 295 72 777 13 613 774 0.11 74.1 67.0 68.6
c3540 50 22 1024 41 587 468 531 807 53 498 3280 97 627 65 925 28 312 977 0.11 87.6 47.1 70.2
c5315 178 123 1776 37 1 864 282 1 710 369 150 222 5869 301 880 246 660 50 522 1504 0.27 85.6 66.4 74.4
c6288 32 32 2337 120 988 542 939 626 42 447 8901 97 313 73 052 15 542 1280 0.15 92.2 63.4 85.6
c7552 207 108 1469 26 1 481 318 1 351 266 126 753 5169 411 383 333 298 73 019 1797 0.36 75.3 42.4 65.2

[32]

adder 256 129 1020 255 794 313 708 447 83 316 4083 2 181 853 2 146 359 31 625 9350 1.65 �203.0 62.0 �129.0
arbiter 256 129 11 839 87 61 392 432 56 342 578 5 025 982 36 160 7 432 960 6 661 959 731 089 11 646 6.10 88.2 85.5 67.8
bar 135 128 3336 12 4 050 823 3 680 537 363 230 10 782 1 023 446 448 804 562 234 2369 0.63 87.8 �54.8 78.0
cavlc 10 11 693 16 286 509 259 800 25 100 2333 86 999 54 839 29 403 760 0.09 78.9 �17.1 67.4
ctrl 7 26 174 10 28 188 25 097 2667 654 4480 2689 1273 128 0.05 89.3 52.3 80.4
dec 8 256 304 3 161 857 154 666 6871 1143 25 321 3859 19 894 215 0.06 97.5 �189.5 81.2
i2c 147 142 1342 20 1 129 553 1 030 768 95 968 4568 294 762 238 114 52 198 1163 0.30 76.9 45.6 74.5
int2float 11 7 260 16 48 219 42 793 4875 833 12 161 8175 3124 293 0.06 80.9 35.9 64.8
max 512 130 2865 287 5 378 865 4 720 729 651 642 10 130 6 182 860 5 879 043 294 321 11 589 8.53 �24.5 54.8 �14.4
priority 128 8 978 250 668 097 607 825 57 916 3477 290 810 273 901 13 407 2487 0.25 54.9 76.9 28.5
router 60 30 257 54 54 074 45 627 7955 814 20 033 18 439 648 348 0.06 59.6 91.9 57.2
sin 24 25 5416 225 8 237 614 7 711 879 514 234 16 990 1 145 537 934 129 192 740 6340 0.64 87.9 62.5 62.7
voter 1001 1 13 758 70 53 955 839 50 500 625 3 421 110 48 864 3 375 273 2 734 141 601 139 5442 7.60 94.6 82.4 88.9

div 128 128 57 247 4372 out of memory 104 918 980 101 310 752 3 409 196 249 354 56.49 — — —
hyp 256 128 214 335 24 801 out of memory 1 128 917 685 1 029 593 313 98 519 782 1 226 868 1172.27 — — —
log2 32 32 32 060 444 out of memory 24 816 049 20 493 947 4 215 965 47 005 10.22 — — —
mem ctrl 1204 1231 46 836 114 out of memory 371 071 747 341 555 500 29 369 279 108 019 577.26 — — —
multiplier 128 128 27 062 274 out of memory 33 370 845 28 610 811 4 668 200 28 842 16.83 — — —
sqrt 128 64 24 618 5058 out of memory 41 768 215 41 226 185 470 491 169 800 26.22 — — —
square 64 128 18 484 250 out of memory 17 588 918 14 252 309 3 266 047 14 747 7.36 — — —

Weighted average 84.5 74.5 65.2

due to crossings that occur in series. In other words, LUT mapping
on ‘adder’ seems to over-optimize for LUT depth, inadvertently
making it harder to planarize, because the LUT mapping stage of
our current approach is unaware of the technology constraints. Thus,
it seems promising to conduct further research on technology-aware
decomposition techniques, which will help in mitigating such type of
outlier situations.

V. CONCLUSION

Many technological implementations in the beyond-CMOS domain
come with unconventional cost functions that are not respected by
classical logic synthesis and, hence, cause significant overhead in
the physical design stage. In this paper, we proposed an algorithm
for technology mapping of beyond-CMOS circuitry that respects
these unconventional cost functions via the application of a physical
design database of optimal circuit layouts that is employed for logic
rewriting, thus capturing cost factors that would otherwise remain
transparent to the logic synthesis. Via an experimental evaluation,
it could be shown that the proposed algorithm delivers average im-
provements of 84.5%, 74.5%, and 65.2% for the number of buffers,
the number of crossings, and the critical path length, respectively,
compared to a state-of-the-art physical design algorithm for FCN
circuits. Furthermore, results could be obtained for the seven largest
EPFL benchmark circuits on which the state of the art ran out of
memory, proving our approach to be more scalable. Thereby, this
work constitutes a major improvement for the design automation of
several emerging beyond-CMOS technology classes, which enables
the cost-effective realization and integration of large-scale circuits in
this domain.
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