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Abstract 
Ashenhurst-Curtis decomposition (ACD) is well-known and 
widely used in logic synthesis for logic restructuring to save 
area and reduce delay, and in technology dependent 
optimization to overcome structural bias when mapping into 
LUTs and LUT structures. However, available 
implementations of ACD suffer from excessive complexity 
and slow runtime. The paper offers several simplifications 
that allow for a fast and flexible implementation of ACD 
using truth tables for functions up to 16 inputs. A practical 
extension allows for an efficient use of ACD in delay-driven 
mapping, which can enhance state-of-the-art LUT mappers. 

1 Introduction 
Ashenhurst-Curtis decomposition (ACD) [1][6] was 

introduced more than 60 years ago and has found 
applications in logic synthesis and technology mapping, for 
example, in functional decomposition [10], decomposing 
multi-valued relations [17], and encoding of multi-valued 
networks [8]. 

More recently, ACD is used in ABC [2] for mapping into 
lookup tables (LUT) structures [18] (command if –S <NN>) 
which tends to mitigate structural bias and improve the 
quality of standard LUT mapping [13], even if dedicated 
hardware to implement LUT structures is not used. ACD is 
also used in post-mapping resynthesis [14] (command 
lutpack), when logic cones composed of several LUTs are 
collapsed into single-output Boolean functions and re-
expressed using fewer LUTs by applying ACD. Another 
practical application of ACD is mapping into a LUT 
cascade structure [12] (command cascade), which realizes 
multi-output combinational logic using memory blocks. 

These applications rely on the traditional formulation of 
ACD [1][6] breaking the input variables into two groups: 
the bound set (BS) and the free set (FS). Figure 1 shows an 
ACD of an 8-variable function with a 6-variable BS and a 
2-variable FS, resulting in four 6-input LUTs (LUT6s). 

Several known approaches to ACD [10][20][22] allow for 
the shared set (SS) when one or more LUTs in terms of the 
BS variables are single-variable functions (buffers), as 
shown in Figure 2 for nodes L3 and L4 from Figure 1. The 
larger the SS size, the fewer non-trivial LUTs are required. 
Maximizing the SS in [10] is implemented using binary 
decision diagrams (BDDs) [4], making it not applicable 
when truth tables are used. 
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Figure 1: Decomposition with a bound set and a free set. 

 

free set 

L1 

L2 

bound set shared set  
Figure 2: Decomposition with a shared set. 

 
In this paper, we revisit the known formulation of ACD 

with the SS [12] aiming at making it computationally 
efficient in LUT mappers and post-mapping resynthesis 
engines, which manipulate local functions using truth tables. 

First, we discuss computing high-quality (minimal-LUT) 
decomposition with a SS. Our procedure enumerates BS’s 
of a function and computes maximal feasible SS’s for each 
BS, resulting in minimal-size LUT implementations of a 
function. This computation decomposes 10K 8-input 
functions optimally in 1 sec, which is 3.5 times faster than 
existing truth-table-based implementations in [14] and [18]. 

Second, we show how to compute ACD with support-
limited BS functions, that is, BS functions whose support is 
smaller than the BS size. For example, a 10-variable 
function decomposed using two FS variables and three 
8-variable BS functions may be realizable with three 
6-variable BS functions after support minimization. This 
decomposition is better since it requires four LUT6s 
spanning two levels (Figure 1), unlike the naïve ACD with 
three 8-variable BS functions, requiring at least seven 
LUT6s spanning three levels (Figure 3). 
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Figure 3: Decomposition with an 8-variable bound set 

resulting in a network composed of 7 LUT6s. 

Third, we consider the decomposition of multi-output 
Boolean functions modified to derive BS functions used for 
several outputs, as shown in Figure 4. Our implementation 
enumerates feasible BS functions of each output and checks 
the possibility of sharing them with other outputs using truth 
tables, unlike previous work on multi-output ACD for LUT-
mapping [22], which uses BDDs. 
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Figure 4: Decomposition with a shared node. 

Finally, we show that ACD can be used for delay-driven 
restructuring of the LUT network. The idea is to keep a 
subset of early arriving variables in the BS while putting the 
remaining variables, including the late arriving ones, into 
the FS. The past work [14][18] does not emphasize delay 
optimization because the approach used is not versatile. 

The special case of ACD, disjoint-support decomposition 
[1][3], is not considered in this paper focusing on a more 
general non-disjoint decomposition. Another related type of 
ACD, called support-reducing decomposition [9], has been 
extensively researched in the context of standard-cell 
mapping, while the present paper focuses on LUT mapping, 
also known as mapping for FPGAs. 

The rest of the paper is organized as follows. Section 2 
introduces the background. Section 3 and Section 4 discuss 
ACD with a maximal SS and with minimization of the 
support of BS functions, respectively. Section 5 presents 
ACD for multi-output functions. Section 6 discusses the use 
of ACD for timing optimization. Section 7 gives 
experimental results. Section 8 draws conclusions and 
outlines future work. 

2 Definitions  
A Boolean network is a directed acyclic graph (DAG) 

with nodes corresponding to logic gates and directed edges 
corresponding to wires connecting the gates. We use the 
terms Boolean network, logic network and circuit, 
interchangeably. A K-LUT network is a Boolean network 
composed of K-input lookup tables (K-LUTs). A K-LUT is 
a node capable of realizing any K-input Boolean function.  

A node n has zero or more fanins, i.e. nodes that are 
driving n, and zero or more fanouts, i.e. nodes driven by n. 
The primary inputs (PIs) are nodes of the network without 
fanins. The primary outputs (POs) are a specified subset of 
nodes of the network, which deliver functions implemented 
in the network to exterior circuitry.  

A completely-specified Boolean function F essentially 
depends on a variable if there exists an input combination 
such that the value of the function changes when the 
variable is toggled. The support of F is the set of all 
variables on which function F essentially depends. The 
supports of two functions are disjoint if they do not contain 
common variables. A set of functions is disjoint if their 
supports are pair-wise disjoint. 

A decomposition of a completely specified Boolean 
function is a Boolean network with one primary output that 
is functionally equivalent to the given function. 

Ashenhurst-Curtis decomposition (ACD) of s single-
output Boolean function F can be expressed as follows: 

F(xbs, xss, xfs) = G( H(xbs, xss), xss, xfs ), 
where the bound set (xbs), the free set (xss), and the free set 
(xfs) are disjoints variable subsets, which together form the 
support of F. The BS function H may be multi-output with 
the number of outputs less than the BS size, while the 
support of composition function G is typically chosen to fit 
into one K-input LUT.  

3 Maximizing the shared set  
This section discusses, a truth-table-based implementation 

of ACD using a shared set, for a single-output function. 
The computation is iterated over bound sets of a given 

size. The size is determined based on the support size of the 
target function and the given LUT size. For example, for an 
N-input function using K-input LUTs, it is convenient to 
consider a K-variable BS and a (N-K)-variable FS. When 
N=8 and K=6, there are 8*7/2 = 28 different 6-variable 
BS’s. When support minimization of the BS function is 
done, as shown in Section 4, it is helpful to consider (K+A)-
variable BS and (N-K-A)-variable FS where A  {1, 2, 3}. 

For each BS, the truth table is transformed to have the BS 
variables to be more significant ones, compared to the FS 
variables. In this case, if the BDD of the function is 
available, the BS variables are ordered first (i.e. above the 
FS variables) after the transformation. When truth tables are 
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used, the variable reordering is performed using a dedicated 
procedure, which swaps two variables. Note that the first 
BS composed of K most significant variables in the support 
of the function does not need variable swapping, because 
the original truth table already reflects this order. Every 
consecutive BS can be derived from a previous BS by one 
two-variable swap. 

Each assignment of the BS variables selects one (N-K)-
input function in terms of the FS variables. In the 
transformed truth table, these functions are listed next to 
each other. The decomposition procedure accesses them 
one at a time by extracting 2N-K bits at a given offset in the 
truth table, determined by the values of the BS variables. 

Example. Consider the 5-variable function of the Booth 
partial product whose 32-bit truth table represented in 
hexadecimal is 0xF335ACC0. Assume the BS is the three 
most significant variables and the FS is the two least 
significant variables. The functions in terms of FS variables 
have truth tables with 2N-K = 25-3 = 22 = 4 bits. There are 2K 

= 23 = 8 of them, corresponding to hexadecimal digits in the 
truth table of the original function (0xF, 0x3, 0x3, etc). 

The target function can be realized using M BS functions 
if the number of different FS functions for the given BS, 
known as column multiplicity (), does not exceed 2M. 
Much of the previous work on ACD tries to minimize M by 
selecting M = log2(). However, M does not have to be 
minimized because, for practical functions, some of the M 
functions can be buffers, leading to a shared set (Figure 2). 

Example. Continuing the above example, there are 8 FS 
functions but only 6 of them are different (because 
functions with truth tables 0x3 and 0xC are duplicated). 
Thus, the column multiplicity is 6 and we need at least 
log2(6) = 3 BS functions to implement the decomposition. 
This decomposition is not support-reducing (using the 
terminology of [9]) because the top-most block depends on 
the same number of variables (five) as the original function, 
but it may still be useful if the top-most function is simpler. 

Ideally, all BS functions are buffers, resulting in only one 
non-trivial K-input BS function and M-1 variables in the SS. 

To check whether a decomposition with L (0 < L < M) 
single-variable functions (or buffers) and M-L non-buffer 
BS functions exists, the proposed method enumerates 
subsets of L out of K variables in each BS. For each subset, 
the method checks if the number of unique FS functions in 
each cofactor w.r.t. the L variables does not exceed 2M-L. If 
this is the case, a decomposition with L buffers exists. 

This check is implemented for all (S = K!/L!/(K-L)!) 
subsets of L out of K variables using the truth table 
transformed to have the BS variables as the most significant 
ones. For this, we extract one FS function at a time and add 
it to S dynamic arrays accumulating unique cofactors for 
each subset S of BS variables. If, for any subset, the number 

of unique cofactors exceeds 2M-L, we skip this subset; if the 
number exceeds 2M-L for all subsets, we skip this BS.  

This computation enumerates all BS’s and all subsets of 
each BS efficiently, resulting in a decomposition with the 
largest possible SS size. If timing information is present and 
the function to be decomposed is located on the critical path 
of the design, the enumeration of BS’s can be limited to 
include only early arriving variables, as shown below in 
Section 5 on delay-driven mapping.     

4 Support minimization of BS functions   
Section 3 presented ACD for a single-output function with 

minimization of the SS size. If all but one BS functions 
depend on a single BS variable, the SS size is maximized. 
In this case, there is only one non-trivial BS function 
depending on all BS variables. However, if there are two or 
more non-trivial BS functions, they often can be derived in 
such a way that they do not depend on all BS variables. 

The support minimization of the BS functions is 
particularly useful when the BS size is larger than the LUT 
size. One such example was given in the Introduction: 
instead of three 8-input BS functions (Figure 3), we may be 
able to use three 6-input BS functions (Figure 1), if the 
target function allows for this. This leads to a reduction in 
the size and depth of the LUT network after mapping. 

The proposed algorithm for support minimization is 
similar to solving a constrained encoding problem [11][21].  

To formulate a condition when the BS functions are 
independent of some of the BS variables, we recall that the 
FS functions represent the cofactors of the target function 
w.r.t. the BS variables. Thus, if each BS function does not 
depend on some BS variables, other BS functions should be 
able to distinguish the corresponding FS functions if they 
are different from each other. 

Deriving the BS functions satisfying this condition can be 
done by solving a covering problem, in which columns are 
subsets of BS variables and rows are pairs of different FS 
functions to be distinguished. A one in the covering table 
indicates that a BS function does not have to depend on the 
given variable in order to distinguish the FS function pairs. 
A solution to the covering problem is a set of variable 
subsets removable, each of which can be removed from a 
BS function. Knowing the number of non-trivial BS 
functions and their target support size, we synthesize them 
to distinguish all different FS function pairs.  

5 Logic sharing across multiple outputs  
Logic sharing across multiple outputs can be extracted 

using a method, similar to the one used in Section 3, to 
check for the existence of single-variable BS functions. 

For this, truth tables of those outputs whose logic sharing 
is being extracted, are transformed to have variables, 
belonging to the given BS, as the most significant ones. 
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Next, one or more decompositions of each of the outputs 
are derived and checked if the resulting BS function(s) can 
be used to decompose other outputs. This is done by a 
method similar to that for maximizing the SS.  

Indeed, an SS variable represents a single-variable BS 
function. To prove that it can be used, we check if it 
partitions the cofactor FS functions into sets having no more 
than a certain fixed number of unique cofactors. Similarly, a 
given BS function, derived to decompose one output, can be 
used as a candidate BS function for other outputs.  If a limit 
on the unique cofactor count of an output is not exceeded, 
the function can be used to decompose the output.   

The proposed method gives possible BS functions for 
each output, and tests them for decomposing other outputs. 
In the process, multiple function sharing opportunities may 
be detected.  The one that maximizes the number of shared 
BS functions across all outputs is chosen.  For example, if a 
function can be shared across three outputs, it is preferred to 
another that can be shared across two outputs.   

6 Delay-driven LUT mapping  
Consider a network of K-LUTs and a target node with 

delay D that is on a critical path.  
This section answers the following question: Is it possible 

to replace the target node by a new node whose delay is D-1 
or less (assuming the unit-delay model). We also show how 
to use ACD to derive the new node and its fanin LUTs so 
that the resulting LUT subnetwork can replace the target 
node and produce the desirable delay improvement. 

First, a set of K-LUTs composed of the target node and its 
timing-critical fanins are found, resulting in a subnetwork of 
K-LUTs. By construction, the arrival times of any input of 
the subnetwork is less than D-1. Next, an ACD of the 
Boolean function of the subnetwork is attempted with the 
FS composed of inputs whose arrival times are less than  
D-1 with the BS composed of the remaining inputs.  

If, on the other hand, we are successful in finding a target 
function using two levels of K-LUTs, the delay-
optimization problem is solved.  In this case, the output 
node of the new LUT structure derived by ACD has an 
arrival time less the arrival times of the FS variables, which 
in this case is D-1. When the target node is replaced by the 
new node, the delay on that critical path is reduced.  

The above discussion shows how to perform delay 
optimization in post-mapping resynthesis of LUT networks. 
The same method can be applied when evaluating delay-
oriented matches in the inner loop of a LUT mapper. 

It can be shown that this approach is more general than 
selective cofactoring w.r.t the late arriving variables [15] 
(command speedup in ABC), because, not only cofactoring 
w.r.t. these variables, but a more general decomposition of 
the target function is performed. 

7 Experimental results  
The proposed improvements to ACD are implemented in 

ABC and compared against the existing commands. In this 
section, the results of four experiments are reported. 

7.1 Runtime of decomposition with maximal SS 
First, we compare the proposed ACD that maximizes SS, 

against the implementation of the LUT structure mapping 
[18] in command if –S <NN> -K <M> in ABC, where N is 
the LUT size and N  M  2*N-1. When mapping 
benchmarks using 8-input cuts into LUT structures “66”, 
composed of two LUT6, the command is if –S 66 –K 8. 

We collected 10K typical 8-input functions considered by 
the LUT mapper if in this case and decomposed using the 
proposed implementation. The runtime of the proposed 
implementation is about 3.5x faster.  

7.2 Support-minimization of the BS functions 
For the 10K typical 8-input function harvested in the 

above experiment, we checked the feasibility of minimizing 
the support of the BS functions. We found that about 80% 
of these practical functions decomposed with the maximal 
SS size have BS functions depending on fewer than 6 
inputs. Since we use 6-input LUTs, these decompositions 
do not reduce the LUT count but does reduce the total LUT 
fanin count, which is beneficial for placement and routing. 

We also collected 10K typical 10-input functions and 
processed them by ACD with 3-variable FS and 7-variable 
BS without SS. It turned out that 70% of the resulting 
7-variable BS functions could be implemented using LUTs 
with 6 or fewer inputs. Using such decompositions in a 
LUT mapper is beneficial for both area and delay, because 
generally each 7-input function takes at least two LUT6’s. 
Thus, in general, the decomposed network for a 10-variable 
target function spans three levels of LUT6, instead of two 
levels when the support minimization has been successful.  

7.3 Logic sharing across multiple outputs 
In a separate experiment, we applied ACD with BS 

functions shared across the different outputs, to the 8-input 
8-output function of the S-box [24], a design primitive 
extensively used in cryptography. By decomposing each 
output functions separately using brute-force cofactoring 
(command lutmin [12] in ABC), the S-box takes 40 LUT6. 
Indeed, each 8-input function can be cofactored w.r.t. any 
two variables, resulting in four 6-input cofactors and one 
4:1 MUX, which is also a 6-input function. 

The S-box functions do not have shared cofactors w.r.t. 
any two inputs. However, the method from Section 5 
computed a number of bound sets, for which BS functions 
could be shared across the output functions, resulting in an 
S-box implementation composed of 36 LUT6’s, which a 
10% reduction, compared to the brute-force cofactoring. 
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The same is true for the 8-input 8-output function of the 
inverse S-box: it can be decomposed using 36 LUT6’s, 
instead of the 40 LUT6’s as in the brute-force cofactoring. 

7.4 Delay-driven LUT mapping 
As part of future work, we intend to integrate delay-driven 

optimization described in Section 4 into the LUT mapper if 
in ABC. This will allow us to compare the logic level and 
the LUT count after mapping with the proposed delay 
optimization, against other delay-driven mapping options: 
(1) the use of structural choices [5], (2) high-effort delay 
optimization of AIGs using “lazy man’s synthesis” [23], and 
(3) mapping into LUT structures “66” and “666” [18].  

We expect that the logic level produced by the proposed 
approach will be better at the cost of some area increase. 

8 Conclusions  
This paper revisits the well-known and widely used 

Ashenhurst-Curtis decomposition and offers an up-to-date 
solution to several related problems: finding the largest set 
of shared variables, computing support-limited functions, 
and sharing decomposition functions across outputs.   

The paper does not add new theory, compared to the 
earlier work in this area, but proposes an efficient truth-
table based implementation discussioned in Section 3-5. 
Another benefit of this work, is that it documents the source 
code developed to solve the above problems in ABC, an 
open-source logic synthesis system [2]. 

The methods proposed in the paper can be extended to 
work with incompletely-specified functions. In this case, the 
FS functions selected based on the values of the BS 
variables, are incompletely specified. They can be matched 
and counted in the presence of don’t-cares.  
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