
Boolean Decomposition Revisited

Alan Mishchenko Robert Brayton Alessandro Tempia Calvino Giovanni De Micheli

Department of EECS, UC Berkeley Ecole Polytechnique Federale de Lausanne (EPFL)

{alanmi, brayton}@berkeley.edu { alessandro.tempiacalvino, giovanni.demicheli}@epfl.ch

Abstract
Ashenhurst-Curtis decomposition (ACD) is well-known and
widely used in logic synthesis for logic restructuring to save
area and reduce delay, and in technology dependent
optimization to overcome structural bias when mapping into
LUTs and LUT structures. However, available
implementations of ACD suffer from excessive complexity
and slow runtime. The paper offers several simplifications
that allow for a fast and flexible implementation of ACD
using truth tables for functions up to 16 inputs. A practical
extension allows for an efficient use of ACD in delay-driven
mapping, which can enhance state-of-the-art LUT mappers.

1 Introduction
Ashenhurst-Curtis decomposition (ACD) [1][6] was

introduced more than 60 years ago and has found
applications in logic synthesis and technology mapping, for
example, in functional decomposition [10], decomposing
multi-valued relations [17], and encoding of multi-valued
networks [8].

More recently, ACD is used in ABC [2] for mapping into
lookup tables (LUT) structures [18] (command if –S <NN>)
which tends to mitigate structural bias and improve the
quality of standard LUT mapping [13], even if dedicated
hardware to implement LUT structures is not used. ACD is
also used in post-mapping resynthesis [14] (command
lutpack), when logic cones composed of several LUTs are
collapsed into single-output Boolean functions and re-
expressed using fewer LUTs by applying ACD. Another
practical application of ACD is mapping into a LUT
cascade structure [12] (command cascade), which realizes
multi-output combinational logic using memory blocks.

These applications rely on the traditional formulation of
ACD [1][6] breaking the input variables into two groups:
the bound set (BS) and the free set (FS). Figure 1 shows an
ACD of an 8-variable function with a 6-variable BS and a
2-variable FS, resulting in four 6-input LUTs (LUT6s).

Several known approaches to ACD [10][20][22] allow for
the shared set (SS) when one or more LUTs in terms of the
BS variables are single-variable functions (buffers), as
shown in Figure 2 for nodes L3 and L4 from Figure 1. The
larger the SS size, the fewer non-trivial LUTs are required.
Maximizing the SS in [10] is implemented using binary
decision diagrams (BDDs) [4], making it not applicable
when truth tables are used.

bound set free set

L1

L2 L3 L4

Figure 1: Decomposition with a bound set and a free set.

free set

L1

L2

bound set shared set
Figure 2: Decomposition with a shared set.

In this paper, we revisit the known formulation of ACD

with the SS [12] aiming at making it computationally
efficient in LUT mappers and post-mapping resynthesis
engines, which manipulate local functions using truth tables.

First, we discuss computing high-quality (minimal-LUT)
decomposition with a SS. Our procedure enumerates BS’s
of a function and computes maximal feasible SS’s for each
BS, resulting in minimal-size LUT implementations of a
function. This computation decomposes 10K 8-input
functions optimally in 1 sec, which is 3.5 times faster than
existing truth-table-based implementations in [14] and [18].

Second, we show how to compute ACD with support-
limited BS functions, that is, BS functions whose support is
smaller than the BS size. For example, a 10-variable
function decomposed using two FS variables and three
8-variable BS functions may be realizable with three
6-variable BS functions after support minimization. This
decomposition is better since it requires four LUT6s
spanning two levels (Figure 1), unlike the naïve ACD with
three 8-variable BS functions, requiring at least seven
LUT6s spanning three levels (Figure 3).

136

L1

L2 L3 L4

L5 L6 L7

8 inputs 8 inputs 8 inputs
Figure 3: Decomposition with an 8-variable bound set

resulting in a network composed of 7 LUT6s.

Third, we consider the decomposition of multi-output
Boolean functions modified to derive BS functions used for
several outputs, as shown in Figure 4. Our implementation
enumerates feasible BS functions of each output and checks
the possibility of sharing them with other outputs using truth
tables, unlike previous work on multi-output ACD for LUT-
mapping [22], which uses BDDs.

shared node

L1

L2 L3 L4

L5

L6

Figure 4: Decomposition with a shared node.

Finally, we show that ACD can be used for delay-driven
restructuring of the LUT network. The idea is to keep a
subset of early arriving variables in the BS while putting the
remaining variables, including the late arriving ones, into
the FS. The past work [14][18] does not emphasize delay
optimization because the approach used is not versatile.

The special case of ACD, disjoint-support decomposition
[1][3], is not considered in this paper focusing on a more
general non-disjoint decomposition. Another related type of
ACD, called support-reducing decomposition [9], has been
extensively researched in the context of standard-cell
mapping, while the present paper focuses on LUT mapping,
also known as mapping for FPGAs.

The rest of the paper is organized as follows. Section 2
introduces the background. Section 3 and Section 4 discuss
ACD with a maximal SS and with minimization of the
support of BS functions, respectively. Section 5 presents
ACD for multi-output functions. Section 6 discusses the use
of ACD for timing optimization. Section 7 gives
experimental results. Section 8 draws conclusions and
outlines future work.

2 Definitions
A Boolean network is a directed acyclic graph (DAG)

with nodes corresponding to logic gates and directed edges
corresponding to wires connecting the gates. We use the
terms Boolean network, logic network and circuit,
interchangeably. A K-LUT network is a Boolean network
composed of K-input lookup tables (K-LUTs). A K-LUT is
a node capable of realizing any K-input Boolean function.

A node n has zero or more fanins, i.e. nodes that are
driving n, and zero or more fanouts, i.e. nodes driven by n.
The primary inputs (PIs) are nodes of the network without
fanins. The primary outputs (POs) are a specified subset of
nodes of the network, which deliver functions implemented
in the network to exterior circuitry.

A completely-specified Boolean function F essentially
depends on a variable if there exists an input combination
such that the value of the function changes when the
variable is toggled. The support of F is the set of all
variables on which function F essentially depends. The
supports of two functions are disjoint if they do not contain
common variables. A set of functions is disjoint if their
supports are pair-wise disjoint.

A decomposition of a completely specified Boolean
function is a Boolean network with one primary output that
is functionally equivalent to the given function.

Ashenhurst-Curtis decomposition (ACD) of s single-
output Boolean function F can be expressed as follows:

F(xbs, xss, xfs) = G(H(xbs, xss), xss, xfs),
where the bound set (xbs), the free set (xss), and the free set
(xfs) are disjoints variable subsets, which together form the
support of F. The BS function H may be multi-output with
the number of outputs less than the BS size, while the
support of composition function G is typically chosen to fit
into one K-input LUT.

3 Maximizing the shared set
This section discusses, a truth-table-based implementation

of ACD using a shared set, for a single-output function.
The computation is iterated over bound sets of a given

size. The size is determined based on the support size of the
target function and the given LUT size. For example, for an
N-input function using K-input LUTs, it is convenient to
consider a K-variable BS and a (N-K)-variable FS. When
N=8 and K=6, there are 8*7/2 = 28 different 6-variable
BS’s. When support minimization of the BS function is
done, as shown in Section 4, it is helpful to consider (K+A)-
variable BS and (N-K-A)-variable FS where A  {1, 2, 3}.

For each BS, the truth table is transformed to have the BS
variables to be more significant ones, compared to the FS
variables. In this case, if the BDD of the function is
available, the BS variables are ordered first (i.e. above the
FS variables) after the transformation. When truth tables are

137

used, the variable reordering is performed using a dedicated
procedure, which swaps two variables. Note that the first
BS composed of K most significant variables in the support
of the function does not need variable swapping, because
the original truth table already reflects this order. Every
consecutive BS can be derived from a previous BS by one
two-variable swap.

Each assignment of the BS variables selects one (N-K)-
input function in terms of the FS variables. In the
transformed truth table, these functions are listed next to
each other. The decomposition procedure accesses them
one at a time by extracting 2N-K bits at a given offset in the
truth table, determined by the values of the BS variables.

Example. Consider the 5-variable function of the Booth
partial product whose 32-bit truth table represented in
hexadecimal is 0xF335ACC0. Assume the BS is the three
most significant variables and the FS is the two least
significant variables. The functions in terms of FS variables
have truth tables with 2N-K = 25-3 = 22 = 4 bits. There are 2K

= 23 = 8 of them, corresponding to hexadecimal digits in the
truth table of the original function (0xF, 0x3, 0x3, etc).

The target function can be realized using M BS functions
if the number of different FS functions for the given BS,
known as column multiplicity (), does not exceed 2M.
Much of the previous work on ACD tries to minimize M by
selecting M = log2(). However, M does not have to be
minimized because, for practical functions, some of the M
functions can be buffers, leading to a shared set (Figure 2).

Example. Continuing the above example, there are 8 FS
functions but only 6 of them are different (because
functions with truth tables 0x3 and 0xC are duplicated).
Thus, the column multiplicity is 6 and we need at least
log2(6) = 3 BS functions to implement the decomposition.
This decomposition is not support-reducing (using the
terminology of [9]) because the top-most block depends on
the same number of variables (five) as the original function,
but it may still be useful if the top-most function is simpler.

Ideally, all BS functions are buffers, resulting in only one
non-trivial K-input BS function and M-1 variables in the SS.

To check whether a decomposition with L (0 < L < M)
single-variable functions (or buffers) and M-L non-buffer
BS functions exists, the proposed method enumerates
subsets of L out of K variables in each BS. For each subset,
the method checks if the number of unique FS functions in
each cofactor w.r.t. the L variables does not exceed 2M-L. If
this is the case, a decomposition with L buffers exists.

This check is implemented for all (S = K!/L!/(K-L)!)
subsets of L out of K variables using the truth table
transformed to have the BS variables as the most significant
ones. For this, we extract one FS function at a time and add
it to S dynamic arrays accumulating unique cofactors for
each subset S of BS variables. If, for any subset, the number

of unique cofactors exceeds 2M-L, we skip this subset; if the
number exceeds 2M-L for all subsets, we skip this BS.

This computation enumerates all BS’s and all subsets of
each BS efficiently, resulting in a decomposition with the
largest possible SS size. If timing information is present and
the function to be decomposed is located on the critical path
of the design, the enumeration of BS’s can be limited to
include only early arriving variables, as shown below in
Section 5 on delay-driven mapping.

4 Support minimization of BS functions
Section 3 presented ACD for a single-output function with

minimization of the SS size. If all but one BS functions
depend on a single BS variable, the SS size is maximized.
In this case, there is only one non-trivial BS function
depending on all BS variables. However, if there are two or
more non-trivial BS functions, they often can be derived in
such a way that they do not depend on all BS variables.

The support minimization of the BS functions is
particularly useful when the BS size is larger than the LUT
size. One such example was given in the Introduction:
instead of three 8-input BS functions (Figure 3), we may be
able to use three 6-input BS functions (Figure 1), if the
target function allows for this. This leads to a reduction in
the size and depth of the LUT network after mapping.

The proposed algorithm for support minimization is
similar to solving a constrained encoding problem [11][21].

To formulate a condition when the BS functions are
independent of some of the BS variables, we recall that the
FS functions represent the cofactors of the target function
w.r.t. the BS variables. Thus, if each BS function does not
depend on some BS variables, other BS functions should be
able to distinguish the corresponding FS functions if they
are different from each other.

Deriving the BS functions satisfying this condition can be
done by solving a covering problem, in which columns are
subsets of BS variables and rows are pairs of different FS
functions to be distinguished. A one in the covering table
indicates that a BS function does not have to depend on the
given variable in order to distinguish the FS function pairs.
A solution to the covering problem is a set of variable
subsets removable, each of which can be removed from a
BS function. Knowing the number of non-trivial BS
functions and their target support size, we synthesize them
to distinguish all different FS function pairs.

5 Logic sharing across multiple outputs
Logic sharing across multiple outputs can be extracted

using a method, similar to the one used in Section 3, to
check for the existence of single-variable BS functions.

For this, truth tables of those outputs whose logic sharing
is being extracted, are transformed to have variables,
belonging to the given BS, as the most significant ones.

138

Next, one or more decompositions of each of the outputs
are derived and checked if the resulting BS function(s) can
be used to decompose other outputs. This is done by a
method similar to that for maximizing the SS.

Indeed, an SS variable represents a single-variable BS
function. To prove that it can be used, we check if it
partitions the cofactor FS functions into sets having no more
than a certain fixed number of unique cofactors. Similarly, a
given BS function, derived to decompose one output, can be
used as a candidate BS function for other outputs. If a limit
on the unique cofactor count of an output is not exceeded,
the function can be used to decompose the output.

The proposed method gives possible BS functions for
each output, and tests them for decomposing other outputs.
In the process, multiple function sharing opportunities may
be detected. The one that maximizes the number of shared
BS functions across all outputs is chosen. For example, if a
function can be shared across three outputs, it is preferred to
another that can be shared across two outputs.

6 Delay-driven LUT mapping
Consider a network of K-LUTs and a target node with

delay D that is on a critical path.
This section answers the following question: Is it possible

to replace the target node by a new node whose delay is D-1
or less (assuming the unit-delay model). We also show how
to use ACD to derive the new node and its fanin LUTs so
that the resulting LUT subnetwork can replace the target
node and produce the desirable delay improvement.

First, a set of K-LUTs composed of the target node and its
timing-critical fanins are found, resulting in a subnetwork of
K-LUTs. By construction, the arrival times of any input of
the subnetwork is less than D-1. Next, an ACD of the
Boolean function of the subnetwork is attempted with the
FS composed of inputs whose arrival times are less than
D-1 with the BS composed of the remaining inputs.

If, on the other hand, we are successful in finding a target
function using two levels of K-LUTs, the delay-
optimization problem is solved. In this case, the output
node of the new LUT structure derived by ACD has an
arrival time less the arrival times of the FS variables, which
in this case is D-1. When the target node is replaced by the
new node, the delay on that critical path is reduced.

The above discussion shows how to perform delay
optimization in post-mapping resynthesis of LUT networks.
The same method can be applied when evaluating delay-
oriented matches in the inner loop of a LUT mapper.

It can be shown that this approach is more general than
selective cofactoring w.r.t the late arriving variables [15]
(command speedup in ABC), because, not only cofactoring
w.r.t. these variables, but a more general decomposition of
the target function is performed.

7 Experimental results
The proposed improvements to ACD are implemented in

ABC and compared against the existing commands. In this
section, the results of four experiments are reported.

7.1 Runtime of decomposition with maximal SS
First, we compare the proposed ACD that maximizes SS,

against the implementation of the LUT structure mapping
[18] in command if –S <NN> -K <M> in ABC, where N is
the LUT size and N  M  2*N-1. When mapping
benchmarks using 8-input cuts into LUT structures “66”,
composed of two LUT6, the command is if –S 66 –K 8.

We collected 10K typical 8-input functions considered by
the LUT mapper if in this case and decomposed using the
proposed implementation. The runtime of the proposed
implementation is about 3.5x faster.

7.2 Support-minimization of the BS functions
For the 10K typical 8-input function harvested in the

above experiment, we checked the feasibility of minimizing
the support of the BS functions. We found that about 80%
of these practical functions decomposed with the maximal
SS size have BS functions depending on fewer than 6
inputs. Since we use 6-input LUTs, these decompositions
do not reduce the LUT count but does reduce the total LUT
fanin count, which is beneficial for placement and routing.

We also collected 10K typical 10-input functions and
processed them by ACD with 3-variable FS and 7-variable
BS without SS. It turned out that 70% of the resulting
7-variable BS functions could be implemented using LUTs
with 6 or fewer inputs. Using such decompositions in a
LUT mapper is beneficial for both area and delay, because
generally each 7-input function takes at least two LUT6’s.
Thus, in general, the decomposed network for a 10-variable
target function spans three levels of LUT6, instead of two
levels when the support minimization has been successful.

7.3 Logic sharing across multiple outputs
In a separate experiment, we applied ACD with BS

functions shared across the different outputs, to the 8-input
8-output function of the S-box [24], a design primitive
extensively used in cryptography. By decomposing each
output functions separately using brute-force cofactoring
(command lutmin [12] in ABC), the S-box takes 40 LUT6.
Indeed, each 8-input function can be cofactored w.r.t. any
two variables, resulting in four 6-input cofactors and one
4:1 MUX, which is also a 6-input function.

The S-box functions do not have shared cofactors w.r.t.
any two inputs. However, the method from Section 5
computed a number of bound sets, for which BS functions
could be shared across the output functions, resulting in an
S-box implementation composed of 36 LUT6’s, which a
10% reduction, compared to the brute-force cofactoring.

139

The same is true for the 8-input 8-output function of the
inverse S-box: it can be decomposed using 36 LUT6’s,
instead of the 40 LUT6’s as in the brute-force cofactoring.

7.4 Delay-driven LUT mapping
As part of future work, we intend to integrate delay-driven

optimization described in Section 4 into the LUT mapper if
in ABC. This will allow us to compare the logic level and
the LUT count after mapping with the proposed delay
optimization, against other delay-driven mapping options:
(1) the use of structural choices [5], (2) high-effort delay
optimization of AIGs using “lazy man’s synthesis” [23], and
(3) mapping into LUT structures “66” and “666” [18].

We expect that the logic level produced by the proposed
approach will be better at the cost of some area increase.

8 Conclusions
This paper revisits the well-known and widely used

Ashenhurst-Curtis decomposition and offers an up-to-date
solution to several related problems: finding the largest set
of shared variables, computing support-limited functions,
and sharing decomposition functions across outputs.

The paper does not add new theory, compared to the
earlier work in this area, but proposes an efficient truth-
table based implementation discussioned in Section 3-5.
Another benefit of this work, is that it documents the source
code developed to solve the above problems in ABC, an
open-source logic synthesis system [2].

The methods proposed in the paper can be extended to
work with incompletely-specified functions. In this case, the
FS functions selected based on the values of the BS
variables, are incompletely specified. They can be matched
and counted in the presence of don’t-cares.

Acknowledgements
This research was supported in part by SRC Contract

3173.001 "Standardizing Boolean transforms to improve
quality and runtime of CAD tools", the NSA grant “Novel
methods for synthesis and verification in cryptanalytic
applications” and donations from AMD, Siemens, and
Synopsys.

References
[1] R. L. Ashenhurst. “The decomposition of switching functions”.

Technical Report, Bell Laboratories, 1952, BL-1(11), pp. 541-602.
[2] Berkeley Logic Synthesis and Verification Group. ABC: A System

for Sequential Synthesis and Verification. https://github.com/
berkeley-abc/abc

[3] V. Bertacco and M. Damiani. "Disjunctive decomposition of logic
functions". Proc. ICCAD ‘97, pp. 78-82.

[4] R. E. Bryant. “Graph-based algorithms for Boolean function
manipulation”. IEEE TC, C-35(8), Aug. 1986, pp. 677-691.

[5] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,
"Reducing structural bias in technology mapping", IEEE Trans.
CAD, Vol. 25(12), December 2006, pp. 2894-2903.

[6] H. A. Curtis. “A generalized tree circuit”. Journal of the ACM,
1961, Volume 8 (4), pp. 484-496.

[7] C. Files. A new functional decomposition method as applied to
machine learning and VLSI layout. Ph.D. Thesis. Portland State
University, June 2000.

[8] J.-H. Jiang, Y. Jiang, and R. K. Brayton. “An implicit method for
multi-valued network encoding”. Proc. IWLS’01, pp.127-131.

[9] V. Kravets and K. Sakallah. “Constructive library-aware synthesis
using symmetries”. Proc. DATE’00, pp. 208-213.

[10] Ch. Legl, B. Wurth, and K. Eckl. “Computing support-minimal
subfunctions during functional decomposition”. IEEE Trans. VLSI,
6(3), pp. 354-363, Sept. 1998.

[11] G. D. Micheli, R. K. Brayton, and A. L Sangiovanni-Vincentelli.
“Optimal state assignment for finite state machines”. IEEE Trans.
CAD, 4-3, pp. 269-285, July 1985.

[12] A. Mishchenko and T. Sasao, “Encoding of Boolean functions and
its application to LUT cascade synthesis”. Proc. IWLS '02, 115-120.

[13] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton,
“Combinational and sequential mapping with priority cuts”. Proc.
ICCAD '07, pp. 354-361.

[14] A. Mishchenko, R. K. Brayton, and S. Chatterjee, “Boolean
factoring and decomposition of logic networks”. Proc. ICCAD '08,
pp. 38-44.

[15] A. Mishchenko, R. Brayton, and S. Jang, "Global delay optimization
using structural choices", Proc. FPGA'10, pp. 181-184.

[16] R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli.
“Optimum functional decomposition using encoding”. Proc. DAC
‘94, pp. 408-414.

[17] M. Perkowski et al. “Decomposition of multiple-valued relations”.
Proc. ISMVL '97, Halifax, Canada, pp.13-18.

[18] S. Ray, A. Mishchenko, N. Een, R. Brayton, S. Jang, and C. Chen,
"Mapping into LUT structures", Proc. DATE'12, pp. 1579-1584.

[19] T. Sasao, M. Matsuura, and Y. Iguchi. “A cascade realization of
multiple-output function for reconfigurable hardware”. Proc. IWLS
‘01, pp. 225-230.

[20] T. Sasao. “A new expansion of symmetric functions and their
application to non-disjoint functional decompositions for LUT-type
FPGAs”. Proc. IWLS’00, pp. 105-11.

[21] T. Villa et al. “NOVA: state assignment of finite state machines for
optimal two-level implementations”. Proc. ITCAD ‘90, pp. 905-924.

[22] B. Wurth, U. Schlichtmann, K. Eckl, and K. J. Antreich, “Functional
multiple-output decomposition with application to technology
mapping for lookup table-based FPGAs”, ACM TODAES, Vol. 4(3),
pp. 313-350.

[23] W. Yang, L. Wang, and A. Mishchenko, "Lazy man's logic
synthesis", Proc. ICCAD'12, pp. 597-604.

[24] https://en.wikipedia.org/wiki/Rijndael_S-box

140

