
Packetization and Routing Analysis of

On-Chip Multiprocessor Networks

Terry Tao Ye a Luca Benini b Giovanni De Micheli c

a Computer Systems Lab, Stanford University, taoye@stanford.edu

b DEIS, University of Bologna, lbenini@deis.unibo.it
c Computer Systems Lab, Stanford University, nanni@stanford.edu

Abstract

Some current and most future Systems-on-Chips use and will use network ar-
chitectures/protocols to implement on-chip communication. On-chip networks bor-
row features and design methods from those used in parallel computing clusters and
computer system area networks. They differ from traditional networks because of
larger on-chip wiring resources and flexibility, as well as constraints on area and
energy consumption (in addition to performance requirements). In this paper, we
analyze different routing schemes for packetized on-chip communication on a mesh
network architecture, with particular emphasis on specific benefits and limitations of
silicon VLSI implementations. A contention-look-ahead on-chip routing scheme is
proposed. It reduces the network delay with significantly smaller buffer requirement.
We further show that in the on-chip multiprocessor systems, both the instruction
execution inside node processors, as well as data transaction between different pro-
cessing elements, are greatly affected by the packetized dataflows that are transported
on the on-chip networks. Different packetization schemes affect the performance and
power consumption of multiprocessor systems. Our analysis is also quantified by the
network/multiprocessor co-simulation benchmark results.

Key words: Networks-on-Chip, On-Chip Multiprocessors, On-Chip
Communication, On-Chip Networks

1 Introduction

Driven by the advances of semiconductor technology, future shared-memory
multiprocessor systems-on-chip (MPSoC) [1] will employ billions of transistors
and integrate hundreds, or even more, of processing elements (PEs) on a single
chip. The design of reliable, low-energy and high-performance interconnection

Preprint submitted to Elsevier Science 11 September 2003

of such elements will pose unprecedented problems. Traditional on-chip com-
munication structures (i.e., the buses) used in many of today’s SoC designs
are limited by the throughput and energy consumption. Ad-hoc wire routing
in ASICs is facing more and more challenging interconnect issues (i.e., wire
delay, signal integrity, etc.) in deep sub-micron domain [2]. Next generation
MPSoC designs need a novel on-chip communication architecture that can
provide scalable and reliable point-to-point data transportation [3][4][5].

As a new SoC design paradigm, on-chip network architectures, or networks-on-
chip (NoC), will support novel solutions to many of today’s SoC interconnect
problems. For example, multiple dataflows can be supported concurrently by
the same communication resources, data integrity can be enhanced by error
correction and data restoration, and components are more modularized for IP
reuse.

On-chip multiprocessor network architectures may adopt concepts and design
methodologies from computer networks, namely from system area networks
(SAN) and parallel computer clusters (PCP) (In particular, MPSoC networks
have many performance requirements similar to those in parallel computer
networks). Like computer networks, on-chip networks may take advantage of
data packetization to ensure fairness of communication [6] [7]. For example, in
on-chip networks, packets may contain headers and payloads, as well as error
correction and priority setting information. This strongly contrasts with the
ad-hoc physical wire routing used in (non-networked) ASICs. Packet routes
can either be setup before transmission, and kept unchanged through the
entire message transmission, or each packet may be free to choose an appro-
priate route to destination. In some cases, contention may pose problems, and
proper arbitration schemes can be used to manage and optimize the network
utilization.

Nevertheless, silicon implementation of networks requires a different perspec-
tive. On-chip network architectures and protocols have to deal with the ad-
vantages and limitations of the silicon fabric. Chip-level communication is
localized between processing elements. On-chip networks do not need to fol-
low the standard schemes for communication since they can use lighter and
faster protocol layers. MPSoC processing elements exchange data through the
on-chip interconnect wires that can handle separately, if desired, data and
control signals. We believe these different aspects will require new method-
ologies for both the on-chip switch designs as well as the routing algorithm
designs. In particular, we propose that the following directions in the MPSoC
networks-on-chip design should be explored:

• Data packetization – On-chip multiprocessor systems consist of multi-
ple processing elements (PEs) and storage arrays (SAs). We refer to the
PEs and SAs as nodes. These nodes are interconnected by a dedicated on-
chip network. The dataflow traffic on the network comes from the inter-node

2

transactions. Therefore, the performance and power consumption of on-chip
communication are not only determined by the physical aspects of the net-
work (e.g., voltage swing, the wire delay and fan-out load capacitance, etc.),
but also depend on the packetized data flows on the network. In particular,
the interactions between different packets and processor nodes will greatly
affect the system performance as well as power consumption

• Network architecture – The on-chip network architecture should utilize
the abundant wiring resources available on silicon. Control signals need
not be serialized and transmitted along with data, as in the case of many
computer cluster networks, but can run on dedicated control wires (Fig
1). The usage of buffers should be limited to reduce the area and energy
consumption.

Fig. 1. Dedicated Control Wires and Data Paths for On-Chip Network

• Routing algorithm – On-chip routing should use those algorithms that
do not require substantial on-chip buffer usage. At the same time, the
network state (including contention information) can be made available
through dedicated control wires. From this perspective, it is possible to
achieve contention-look-ahead to reduce contention occurrence and increase
bandwidth.

The paper is organized as follows: Section 2 will first briefly describe the
MPSoC and its on-chip network architectures. Because the on-chip dataflow
greatly affects the system level performance and power consumption, we will
analyze the source, packetization and routing issues of the on-chip data traf-
fic in Section 3. Based on this analysis, in Section 4, we will propose our
contention-look-ahead routing technique along with the on-chip switch archi-
tecture design. We describe the experimental platform in Section 5 and use
this platform to compare the proposed contention-look-ahead routing tech-
nique with other routing schemes in Section 6. Packetized dataflows play a
critical role in MPSoCs. In Section 7 and 8, we will further perform quan-
titative analysis on the packet size impact on MPSoC performance as well
as energy consumption. As a general design guideline, overall trends are also
summarized qualitatively in Section 9.

3

2 MPSoC Architecture and Networks

The inter-node communication between multiprocessors can be implemented
by either message passing or memory sharing. In the message passing MPSoCs,
data transactions between nodes are performed explicitly by the communica-
tion APIs, such as send() or receive(). These API commands require special
protocols to handle the transaction, and thus create extra communication over-
head. In comparison, in shared memory (in some case, shared level 2 cache)
MPSoCs, data transactions can be performed implicitly through memory ac-
cess operation [10]. Therefore, shared-memory MPSoC architectures have been
widely used in many of today’s high performance embedded systems. We will
briefly describe some examples as follows.

2.1 Shared Memory MPSoC Examples

Daytona [6] is a single chip multiprocessor developed by Lucent. It con-
sists of four 64-bit processing elements that generate transactions of differ-
ent sizes. Daytona targets on the high performance DSP applications with
scalable implementation choices. The inter-node communication is performed
by the on-chip bus with split transactions. Piranha [8] project is developed
by DEC/Compaq, it integrates eight alpha processors on a single chip and
uses packet routing for the on-chip communication. The Stanford Hydra [9]
chip contains four MIPS-based processors and uses shared level-2 cache for
inter-node communication.

All these architectures utilize shared memory (or cache) approach to perform
data transactions between processors, and thus achieve high performance with
parallel data processing ability. In this paper, we will use the shared memory
MPSoC platform to analyze different aspects of on-chip network architectures.

2.2 MPSoC Architecture

A typical shared-memory on-chip multiprocessor system is shown in Fig. 2.
It consists of several node processors or processing elements connected by an
on-chip interconnect network. Each node processor has its own CPU/FPU
and cache hierarchy (one or two levels of cache). A read miss in L1 cache will
create an L2 cache access, and a miss in L2 cache will then need a memory
access. Both L1 and L2 cache may use write-through or write-back for cache
updates.

The shared memories are associated with each node, but they can be physically
placed into one big memory block. The memories are globally addressed and

4

Fig. 2. MPSoC Architecture

accessible by the memory directory. When there is a miss in L2 cache, the L2
cache will send a request packet across the network asking for memory access.
The memory with the requested address will return a reply packet containing
the data to the requesting node. When there is a cache write-through or write-
back operation, the cache block that needs to be updated is encapsulated in
a packet and sent to the destination node where the corresponding memory
resides.

Cache coherence is a very critical issue in shared-memory MPSoC. Because
one data may have several copies in different node caches, when the data in
memory is updated, the stale data stored in each cache needs to be updated.
There are two methods of solving the cache coherence problem: 1) cache update
updates all copies in cache when the data in memory is updated; 2) cache
invalidate invalidates all copies in cache. When the data is read the next time,
the read will become a miss and consequently need to fetch the updated data
from the corresponding memory.

2.3 On-Chip Networks

Because of different performance requirements and cost metrics, many differ-
ent multiprocessor network topologies are designed for specific applications.
MPSoC networks can be categorized as direct networks and indirect networks
[11]. In direct network MPSoCs, node processors are connected directly with
each other by the network. Each node performs dataflow routing as well as
arbitration. In indirect network MPSoCs, node processors are connected by
one (or more) intermediate node switches. The switching nodes perform the
routing and arbitration functions. Therefore, indirect networks are also often
referred to as multistage interconnect networks (MIN). Although some direct
networks and indirect networks may be equivalent in functionality, e.g., if each
node processor has one dedicated node switch, this node switch can either be

5

embedded inside the node processor, or be constructed outside. Nevertheless,
direct and indirect topologies have different impact on network physical im-
plementation, we still distinguish them as two categories in this paper.

Many different on-chip network architectures have been proposed for different
MPSoC designs. Examples include, but are not limited to, the following:

(1) The mesh and torus networks, or orthogonal networks, are connected in
k-ary n-dimensional mesh (k-ary n-mesh) or k-ary n-dimensional torus
(k-ary n-cube) formations. Because of the simple connection and easy
routing scheme provided by adjacency, orthogonal networks are widely
used in parallel computing platforms. Mesh and torus topologies can be
implemented both as direct networks and indirect networks. A direct
torus/mesh architecture was analyzed by [4] for the feasibility of on-chip
implementation. In the architecture proposed in [4], each PE is placed as
a tile and connected by the network (either a mesh or torus topology)(Fig.
3a). Each tile can perform packet routing and arbitration independently.
The network interfaces are located on the four peripherals of each tile
node.

(2) The Nostrum network is a two-dimensional indirect mesh network [13]
(Fig. 3b). In this proposed on-chip implementation, a dedicated switch
network was used to perform the routing function and act as a network
interface for each node.

Fig. 3. The Two-Dimensional Mesh Networks a) Proposed by Dally, et,
al. 2) Proposed by Kumar, et. al.

(3) The Eclipse (embedded chip level integrated parallel super computer) sys-
tem [14] uses a sparse 2D mesh network, in which the number of switches
is at least the square of the number of processing resources divided by
four. Eclipse uses cacheless shared-memories, so it has no cache coherence
problems, and communication will not jam the network even in the case
of heavy random access traffic.

(4) The SPIN (scalable, programmable, integrated network) is an indirect
network [15] (Fig. 4a). The network uses the fat-tree topology to connect

6

each node processor. Compared with the two-dimensional mesh, in fat-
tree networks, the point-to-point delays are bounded by the depth of the
tree, i.e., in the topology in Fig. 4a, communication between any pro-
cessor nodes requires at most three switch stages when an appropriate
routing algorithm is applied.

(5) The Octagon network was proposed by [16] (Fig. 4b) in the context of
network processor design. It is a direct network. Similar to that in the fat-
tree topology, the point-to-point delay is also determined by the relative
source/terminus locations, and communication between any two nodes
(within an octagon subnetwork) requires at most two hops (intermediate
links).

Fig. 4. a) SPIN networks b) Octagon Networks

2.4 On-chip Network Characteristics

On-chip networks are fabricated on a single chip and benefit from data locality.
In comparison, networked computers are physically distributed at different
locations. Although many of the above on-chip network architectures adopt
the topology from computer networks, e.g., system area networks and parallel
computer clusters. Many assumptions in computer networks may no longer
hold for on-chip networks.

(1) Wiring Resources

In computer networks, computers are connected by cables. The number
of wires encapsulated in a cable is limited (e.g., CAT-5 Ethernet cable
has 8 wires, parallel cable in PC peripheral devices has 25 wires, etc.).
Binding more wires in a cable is not physically and practically viable.
Because of the wiring limitation, in many of today’s computer networks,
data are serialized in fixed quanta before transmission.

In comparison, the wire connection between components in SoC is only
limited by the switching and routing resources. In today’s 0.13µm semi-
conductor process, the metal wire pitch varies from 0.30µm to 0.50µm,
while 8 metal layers are available. Thus a 100µm×100µm switch-box can

7

accommodate hundreds of wires in any direction (i.e., layers). The cost
of adding more routing layers continues to decrease as the VLSI process
technology advances. Therefore, physical wire density is not the limiting
factor for future SoC designs.

(2) Buffers on Networks

Limited wiring resources tends to create contention and limit through-
put. Computer networks use heavily buffers to compensate for wire lim-
itation. Buffers provide temporary storage when contention occurs, or
when the dataflow exceeds the network throughput. Network switches
and routers use a fairly large amount of buffer spaces. These buffers are
implemented with SRAMs and DRAMs. The buffer size can be as big as
several hundred megabytes (e.g., in the case of network routers).

In comparison, on-chip networks should always balance the buffer us-
age with other architectural options, because on-chip buffers are imple-
mented by SRAMs or DRAMs, both consume significant power during
operation. Besides, on-chip SRAMs occupy a large silicon area, and em-
bedded DRAMs increase the wafer manufacturing cost. Since buffers are
expensive to implement and power-hungry during operation, on-chip net-
works should reduce the buffer size on the switches as much as possible.

Wiring resources and buffer usage are two important factors in designing MP-
SoC communication networks. Although the network performance and power
consumption are also dependent upon many other factors, in the following
sections we will explore the on-chip routing schemes that can best utilize the
on-chip wires while minimizing the buffer usage.

3 On-chip Network Traffic

Before we start to discuss the characteristics of MPSoC interconnect networks,
we need to study the traffic on the network. In particular, we should analyze
the composition of the packetized dataflows that are exchanged between MP-
SoC nodes.

Packets transported on NoCs consist of three parts. The header contains the
destination address, the source address, and the requested operation type
(READ, WRITE, INVALIDATE, etc). The payload contains the transported
data. The tail contains the error checking or correction code.

8

3.1 Sources of Packets

Packets traveling on the network come from different sources, and they can
be categorized into the following types:

(1) Memory access request packet. The packet is induced by an L2 cache
miss that requests data fetch from memories. The header of these packets
contains the destination address of the target memory (node ID and mem-
ory address) as well as the type of memory operation requested (memory
READ, for example). The address of the L2 cache is in the header as well,
as it is needed to construct the data fetch packet (in case of a READ).
Since there is no data being transported, the payload is empty.

(2) Cache coherence synchronization packet. The packet is induced by
the cache coherence operation from the memory. This type of packet
comes from the updated memory, and it is sent to all caches, each cache
will then update its content if it contains a copy of the data. The packet
header contains the memory tag and block address of the data. If the
synchronization uses the “update” method, the packet contains updated
data as payload. If the synchronization uses the “invalidate” method, the
packet header contains the operation type (INVALIDATE, in this case),
and the payload is empty.

(3) Data fetch packet. This is the reply packet from memory, containing
the requested data. The packet header contains the target address (the
node ID of the cache requesting for the data). The data is contained in
the packet payload.

(4) Data update packet. This packet contains the data that will be written
back to the memory. It comes from L2 cache that requests the memory
write operation. The header of the packet contains the destination mem-
ory address, and the payload contains the data.

(5) IO and interrupt packet. This packet is used by IO operations or in-
terrupt operations. The header contains the destination address or node
ID. If data exchange is involved, the payload contains the data.

3.2 Data Segmentation and Packet Size

From the analysis in Section 3.1, we can see most packets travel between
memories and caches, except those packets involved in I/O and interrupt op-
erations. Although packets of different types originate from different sources,

9

the length of the packets is determined by the size of the payload. In reality,
there are two differently sized packets on the MPSoC network, short packet
and long packet, as described below.

Short packets are the packets with no payloads, such as the memory access re-
quest packets and cache coherence packets (invalidate approach). These pack-
ets consist only header and tail. The request and control information can be
encoded in the header section.

Long packets are the packets with payloads, such as the data fetch packets,
the data update packets and the cache coherence packets used in the update
approach. These packets travel between caches and memories. The data con-
tained in the payload are either from cache block, or they are sent back to the
node cache to update the cache block. Normally, the payload size equals the
cache block size, as shown in Fig. 5.

Fig. 5. Packet Size and Cache Block Size

Packets with payload size different than the cache block size will increase
cache miss penalty. The reasons are two. 1) If each cache block is segmented
into different packets, it is not guaranteed that all packets will arrive at the
same time, and consequently the cache block cannot be updated at the same
time. Especially when the cache block size is big enough (as in the case of the
analysis in the following sections), it will take longer time to finish a cache
update operation. 2) If several cache blocks are to be packed into one packet
payload, the packet needs to hold its transmission until all the cache blocks
are updated. This will again increase the cache miss delay penalty.

In our analysis, we assume all the long packets contain the payload of one
cache block size. Therefore, the length of the long packets will determine the
cache block size of each node processor.

3.3 Packet Switching Techniques

In computer networks, many different techniques are used to perform the
packet switching between different nodes. Popular switching techniques in-
clude store-and-forward, virtual cut-through and wormhole. When these switch-

10

ing techniques are implemented in on-chip networks, they will have different
performance metrics along with different requirements on hardware resources.

3.3.1 Store-and-Forward Switching

In many computer networks, packets are routed in a store-and-forward fashion
from one router to the next. Store-and-forward routing enables each router to
inspect the passing packets, and therefore perform complex operations (e.g.,
content-aware packet routing). When the packet size is big enough, i.e., the
long packets, as analyzed above, store-and-forward routing not only introduces
extra packet delay at every router stage, but it also requires a substantial
amount of buffer spaces because the switches may store multiple complete
packets at the same time.

In on-chip networks, storage resources are very expensive in terms of area
and energy consumption. Moreover, the point-to-point transmission delay is
very critical. Therefore, store-and-forward approaches are dis-advantageous
for on-chip communication.

3.3.2 Virtual Cut Through Switching

Virtual cut through (VCT) switching is proposed to reduce the packet delays
at each routing stage. In VCT switching, one packet can be forwarded to the
next stage before its entirety is received by the current switch. Therefore, VCT
switching reduces the store-and forward delays. However, when the next stage
switch is not available, the entire packet still needs to be stored in the buffers
of the current switch.

3.3.3 Wormhole Switching

Wormhole routing was originally designed for parallel computer clusters [11]
because it achieves the minimal network delay and requires less buffer usage.
In wormhole routing, each packet is further segmented into flits (flow control
unit). The header flit reserves the routing channel of each switch, the body
flits will then follow the reserved channel, the tail flit will later release the
channel reservation.

One major advantage of wormhole routing is that it does not require the
complete packet to be stored in the switch while waiting for the header flit to
route to the next stages. Wormhole routing not only reduces the store-and-
forward delay at each switch, but it also requires much less buffer spaces. One
packet may occupy several intermediate switches at the same time. Because of
these advantages, wormhole routing is an ideal candidate switching technique
for on-chip multiprocessor interconnect networks.

11

3.4 Wormhole Routing Issues

Since wormhole switching has many unique advantages for on-chip network
implementation, we will discuss the deadlock and livelock issues in this context,
although these issues exist in other routing schemes as well.

3.4.1 Deadlock

In wormhole routing, one packet may occupy several intermediate switches at
the same time. Packets may block each other in a circular fashion such that
no packets can advance, thus creating a deadlock.

To solve the deadlock problem, the routing algorithms have to break the cir-
cular dependencies among the packets. Dimension-ordered routing [11][12],
with the constraints of turn rules, is one way to solve the deadlock: the pack-
ets always route on one dimension first, e.g., column first, upon reaching the
destination row (or column), and then switch to the other dimension until
reaching the destination. Dimension-ordered routing is deterministic: packets
will always follow the same route for the same source-destination pair. There-
fore, it cannot avoid contention. Whenever contention occurs, the packets have
to wait for the channel to be free.

Another way to solve the deadlock problem is to use virtual channels [11][17].
In this approach, one physical channel is split into several virtual channels.
Virtual channels can solve the deadlock problem while achieving high perfor-
mance. Nevertheless, this scheme requires a larger buffer space for the waiting
queue of each virtual channel. For example, if one channel is split into four
virtual channels, it will use four times as much buffer spaces as a single chan-
nel. The architecture proposed in [4] requires about 10K-bit of buffer space
on each edge of the tile. The virtual channel arbitration also increases the
complexity of circuit design.

3.4.2 Livelock

Livelock is a potential problem in many adaptive routing schemes. It happens
when a packet is running forever in a circular motion around its destination.
We will use the hot potato routing as an example to explain this issue.

Hot potato or deflection routing [19] is based on the idea of delivering a packet
to an output channel at each cycle. It requires the assumption that each switch
has an equal number of input and output channels. Therefore, input packets
can always find at least one output exit. Under this routing scheme, when
contention occurs and the desired channel is not available, the packet, instead
of waiting, will pick any alternative available channels to continue moving to

12

the next switch. However, the alternate channels are not necessarily along the
shortest routes.

In hot potato routing, if the switch does not serve as the network interface to
a node, packets can always find a way to exit, therefore the switch does not
need buffers. However, if the nodes send packets to the network through the
switch, input buffers are still needed, because the packet created by the node
also needs an output channel to be delivered to the network. Since there may
not be enough outputs for all input packets, either the packets from one of
the input or the packets from the node processor have to be buffered [11].

In hot potato routing, if the number of input channels is equal to the number of
output channels at every switch node, packets can always find an exit channel
and they are deadlock free. However, livelock is a potential problem in hot
potato routing. Proper deflection rules need to be defined to avoid livelock
problems. The deflected routes in hot potato routing increase the network
delays. Therefore, performance of hot potato routing is not as good as other
wormhole routing approaches [11]. This is also confirmed by our experiments,
as shown in Section 6.

4 Contention-Look-Ahead Routing

One big problem of aforementioned routing algorithms in Section 3.3 and 3.4
is that the routing decision for a packet (or header flit) at a given switch
ignores the status of the upcoming switches. A contention-look-ahead routing
scheme is one where the current routing decision is helped by monitoring the
adjacent switches, thus possibly avoiding blockages.

4.1 Contention Awareness

In computer networks, contention information in neighboring nodes cannot be
transmitted instantaneously, because inter-node information can only be ex-
changed through packets. In comparison, on-chip networks can take advantage
of dedicated control wires to transmit contention information.

A contention-aware hot-potato routing scheme is proposed in [18]. It is based
on a two-dimensional mesh NoCs. The switch architecture is similar to that in
[13]. Each switch node also serves as network interface to a node processor (also
called resource). Therefore, it has five inputs and five outputs. Each input has
a buffer that can contain one packet. One input and one output are used for
connecting the node processor. An internal FIFO is used to store the packets
when output channels are all occupied. The routing decision at every node is

13

based on the “stress values”, which indicate the traffic loads of the neighbors.
The stress value can be calculated based on the number of packets coming into
the neighboring nodes at a unit time, or based on the running average of the
number of packets coming to the neighbors over a period of time. The stress
values are propagated between neighboring nodes. This scheme is effective in
avoiding “hot spots” in the network. The routing decision steers the packets
to less congested nodes.

In the next section, we will propose a wormhole-based contention-look-ahead
routing algorithm that can “foresee” the contention and delays in the coming
stages using a direct connection from the neighboring nodes. It is also based on
a mesh network topology. The major difference from [18] is that information
is handled in flits, and thus large and/or variable size packets can be handled
with limited input buffers. Therefore, our scheme combines the advantages of
wormhole switching and hot potato routing.

4.2 Contention-look-ahead Routing

Fig. 6 illustrates how contention information benefits the routing decision.
When the header flit of a packet arrives at a node, the traffic condition of
the neighboring nodes can be acquired through the control signal wires. The
traffic signal can be either a one-bit wire, indicating whether the corresponding
switch is busy or free, or multiple-bit signal, indicating the buffer level (queue
length) of the input waiting queue. Based on this information, the packet can
choose the route to the next available (or shortest queue) switch. The local
routing decision is performed at every switch once the header flit arrives. It
is stored to allow the remaining flits to follow the same path until the tail flit
releases the switch.

Fig. 6. Adaptive Routing for On-Chip Networks

There are many alternate routes to the neighboring nodes at every intermedi-
ate stage. We call the route that always leads the packet closer to the desti-
nation a profitable route. Conversely, a route that leads the packet away from
the destination is called a misroute [11] (Fig. 7). In mesh networks, profitable
routes and misroutes can be distinguished by comparing the current node ID
with the destination node ID. In order to reduce the calculation overhead,
the profitable route and misroute choices for every destination are stored in

14

a look-up table, and the table is hard-coded once the network topology is set
up.

Fig. 7. Profitable Route and Misroute

Profitable routes will guarantee the shortest path from source to destination.
Nevertheless, misroutes do not necessarily need to be avoided. Occasionally,
the buffer queues in all available profitable routes are full, or the queues are
too long. Thus, detouring to a misroute may lead to a shorter delay time.
Under these circumstances, a misroute may be more desirable.

4.3 Wormhole Contention-Look-Ahead Algorithm

For any packet entering an intermediate switch along a path, there are mul-
tiple output channels to exit. We call C the set of output channels. For a
2-dimensional mesh, C = {North, South, East, West}. We further partition
C into profitable routes P and misroutes M . We define the buffer queue length
of every profitable route p ∈ P as Qp. Similarly, we define the buffer queue
length of every misroute m ∈ M as Qm.

Assume the flit delay of one buffer stage is DB, and the flit delay of one switch
stage is DS. The delay penalty to take a profitable and a misroute is defined
as Dprofit and Dmisroute, respectively, in the following equation (Eq. 1).

Dprofit = min(Qp, ∀p ∈ P) × DB (1)

Dmisroute = min(Qm, ∀m ∈ M) × DB + 2DS (2)

In a mesh network, when a switch routes a packet to a misroute, the packet
moves away from its destination by one switch stage. In the subsequent rout-
ing steps, this packet needs to get back on track and route one more stage
back towards its destination. Therefore, the delay penalty for a misroute is
2 × DS, plus potential extra buffering delays at the misrouted stages. In our
experiment, we use 2 × DS as the misroute penalty value. This value can be
adjusted to penalize (or favor) more on misroute choices. In on-chip networks,

15

the switch delay of one routing stage consists of the gate delays inside the
switch logics plus the arbitration delays. The delay DS can be estimated be-
forehand, and, without loss of generality, we assume the same DS value for all
switches in the network.

If all profitable routes are available and waiting queues are free, the packet
will use dimension-ordered routing decision. If the buffer queues on all of the
profitable routes are full or the minimum delay penalty of all the profitable
routes is larger than the minimum penalty of the misroutes, it is more desirable
to take the misroute. The routing decision evaluation procedure is described
in the pseudo code below:

(Dprofit ≤ Dmisroute)AND(Qp ≤ Qpmax
)?ProfitRoute : Misroute (3)

where Qpmax
is the maximum buffer queue length (buffer limit). Fig. 8 illus-

trates how the queue length information is evaluated at each stage of the
routing process.

Fig. 8. Adaptive Routing Algorithm

This routing algorithm is heuristic, because it can only “foresee” one step
ahead of the network. It provides a local best solution but does not guaran-
tee the global optimum. Nevertheless, we believe the proposed algorithm have
many unique advantages. Compared to dimension-ordered routing, the pro-
posed routing algorithm induces shorter delays on buffers because it will be
smarter in avoiding contention. Compared to hot-potato routing, the proposed
routing algorithm will route faster because it evaluates the delay penalties in
the forthcoming stages. This can be verified experimentally, as shown in Sec-
tion 6.

4.4 On-chip Switch Design

We have designed a 2-dimensional mesh network to test the proposed routing
scheme. The node processors are tiled on the floorplan (Fig. 9a). Each side
of the tile has one input and one output. The switch also serves as network
interface for the node PE located at the center of the tile (Fig. 9b). The four
inputs and four outputs of each tile are interconnected as shown in Fig. 9c.

16

The switch supports concurrent links from any input channels to any output
channels.

Because of the wormhole switching approach, the switch network can have
limited storage and can accommodate packets with variable sizes. Because
packets are segmented into flits, only one flit is processed at each input in
one cycle. Each switch needs to store only a fraction of the whole packet.
Long packets can be distributed over several consecutive switches and will
not require extra buffer spaces. In comparison, the hot potato routing switch
network described in [13] and [18] needs to handle the whole packet at every
switch.

Fig. 9. Switch Fabrics for On-Chip Networks

If the local PE is the source of the packet, the same contention-look-ahead
algorithm is used. If no output is available, the node will hold the packet
transmission. If the node is the destination of the packet, it will “absorb” this
packet. Incoming packets will take priority over those generated/absorbed by
the local PE.

The proposed switch network architecture and contention-look-ahead scheme
can be applied to many existing wormhole routing algorithms. Because it
foresees the contention occurrence and buffer queue length in the neighboring
nodes, it helps the local nodes to make better decision to avoid potential
livelock or deadlock problems.

The control signal wires are connected between any pair of neighboring nodes.
The signal wires carry the input buffer queue length information of the cor-
responding route. The queue length value is encoded in a binary word, e.g.,
1011 means the buffer queue length is 11 flit. The flit size is 64-bit, if each
side of the tile uses a 2-flit buffer, with the internal queue included, the total
buffer size for the switch is 640-bit.

17

Fig. 10. Allocator Circuit That Implements the Routing Algorithm

The control portion of the routing algorithm, defined by Eq. 1 to Eq. 3, is re-
alized by a combinational logic module called allocator, shown in Fig. 10. The
output channel is selected by DeMUX, and the selection is based on the com-
parator results of the delay penalty of each output channels. The delay penalty
is either the buffer queue length of the corresponding input of the next node,
or, in the case of a misroute channel, the sum of the queue length and 2×Ds,
which is the extra switch delay incurred with the misroute. Another DeMUX
selects the misroute channels, because there could be multiple misroutes for a
packet at each switch. This calculation involves two 4-input DeMUX delays,
one adder delay and one comparator delay. It can be performed immediately
after the address code in the header flit is available, thus minimizing the delay
overhead. The switch also uses registers to store the decision taken by the
header flit of a packet to keep a reserved path, until the tail flit resets it.

5 Experiment Platform

We perform both qualitative as well as quantitative analysis on MPSoC and
its on-chip networks. The quantitative analysis is measured from the bench-
mark results. Therefore, we will describe our experimental platform first before
proceeding to the detailed analysis.

In multiprocessor systems-on-chip, the performance of node processors is closely
coupled with the interconnect networks. On one hand, the delay of packet
transmission on the network greatly affects the instruction execution of the
node processors. On the other hand, the performance of the node processors
will consequently affect the packet generation and delivery into the network.
Therefore, comparison of different metrics of MPSoC system (e.g., execution
time, energy/power consumption, etc.) requires an integrated simulation of
the node processors as well as the on-chip networks.

18

5.1 Platform

We used RSIM as the shared-memory MPSoC simulation platform [20]. Mul-
tiple RISC processors can be integrated into RSIM. They are connected by a
2-dimensional mesh interconnect network. The interconnect is 64-bit in width.
Each node processor contains two ALUs and two FPUs (floating point units),
along with two levels of cache hierarchy. L1 cache is 16K bytes, and L2 cache
is 64K bytes. Both L1 and L2 cache use write-through methods for memory
updates. We use the invalidate approach for cache coherence synchronization.
Wormhole routing is used, and the flit size is 8 bytes.

RSIM integrates detailed instruction-level models of the processors and a
cycle-accurate network simulator. Both the network packet delays and the
instruction execution at every cycle of the node processors can therefore be
traced and compared.

5.2 Benchmarks

In the following sections, we will quantitatively analyze the multiprocessor on-
chip networks from different perspectives by testing different applications on
our RSIM MPSoC simulation platform. A 4×4 mesh network is used in the ex-
periments. We will first compare our proposed contention-look-ahead routing
scheme with other routing algorithms, using the benchmarks quicksort, sor,
fft and lu. To further analyze how different packetization schemes will affect
the performance and power, we will then change the dataflow with different
packet sizes. The packet payload sizes are varied from 16Byte, 32Byte, 64Byte,
128Byte to 256Byte. Because the short packets are always 2-flit in length, the
change of packet size is applied to long packets only. The benchmarks used in
these comparison are quicksort, sor, water, lu and mp3d. Among these bench-
marks, water, lu and mp3d applications are ported from the Stanford SPLASH
project [21].

6 Routing Algorithms Comparison

The proposed on-chip network switch module as well as the routing algorithm
were written in C and integrated into the RSIM routing function. Beside the
interconnects on the network, adjacent processors are also connected by control
wires. The control wires deliver the input buffer information to the adjacent
switches.

The proposed contention-look-ahead routing algorithm was compared with

19

Fig. 11. Averaged Packet Network Delays Under Different Routing
Schemes (normalized to the hot-potato result)

dimension-ordered routing and hot potato routing. The experiments were per-
formed with the following metrics: 1) performance improvement, 2) buffer re-
duction, and 3) routing with different packet sizes. As mentioned earlier, vir-
tual channel wormhole routing requires substantial buffer spaces. Therefore,
we did not consider the virtual channel approach in our experiments.

6.1 Performance Improvements

Fig. 11 shows the average packet delay on the interconnect network under
the three routing schemes. The packet size is 64Byte. Contention-look-ahead
routing is compared with the dimension-ordered routing with different input
buffer sizes (2-flit, 4-flit, 8-flit, 16-flit). The hot potato routing input buffer size
is fixed and is equal to one packet. The delays of the other two routing schemes
are normalized to the hot potato results. The packet delay is measured from
the header flit entering the network until the tail flit leaves the network. Delays
are expressed in clock cycles. In all four benchmarks, the hot potato routing
scheme has the longest network delay. This can be explained with the following
reason: The deflection in hot potato routing will create extra delays for each
packet. Although the packets do not have to wait in the buffer queues, the
extra latency associated with the deflections offsets the buffer delays avoided.
The deflection latency will also increase as the packet size increases. Among

20

the three routing schemes, the contention-look-ahead routing scheme achieves
the shortest network delay under the same buffer size in all the benchmarks.

Larger buffer sizes help reducing the packet network delays. Although the
buffer on the input channel of the switch is not big enough to store the entire
packet, it can still reduce the number of intermediate switches a packet occu-
pies when it is waiting for the next switch. This effect can also be seen from
Fig. 11, as packet delays are reduced with larger buffer sizes. Nevertheless, the
buffer size used in the experiments(2, 4, 8 and 16 flits) is still much less than
that required by store-and-forward routing and virtual-cut-through routing.

Fig. 12. Total Execution Time Comparison Between Different Routing
Schemes(normalized to the hot-potato result)

The overall performance (total benchmark execution time) of the multipro-
cessor system follows the same trend as the network delays, because short
network delays help to accelerate the execution process of node processors.
Fig. 12 shows the results of the three routing schemes on the benchmarks.
Again, results are normalized to the hot potato execution time. Hot potato
routing has the longest execution time. Contention-look-ahead routing out-
performs dimension-ordered routing in all cases.

21

Fig. 13. Contention-look-ahead Routing Achieves Better Performance
with Smaller Buffers

6.2 Buffer Reduction

In order to obtain deeper insight in the comparison between dimension-ordered
routing and contention-look-ahead routing, we redraw the results from Fig.
12 in Fig. 13. The figure shows execution time reduction of each benchmark
with various buffer sizes. With the proposed routing scheme, total running
time on the multiprocessor platform can be reduced as much as 7.6%. In fact,
contention-look-ahead routing shows larger improvement when the buffer sizes
are small. As seen in Fig. 13, execution time reduction is more significant with
smaller buffer size (2-flit, in the figure) than with larger buffer sizes (8-flit).
This result is expected because larger buffers “help” the dimension-ordered
routing to resolve the network contention and narrow its performance gap
between the contention-look-ahead routing. Combining Fig. 12 and Fig. 13,
we can see that in order to achieve the same performance (execution time),
contention-look-ahead routing requires smaller buffers than dimension-ordered
routing.

6.3 Routing with Variable Packet Sizes

In wormhole routing, bigger packets block more channels, increase congestion
and occupy the network for a longer time. We are interested to see how differ-
ent routing schemes behave under variable packet sizes. Previous experiments
indicate that contention-look-ahead routing achieves better performance with
smaller buffer sizes, therefore, we set input buffers to be 2-flit.

The packet size is then changed from 16Byte, 32Byte, 64Byte 128Byte to
256Byte. Because contention-look-ahead routing can avoid longer waiting la-
tencies on the network, it will be more advantageous when more channels
are blocked. This is confirmed by experiments. As seen from Fig. 14, the

22

Fig. 14. Performance Improvements Under Different Packet Sizes

contention-look-ahead routing scheme achieves maximum improvement (9.1%)
with bigger packets (256Byte). Improvement is normalized to the results of
dimension-ordered routing.

7 Packet Size and MPSoC Performance

As mentioned in Section 1, MPSoC performance is determined by many fac-
tors. Changing packet size affects these factors and, consequently, result in
different performances. In the next few sections, we are going to analyze how
different packet sizes will affect the MPSoC performance as well as system
level energy consumption. We will use the proposed contention-look-ahead
algorithm to perform the packet routing on the networks in our analysis.

7.1 Cache Miss Rate

Changing the packet payload size (for long packets) will change the L2 cache
block size that can be updated in one memory fetch. If we choose a larger
payload size, more cache contents will be updated. While running the same
application, the cache miss rate will decrease. This effect can be observed from
Fig. 15. As the packet payload size increases, both the L1 cache (Fig. 15a)
and L2 cache (Fig. 15b) miss rates decrease. Decreased cache miss rate will
reduce the number of packets needed for memory access.

7.2 Cache Miss Penalty

Whenever there is a L2 cache miss, the missed cache block needs to be fetched
from the memories. The latency associated with this fetch operation is called

23

Fig. 15. Performance Under Different Packetization Schemes

miss penalty. When we estimate the cache miss penalty, we need to count all
the delays occurring within the fetch operation. These delays include:

(1) packetization delay – The delay associated with the packet generation
procedure, e.g., encapsulating the cache content into packet payload.

(2) interconnect delay – The signal propagation delay on the wire.
(3) store and forward delay on each hop for one flit – The delay of one flit

delivered from input port to output port of the switch node.
(4) arbitration delay – The computation delay of the header flit to decide

which output port to go.
(5) memory access delay – The READ or WRITE latencies when accessing

the memory content.
(6) contention delay – When contention occurs, the time the packets will

hold transmission at the current stages, until the contention is resolved.

Among these six factors, 2), 3) and 4) will not change significantly for packets
with different sizes, because we use wormhole routing. However, delays on 1)
and 5) will become longer because larger packets need longer time for packeti-
zation and memory access. Longer packets will actually cause more contention
delay. This is because when wormhole routing is used, a longer packet will hold
more intermediate nodes during its transmission. Other packets have to wait
in the buffer, or choose alternative datapaths, which are not necessarily the
shortest routes. Combining all these factors, the overall cache miss penalty
will increase as the packet payload size increases, as shown from Fig. 15c.

24

7.3 Overall Performance

The above analysis shows that although larger payload size helps to decrease
the cache miss rate, it will increase the cache miss latency. Combining these
two factors, there exists an optimal payload size that can achieve the minimum
execution time, as seen from Fig. 15d. In order to illustrate the variation of
performance, we normalized the figure to the minimum execution time of
each benchmark. In our experiments, all five benchmarks achieve the best
performance with 64 bytes of payload size.

8 Packet Size and MPSoC Energy Consumption

In this section, we will analyze quantitatively the relationship between differ-
ent packetization factors, and their impact on the power consumption. MPSoC
power is dissipated on dynamic components as well as static components. The
packetization will have impact mostly on the dynamic components, therefore,
we will focus our analysis on the dynamic components only.

8.1 Contributors of MPSoC Energy Consumption

The MPSoC dynamic power consumption originates from three sources: the
node power consumption, the shared memory power consumption and the
interconnect network power consumption.

8.1.1 Node power consumption

Node power consumption comes from the operations inside each node proces-
sor, these operations include:

(1) CPU and FPU operations. Instructions such as ADD, MOV, SUB
etc consume power because these operations toggle the logic gates on the
datapath of processor.

(2) L1 cache access. L1 cache is built with fast SRAMs. When data is
loaded or stored in the L1 cache, it consumes power.

(3) L2 cache access. L2 cache is built with slower but larger SRAMs. When-
ever there is a read miss in L1 cache, or when there is write back from
L1 cache, L2 cache is accessed, and consequently consumes power.

25

8.1.2 Shared memory power consumption

Data miss in L2 cache requires data to be fetched from memory. Data write
back from L2 cache also needs to update the memory. Both operations will
dissipate power when accessing the memories.

8.1.3 Interconnect network power consumption

Operations such as cache miss, data fetch, memory updates and cache synchro-
nization all need to send packets on the interconnect network. When packets
are transported on the network, energy is dissipated on the interconnect wires
as well as the logic gates inside each switch. Both wires and logic gates need
to be counted when we estimate the network power consumption.

Among the above three sources, the node power consumption and memory
power consumption have been studied by many researchers [22]. In the fol-
lowing sections, we will only focus the analysis on the power consumption of
interconnect networks. Later in this paper, when we combine different sources
of the power consumption and estimate the total MPSoC power consumption,
we will reference the results from other research for the node processor and
memory power estimation.

8.2 Network Energy Modeling

In this section, we will propose a quantitative modeling to estimate the power
consumption of on-chip network communication. Compared with the statis-
tical or analytical methods [23][24][25] used in many previous interconnect
power modeling research, our proposed method provides insight on how on-
chip network architectures can trade-off between different design options of
CPU, cache and memories at the architectural level.

8.2.1 Bit Energy of Packet

When a packet travels on the interconnect network, both the wires and logic
gates on the datapath will toggle as the bit-stream flips its polarity. In this
paper, we use an approach similar to the one presented in [26] and [27] to
estimate the energy consumption for the packets traveling on the network.

We adopt the concept of bit energy Ebit to estimate the energy consumed
for each bit when the bit flips its polarity from the previous bit in the bit
stream. We further decompose the bit energy Ebit into bit energy consumed
on the interconnect wires EWbit

and the bit energy consumed on the logic gates

26

inside the node switch ESbit
, as described in the following equation (Eq. 4).

Ebit = EWbit
+ ESbit

(4)

The bit energy consumed on the interconnect wire can be estimated from the
total load capacitance on the interconnect. In our estimation, the total load
capacitance is assumed to be proportional to the interconnect wire-length.

The bit energy consumed on the switch logic gates can be estimated from
Synopsys Power Compiler simulation. Without loss of generality, we use ran-
dom bit-stream as the packet payload content. We built each of the node
switches in Verilog and synthesized the RTL design with 0.13µm standard cell
libraries. Then we applied different random input data streams to the inputs
of the switch, and calculated the average energy consumption on each bit.
Therefore, the value of Ebit will represent the average bit energy of a random
bit-stream flowing through the interconnect network. Details of the estimation
technique can be found in [26] and [27].

8.2.2 Packets and Hops

When the source node and destination node are not placed adjacent to each
other on the network, a packet needs to travel several intermediate nodes until
reaching the destination. We call each of the intermediate stages a hop (Fig.
16).

Fig. 16. Hops and Alternate Routes of Packets

In the mesh or torus network, there are several different alternate datapaths
between source and destination, as shown in Fig. 16. When contention occurs
between packets, the packets may be re-routed to different datapaths. There-
fore, packet paths will vary dynamically according to the traffic condition.
Packets with the same source and destination may not travel through the
same number of hops, and they may not necessarily travel with the minimum
number of hops.

The number of hops a packet travels greatly affects the total energy consump-
tion needed to transport the packet from source to destination. For every hop
a packet travels, the interconnect wires between the nodes will be charged

27

and discharged as the bit-stream flows by, and the logic gates inside the node
switch will toggle.

We assume a tiled floorplan implementation for MPSoC, similar to those pro-
posed by [4] and [13], as shown in Fig. 16. Each node processor is placed inside
a tile, and the mesh network is routed in a regular topology. Without loss of
generality, we can assume all the hops in mesh network have the same in-
terconnect length. Therefore, if we pre-calculate the energy consumed by one
packet on one hop, Ehop, by counting the number of hops a packet travels,
we can estimate the total energy consumed by that packet. As we mentioned
earlier, the hop energy Ehop is the sum of the energy consumed on the inter-
connect wires connecting each hop, and the energy consumed on the switching
node associated with that hop.

We use the hop histogram to show the total energy consumption by the packet
traffic. In Fig. 17 below, histograms of the packets traveling between MPSoC
processors are shown. The processors are connected by a 2-dimensional mesh
interconnect network. The histograms are extracted from the trace file of a
quicksort benchmark. The histogram has n bins with 1, 2, .., n hops, the bar
on each bin shows the number of packets in each bin. We count long packets
and short packets separately in the histograms.

Fig. 17. Hop Histogram of Long and Short Packets

Because Ebit represents the average bit energy of a random bit-stream, we can
assume packets of the same length will consume the same energy per hop.
Using the hop histogram of the packets, we can calculate the total network
energy consumption with the following equation (Eq. 5):

Epacket =
maxhops∑

h=1

h × N(h)long × Llong × Eflit (5)

+
maxhops∑

h=1

h × N(h)long × Lshort × Eflit

where N(h)packet is the number of packets with h number of hops in the his-
togram. Llong and Lshort are the lengths of long and short packets, respectively,

28

in the unit of flit. Eflit is the energy consumption for one flit on each hop. Be-
cause the packets are actually segmented into flits when they are transported
on the network, we only need to calculate the energy consumption for one flit,
Eflit. The energy of one packet per hop Ehop can be calculated by multiplying
the number of flits the packet contains.

8.2.3 Energy Model Calculation

We assume that each tile of node processor is 2mm× 2mm in dimension, and
they are placed regularly on the floorplan, as shown in Fig. 16. We assume
0.13µm technology is used, and the wire load capacitance is 0.50fF per mi-
cron. Under these assumption, the energy consumed by one flit on one hop
interconnect is 0.174nJ.

The energy consumed in the switch for one hop is calculated from Synopsys
Power Compiler. We calculate the bit energy on the logic gates in a way
similar to that used in [26]. We use 0.13µm standard cell library, and the
energy consumed by one flit on one hop switch is 0.096nJ. Based on these
calculation, the flit energy per hop Eflit = 0.27nJ .

8.3 Packetization and Energy Consumption

Eq. 5 in Section 8.2 shows that the power consumption of packetized dataflow
on MPSoC network is determined by the following three factors: 1) the number
of packets on the network, 2) the energy consumed by each packet on one
hop, and 3) the number of hops each packet travels. Different packetization
schemes affect these factors differently and, consequently, affect the network
power consumption. We summarize these effects and list them below:

(1) Packets with larger payload size will decrease the cache miss rate and
consequently decrease the number of packets on the network. This effect
can be seen from Fig. 18a. It shows the average number of packets on the
network (traffic density) at one clock cycle (Y-axis indicates the packet
count). As the packet size increases, the number of packets per clock cy-
cle decreases accordingly. Actually, with the same packet size, the traffic
density of different benchmarks is consistent with the miss penalty. By
comparing Fig. 18a with Fig. 15c, we see that if the packet length stays
the same, higher traffic density causes longer miss latency.

(2) Larger packet size will increase the energy consumed per packet, because
there are more bits in the payload.

(3) As discussed in Section 7, larger packets will occupy the intermediate

29

node switches for a longer time, and cause other packets to be re-routed
to non-shortest datapaths. This leads to more contention that will in-
crease the total number of hops needed for packets traveling from source
to destination. This effect is shown in Fig.18b which shows the aver-
age number of hops a packet travels between source and destination. As
packet size (payload size) increases, more hops are needed to transport
the packets.

Fig. 18. Contention Occurrence Changes as Packet Payload Size Increases

Actually, increasing the cache block size will not decrease the cache miss rate
proportionally [31]. Therefore, the decrease of packet count cannot compensate
for the increase of energy consumed per packet caused by the increase of packet
length. Larger packet size also increases the hop counts on the datapath.
Fig. 20a shows the combined effects of these factors under different packet
sizes. The values are normalized to the measurement of 16Byte. As packet
size increases, energy consumption on the interconnect network will increase.

Although increase of packet size will increase the energy dissipated on the net-
work, it will decrease the energy consumption on cache and memory. Because
larger packet sizes will decrease the cache miss rate, both cache energy con-
sumption and memory energy consumption will be reduced. This relationship
can be seen from Fig. 19. It shows the energy consumption by cache and mem-
ory under different packet sizes. The access energy of each cache and memory
instruction is estimated based on the work from [28] and [29]. The energy in
the figure is normalized to the value of 256Byte, which achieves the minimum
energy consumption.

The total energy dissipated on MPSoC comes from non-cache instructions
(instructions that do not involve cache access) of each node processors, the
caches and the shared memories as well as the interconnect network. In order
to see the packetization impact on the total system energy consumption, we
put all MPSoC energy contributors together and see how the energy changes
under different packet sizes. The results are shown in Fig. 20b. From this
figure, we can see that the overall MPSoC energy will decrease as packets size
increases. However, when the packets are too large, as in the case of 256Byte
in the figure, the total MPSoC energy will increase. This is because when the

30

Fig. 19. Cache and Memory Energy Decrease as Packet Payload Size
Increases

Fig. 20. Network and Total MPSoC Energy Consumption under Different
Packet Payload Sizes

Fig. 21. Qualitative Analysis of Packet Size Impact

packet becomes too large, the increase of interconnect network energy will
outgrow the decrease of energy on cache, memory and non-cache instructions.
In our simulation, the non-cache instruction energy consumption is estimated
based on the techniques presented in [30], and it does not change significantly
under different packet sizes.

9 Packetization Impact Analysis

Although the specific measurement values in the experiments are technology
and platform dependent, we believe the analysis will hold for different MPSoC
implementations. We summarize our analysis qualitatively as follows (Fig. 21).

Large packet size decreases the cache miss rates of MPSoC but increases the
miss penalty. The increase of miss penalty is caused by the increase of packeti-

31

zation delay, memory access delay, as well as contention delay on the network.
As shown qualitatively in Fig. 21a, the cache miss rate saturates with the
increase of packet size. Nevertheless, the miss penalty increases faster than
linearly. Therefore, there exists an optimal packet size to achieve best perfor-
mance.

The energy spent on the interconnect network increases as the packet size
increases. Three factors play roles in this case (Fig. 21b). 1) Longer packets,
i.e., larger cache lines, reduce the cache miss rate, hence reduce the packet
count. Nevertheless, the packet count does not fall linearly with the increase
of packet size. 2) The energy consumption per packet × hop increases in a
linear fashion with the increase of packet length. If we ignore the overhead
of packet header and tail, this increase is proportional to packet size. 3) The
average number of hops per packet on the network also increases with the
packet length. The combined effect causes the network energy to increase as
the packet size increases.

The total MPSoC system energy is dominated by the sum of three factors as
the packet size increases (Fig. 21c). 1) Cache energy will decrease. 2) Mem-
ory energy will decrease as well. 3) Network energy will increase over-linearly.
In our benchmarks, the non-cache instruction energy does not change signifi-
cantly. The overall trend depends on the breakdown among the three factors.
Our experiments show that there exists a packet size that minimizes the over-
all energy consumption. Moreover, if the network energy contributes a major
part of the total system energy consumption, which is expected to happen
as VLSI technology moves to nano-meter domain, the MPSoC energy will
eventually increase with the packet size.

10 Conclusion

The performance and energy consumption of shared-memory on-chip multi-
processor systems are highly dependent on the inter-node dataflow packetiza-
tion schemes as well as on-chip network architectures. On-chip network com-
munication can benefit from the abundant wiring resources as well as floor-
planning locality among processing elements and switch nodes. In contrast,
network routing strategies are limited by on-chip buffers that are expensive to
implement and power-hungry during operation. In this paper, we proposed a
contention-look-ahead routing scheme that exploits increased wiring resources
while reducing buffer requirements. The scheme achieves better performance
with significantly less buffer space usage than traditional low-buffer-space
routing algorithms. We further introduced an on-chip interconnect network
energy model, and then analyzed and quantified the effect of packet size vari-
ation on performance and energy consumption. Although the results are re-
ported on a mesh network, the methodology presented in this paper is general

32

and can be extended to cope with other on-chip network architectures.

11 Acknowledgment

We acknowledge the supports from the MARCO GSRC center, under the
contract SA3276JB-2 and its continuation.

References

[1] W.O. Cesario, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, L. Gauthier, M.
Diaz-Nava, A.A. Jerraya, ”Multiprocessor SoC Platforms: A Component-Based
Design Approach”, IEEE Design & Test of Computers, Vol.19 Nr.6, Nov-Dec,
2002, pp. 52-63

[2] R. Ho, K. Mai, M. Horowitz, “The Future of wires,” Proceedings of the IEEE,
April 2001, pp. 490-504.

[3] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and
D. Lindqvist, “Network on chip: An architecture for billion transistor era”,
Proceeding of the IEEE NorChip Conference, November 2000, pp. 166-173.

[4] W. Dally, B. Toles, “Route Packets, Not Wires: On-Chip Interconnection
Networks”, Proceedings of the 38th Design Automation Conference, June 2001,
pp. 684-689.

[5] L. Benini, G. De Micheli, “Networks on Chips: A New SoC Paradigm”, IEEE
Computer January 2002, Volume: 35 Issue: 1, pp. 70-78.

[6] B. Ackland; et.al, “A single Chip, 1.6-Billion, 16-MAC/s Multiprocessor DSP”,
IEEE J. Solid-State Circuits, March 2000, pp. 412-424.

[7] E. Rijpkema, K. G. W. Goossens, A. Radulescu, J. Dielissen, J. van Meerbergen,
P. Wielage, and E. Waterlander, ”Trade offs in the design of a router with both
guaranteed and best-effort services for networks on chip”, Proceedings of Design
Automation and Test Conference in Europe, March 2003, pp.350-355.

[8] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano,
S. Smith, R. Stets, B. Verghese, “Piranha: A Scalable Architecture Based
on Single-Chip Multiprocessing”, Proceedings of 27th Annual International
Symposium on Computer Architecture, 2000, pp. 282-293.

[9] L. Hammond, B Hubbert, M. Siu, M. Prabhu, M. Chen, K. Olukotun, “The
Stanford Hydra CMP”, IEEE MICRO Magazine, March-April 2000, pp.71-84.

[10] D. E. Culler, J. P. Singh, A. Gupta, Parallel Computer Architecture: A
Hardware/Software Approach, Morgan Kaufmann Publishers, 1998.

33

[11] J. Duato, S. Yalamanchili, L. Ni, Interconnection Networks, an Engineering
Approach, IEEE Computer Society Press, 1997.

[12] J. Wu; “A deterministic fault-tolerant and deadlock-free routing protocol in 2-D
meshes based on odd-even turn model”, Proceedings of the 16th international
conference on Supercomputing, 2002, pp. 67-76.

[13] S. Kumar, A. Jantsch, J. Soininen, M. Forsell, M. Millberg, J. Oberg,
K. Tiensyrj, and A. Hemani, “A network on chip architecture and design
methodology”, Proceedings of IEEE Computer Society Annual Symposium on
VLSI, April 2002, pp. 105-112.

[14] M. Forsell, “A scalable high-performance computing solution for networks on
chips”, IEEE Micro, Volume 22 No 5, 2002, pp. 46-55.

[15] P. Gherrier, A. Greiner, “A Generic Architecture for On-Chip Packet-Switched
Interconnections”, Proceedings of Design Automation and Test in Europe,
March 2000, pp. 250-255.

[16] F. Karim, A. Nguyen, S. Dey, “On-chip Communication Architecture for OC-
768 Network Processors”, Proceedings of 38th Design Automation Conference,
June 2001, pp. 678-683.

[17] W. J. Dally, H. Aoki, “Deadlock -free adaptive routing in multicomputer
networks using virtual channels”, IEEE Trans. on Parallel and Distributed
Systems, April 1993, pp. 466-475.

[18] E. Nilsson; M. Millberg, J. Oberg, A. Jantsch, “Load Distribution with the
Proximity Congestion Awareness in a Networks on Chip”, Prodeedings of Design
Automation and Test in Europe, March 2003, pp. 1126-1127.

[19] U. Feige, P. Raghavan, “Exact analysis of hot-potato routing”, Proceedings of
the 33rd Annual Symposium on Foundations of Computer Science, October
1992, pp. 553-562.

[20] C. J. Hughes, V. S. Pai, P. Ranganathan, S. V. Adve, “Rsim: simulating shared-
memory multiprocessors with ILP processors”, IEEE Computer, Volume: 35
Issue: 2 , Feb. 2002, pp. 40-49.

[21] J. P. Singh, W. Weber, A. Gupta, “SPLASH: Stanford Parallel Applications
for Shared-Memory”, Computer Architecture News, vol. 20, no. 1, March 1992.
pp. 20(1):5-44.

[22] M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno. “Efficient Power Estimation
Techniques for System-on-Chip Design”, Proceedings of Design Automation and
Test in Europe, March 2000, pp. 27-32.

[23] A. G. Wassal, M. A. Hasan, “Low-power system-level design of VLSI packet
switching fabrics”, IEEE Transactions on CAD of Integrated Circuits and
Systems, June 2001. pp. 723-738.

34

[24] C. Patel, S. Chai, S. Yalamanchili, D. Shimmel, “Power constrained design of
multiprocessor interconnection networks”, Proceedings of IEEE International
Conference on Computer Design, 1997, pp. 408-416.

[25] D. Langen, A. Brinkmann, U. Ruckert, “High level estimation of the area
and power consumption of on-chip interconnects”, Proceedings of 13th IEEE
International ASIC/SOC Conference, Sep. 2000, pp. 297-301.

[26] T. T. Ye, L. Benini, G. De Micheli, “Analysis of power consumption on
switch fabrics in network routers”, Proceedings of the 39th Design Automation
Conference, June 2002, pp. 524-529.

[27] J. Hu, R. Marculescu; “Energy-Aware Mapping for Tile-based NOC
Architectures Under Performance Constraints”, Proceedings of ASP-Design
Automation Conference, Jan. 2003, pp. 233-239.

[28] E. Geethanjali, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, ”Memory
System Energy: Influence of Hardware-Software Optimizations”, Proceedings
of International Symposium on Low Power Design and Electronics, July 2000,
pp. 244-246.

[29] W. T. Shiue, C. Chakrabarti, “Memory exploration for low power, embedded
systems”, Proceedings of the 36th Design Automation Conference, June, 1999,
pp. 140-145.

[30] A. Bona, M. Sami, D. Sciuto, C. Silvano, V. Zaccaria, R. Zafalon “Energy
Estimation and Optimization of Embedded VLIW Processors Based on
Instruction Clustering”, Proceedings of 39th Design Automation Conference,
June 2002, pp. 886-891.

[31] D. A. Patterson, J. Hennessy, Computer Organization and Design, The
Hardware/Software Interface, Morgan Kaufmann Publishers, 1998

35

