
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010 1987

SunFloor 3D: A Tool for Networks on Chip
Topology Synthesis for 3-D Systems on Chips

Ciprian Seiculescu, Srinivasan Murali, Luca Benini, Fellow, IEEE, and Giovanni De Micheli, Fellow, IEEE

Abstract—Three-dimensional integrated circuits (3D-ICs) are
a promising approach to address the integration challenges
faced by current systems on chips (SoCs). Designing an efficient
network on chip (NoC) interconnect for a 3-D SoC that meets
not only the application performance constraints but also the
constraints imposed by the 3-D technology is a significant
challenge. In this paper, we present a design tool, SunFloor
3D, to synthesize application-specific 3-D NoCs. The proposed
tool determines the best NoC topology for the application,
finds paths for the communication flows, assigns the network
components to the 3-D layers, and places them in each layer. We
perform experiments on several SoC benchmarks and present a
comparative study between 3-D and 2-D NoC designs. Our studies
show large improvements in interconnect power consumption
(average of 38%) and delay (average of 13%) for the 3-D NoC
when compared to the corresponding 2-D implementation. Our
studies also show that the synthesized topologies result in large
power (average of 54%) and delay savings (average of 21%) when
compared to standard topologies.

Index Terms—3-D integrated circuits (3D-ICs), networks on
chip (NoC), placement, synthesis, topology.

I. Introduction

2 -D CHIP fabrication technology is facing lot of chal-
lenges in utilizing the exponentially growing number of

transistors on a chip. Wire delay and power consumption
is increasing dramatically and achieving interconnect design
closure is more and more a challenge. Moreover, diverse
components that are digital, analog, microelectromechanical
systems, and radio frequency modules are being integrated
on the same chip, resulting in large complexity for the 2-D
manufacturing process [18].

Vertical stacking of multiple silicon layers, referred to as
3-D stacking, is emerging as an attractive solution to continue

Manuscript received October 12, 2009; revised February 7, 2010; accepted
July 12, 2010. Date of current version November 19, 2010. This work was
supported in part by the CTI, under Project 10046.2, in part by PFNM-NM,
and in part by the ARTIST-DESIGN Network of Excellence. This paper was
recommended by Associate Editor N. Chang.

C. Seiculescu is with the Integrated Systems Laboratory, EPFL, Lausanne
CH-1015, Switzerland (e-mail: ciprian.seiculescu@epfl.ch).

S. Murali is with the Integrated Systems Laboratory, EPFL, Lausanne CH-
1015, Switzerland, and also with the iNoCs, Lausanne CH-1015, Switzerland
(e-mail: murali@inocs.com).

L. Benini is with the Dipartimento Elettronica Informatica E
Sistemistica (DEIS), University of Bologna, Bologna 40136, Italy
(e-mail: luca.benini@unibo.it).

G. De Micheli is with the Integrated Systems Center, EPFL, Lausanne
CH-1015, Switzerland (e-mail: giovanni.demicheli@epfl.ch).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2010.2061610

the pace of growth of systems on chips (SoCs) [18]–[23].
Several technologies and methods are available in the paper for
performing 3-D integration. In the Die-to-Die bonding process,
individual dies are glued together to form the 3D-IC. In the
Die-to-Wafer process, individual dies are stacked on top of dies
which are still not cut from the wafer. The advantages of these
processes are that the wafers on which the different layers of
the 3-D stack are produced can be of different sizes. Another
advantage is that the individual dies can be tested before the
stacking process and only “known-good-dies” can be used,
thereby increasing the yield of the 3D-IC. In the Wafer-to-
Wafer bonding, full wafers are bonded together. The use of
through silicon vias (TSVs) to connect the components in the
different layers is emerging as a promising technology option.
TSV-based 3-D technology has been maturing over the years in
addressing thermal issues and achieving high yield [20]. In this
paper, we consider 3-D integration using TSVs to electrically
connect the different dies in the stack. Heterogeneous systems
can be built effectively, with each layer supporting a diverse
technology [18].

To tackle the on-chip communication problem, a scalable
communication paradigm, networks on chips (NoCs) have
recently evolved [1]–[3]. NoCs consist of switches and links
and use circuit or packet switching technology to transfer
data inside a chip. They provide better structure, modularity,
and scalability when compared to traditional interconnect
solutions.

NoCs are a necessity for 3-D chips. They provide arbi-
trary scalability of the interconnects across additional layers,
efficiently parallelize communication in each layer, and help
controlling the number of vertical wires (and, hence, TSVs)
needed for inter-layer communication. The combined use
of 3-D integration technologies and NoCs introduces new
opportunities and challenges for designers. Building power-
efficient NoCs for 3-D systems that satisfy the performance
requirements of applications, while satisfying the technology
constraints, is an important problem. To address this issue,
new architectures and design methods are needed. While the
issue of designing NoC architectures for 3-D has received
some attention [31]–[34], there has been little work on design
methods for 3-D NoCs. Design methods for 2-D NoCs do
not consider the unique challenges posed by 3-D integration
technologies, such as the constraints on the number of TSVs
that can be supported, constraints on communication between
adjacent layers, determining layer assignment for switches,
and placement of switches in 3-D.

0278-0070/$26.00 c© 2010 IEEE

1988 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010

Fig. 1. Yield vs. TSV count [39].

Constraining the number of TSVs is important in order
to control the yield of the 3D-IC. In Fig. 1, we show the
dependence of yield on the number of TSVs for different
manufacturing processes [39]. For all processes, there is a
clear upper bound on the number of TSVs after which
the yield decreases rapidly. For this reason, it is important
for the synthesis process to be aware of this upper bound and
be able to ensure that the designed NoC meets this constraint,
while at the same time complying with the application require-
ments. Also, since for the different manufacturing processes
the constraint is different, it is necessary for the synthesis
process to take this as an input. Another reason to try to reduce
the number of TSVs is to save the area. In [19], the pitch of
a TSV is reported to be between 3 µm and 5 µm. Reserving
area for too many TSVs can cause a considerable reduction
in the active silicon area remaining for transistors.

In this paper, we address these important problems and
present a synthesis approach for designing power-efficient
NoCs for 3-D systems on chips (SoCs) that meet application
performance and 3-D technology constraints. Custom topolo-
gies that are tailored to meet the application performance
constraints can result in large NoC power savings. The need
for an application-specific topology has been well studied for
2D-ICs [8], [16]. All these advantages hold in 3-D as well.
Our goal in this paper is to explore the design space of custom
topologies and to show the comparative advantages in moving
to a 3-D technology. The major contribution of this paper is
a synthesis approach to determine the most power-efficient
topology for the application and for finding paths for the traffic
flows that meet the TSV constraints. Our methods account for
power and delay of both switches and links. The assignment
of cores to different 3-D layers and the floorplan of the cores
in each layer are taken as inputs for the synthesis process. To
accurately model the link delay and power consumption, for
the given core positions, we present a method to determine the
optimal positions of switches in the floorplan in each layer. We
then place the switches on each layer, removing any overlap
with the cores.

The assignment of cores to the different layers and the
floorplan of each layer needs to consider several performance
and technological constraints. For example, cores that have
I/O pins that go off chip have to be placed near the border
of the die, cores that operate at the same frequency should be
placed close together to share the clock tree, and thermal issues

should be considered as well. There are several works that
address these issues [21]–[23] and our work is complementary
to them. Our experiments show that wires have significant
power consumption and delay. Thus, the floorplan of the
design should be considered during the topology synthesis
process. Here, we only address the issue of designing the
NoC topology and determining the placement of the NoC
components. We show that using a standard floorplanner to
insert the NoC components in an existing floorplan can lead
to poor results. We present a simple floorplanning method that
shows a significant reduction in area (average 20%) and power
consumption (average 7.5%) when compared to a constrained
standard floorplanner. Please note that more complex optimiza-
tion methods, like the ones in [41], could be used to design
an even better custom floorplanning routine. As the main
objective of this paper is topology synthesis, developing and
comparing different custom floorplanning methods is beyond
the scope of the paper. Another point to be noted is that a
single switch or interface of a NoC has low area (few thousand
gates) and power consumption (few megaWatt at 1 GHz)
overhead. Thus, the thermal properties of the system are not
affected significantly when inserting the NoC components in
the floorplan.

Another major contribution of this paper is a comparison
between 2-D and 3-D SoCs in terms of the interconnect delay
and power consumption. An important advantage in using 3-D
technology is that the wires are shorter. However, today, the
amount of power and delay gains that is achievable by 3-D
integration for custom interconnects for SoCs is still unclear.
We compare the same SoC design for the case when all cores
are on the same die to the case when the cores are distributed
on different dies in a 3-D stack. Therefore, we analyze the
power reduction that is due to having shorter wires. We do
not consider the case when the initial system was build using
different dies in multiple packages and the power reduction
was due to removing the I/O pads and drivers. In this paper,
for comparative purposes, we also apply a 2-D synthesis flow
developed earlier by [16] for a corresponding 2-D implementa-
tion of the benchmarks. Our results show that a 3-D design can
significantly reduce the interconnect power consumption (38%
on average) and latency (13% on average). For completeness,
we also show the power consumption reduction in using a
custom topology when compared to a regular topology for
several benchmarks. However, detailed study of the different
advantages of a custom solution is not reported here, as the
analysis would be analogous to those done in [8] and [16] for
2D-ICs.

II. Related Work

An introduction to the issues in NoC architecture design and
synthesis has been presented in [3]. Methods for synthesizing
point-to-point links and bus-based systems are presented in
[4]– [6]. In [7]– [9], the authors present approaches to map
cores on to regular NoC topologies. Synthesis of custom NoC
topologies for 2-D SoCs has been presented in [11]–[16]. In
[16], we presented a method to synthesize the most power-
performance-efficient NoC topologies for 2-D SoCs.

SEICULESCU et al.: SUNFLOOR 3D: A TOOL FOR NETWORKS ON CHIP TOPOLOGY SYNTHESIS FOR 3-D SYSTEMS ON CHIPS 1989

Several works have been investigating the 3-D manufactur-
ing processes [18], [20], [24], [34]. In [18], the authors make
a detailed analysis of performance gains for 3-D technology.
The authors analyze how the area, power, and wire length is
affected when moving from a 2-D design to 3-D. In [20], a
method for placing thermal vias is shown. The method places
the thermal vias in order to keep the temperature under a
desired maximum value and at the same time tries to minimize
the number of thermal vias needed. Models for vertical links
containing several parallel wires are presented in [34]. The
authors also present methods for using the vertical links within
available 2-D design flows. Methods for 3-D floorplanning and
placement of cores, taking into account the thermal issues
that has been presented in [21]–[23]. In [21], a new data
representation is presented that contains the necessary data
for performing floorplanning using simulated annealing. The
temperature of the chip is used in the objective function that is
minimized. A resistive capacitive (RC) model is also presented
to calculate the temperature distribution that is used in the ob-
jective function. A force-directed 3-D floorplanner is presented
in [23]. The floorplanner efficiently takes into account physical
information such as temperature gradient, and the authors
also present methods to transition from an unconstrained
3-D assignment to a legal layer assignment without overlap.
Manufacturing of 3-D interconnects has been addressed by
[25] and [26]. The work presented in [28] makes an analysis
of the performance and cost tradeoffs of 3-D integration. These
works do not address, however, the problem of interconnects
in 3-D SoCs. Multi-dimensional regular topologies (such as
k-ary n-cubes, hypercubes) have been explored by researchers
as viable interconnect solutions for chip-to-chip networks
[17]. However, such standard topologies are not suitable for
application-specific SoCs, which are heterogeneous in nature.

Synthesis of NoCs for 3-D SoCs is a relatively new topic.
New switch architectures for 3-D have been presented in [31]
and [33]. In [32], the authors present the use of NoCs as
interconnects for 3-D multi-processors. The electrical charac-
teristics of vertical interconnects are analyzed in [34] and the
authors also present a back-end design flow to implement 3-D
NoCs. Design of standard topologies for 3-D is analyzed in
[29] and mapping of cores on to NoC topologies is presented in
[30]. Power-delay analysis of 3-D interconnects is presented
in [27]. However, none of these works address the issue of
synthesizing custom NoCs topologies for 3-D SoCs. Moreover,
the works do not present a comparison of the NoC power and
latency for 2-D and 3-D NoC implementations.

III. Architecture

We assume a wafer-to-wafer manufacturing process, with
TSVs used for the vertical interconnection wires. We present
the synthesis methods for the case where each component
(core and network component) is designed to span within a
single layer. As the network components are small, there will
not be a significant performance benefit if they were designed
to span on multiple layers. In designs where a single core may
span multiple layers, the network interface (NI) would still be
assigned to a single layer close to where the communication

Fig. 2. Example vertical link.

Fig. 3. Algorithm steps.

port of the core is. In this case, our synthesis algorithm is not
affected at all and only minor extensions would be needed in
the floorplanning routine to account for this fact. As this does
not affect the synthesis methods, we do not present such exten-
sions in this paper. In our architecture, the vertical wires using
a TSV between two layers uses the global metal routing of the
bottom layer, therefore, requiring silicon area to be reserved
only on the top layer where the TSVs are drilled. Area reserva-
tion is done by placing abstractions in the floorplan called TSV
macros. In Fig. 2, we show an example where two switches
on two different layers are connected using an inter-layer link.

For the inter-layer links that go through more than one
layer, TSV macros are placed in the intermediate layers as
well. In Fig. 2, we show an example where there is a TSV
macro in the middle layer. From the bottom layer, the link is
first routed horizontally on the metal layer and then vertically.
In the second layer, an intermediate TSV macro is needed
to allow the link to cut through the silicon. Then, the link
is routed again on the metal layers in the second layer, and
when aligned with the switch on the top layer, the link is
fed vertically. The switch in the top layer has a TSV macro
embedded for the port that is connected to this link. The area
of the TSV macros for a particular link width is taken as
input. For the synthesized topologies, our tool automatically
places the TSV macros in the intermediate layers and on the
corresponding switch ports.

1990 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010

If there is a core that is connected to a switch that is in
another layer, then space has to be reserved on the floorplan to
place the TSVs. If core and the switch are only one layer apart,
then the NI of the core will contain the necessary TSV macro
that reserves the space. The NI is responsible to translate the
core communication protocol to the network protocol. In the
case when the core and the switch are several layers apart, then
the TSV macros, to reserve the area to place the TSVs, have to
be explicitly placed on the floorplan for the intermediate lay-
ers. The explicit TSV macro is the same as in the example of
the switch to switch link from Fig. 2 in the middle layer. Active
silicon area is lost every time a TSV macro is placed as the
area reserved by the macro will be used to construct the TSV.
In some designs, redundant TSVs are used to increase reliabil-
ity [40]. Adding redundant TSVs can be considered by reserv-
ing more area with the TSV macros and it is transparent for our
tool. The TSV macros are placed automatically by our tool.

IV. Design Approach

In this section, we define the inputs and outputs of our
design flow. In the core specification file, the name of the
different cores, the sizes, and positions are given as inputs.
The assignment of the cores to the different layers in 3-
D is also specified as input in the file. In the communica-
tion specification file, the communication characteristics of
the application are specified. This includes the bandwidth
of communication across different cores, latency constraints
and message type (request/response) of the different traffic
flows.

The technology used for 3-D integration can result in two
main constraints. First, to achieve high yield, the number of
TSVs that can be established across two layers may need to be
restricted below a threshold. Second, some 3-D technologies
can allow TSVs only across adjacent layers. In the rest of
the paper, we model the maximum TSV number constraint
by using a constraint on the number of NoC links that can
cross two adjacent layers, denoted max−ill (for maximum
number of inter-layer links). For a particular link width, the
maximum number of links can be directly determined from
the TSV constraints.

The objective of the topology synthesis procedure can be
set by the designer to minimize NoC power consumption or
latency or a combination of both.

For the synthesis procedure, the power, area, and timing
models of the NoC switches and links are also taken as inputs.
For the experimental validation of this paper, without loss of
generality, we use the library of network components from [35]
and the models are obtained from layout level implementations
of the library components. Any other NoC library can also
be used with the synthesis process. We also take the power
consumption and latency values of the vertical interconnects
as inputs. For this, we use the models from [34].

The output of the topology synthesis procedure is a set of
tradeoff points of topologies that meet the constraints, with
different values of power, latency, and design area. From the
resulting points, the designer can choose the optimal point
for the application. The synthesis procedure also produces a

placement of the switches in the 3-D layers and the positions
of the switches.

The different steps of the synthesis algorithm are presented
in Fig. 3. As the topology synthesis and mapping problems
are NP-Hard [11], we present efficient heuristics to synthesize
the best topology for the design. The NoC architectural
parameters, such as frequency of operation, are varied and
the topology design process is repeated for each architectural
point. In the following step, the number of switches needed
to connect the cores is varied and different topologies are
synthesized. There are some general trends that we observed
during the topology design process: 1) when the number of
switches is increased, though the switches become smaller,
packets need to traverse more hops and the total switch power
usually increases, and 2) with more switches, the switch that is
connected to a core is closer in the floorplan, thereby leading
to lower core-to-switch link power consumption. However,
there are also more switch-to-switch links, thereby leading
to an increase in the power consumption of switch-to-switch
links. In order to choose the most power-efficient topology,
the combined effect of all these three trends needs to be
considered. Thus, we need to explore designs with different
number of switches, starting from one where all the cores are
connected to a single switch to a design point where each core
is connected to a separate switch.

For a particular switch count, in the next steps, we determine
the connectivity between the switches and the cores and the
3-D layer assignment of the switches. During this step, there
is a degree of freedom that needs to be explored. A core in a
layer of 3-D design that can be restricted to be connected to
a switch in the same layer or could be allowed to connect to
a switch in any layer. When a core is restricted to be connected
to a switch in the same layer, then the traffic flowing from
it to a core in another layer needs to traverse at least two
switches (one in the current layer and another in the other
layer), thereby increasing latency. On the contrary, if a core
is allowed to be directly connected to a switch in any layer,
then more inter-layer links may be needed. It is important
to choose this restriction based on application characteristics.
Another degree of freedom that needs to be explored is
from a technology standpoint; the technology could allow
vertical link across many layers (e.g., a link from first layer
to third layer) or could allow connection only across adjacent
layers.

To address these two issues, we present a two-phase
method to determine the core to switch connectivity. In the
first-phase (presented in Section V-A), cores are allowed to
be connected directly to switches in any layer. If the resulting
designs do not meet the maximum inter-layer link constraints,
then in the second phase (presented in Section V-B), cores
are restricted to be connected to only switches in the same
layer. Also, in the second phase, vertical links are established
only across adjacent layers in 3-D. Thus, for systems where
the underlying technology supports vertical links only across
adjacent layers, the first phase can be skipped and the second
phase can be used directly. Please note that Phase 2 can
also be used when the objective is to reduce the number of
inter-layer vertical links used.

SEICULESCU et al.: SUNFLOOR 3D: A TOOL FOR NETWORKS ON CHIP TOPOLOGY SYNTHESIS FOR 3-D SYSTEMS ON CHIPS 1991

Algorithm 1 Core-to-Switch Connectivity

1: Build partitioning graph, PG(U, H, α)
2: Unmet = φ.
3: {Vary number of direct switches in a range}
4: for i = 1 to |U| do
5: Perform i min-cut partitions of PG. Let the set

Partitionj be set of vertices in jth partition, ∀j ∈ 1 · · · i.
6: {Compute layer assignment for each switch:}
7: layer−swj =

∑
∀k∈partitionj

layer−k

|partitionj |
8: Compute paths for inter-switch flows
9: If path computation failed, add i to set Unmet.

10: end for
11: θ = θmin

12: while ((Unmet! = φ) & (θ ≤ θmax)) do
13: for Each i ∈ Unmet do
14: Build scaled partitioning graph, SPG(W, L, θ)
15: PG = SPG
16: Repeat Steps 5 to 8
17: If valid paths found, remove i from set Unmet.
18: end for
19: θ = θ + θscale

20: end while

In the next step, the paths for the inter-switch traffic flows is
determined, and is explained in Section VI. Then, the optimal
positions of the switches are determined and the switches are
placed in each layer, minimally changing the input floorplan.
In the last step, if the current topology meets the constraints,
the design point is saved.

V. Methods to Establish Core to Switch

Connectivity

In this section, we present methods for establishing connec-
tivity between the cores and switches.

Definition 1: Let n be the number of cores in the design.
The x and y coordinate positions of a core ci are represented
by xci and yci, respectively, ∀i ∈ 1 · · · n. The 3-D layer to
which the core i is assigned is represented by layeri.

From the communication specification file, the commu-
nication characteristics of the application are obtained and
represented by a graph [7], [8], [10], defined as follows.

Definition 2: The communication graph is a directed graph,
G(V, E) with each vertex vi ∈ V representing a core and the
directed edge (vi, vj) representing the communication between
the cores vi and vj . The bandwidth of traffic flow from vertex
vi to vj is represented by bwi,j and the latency constraint for
the flow is represented by lati,j .

We define a partitioning graph (PG) as follows.
Definition 3: The PG is a directed graph, PG(U, H, α), that

has same set of vertices and edges as the communication
graph. The weight of the edge (ui, uj), defined by hi,j , is set to
a combination of the bandwidth and the latency constraints of
the traffic flow from core ui to uj: hi,j = α×bwi,j/max−bw +
(1 − α) × min−lat/ lati,j , where max−bw is the maximum
bandwidth value over all flows, min−lat is the tightest latency
constraint over all flows and α is a weight parameter.

Fig. 4. Communication graph with bandwidth demands on the edges.

Fig. 5. PG and the min-cut partitions.

The parameter α can be set by the designer based on the
application characteristics or swept by the tool over a range
of values, in order to meet the latency constraints.

A. Phase 1

As the number of switches is varied in order to explore
different design points, most of the times there will be fewer
switches in the design than the number of cores. Therefore,
multiple cores will be assigned to the same switch in most
cases. The cores will be partitioned in as many blocks as
there are switches and the cores in the same block will be
assigned to the same switch. When using Phase 1 cores that
have high communication or tight latency will be assigned
to the same switch regardless of the fact that cores may
be on different layers. If for a particular core to switch
assignment the algorithm using Phase 1 will not be able
to meet the inter-layer link constraint, then the influence
of bandwidth and latency of the inter-layer flows will be
scaled down in steps and new partitions will be generated.
The exact steps of Phase 1 are described in the following
paragraphs.

In the first step of Algorithm 1, the PG is constructed. Then
(in Step 3), the number of switches in the design is varied from
1 to the number of cores in the design. In the next step (Step
5), for the current switch count, many min-cut blocks of PG
are obtained. All the cores in a block are connected to the
same switch and the partitioning is done such that each block
has about equal number of cores. Thus, those traffic flows with
large bandwidth requirements or tight latency constraints are
assigned to the same block and traverse a single hop in the
network.

Example 1: For the communication graph from Fig. 4, an
example PG is shown in Fig. 5. The cores are assigned to
the two layers such that highly communicating cores are
placed one above the other, which is an input to our synthesis
algorithm. Here, we assume α = 1 and the bandwidth of the

1992 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010

Fig. 6. SPG and the min-cut partitions.

traffic flowing between cores within a layer is lower than the
traffic between the cores across the layers as denoted by the
values on the edges of the communication graphs. The weights
of the PG are calculated with the formula from definition of
the PG graph. In the figure, we also show an example of
three min-cut partitions of the graph. The partitioning leads
to cores in different layers being assigned to the same
block.

Then (in Step 7), the layer assignment of each switch is
computed as an average of the layers of the cores to which
the switch is connected. Alternatively, the switch could also
be assigned to the layer containing the most number of cores
connected to it. At this point, the intra-partition traffic flows
are taken care of and we need to establish connectivity across
the switches for the inter-switch traffic flows. This step is
explained in the next section. Then (in Step 9), the resulting
designs are evaluated to see whether they meet the max−ill
constraint and the switch counts that do not meet the constraint
are stored in the set unmet.

In order to facilitate meeting the max−ill constraint for the
design points in the set unmet, we use the SPG, defined as
follows:

Definition 4: A SPG with a scaling parameter θ, SPG(W ,
L, θ), is a directed graph that has the same set of vertices
as PG. A directed edge li,j exists between vertices i and j, if
∃(ui, uj) ∈ P or layeri = layerj .

In the SPG, along with the edges in PG, we define new
edges between all cores in the same layer of 3-D. We also
reduce the edge weights of inter-layer flows, depending on
the scaling parameter θ. If this scaled graph is used for
partitioning, then more cores in the same layer will be in a
partition, thereby reducing the inter-layer links, at the expense
of increasing the power consumption and latency of inter-
layer flows. To obtain designs with lower inter-layer links,
the parameter θ is varied from θmin to θmax in steps of
θscale in the algorithm (Steps 12–19), until the max− ill con-
straint is met. After several experimental runs, we determined
that varying θ from 1 to 15 in steps of three gives good
results.

In order to cluster cores in a layer that actually commu-
nicates, we also need to ensure that the newly added edges
have a lower edge weight than the original intra-layer edges.
Please note that if the new edges are not added, the partitioner
may still cluster cores across layers, which will not lead to a
reduction in the inter-layer links.

We denote the maximum edge weight in PG by max−wt.
We formally define the edge weights in SPG as follows:

li,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

hi,j if (ui, uj) ∈ PG&layeri = layerj
hi,j

θ×|layeri−layerj | if(ui, uj) ∈ PG&layeri �= layerj

θ×max−wt

10×θmax
if(ui, uj) /∈ PG & layeri = layerj

0 otherwise
(1)

from the definition, we can see that the newly added edges
have at most one-tenth the maximum edge weight of any edge
in PG, which was obtained experimentally after trying several
values.

Example 2: The SPG for θ = 10 for the PG from Example
1 is presented in Fig. 6. In the SPG, the inter-layer links have
lower weights as they were scaled down by θ and new edges
are added between cores within the same layer. The weights
of the extra edges are calculated using (1). The three min-cut
blocks are now different, with more cores in the same layer
belonging to the same block.

The time complexity of the Algorithm 1 is O(|V |3|E|
ln(|V |)), where |V |2ln(|V |) corresponds to finding paths, E is
the maximum number of flows. Also, the number of switches
is varied from 1 to the maximum number of cores |V | and
that a topology is built for each switch count.

B. Phase 2

In Phase 2, we restrict cores to be connected to switches on
the same layer. Also switches can only connect to switches on
the same layer or on adjacent layers. For each layer, a certain
number of switches will be assigned. Then, on each layer, the
cores are partitioned and assigned to the switches on that layer
considering the bandwidth and latency of the flows between
the cores on that layer. Information of the inter-layer flows is
ignored when the cores are assigned to switches when using
Phase 2. Because of these restrictions, Phase 2 can be used
when a tight inter-layer link restriction is in place or when the
3-D integration technologies forbids links to go across more
than two layers. In this section, a detailed description of Phase
2 is given.

We define the LPG for each layer as follows.
Definition 5: A LPG(Z, M, ly) is a directed graph with

the set of vertices represented by Z and edges represented by
M. Each vertex represents a core in the layer ly. An edge
connecting two vertices is similar to the edge connecting the
corresponding cores in the communication graph. The weight
of the edge (mi, mj), defined by hi,j , is set to a combination
of the bandwidth and the latency constraints of the traffic
flow from core mi to mj: hi,j = α × bwi,j/max−bw +
(1 − α) × min−lat/ lati,j , where max−bw is the maximum
bandwidth value over all flows, min−lat is the tightest latency
constraint over all flows, and α is a weight parameter. For
cores that do not communicate with any other core in the same
layer, edges with low weight (close to 0) are added between
the corresponding vertices to all other vertices in the layer.
This will allow the partitioning process to still consider such
isolated vertices.

Example 3: The LPGs for the two layers of the commu-
nication graph from Fig. 4 are shown in Fig. 7. Since the

SEICULESCU et al.: SUNFLOOR 3D: A TOOL FOR NETWORKS ON CHIP TOPOLOGY SYNTHESIS FOR 3-D SYSTEMS ON CHIPS 1993

Fig. 7. LPGs for two layers.

Fig. 8. Two min-cut partitions of LPGs.

LPGs are built layer by layer, the graphs for the two layers
are independent of one another. The weights of the remaining
edges were calculated with the formula from the definition
of the LPG graph for a value of α = 1. Extra edges with
low weights are added (dotted edges in the figure) from the
vertices that have no connections to the other vertices of the
LPG.

The algorithm for establishing core to switch connectivity
is presented in Algorithm 2. As the number of I/O ports of a
switch increases, the maximum frequency of operation that can
be supported by it reduces, as the combinational path inside
the crossbar and arbiter increases with size. In the first step of
the algorithm, for the required operating frequency of the NoC,
the maximum size of the switch (denoted by max−sw−size)
that can support that frequency is obtained as an input. Based
on this and the number of cores in each layer, in the next steps
(2–4), we determine the minimum number of switches needed
in each layer. Then the LPG for each layer is constructed.

Then, the number of switches in each layer is incremented
(starting from the initial count calculated in Steps 2–4) every
iteration, until it equals the number of cores in the layer. The
term |LPG(Z, M, j)| represents the number of cores in layer
j. For each switch count, many min-cut partitions of the LPG
of the layer are obtained (Step 13). The cores in the same
partition are connected to the same switch.

Example 4: Two min-cut blocks of the LPGs of Fig. 7 are
shown in Fig. 8.

The time complexity of the Algorithm 2 is similar to the
complexity of the previous algorithm O(|Zmax||V |2|E|ln(|V |)),
where Zmax corresponds to the maximum number of cores in a
layer, which decides the number of topologies to be explored.

C. Pruning the Search Space

To reduce the number of explored design points, we use
several methods to prune the search space.

Algorithm 2 Core-to-Switch Connectivity

1: Obtain maximum switch size max−sw−size for current
frequency

2: for each layer j ∈ 1 · · · lr do
3: nij = � number of cores in layerj/max−sw−size�
4: end for
5: Build LPG(Z, M, j) for each layer j.
6: for i = 0 to max∀j∈1···lr{|LPG(Z, M, j)| − nij} do
7: for each layer j ∈ 1 · · · lr do
8: if nij + i ≤ |LPG(Z, M, j)| then
9: np = nij + i

10: else
11: np = |LPG(Z, M, j)|
12: end if
13: Obtain NP min-cut partitions of LPG(Y, M, j)
14: end for
15: Compute paths for inter-switch flows (Section VI).
16: If valid paths found, save the current design point
17: end for

1) As the number of I/O ports of a switch increases, the
maximum frequency of operation that can be supported
by it reduces, as the combinational path inside the
crossbar and arbiter increases with size. For a required
operating frequency of the NoC, we first determine the
maximum size of the switch (denoted by max−sw−size)
that can support that frequency and determine the min-
imum number of switches needed.

2) Considering all the possible combinations of the number
of switches in each layer would increase the search space
too much. Therefore, at each iteration of Algorithm 2,
we increment the number of switches in each layer by
one. We initialize the number of switches layer by layer
as explained in the previous section. Thus, the starting
design point can have different number of switches in
each layer and the number of switches in each layer is
proportional to the number of cores in that layer.

3) For a particular switch count, after partitioning, we
evaluate the inter-layer links used to connect the cores
to the switches, before finding the paths. If the topology
requires more inter-layer links than the threshold, we
directly ignore the design point.

VI. Path Computation

The procedure to establish physical links and paths for
traffic flows is based on the power consumption increase and
latency in using the link. This cost computation in the 3-
D case is similar to the 2-D case, such as those presented
in [14] and [16], but it needs to account for the max−ill

and max−switch−size constraints. Here, we do not show
the entire path computation algorithm, but only present the
steps needed to meet these constraints. In [14] and [16],
the authors present methods to remove both routing and
message-dependent deadlocks when computing the paths.
We also use the methods to obtain paths that are free of
deadlocks.

1994 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010

Fig. 9. D26−media communication graph.

Definition 6: Let nsw be the total number of switches used
across all the layers and layeri be the layer in which switch
i is present. Let ill(i, j) be the number of vertical links
established between layers i and j. Let the switch−size−inpi

and switch−size−outi be the number of input and output ports
of switch i. Let costi,j be the cost of establishing a physical
link between switches i and j.

In Algorithm 3, we show the use of hard and soft thresh-
olds when evaluating the cost of establishing a physical link
between switches i and j. In Steps 3 and 4, we assign a
cost of INF (infinity) for establishing a link across switches
in non-adjacent layers and for switches in layers that have
reached the maximum vertical link (max−ill) threshold. To
ensure meeting the maximum link constraint, we assign a
very high cost (denoted by SOFT−INF) for establishing links
between switches that are in layers having vertical links close
to the max−ill value, denoted by soft−max−ill (Steps 5 and
6). From experiments, we found that a reasonable value for
SOFT−INF to be ten times the maximum cost of any flow and
soft−max−ill to be few (2–3) links less than max−ill value.
We use a similar technique to meet the maximum switch size
constraints (Steps 10–12). By using these softer constraints,
first, we facilitate the path computation procedure to determine
valid paths when compared to only using the hard constraints.

When paths are computed, if it is not feasible to meet
the max−switch−size constraints, we introduce new switches
in the topology that are used to connect the other switches
together. These indirect switches help in reducing the number
of ports needed in the direct switches.

VII. Switch Position Computation

Once a topology for a particular switch count is obtained,
the next step is to find the latency and power consumption
on the wires. In order to do this, based on the input positions
of the cores, the optimal position of the switches needs to
be determined. For this, we model the problem as a linear
program (LP) [36].

Let us consider a topology with nsw switches. We denote
the co-ordinates of a switch i by (xsi, ysi), ∀i ∈ 1 · · · nsw. The

Algorithm 3 CHECK−CONSTRAINTS(i,j)

1: for i = 1 to nsw do
2: for j = 1 to nsw do
3: if |layeri−layerj| ≥ 2 or ill(layeri, layerj) ≥ max−ill

then
4: costi,j = INF

5: else if |layeri − layerj| = 1 and ill(layeri, layerj) ≥
soft−max−ill then

6: costij = SOFT−INF

7: else if switch−size−inpi + 1 ≥ max−switch−size or
switch−size−outj + 1 ≥ max−switch−size then

8: costi,j = INF

9: else if switch−size−inpi + 1 ≥
soft−max−switch−size or switch−size−outj + 1 ≥
soft−max−switch−size then

10: costi,j = SOFT−INF

11: end if
12: end for
13: end for

goal of the LP is to determine the values of xsi and ysi, for all
switches in the particular topology. The sum of the Manhattan
distances between a switch i and a core k is given as follows:

coredisti,k =

⎧
⎨

⎩

|xsi − xck| + |ysi − yck| if switchi connected
to corek

0 otherwise.
(2)

The sum of the Manhattan distances between a switch i and
switch j to which it is connected to is given as follows:

swdisti,j =

⎧
⎨

⎩

|xsi − xsj| + |ysi − ysj| if switchi connected
to switchj

0 otherwise.
(3)

The above equations can be easily represented as a set of
linear equations [36]. Let bw−sw2corei,k and bw−sw2swi,j

be the total bandwidth of traffic flows between switch i and
core k and switches i and j, respectively. To minimize the
total power consumption of the links, we need to minimize
the length of the links weighted by their bandwidth values, so
that higher bandwidth links are shorter than lower bandwidth
ones. Formulating the objective function mathematically, we
get the following:

obj =
∑

∀i

∑
∀k coredisti,k ∗ bw−sw2corei,k

+
∑

∀i

∑
∀j swdisti,j ∗ bw−sw2swi,j.

(4)

The LP for optimization is written as follows:

minimize obj

subject to Equations 2 − 4
xsi, ysi ≥ 0 ∀i ∈ 1 · · · nsw.

(5)

We use the lp−solve package [37] to obtain the optimum
solution for the switch co-ordinates. Even for big applications
(65 cores, tens of switches), the optimal solution is obtained
in few seconds. We also pipeline long links to support full
throughput on the NoC and add NIs to connect the cores to
the network. The resulting design is a valid floorplan of the

SEICULESCU et al.: SUNFLOOR 3D: A TOOL FOR NETWORKS ON CHIP TOPOLOGY SYNTHESIS FOR 3-D SYSTEMS ON CHIPS 1995

Fig. 10. Power consumption in 2-D.

Fig. 11. Power consumption in 3-D.

Fig. 12. Wire length distributions.

Fig. 13. Most power-efficient topology (Phase 1).

Fig. 14. Most power-efficient topology layer-by-layer (Phase2).

NoC. The TSV macros do not need to be included in the LP
as TSVs split the wires in two segments, both carrying the
same bandwidth. Therefore, the placement of the TSV macro
is more relaxed.

However, placing the components at the ideal positions may
lead to overlap with the already placed cores. To remove such
overlaps, we consider one switch or TSV macro at a time.
We try to find a free space near its ideal location to place
it. In the case of the switches, the area in which we look
for free space is the same for all of the switches, as it is
given as a constant to the floorplanning routine. In case of
the TSV, the area in which we look depends on the blocks
the TSV is connected to as explained before. If no space is
available, we displace the already placed blocks from their
positions in the x or y direction by the size of the component,
creating space. Moving a block to create space for the new
component can cause overlap with other already placed blocks.
We iteratively move the necessary blocks in the same direction
as the first block, until we remove all overlaps. As more
components are placed, they can re-use the gap created by
the earlier components. As some switches can cause thermal
hotspots, a more advanced thermal aware floorplanning routine
can try to find position of switches near cooler components, so
that the thermal distribution is more uniform. Several existing
works, which are complementary to ours, present methods that
address this issue [21]–[23]. However, integrating such works
with ours is beyond the scope of this paper. In the experimental
section, we compare how this custom routine for floorplanning
compares to a standard floorplanner that is constrained to only
insert the network components without changing the relative
placement of the initial cores. The standard floorplanner that
we used to compare against is Parquet [38]. The floorplanner
was used on each layer separately. We feed the core and switch
positions as an input solution to the floorplanner. We allow it to
move the switches around the cores, maintaining the relative
positions of the cores and minimizing the movement of the
switches from the optimal positions computed by the LP.

VIII. Experiments and Case Studies

For the experiments, the NoC component library from [35]
is used. The power and latency values of the switches and links

1996 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010

Fig. 15. Resulting 3-D floorplan with switches for the topology from Fig. 13.

Fig. 16. Initial positions for D26−media.

of the library are determined from post-layout simulations,
based on 65 nm low power libraries. The vertical interconnects
using TSVs are implemented based on the models from [34].
In [34], the reported delay values for TSV placed in a tightly
packed TSV bundle are 16 ps and 18.5 ps (for silicon on
insulator and bulk silicon, respectively). The considered TSVs
have a diameter of 4 µm and a pitch of 8 µm. When compared
against the maximum unrepeated planar link length of 1.5 mm
in Metal 2 or Metal 3 for the same technology, the authors
show that the vertical links have much lower resistance and
capacitance (an order of magnitude reduction for the resistance
as well as for the capacitance). As a consequence, even tightly
packed TSVs are substantially faster and more power efficient
than moderate planar links.

A. Multimedia SoC Case Study

We consider a benchmark of a realistic multimedia and
wireless communication SoC for case study (referred to as
D−26−media). The benchmark contains 26 cores with irreg-
ular sizes, and performs based-band and multimedia process-
ing. The communication graph of the benchmark is shown
in Fig. 9. The system includes ARM, DSP cores, multiple
memory banks, DMA engine and several peripheral devices.
The cores are manually mapped on to three layers in 3-D.
For comparisons, we also consider a 2-D implementation of
the benchmark. The initial positions of the cores in each layer
of the 3-D and for the 2-D design are obtained using existing
tools [38]. For fair comparisons, we use the same objectives of
minimizing area and wire-length when obtaining the floorplan

for both the cases. To synthesize the topologies for the 2-D
case, we use the synthesis flow developed earlier [16].

In Figs. 10 and 11, we present the power consumption of the
NoC topologies (power consumption on switches and links)
synthesized by our tools for different switch counts for both
cases. In all the experiments, we set the data width of the NoC
links to 32 bits, to match the core data widths. The frequency
for which the topologies are generated has to be given as an
input. A range of frequencies can also be swept by the tool
to explore more design points. However, for this benchmark,
the best power points are obtained for topologies designed
at the lowest possible operating frequency, which was found
by the tool to be 400 MHz. Higher operating frequency can
be used (usually with a higher cost in power consumption).
We use a max−ill constraint of 25 links for this and the
experiments in the next section. In Section VIII-E, we study
the impact of varying this constraint.

When very few switches are used in the design, they need to
have more I/O ports, as they need to connect to more cores. A
large switch can only support a low operating frequency, as the
critical path inside the switch increases with its size. In order
to meet the 400 MHz requirement, we could only obtain valid
topologies with three or more switches, thus the plots starts
at three switches. In the plots, we show the switch, switch-to-
switch link, and core-to-switch link power consumption values
as well. For this benchmark, we can observe a power saving
of 24% for the 3-D case with respect to the 2-D case. This
is due to the fact that the long horizontal wires in a 2-D
design are replaced by shorter vertical wires. In Fig. 12, we

SEICULESCU et al.: SUNFLOOR 3D: A TOOL FOR NETWORKS ON CHIP TOPOLOGY SYNTHESIS FOR 3-D SYSTEMS ON CHIPS 1997

Fig. 17. Comparison with layer-by-layer.

TABLE I

2-D vs. 3-D NoC Comparison

Benchmark Power (mW) Latency (cyc)
Link Power Switch Power Total Power
2-D 3-D 2-D 3-D 2-D 3-D 2-D 3-D

D−36−4 150 41.5 65 70.5 215 112 3.28 3.14
D−36−6 154.5 43.5 76.5 82 230 125.5 3.57 3.5
D−36−8 215 55.5 105 104.5 320 160 4.37 3.65
D−35−bot 68 36.2 48 43.3 116 79.5 6.04 4.2
D−65−pipe 106 104 63 58 169 162 2.53 2.57
D−38−tvopd 52.5 22.67 37 38.11 89.5 60.78 4 3.6

show the wire-length distribution of the links in 2-D and 3-
D cases. From the figure, as expected, the 2-D design has
many long wires. In Figs. 13 and 15, we present the most
power-efficient topology synthesized by our tool using Phase
1 of the algorithm and the floorplan of the cores and network
components for the 3-D case. The original placement of the
cores for this benchmark is shown in Fig. 16.

In order to show how Phase 2 of the algorithm performs,
we constrained the tool to use the layer-by-layer approach and
we ran it on the same benchmark. The topology for the best
power point is presented in Fig. 14. Even though we used the
same max−ill constraint of 25 links as in the previous case,
it can be seen from the figure that the algorithm used a lot
less inter-layer links. This is also an intuitive example of why
Phase 2 of the algorithm is able to produce valid topologies
even for tight max−ill constraints where Phase 1 fails. There
is also a price to pay for using fewer interlayer-links. In the
case of the Phase 2 topology, cores on different layers will
have a zero load latency of at least two cycles as they have
to go through two switches. For Phase 1, cores on different
layers are connected to the same switch. So, even if two cores
are on different layer they could still have a zero load latency
of just one cycle.

B. Comparison Between Phase 1 and Phase 2

We applied our synthesis procedure on varied set of bench-
marks to validate the gains under different application sce-
narios. We consider three distributed benchmarks with 36
cores (18 processors and 18 memories), D−36−4, D−36−6
and D−36−8, where each processor has four, six, and eight
traffic flows going to the memories. The total bandwidth is
the same in the three benchmarks. We consider a benchmark,

Fig. 18. Area plot for different switch counts.

D−35−bot, that models bottleneck communication, with 16
processors, 16 private memories (one processor is connected
to one private memory), and three shared memories to which
all the processors communicate. We also consider two bench-
marks where all the cores communicate in a pipeline fashion,
65 core (D−65−pipe) and 38 core designs (D−38−tvopd). In
the last two benchmarks, each core communicates only to one
or few other cores.

In Fig. 17, we show the power consumption of the topolo-
gies synthesized using Phase 2 of the algorithm, with respect
to topologies synthesized using Phase 1 for the different
benchmarks. Since in Phase 2 cores in a layer are connected
to switches in the same layer, the inter-layer traffic needs to
traverse more switches to reach the destination. This leads
to an increase in power consumption and latency. As seen
from Fig. 17, Phase 1 can generate topologies that lead to a
40% reduction in NoC power consumption, when compared
to Phase 2. However, Phase 2 can generate topologies with a
much tighter inter-layer link constraint.

C. 2-D vs. 3-D Comparison

The power consumption for the least power design points
for 2-D and 3-D, as well as the average latency, are presented
in Table I. Most of the power savings obtained in 3-D
are due to shorter wires. For this reason, we can observe large
power savings for the distributed benchmarks, where there
are traffic flows to many different cores. We can also notice
reasonable power savings for the bottleneck design, because
the wires going to shared memories are long, though the traffic
to the shared memories is smaller than to the private memories.
For the pipelined benchmarks, lower savings are obtained. For
the different benchmarks, on average, a 38% power reduction
and 13% latency reduction are obtained in the 3-D case when
compared to a 2-D implementation.

D. Floorplanning Study

To create a floorplan for a real SoC is quite a complicated
process that can require several interactions between the
designed and the floorplanning tool. Since the main goal of
our tool is to design the NoC and not to create floorplans, we
take the initial positions of the cores as input. We then only
insert the NoC components as close as possible to their ideal
positions in the floorplan in such a way that we minimally
affect the initial positions of the cores.

1998 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010

Fig. 19. Area comparison for different benchmarks.

Fig. 20. Power comparison for different benchmarks.

Fig. 21. Impact of max−ill on power.

Fig. 22. Impact of max−ill on latency.

Fig. 23. Comparisons with Mesh.

Most of the time placing the NoC components at their
ideal positions will result in overlap with the initially placed
cores, especially if the floorplan is tightly packed. Initially,
we tried to use a standard floorplanner to remove the overlap.
We used the floorplanner from [38], which we have modified
in order to constrain it from swapping blocks, so that the
relative positions of the input cores remain the same after the
NoC insertion. This, however, leads to fairly poor results as
the floorplanner has problems to remove the overlap, keep
the cores close to their initial placement, and not swap any
of them. The floorplanner needs the ability to swap blocks
in order to create good floorplans; for this reason, this full
floorplanner is ideal for generating the initial placement, but
not for the NoC insertion. To achieve better results in inserting
the NoC components and removing the overlap, we designed a
custom floorplanning routine which we tuned for this specific
task alone.

In Fig. 18, we show a comparison between the standard
floorplanner and our custom routine for different switch counts
using th D−26−media benchmark. From the figure, it can
be seen that for some points even the standard floorplanner
performs well and that there is a better chance to get a
good floorplan when fewer switches are inserted. However,
the behavior of the constrained standard floorplanner is un-
predictable. A comparison between the best power points for
the different benchmarks using the two floorplanning methods
is shown in Fig. 19. Since the area has a direct impact on the
wire lengths and, consequently, on the power, we also present
a comparison of the power consumption for the considered
topologies in Fig. 20.

E. Impact of Inter-Layer Link Constraint and Comparisons
with Mesh

Imposing a stricter constraint on max−ill results in topolo-
gies having more switches. When there are more switches,
more cores in a layer are connected to a switch in the same
layer, reducing the number of inter-layer links. However, the
inter-layer traffic flows would need to traverse more switches,
thereby leading to higher power consumption and latency.
We perform topology synthesis for the D−36−4 design with
different max−ill constraint values, and the power, latency
values for the different points are presented in Figs. 21 and
22. With a tighter TSV constraint, the power consumption and
latency increases significantly, as more switches are needed in

SEICULESCU et al.: SUNFLOOR 3D: A TOOL FOR NETWORKS ON CHIP TOPOLOGY SYNTHESIS FOR 3-D SYSTEMS ON CHIPS 1999

the design. With less then ten inter-layer links, it is impos-
sible to build any topology and having a max−ill constraint
larger than 24 does not improve the results anymore. For the
D−26−media benchmark, we observe a similar trend for the
power consumption. However, the zero load latency is not
affected by tighter max−ill constraints, due to the nature of
the traffic of this benchmark.

For completeness, we compare power consumption of the
topologies generated by our procedure to a standard topology.
We generate best mapping (optimizing for power, meeting the
latency constraints) of the cores on to a mesh topology, and
remove any unused switch-to-switch links. Compared to this
optimized mesh topology, we obtain a large power reduction
for the custom topologies (an average of 51%), shown in
Fig. 23. Our experiments also showed that we obtain 21%
reduction in latency when compared to the optimized mesh.

Even though the algorithm explores a large space of solu-
tions, due to the use of efficient heuristics presented, all the
experiments could be performed in few hours (on a system
operating at 2 GHz). It takes a few seconds to build a topology
with few switches and the run time can go up 2 or 3 minutes
for topologies with many switches (50, 60 switches). The total
runtime on a benchmark depends on the frequency range and
switch count range that are swept. Also, it is important to note
that the synthesis algorithm has to be performed only once at
design time for a system and the timing overhead is negligible.

IX. Conclusion

NoCs are necessary to achieve a scalable communication
infrastructure in 3-D chips. The use of NoCs in 3D-ICs
introduces several new and challenging problems. Building a
custom NoC topology that meets the application communica-
tion requirements, as well as the 3-D technological constraints,
is a critical problem that needs to be addressed. In this
paper, we presented SunFloor 3D, a tool for NoC topology
synthesis for 3D-ICs. The tool also performs path computation,
assignment, and placement of network components in the
3-D layers. Our experiments on several realistic benchmarks
showed that the tool produces topologies that result in large
NoC power and latency savings (54% and 21%, respectively)
when compared to standard topologies. We also presented a
comparative analysis of NoCs in 2-D and 3-D, which showed
that 3-D integration can produce large interconnect power and
latency reduction (38% and 13%, respectively).

References

[1] L. Benini and G. De Micheli, “Networks on chips: A new SoC
paradigm,” IEEE Comput., vol. 35, no. 1, pp. 70–78, Jan. 2002.

[2] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet
switched interconnections,” in Proc. DATE, Mar. 2000, pp. 250–256.

[3] G. De Micheli and L. Benini, Networks on Chips: Technology and Tools,
1st ed. San Mateo, CA: Morgan Kaufmann, Jul. 2006.

[4] J. Hu, Y. Deng, and R. Marculescu, “System-level point-to-point com-
munication synthesis using floorplanning information,” in Proc. ASP-
DAC, 2002, p. 573.

[5] S. Murali and G. De Micheli, “An application-specific design method-
ology for STbus crossbar generation,” in Proc. DATE, 2005, pp. 1176–
1181.

[6] S. Pasricha, N. Dutt, E. Bozorgzadeh, and M. Ben-Romdhane, “Floor-
plan-aware automated synthesis of bus-based communication architec-
tures,” in Proc. DAC, 2005, pp. 565–570.

[7] J. Hu and R. Marculescu, “Exploiting the routing flexibility for en-
ergy/performance aware mapping of regular NoC architectures,” in Proc.
DATE, Mar. 2003, pp. 688–693.

[8] S. Murali and G. De Micheli, “SUNMAP: A tool for automatic
topology selection and generation for NoCs,” in Proc. DAC, 2004,
pp. 914–919.

[9] S. Murali and G. De Micheli, “Bandwidth constrained mapping of cores
on to NoC architectures,” in Proc. DATE, Feb. 2004, pp. 896–901.

[10] S. Murali, L. Benini, and G. De Micheli, “Mapping and physical
planning of networks on chip architectures with quality-of-service guar-
antees,” in Proc. ASPDAC, Jan. 2005, pp. 27–32.

[11] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli, “Effi-
cient synthesis of networks on chip,” in Proc. ICCD, Oct. 2003,
pp. 146–150.

[12] T. Ahonen, D. A. Sigüenza-Tortosa, H. Bin, and J. Nurmi, “Topology
optimization for application specific networks on chip,” in Proc. SLIP,
2004, pp. 53–60.

[13] K. Srinivasan, K. S. Chatha, and G. Konjevod, “An automated
technique for topology and route generation of application spe-
cific on-chip interconnection networks,” in Proc. ICCAD, 2005,
pp. 231–237.

[14] A. Hansson, K. Goossens, and A. Radulescu, “A unified approach
to mapping and routing on a combined guaranteed service and best-
effort network-on-chip architectures,” Philips Research, Eindhoven, The
Netherlands, Tech. Rep. 2005/00340, Apr. 2005.

[15] J. Xu, W. Wolf, J. Henkel, and S. Chakradhar, “A design methodology
for application-specific networks-on-chip,” ACM TECS, vol. 5, no. 2,
pp. 263–280, May 2006.

[16] S. Murali, P. Meloni, F. Angiolini, D. Atienza, S. Carta, L. Benini,
G. De Micheli, and L. Raffo, “Designing application-specific net-
works on chips with floorplan information,” in Proc. ICCAD, 2006,
pp. 355–362.

[17] W. J. Dally, “Performance analysis of k-ary n-cube interconnection
networks,” IEEE Trans. Comput., vol. 39, no. 6, pp. 775–785, Jun.
1990.

[18] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, “3-D ICs: A
novel chip design for deep-submicrometer interconnect performance and
systems-on-chip integration,” Proc. IEEE, vol. 89, no. 5, pp. 602–633,
May 2001.

[19] E. Beyne, “The rise of the 3rd dimension for system integration,” in
Proc. Interconnect Technol. Conf., Jun. 2006, pp. 1–5.

[20] B. Goplen and S. Sapatnekar, “Thermal via placement in 3-D ICs,” in
Proc. Int. Symp. Physical Design, 2005, pp. 167–174.

[21] J. Cong, J. Wei, and Y. Zhang, “A thermal-driven floorplanning algorithm
for 3-D ICs,” in Proc. ICCAD, Nov. 2004, pp. 306–313.

[22] W.-L. Hung, G. M. Link, Y. Xie, N. Vijaykrishnan, and M. J. Irwin, “In-
terconnect and thermal-aware floorplanning for 3-D microprocessors,” in
Proc. ISQED, Mar. 2006, pp. 98–104.

[23] P. Zhou, Y. Ma, Z. Li, R. P. Dick, L. Shang, H. Zhou, X. Hong,
and Q. Zhou, “3D-STAF: Scalable temperature and leakage aware
floorplanning for 3-D integrated circuits,” in Proc. ICCAD, Nov. 2007,
pp. 590–597.

[24] D. H. Kim, K. Athikulwongse, and S. K. Lim, “A study of through-
silicon-via impact on the 3-D stacked IC layout,” in Proc. IEEE Int.
Conf. Comput.-Aided Design, 2009, pp. 674–680.

[25] C. Guedj, N. Claret, V. Arnal, M. Aimadeddine, and J. P. Barnes,
“Evidence for 3-D/2-D transition in advanced interconnects,” in Proc.
IRPS, 2006, pp. 64–68.

[26] A. Vignon, S. Cosemans, W. Dehaene, P. Marchal, and M. Facchini,
“A novel DRAM architecture as a low leakage alternative for SRAM
caches in a 3-D interconnect context,” in Proc. Des. Autom. Test Eur.
Conf. Exhibit., 2009, pp. 929–933.

[27] V. F. Pavlidis and E. G. Friedman, “3-D topologies for networks-
on-chip,” IEEE TVLSI, vol. 15, no. 10, pp. 1081–1090, Oct.
2007.

[28] R. Weerasekara, L.-R. Zheng, D. Pamunuwa, and H. Tenhunen, “Ex-
tending systems-on-chip to the third dimension: Performance, cost and
technological tradeoffs,” in Proc. ICCAD, 2007, pp. 212–219.

[29] B. Feero and P. P. Pande, “Performance evaluation for 3-D networks-
on-chip,” in Proc. ISVLSI, 2007, pp. 305–310.

[30] C. Addo-Quaye, “Thermal-aware mapping and placement for 3-D NoC
designs,” in Proc. SOCC, Sep. 2005, pp. 25–28.

[31] J. Kim, C. Nicopoulos, D. Park, R. Das, Y. Xie, V. Narayanan, M. S.
Yousif, and C. R. Das, “A novel dimensionally-decomposed router for

2000 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010

on-chip communication in 3-D architectures,” ISCA, vol. 35, no. 2, pp.
138–149, May 2007.

[32] F. Li, C. Nicopoulos, T. Richardson, X. Yuan, V. Narayanan, and
M. Kandemir, “Design and management of 3-D chip multiprocessors
using network-in-memory,” ISCA, vol. 34, no. 2, pp. 130–141, May
2006.

[33] D. Park, S. Eachempati, R. Das, A. K. Mishra, X. Yuan, N. Vijaykrish-
nan, and C. R. Das, “MIRA: A multilayered on-chip interconnect router
architecture,” in Proc. ISCA, Jun. 2008, pp. 251–261.

[34] I. Loi, F. Angiolini, and L. Benini, “Supporting vertical links for 3-D
networks on chip: Toward an automated design and analysis flow,” in
Proc. Nanonets, Sep. 2007.

[35] S. Stergiou, F. Angiolini, S. Carta, L. Raffo, D. Bertozzi, and G. De
Micheli, “× pipesLite: A synthesis oriented design library for networks
on chips,” in Proc. DATE, 2005, pp. 1188–1193.

[36] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[37] S. Skiena. (1997). The Algorithm Design Manual [Online]. Berlin,
Germany: Springer-Verlag. Available: http://sourceforge.net/projects/
lpsolve

[38] S. N. Adya and I. L. Markov, “Fixed-outline floorplanning: Enabling
hierarchical design,” IEEE TVLSI, vol. 11, no. 6, pp. 1120–1135, Dec.
2003.

[39] N. Miyakawa, “A 3-D prototyping chip based on a wafer-level stacking
technology,” in Proc. ASPDAC, 2009, pp. 416–420.

[40] I. Loi, S. Mitra, T. H. Lee, S. Fujita, and L. Benini, “A low-overhead
fault tolerance scheme for TSV-based 3-D network on chip links,” in
Proc. ICCAD, 2008, pp. 598–602.

[41] C. Lin, H. Zhou, and C. Chu, “A revisit to floorplan optimization by
Lagrangian relaxation,” in Proc. ICCAD, 2006, pp. 164–171.

Ciprian Seiculescu received the Bachelor degree in
automation and applied informatics from the Univer-
sity Politehnica of Timisoara, Timisoara, Romania,
and the Engineering degree in computer science
from the Swiss Federal Institute of Technology,
Lausanne, Switzerland. He is currently pursuing the
Ph.D. degree from the Swiss Federal Institute of
Technology.

Srinivasan Murali received the M.S. and Ph.D.
degrees in electrical engineering from Stanford Uni-
versity, Palo Alto, CA, in 2007.

He is a Co-Founder and the Chief Technical
Officer with iNoCs, Lausanne, Switzerland. He is
also currently a Research Scientist with Ecole Poly-
technique Fédérale de Lausanne, Lausanne. He has
authored a book and presented over 40 publications
in leading conferences and journals. His current
research interests include interconnect design for
systems-on-chips, thermal modeling, and reliability

of multi-core systems.
Dr. Murali is a recipient of the European Design and Automation Associ-

ation Outstanding Dissertation Award in 2007 for his work on interconnect
architecture design. He received the Best Paper Award at the Design Automa-
tion and Test in Europe Conference in 2005. One of his papers has also been
selected as one of “The Most Influential Papers of 10 Years DATE.”

Luca Benini (S’94–M’97–SM’04–F’06) received
the Ph.D. degree in electrical engineering from Stan-
ford University, Stanford, CA, in 1997.

He is currently a Professor with the University
of Bologna, Bologna, Italy. He also holds a Vis-
iting Faculty Position with the Ecole Polytech-
nique Fédérale de Lausanne, Lausanne, Switzerland.
He has published more than 300 papers in peer-
reviewed international journals and conferences,
three books, several book chapters, and holds two
U.S. patents. His current research interests include

the design of systems for ambient intelligence from multiprocessor systems-
on-chip/networks-on-chip to energy-efficient smart sensors and sensor net-
works, biochips for the recognition of biological molecules, bioinformatics for
the elaboration of the resulting information, and more advanced algorithms
for in silico biology.

Dr. Benini has been the Program Chair and the Vice Chair of the Design
Automation and Test in Europe Conference. He was a member of the
2003 MEDEA and EDA Roadmap Committee. He is a member of the IST
Embedded System Technology Platform Initiative (ARTEMIS), a working
group on design methodologies, is a member of the Strategic Management
Board of the ARTIST2 Network of Excellence on Embedded System, and is a
member of the Advisory Group on Computing Systems of the IST Embedded
Systems Unit. He has been a member of the technical program committees
and organizing committees of several technical conferences, including the
Design Automation Conference, the International Symposium on Low Power
Design, and the Symposium on Hardware Software Codesign. He is an
Associate Editor of the IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems and the ACM Journal on Emerging
Technologies in Computing Systems.

Giovanni De Micheli (S’79–M’83–SM’89–F’94)
received the Nuclear Engineer degree from the Po-
litecnico di Milano, Milan, Italy, in 1979, and the
M.S. and Ph.D. degrees in electrical engineering and
computer science from the University of California,
Berkeley, in 1980 and 1983, respectively.

He is currently a Professor and the Director of the
Institute of Electrical Engineering and of the Inte-
grated Systems Center, EPFL, Lausanne, Switzer-
land. He is the Program Leader of the Nano-Tera.ch
Program. He was a Professor with the Electrical

Engineering Department, Stanford University, Stanford, CA. He is the author
of Synthesis and Optimization of Digital Circuits (New York: McGraw-Hill,
1994), and a co-author and/or a co-editor of eight other books and over 400
technical articles. His current research interests include several aspects of
design technologies for integrated circuits and systems, such as synthesis for
emerging technologies, networks on chips, and 3-D integration. He is also
interested in heterogeneous platform designs including electrical components
and biosensors, as well as in data processing of biomedical information.

Prof. Micheli has been serving IEEE in several capacities, including Division
1 Director from 2008 to 2009, Co-Founder and President Elect of the IEEE
Council on EDA from 2005 to 2007, President of the IEEE CAS Society
in 2003, and the Editor-in-Chief of the IEEE Transactions on CAD/ICAS

from 1987 to 2001. He has been the Chair of several conferences, including
DATE in 2010, pHealth in 2006, VLSI SOC in 2006, DAC in 2000, and
ICCD in 1989. He is the recipient of the 2003 IEEE Emanuel Piore Award for
contributions to computer-aided synthesis of digital systems. He is a Fellow of
the ACM. He received the Golden Jubilee Medal for outstanding contributions
to the IEEE CAS Society in 2000. He received the D. Pederson Award for
the Best Paper on the IEEE Transactions on CAD/ICAS in 1987, two Best
Paper Awards at the Design Automation Conference in 1983 and 1993, and
a Best Paper Award at the DATE Conference in 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d00610074006300680020007400680065002000220053007500670067006500730074006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

