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Abstract—Dynamic Power Management (DPM) is a design methodology aiming at reducing power consumption of electronic systems

by performing selective shutdown of idle system resources. The effectiveness of a power management scheme depends critically on

an accurate modeling of service requests and on the computation of the control policy. In this work, we present an online adaptive

DPM scheme for systems that can be modeled as finite-state Markov chains. Online adaptation is required to deal with initially

unknown or nonstationary workloads, which are very common in real-life systems. Our approach moves from exact policy optimization

techniques in a known and stationary stochastic environment and it extends optimum stationary control policies to handle the unknown

and nonstationary stochastic environment for practical applications. We introduce two workload learning techniques based on sliding

windows and we study their properties. Furthermore, a two-dimensional interpolation technique is introduced to obtain adaptive

policies from a precomputed look-up table of optimum stationary policies. The effectiveness of our approach is demonstrated by a

complete DPM implementation on a laptop computer with a power-manageable hard disk that compares very favorably with existing

DPM schemes.

Index Terms—Adaptation, DPM, low power, nonstationarity, OS, policy optimization, sliding window.
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1 INTRODUCTION

DESIGN methodologies for energy-efficient system-level
design are receiving increasing attention [2], [11], [14],

[17] because of the widespread use of portable electronic
appliances (e.g., cellular phones, laptop computers, etc.)
and of concerns about the environmental impact of
electronic systems.

Battery life time in portable systems can be prolonged in
two ways—by increasing battery capacity per unit weight
and by reducing power consumption with minimal
performance loss. Between these two alternatives, the latter
has been the major concern of designers because battery
capacity (Watt-hours/lb) has only improved by a factor two
to four over the last 30 years, while the computational
power of digital ICs has increased by more than four orders
of magnitude [17].

Energy efficient design requires the development of new

computer-aided design techniques to help explore the trade-
off between power and conventional design constraints, i.e.,
performance and area. Numerous computer-aided design
techniques [14] have been researched and implemented at all
levels of the design hierarchy to reduce power consumption
and many of these techniques target VLSI digital compo-
nents. Modern portable systems are heterogeneous [19]. For
example, the power breakdown for a well-known laptop

computer [18] shows that the power consumed by VLSI
digital components is only 21 percent, while the display, hard
disk drive, and wireless LAN card consume 36 percent, 18
percent, and 18 percent, respectively.

Power-conscious design above the chip level, i.e.,
system-level low-power design, is regarded as one of the
most effective ways to tackle power constraints. Among
these techniques, dynamic power management (DPM) [1], [13],
[46] and its extensions, such as application-driven/assisted
power management [39], [40], and dynamic voltage scaling
(DVS) [41], [42] have been extensivly applied with good
results.
DPM is a flexible and general design methodology

aiming at controlling performance and power levels of
electronic systems by exploiting the idleness of their
components. A system is provided with a power manager
(PM) that monitors the overall system and component states
and controls the power state of each component. This
control procedure is called power management policy. The
problem in DPM is that changing power state (e.g., spin up
and down a disk drive) imposes a penalty in terms of both
power and performance. Many real-life devices have
several sleep states in a trade-off between power saving
and transition penalty. Some advanced electronic compo-
nents have multiple active states, characterized by different
supply voltages. For these devices, dynamic power man-
agement generalizes into a DVS problem [41], [42].
Unfortunately, variable-voltage devices are not widespread
yet. Hence, this paper focuses primarily on DPM, whose
effects can be experimentally validated in off-the-shelf
systems.

Fig. 1 shows 1) the system power consumption level over
time without DPM, 2) the case when the ideal DPM is
applied, and 3) the case when nonideal DPM is applied.
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Nonideal DPM wastes the idle interval at the second idle
period and pays a performance penalty at the third idle
period. These inefficiencies come from the inaccurate
prediction of the duration of the idle period or, equiva-
lently, the arrival time of the next request for an idle
component. Thus, the ultimate goal in DPM is to minimize
the performance penalty and wasted idle intervals while, at
the same time, minimizing power. This objective can be
achieved by an ideal PM with complete knowledge of
present, past, and future workloads. In some cases, such
knowledge can be provided by applications that provide
hints on future requirements of system resources [39], [40].
Unfortunately, the application-driven approach is not
viable when applications cannot be modified. In the
following, we take an application-independent viewpoint
because it can be applied to available systems with no
changes to the applications they support.

In general, we can model the unavoidable uncertainty of
future requests by describing the workload as a stochastic
process. Even if the realization of a stochastic process is not
known in advance, its properties can be studied and
characterized. This assumption is at the basis of many
stochastic optimal control approaches that are routinely
applied to real-life systems [3], [4], [5]. DPM has been
formulated and solved as a discrete-time stochastic optimal
control problem by Benini et al. [12]. Also, continuous-time
stochastic approaches were proposed in [32], [33], [44], [45].

Unfortunately, in many instances of real-life DPM
problems, it is hard, if not impossible, to precharacterize
the workload of a power-manageable system. Consider, for
instance, a disk drive in a personal computer (PC). The
workload for the drive strongly depends on the application
mix that is run on the PC. This, in turn, depends on the user,
on the location, and similar “environmental conditions”
which are not known at design or fabrication time. In these
cases, the stochastic process describing the workload is
initially unknown. Even worse, the workload is subject to
large variations over time. For instance, hard disk work-
loads for a workstation drastically change with the time of
the day or the day of the week. This characteristic is called

nonstationarity. It is generally hard to achieve robust and
high-quality DPM without considering this effect.

Optimal control of nonstationary stochastic systems is a
well-developed field [6], [7], [8]. Several adaptive control
approaches are based on an estimation procedure that
“learns” online the unknown or time-varying parameters of
the system, coupled with a flexible control scheme that
selects the optimal control actions based on the estimated
parameters. This approach is also known as the principle of
estimation and control (PEC). Our work exploits the same
paradigm to adapt power management policies to nonsta-
tionary workload.

The contributions of this work can be summarized as
follows: We propose parameter-learning schemes for the
workload source (e.g., the user, also called service reques-
tor) that capture the nonstationarity of its behavior. We
present two techniques based on sliding windows to
capture the time-varying parameters of the stochastic model
of the workload source. Next, we show how policies for
dynamic power management under nonstationary service
request models can be determined by interpolating optimal
policies computed under the assumption that user requests
are stationary. Finally, we implement the proposed algo-
rithm on a laptop computer with a hard disk and show its
feasibility in a real system environment.

The paper is organized as follows: In Section 2, we
review related work in system-level dynamic power
management. In Section 3, we introduce system model
and policy optimization problem when the service reques-
tor is a known and stationary stochastic process. In
Section 4, a dynamic power management scheme when the
service requestor is stationary, but unknown, is described.
In Section 5, we present sliding window techniques to
capture the nonstationarity of service requests and we
describe the overall dynamic power management scheme
based on sliding windows. Section 6 is dedicated to the
issues raised by the implementation of adaptive DPM
schemes on general-purpose computers. The experimental
results obtained from simulation, as well as system
measurements, are shown in Section 7. Finally, we
summarize our work and propose future directions in
Section 8.

2 RELATED WORK

Previous approaches to dynamic power management can be
classified into three major categories: timeout-based, pre-
dictive, and stochastic. The timeout policy [29] is the most
widely used in many applications, such as microprocessors,
monitors, hard disk drives, etc., because of its simplicity.
The value of the timeout can be fixed (static timeout) or it
may be changed over time. An effective static timeout
policy sets the timeout to the break-even time, Tbe of the
power-managed device [26]. Roughly speaking, Tbe is the
minimum idle time for which it is convenient to shut down
the device because the power savings in the sleep state
should compensate for the shutdown and wakeup costs
[13]. It can be shown [26] that setting the timeout to Tbe
produces a 2-competitive policy, which is guaranteed to be
within a factor of two from the power savings that could be
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Fig. 1. System power consumption level variation with DPM. (a) Without

DPM. (b) With ideal DPM. (c) With nonideal DPM.



achieved by an ideal policy with perfect knowledge of the
future (i.e., an oracle policy).

Static timeout policies use a fixed timeout value. Several
adaptive timeout policies have been introduced to reduce
wasted idle time by changing the timeout threshold depend-
ing on previous idle period history [15], [16], [27], [28]. The
main shortcoming of timeout policies is that they waste
power waiting for the timeout to expire. This inefficiency
motivates the search for more effective techniques.

Srivastava et al. [10] proposed heuristic policies to shut
down a system as soon as an idle period begins. The basic
idea in [10] is to predict the length of idle periods and shut
down the system when the predicted idle period is long
enough to amortize the cost (in latency and power) of
shutting down and later reactivating the system. A short-
coming of the predictive shutdown approach proposed by
Srivastava et al. is that it is based on offline analysis of
usage traces, hence it is not suitable for nonstationary
request streams whose statistical properties are not known
a priori. This shortcoming is addressed by Hwang and Wu
[9]. They proposed online adaptive methods that predict the
duration of an idle period with an exponentially weighted
average of previous idle periods.

All predictive shutdown techniques share a few limita-
tions. First, they do not deal with resources with multiple
sleep states (recently, a predictive approach which handles
multiple sleep state components has been proposed in [36].)
Second, they cannot accurately trade off performance losses
(caused by transition delays between states of operation)
with power savings. Third, they do not deal with general
system models where multiple incoming requests can be
queued while waiting for service.

These limitations are addressed in [12], where general
systems (with multiple states and queuing) and user
requests are modeled as discrete-time Markov decision
processes. The discrete-time Markov model enables a
rigorous formulation of the search for optimal power
management policies as a constrained stochastic optimization
problem whose exact solution can be found in polynomial
time. Also, it provides a flexible way to control the trade-off
between power consumption and performance penalty
depending on the optimization constraints. A few exten-
sions to the discrete-time Markov model have been
proposed in the recent past. To reduce the power cost
imposed on the power manager, which observes and issues
command at regular time-discretization intervals, contin-
uous-time (event-based) formulations have been proposed
[32], [33], [44], [54]. The work in [32] was further extended
to handle more complex systems (multiple devices) in [43]
or to control the power states of the system with the
consideration of a side metric—quality of service [47].

Unfortunately, a common basic assumption in [12], [32],
[33], [44], [45] is that the Markov model is stationary and
known in advance. Such an assumption clearly does not
hold if the system experiences nonstationary workloads.
Also, event-based approaches require a way to correct their
wrong decision because they have only one chance to make
a decision for a given idle period and the power loss of the
wrong decision for a long idle period can be significant. In
contrast, a discrete-time approach naturally has the chances

to change its wrong decision at each time-discretization
interval.

The limitations of previous stochastic optimization
approaches to DPM motivate our work. In a nutshell, the
techniques presented in this work move from a discrete-
time stochastic optimization problem in a stationary and
known environment [12], but they consider the nonsta-
tionary behavior of user requests for application in a
realistic system environment.

We will introduce adaptive DPM by steps. First, we will
review the basics of the stochastic optimal control formula-
tion in the case of a known and stationary environment.
Then, we will introduce adaptive techniques for the
unknown stationary case. In the case of DPM, estimation
of the unknown parameters is decoupled from the control
of the power-managed system. Hence, we can exploit
theoretical results on adaptive stochastic control to prove
asymptotic optimality of DPM control policies for initially
unknown Markovian workloads. Finally, we will extend
our approach to nonstationary, general workloads. In this
case, optimality cannot be proven and DPM algorithms are
heuristic. The effectiveness of heuristic DPM algorithms
will be demonstrated through simulation analysis as well as
measurement on real-life examples.

3 DPM IN KNOWN STATIONARY ENVIRONMENT

In this section, we briefly review the system model
introduced in [12]. The model for nonstationary requests
described in Section 5 can be seen as an extension of the
stationary approach of [12], with the consideration of time-
varying request probability.

The overall system model for DPM is shown in Fig. 2. An
electronic system is modeled as a unit providing a service,
called service provider (SP ), while receiving requests from
another entity, called service requestor (SR). A queue (SQ)
buffers incoming unserviced requests. The service provider
can be in one of several states (e.g., active, sleep, idle, etc.).
Each state is characterized by the ability (or the inability) to
provide a service and by a power consumption level.
Transitions among states may have a performance penalty
(e.g., latency in reactivating a unit) and a power penalty
(e.g., power loss in spinning up a hard disk).

The power manager (PM) is a control unit that controls the
transitions among states. We assume that the power
consumption of the PM is negligible with respect to the
overall power dissipation.1 At equally spaced instants in
time, the power manager evaluates the overall state of the
system (provider, queue, and requestor) and decides to
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Fig. 2. Overall system model for DPM.

1. This assumption has been validated in practice for several classes of
systems [13], [34] and it will be analyzed in detail later in the paper.



issue a command to stimulate a state transition. For the sake
of conciseness, we define the following notation to
represent the states of the units and PM commands:

. SP : sp ¼ f0; 1; � � � ; Sp ÿ 1g,

. SR: sr ¼ f0; 1; � � � ; Sr ÿ 1g,

. SQ: sq ¼ f0; 1; � � � ; Sq ÿ 1g,

. A: a ¼ f1; 2; � � � ; Nag,
where A is a command set issued by PM to control the
power state of SP . We model the system components as
discrete-time Markov chains [12]. In particular, we use a
controlled Markov chain model for the system provider so
that its transition probabilities depend on the command
issued by the power manager.

In [12], the SR as well as SP are modeled as stationary
processes. A generic requestor can have Sr states. We will
discuss the case of Sr ¼ 2, as shown in Fig. 3. SR stays in
state 0 when no request is issued for the given time slice;
otherwise, SR is in state 1. The corresponding transition
matrix is denoted by PSR. We call the diagonal elements of
PSR user request probabilities and we denote them by
Ri; i ¼ 0; 1. The probabilities Ri ¼ Probðsrðtþ 1Þ ¼ ijsrðtÞ ¼
iÞ; i ¼ 0; 1 (and the entire transition matrix PSR) are time-
invariant for a stationary workload.

With this assumption, the entire system model does not
include any time-variant parameters, thus the complete
system can be described by a controlled stationary Markov
chain. The control policy for the given system model can be
optimized under performance or power constraints by
solving a linear programming problem. Details are pro-
vided in [12].

The optimal policy for a Markov system model is also
Markovian, i.e., the decision at any point in time depends
only on the current system state instead of the entire past
history. Therefore, a policy, the final result from policy
optimization, can be thought of as a matrix that associates a
probability of issuing each command ða 2 AÞ with each
system state. The matrix is called a decision table and its
dimension is S �Na, where S ¼ Sr � Sp � Sq.

A control policy is a sequence of decisions. At each time
slice, the PM observes the current system state and issues a
command based on the probability of each command for the
given system state in the decision table. The decision made
at each time slice i is denoted as �i and the policy � is the
sequence of the decisions.

Even though this approach provides a way to obtain an
exact solution and control the trade-off between perfor-
mance and power, the following two assumptions limit its
practical application:

. The user request probabilities for the given work-
load are known through offline analysis.

. The user request probabilities for the given work-
load are constant over time.

The workload of many practical systems is not stationary
in time. Furthermore, statistic workload characteristics may

not be available for offline policy optimization. Therefore,
we need to extend the approach by relaxing these two
assumptions. In Section 4, the approach is first extended to
the unknown stationary environment by relaxing the first
assumption and in Section 5, it is further extended to the
unknown nonstationary environment.

4 DPM IN UNKNOWN STATIONARY ENVIRONMENT

In Section 3, it is assumed that SR can be characterized
through offline analysis of stationary workloads. Offline
analysis at design time can be impossible in practice,
especially for general-purpose systems (such as PCs or
workstations), where workload strongly depends on the

applications that the end user will run on the general-
purpose platform. For these reasons, even the straight-
forward timeout PM policies implemented on current
portable computers are user-customizable. This customiza-
tion process puts the responsibility for following the trial-
and-error process that leads to the choice of an optimal

timeout value on the user. While this choice may be
acceptable for tuning a single timeout, it is certainly not
possible to assume that the user would be able to manage
the complex characterization process for a Markov model of
system workload. Thus, we need techniques for automati-
cally “learning” a Markov workload model and for

computing the corresponding optimal PM policy. Clearly,
both estimation and policy optimization overhead should
be small for online application in real-life systems.

Our approach will follow classic techniques of adaptive
control theory [7], [8], based on the principle of estimation
and control. The unknown parameters of the stochastic

system (i.e., the parameters that characterize the workload)
are estimated with estimators that are guaranteed to
converge (with probability one) to the true parameter
values. The policy applied at each time step is chosen
assuming that the current parameter estimates are the true
values. It can be shown that, under some restrictive

assumptions (which are verified in our case), this approach
(henceforth called EC for “estimation and control”) leads to
a self-tuning policy, i.e., a control law that produces the
same long-term average cost as the stationary, optimal
policy obtained with complete a priori knowledge of
parameter values [7].

For the estimation technique, we will adopt Maximum

Likelihood Estimation (MLE), which satisfies the require-
ments for statistical convergence toward true parameter
values. MLE is described in Section 4.1. For the computation
of the optimal control law for a given ML parameter
estimate, we could, in principle, apply the exact optimiza-
tion techniques introduced in [12]. In practice, this solution

may not be applicable because the computational burden of
recomputing an optimal policy every time slice could be
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Fig. 3. An example of a Markov chain for stationary SR.



sizable, thereby violating the assumption that the power
manager takes fast decisions with negligible power.

Therefore, we propose a novel table look-up method
with linear interpolation (described in Section 4.2) to
compute the control law to be applied at each time step.
Using a look-up table is equivalent to enforcing a
discretization on the continuous range of optimal control
policies. This may, in principle, prevent the achievement of
an optimal solution. Fortunately, theoretical results [8]
show that a succession of optimal discretized policies tends
to the optimal policy as discretization is refined. Further-
more, linear interpolation helps in reducing discretization
errors, as demonstrated by our experiments.

4.1 Estimation of Stationary SR

Maximum Likelihood Estimation (MLE) produces estima-
tors that are consistent and, under certain regularity
conditions, can be shown to be most efficient in an
asymptotic sense (i.e., as the sample size n approaches
infinity) [30]. The principle of this method is to select, as an
estimate of �, the value for which the observed sample is
most likely to occur.

Suppose there is a service requestor SR, which has the
state space Sr ¼ ð1; 2; � � � ;mÞ and the SR is observed until
n transitions have taken place. Then, the state transition
matrix of SR can be represented as Fig. 4a and the observed
transitions can be collected in a tabular form as shown in
Fig. 4b, where nij is the number of transitions observed
from state i to state j and ni ¼

Pm
j¼1 nij.

Then, MLE of the given SR is P̂Pij ¼ nij
ni

i; j ¼ 1; 2; � � � ;m.
We do not show the details of the derivation for MLE, but
the complete derivation can be found in [21]. The estimator
may be biased for small n, thus, in our approach, every
transition from time slice 0 is recorded in the transition table
like Fig. 4 for the estimation. As n increases, P̂Pij will
converge to a certain time-invariant matrix like the
transition probability matrix of SR in stationary known
environment. In other words, for reasonably large n,
P̂PijðnÞ � Pijð1Þ.

We can define the convergence time of estimation by
introducing the tolerable error, �. Then, the convergence
time is the smallest n, such that jP̂PijðnÞ ÿ Pijð1Þj � � for
8i; j.

The nÿ step transition probability can be computed from
1ÿ step transition probability and initial probability vector.
Namely, it is a function of 1ÿ step transition probability
and n [30].

For example, P00ðnÞ of two-state SR can be represented
as follows [30]:

P00ðnÞ ¼
P10ð1Þ þ P01ð1Þ � ð1ÿ P01ð1Þ ÿ P10ð1ÞÞn

P01ð1Þ þ P10ð1Þ

¼ P00ð1Þ þ
P01ð1Þ � ð1ÿ P01ð1Þ ÿ P10ð1ÞÞn

P01ð1Þ þ P10ð1Þ
:

ð1Þ

Thus, the convergence time is n, which makes the second
term smaller than �. Notice that convergence time depends
on the time-step, n, as well as the property of the given
stationary process.

It is important to stress the fact that ML estimation of the
probability matrix of the SR is completely independent from
the PM policy adopted for the SP . In other words, estimation
of the unknown parameter does not interfere with control.
This identifiability condition is sufficient to guarantee that the
basic EC adaptive control is self-tuning [7].

4.2 Decision Policy

As mentioned in Section 3, the optimal policy � is the
sequence of decisions chosen from the optimized decision
table according to the system state in every single time slice.
This approach is possible because the transition probability
matrix of SR is determined before optimizing the decision
table. But, in the unknown stationary environment, it is not
possible to build the decision table in advance because the
transition probability matrix is unknown. For this reason, it
is necessary to provide a decision table for the estimated
transition probability matrix dynamically. On the other
hand, the EC adaptive policy requires a new policy
optimization for every new ML estimate for the SR. This
is hard to apply in practice because the computation
required to optimize the policy is demanding.

In this section, we describe a table look-up method
augmented with a linear interpolation technique that
relaxes computational requirements without significantly
degrading solution quality. For the sake of simplicity, it is
assumed that SR has two states, but this method can handle
SRs with more than two states.

4.2.1 Look-Up Table Construction

The transition probability matrix of a stationary SR can be
characterized by user request probability, Ri 2 ½0; 1�,
i ¼ 0; 1. If each dimension, Ri is sampled with a finite
number of samples, each sampling point in dimension i is
denoted as Rij; j ¼ 0; i; � � � ; NSi ÿ 1, where, NSi is the
number of sampling points for dimension i. Based on these
sampling points, a look-up table, called policy table, is
constructed as shown in Fig. 5.

Each cell of a policy table corresponds to an SR of
which the user request probability is ðR0j; R1kÞ
(j ¼ 0; 1; � � � ; NS0 ÿ 1 and k ¼ 0; 1; � � � ; NS1 ÿ 1). And, each
cell of a policy table is also a two-dimensional table, which we
call a decision table (see Section 3 and [12]). A decision table is a
matrix with as many rows as the total system states and as
many columns as the command issued by thePM toSP . Each
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Fig. 4. (a) State transition matrix and (b) observed transition table of SR.



cell of a policy table can be indexed as a pair ðj; kÞ and its

corresponding request probability pair is ðR0j; R1kÞ. For each

pair ðj; kÞ, a policy optimization is performed to get the

corresponding decision table and the obtained decision table

is stored to a cell of the policy table with the corresponding

index. The overall table is constructed once for all and its size

is NS0 �NS1 � the size of the table used in [12].

4.2.2 Decision Using Interpolation

For a given time slice, ðR̂R0; R̂R1Þ can be obtained using the

estimation technique mentioned in Section 3 and two

consecutive indices can be chosen for each dimension such

that R0j � R̂R0 � R0ðjþ1Þ and R1k � R̂R1 � R1ðkþ1Þ. Thus, four

decision tables corresponding to the chosen indices can be

used to calculate the decision for the given ðR̂0R0; R̂1R1Þ and

current observed system state. From each decision table

chosen, a row corresponding to the current system state,

denoted by CS is selected as shown in Fig. 6.
From these four rows, the final decision row can be

obtained by two-dimensional interpolation technique—

applying the one-dimensional interpolation represented in

(2) iteratively. In a one-dimensional function fðxÞ, the

function value fðxÞ for any point x which is located in

between any two points—x1 and x2 can be linearly

interpolated as follows:

fðxÞ ¼ ðfðx2Þ ÿ fðx1ÞÞxþ x2fðx1Þ ÿ x1fðx2Þ
x2 ÿ x1

: ð2Þ

The iterative procedure is visualized in Fig. 7 and the
pseudocode of the interpolation/extrapolation procedure
including decision table and row selection is shown in Fig. 8.

Extrapolation is used if R̂iRi > RiðNSiÿ1Þ or R̂iRi < Ri0. In all
other cases, the interpolated value is computed as three
successive one-dimensional linear interpolations on the
selected table entries. The proposed technique in this
section is described for an SR with two states, but it can
be extended to handle SR with more states by increasing
the number of dimensions. For n state SR, the required
number of dimensions is nðnÿ 1Þ, thus the computational
effort is increased proportionally to n2. In our application, it
is enough to model SR with two states with reasonable
computation effort.

5 DPM IN NONSTATIONARY ENVIRONMENT

5.1 Nonstationary Service Requestor

In many practical applications, the assumption of stationary
SRdoes not hold. Workload is subject to changes over time, as
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Fig. 6. Decision table and rows selection from policy table.

Fig. 7. Visualized two-dimensional interpolation example.

Fig. 8. Two-dimensional interpolation.

Fig. 5. An example of a 2D policy table (NS0 ¼ NS1 ¼ 5).



intuitively suggested by observation of typical computer
systems. In this section, we describeDPM policies tailored to
nonstationary SR models. These adaptive DPM policies are
more generally applicable to real system environments than
those in Section 3 and 4, they are heuristic because we cannot
claim global optimality in a nonstationary environment.

Our first step is to model a nonstationary SR as shown in
Fig. 9. A nonstationary workload, denoted by Ul, is modeled
by a series of stationary workloads which have different user
request probabilities. Each stationary workload is denoted by
us; s ¼ 0; 1; � � � ; Nu ÿ 1, where Nu is the total number of
stationary workloads forming the nonstationary workload,
Ul. Thus, a nonstationary workload can be represented as
UNu ¼ ðu0; u1; � � � ; uNuÿ1Þ. In this model, the Ri becomes a
function of the given sequence and can be distinguished from
the Ri of stationary SR as shown in Fig. 10.

Notice that the nonstationary SR model is very general:
By increasing Nu, we can model any given workload with
arbitrary accuracy. In fact, for any given sequence of zeros
and ones of length �, we can set Nu ¼ �, and define Nu

different two-state Markov chains with deterministic
transitions that reproduce exactly the given sequence.

Clearly, the knowledge of such a model at time zero is
equivalent to assuming the existence of a perfect oracle that
can predict the future with no uncertainty. Realistically, we
can only expect to be able to predict the future based on
past experience and take into account nonstationarity by
limiting the effect that the remote past will have on our
current prediction. In other words, we will track changes in
transition probability of the nonstationary Markov model
by observing the workload on a limited-size time window
in the past.

In the nonstationary environment of Fig. 10, the optimal
policy is to take a decision based on the decision table
optimized for the Ri for each us. We call such an ideal
policy the best-adaptive policy which requires the perfect
knowledge of the change of us and cannot be implemented
in a real situation. Therefore, the objective in this section is
to propose techniques that achieve results comparable to
best-adaptive policy. The look-up table based interpolation
technique introduced in Section 4 is still employed for
dynamically choosing the most appropriate policy for the
estimated SR, but the estimation technique in Section 4
should be replaced due to the nonstationarity of the
workloads. We propose two window-based approaches to
handle the nonstationarity of the workloads.

For the sake of clarity, we enrich our notation: PSR
becomes a function of the sequence and denoted by PSRðusÞ.
From now on, we will denote the actual values as function

of us because they are constant over time for a given us and
the estimated values are represented as a function of time.
For example, RiðusÞ is the actual user request probability of
a sequence us and R̂RiðtÞ is the estimated user request
probability at time t.

5.2 Single Window Approach

A sliding window stores the recent user-request history to
predict future user requests. This approach is a derivation
of MLE (Section 4) because it estimates the request ratio
depending on recent user history (the information stored in
a sliding window) instead of the whole history.

A sliding window, denoted as W , consists of lw slots and
each slot, WðiÞ; i ¼ 0; 1; � � � lw ÿ 1, stores one previous user
request, i.e., sr 2 0; 1; � � � ; Sr ÿ 1. The basic window opera-
tion is to shift one slot constantly for every time slice.

An example of a window operation for a two-state user
requests is shown in Fig. 11. At each time point, W ðiþ 1Þ  
WðiÞ; i ¼ 0; 1; � � � ; lw ÿ 1 and Wð0Þ stores a new user request
from SR.

At a given time point t, P̂Pij in PSR can be simply
estimated by the ratio between the total number of
transitions from state i to j and the total number of
occurrences of state i observed within the window.

It may be impossible to define P̂Pij when the sliding
window does not have any information of state i at a certain
time point. In this case, we define P̂Pij as 0 when i ¼ j and
1=ðSr ÿ 1Þ when i 6¼ j, respectively.

Let us denote the total number of state i observed by the
sliding window by Ai, then Ai ¼

Plwÿ1
k¼1 ðW ðkÞ ¼ iÞ and P̂Pij at

a given time t can be formally expressed as (3).

P̂P ijðtÞ ¼
1
Ai

Plwÿ1
k¼1 ½ðWðkÞ ¼ iÞ ^Wðkÿ 1Þ ¼ jÞ� if Ai 6¼ 0

0 if Ai ¼ 0 and i ¼ j
1=ðSr ÿ 1Þ otherwise;

8<:
ð3Þ

where “=” is the equivalence operation with a Boolean
output (i.e., it yields “1” when the two arguments are the
same, otherwise returns “0”) and where “^” is the
“conjunction” operation.

There exist three possible estimation error sources—
resolution error, biased estimation error, and adaption time.

1. Resolution error is due to the maximum precision of
R̂RiðtÞ, which is limited to 1

lw
. For example, if lw ¼ 10,

R̂RiðtÞ cannot express two digit effective numbers
such as 0:95. The longer lw is, the smaller the effect of
resolution error is.

2. Biased estimation error happens when lw is shorter
than the burst lengths of sequences. Suppose an SR
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Fig. 9. An example of a Markov chain for nonstationary SR.

Fig. 10. RiðusÞ of nonstationary SR vs. stationary SR.



generates 100 1s after 100 0s and lw ¼ 10. When the
sliding window is in the middle of 0 (1) sequence,
the window does not have any information on state 1
(0), which causes the estimator to guess the R̂R1ðtÞ
(R̂R0ðtÞ) arbitrarily (the second or the third case of (3)).
The longer lw is, the smaller the effect of biased
estimation error is.

3. Adaptation time is considered when the sliding
window is observing usÿ1 and us—the window is
experiencing the switching of two stationary pro-
cesses. The estimation of the new stationary process
(us) is disturbed by the old stationary process (usÿ1).
Thus, it is the time required to fill the window, W ,
fully with the transitions of the new sequence us.
This error source can be reduced by reducing lw.

These error sources are graphically represented in Fig. 12.
It is obvious that the resolution error is limited by 1=lw

and the adaption time is always lw independent to us. Also,
to avoid the biased estimation error, lw should be larger
than the sum of average sequence length of 0 state and
1 state in case of two-state SR. For example, lw should be
larger than 200 in the case of Fig. 12b.

The average burst length of each state i for a given us
(IiðusÞ) can be expressed as follows:

IiðusÞ ¼
X1
k¼0

kPk
iiðusÞð1ÿ PiiðusÞÞ þ 1 ¼ 1

1ÿ PiiðusÞ
: ð4Þ

This equation represents the average number of self-
transitions of each state i whenever state i is first visited.
Thus, for two-state SR, the required lw to avoid biased
estimation is simply I0ðusÞ þ I1ðusÞ for a given us.

Finally, if lw !1, both resolution error and biased
estimation error become negligible, but adaption time
becomes infinite. Thus, the single window approach
becomes the MLE of the unknown stationary environment.

5.3 Multiwindow Approach

In the single window approach, it is not guaranteed that the
previous history observed by the window at a given time
point always provides complete state information. Due to
this limitation, the second and third case of (3) can be
frequently used, especially when lw is small. To avoid this
situation, lw should be increased, but increasing lw is not
desirable because adaptation time is also increased. The
multiwindow approach is devised to overcome this situa-
tion by keeping the previous history of each state
separately.

The basic structure for the multiwindow approach is
shown in Fig. 13. There are as many windows as Sr of SR
and their sizes are the same (lw). For convenience, each
window is denoted by Wi, which is dedicated to the state
sr ¼ i. Therefore, Wi stores only the previous transitions
from state i. At a time point t, the Previous Request Buffer
(PRB) stores srðtÿ 1Þ and controls the window selector to
select a window Wi, where srðtÿ 1Þ ¼ i. At each time point
t, Wiðjþ 1Þ  WiðjÞ, i ¼ srðtÿ 1Þ, and j ¼ 0; 1; � � � ; lw ÿ 1.
Note that only the selected window Wi, i ¼ srðtÿ 1Þ,
performs the shift operation, while the other windows stay
constant. Thus, each window Wi stores lw previous user
requests and plays a role in predicting the transition
probabilities from state i to any other states. Each row of
PSRðusÞ is mapped to the window corresponding to the
state which is the source of the transition and PijðusÞ can be
easily calculated as follows:

P̂PijðtÞ ¼
Plwÿ1

k¼0 ðWiðkÞ ¼ jÞ
lw

for all i; j: ð5Þ

The estimation error sources of the multiwindow
approach are resolution error and adaptation time, but
there is no biased estimation error because each state has its
dedicated window to store past history.

While the resolution error is simply 1
lw

(like for the single
window approach), the adaptation time is not a constant,
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Fig. 11. Single window operation for two-state user requests.

Fig. 12. Estimation error source. (a) Resolution error and adaptation

time. (b) Biased estimation error.



unlike the single window approach. The adaptation time is
determined by the window which is fully filled with the
new requests (us) in the latest.

Example. Suppose a stationary SR which can generate
either ui or uj depending on the initial state of SR, where
ui ¼ 00000110000011 � � � a n d uj ¼ 11000001100000 � � � .
Also, suppose that lw of each window (W0 and W1) is
10. Then, to completely fill W0 with ui, we need two
repetitions of sequence 0000011, whereas we need five
repetitions of sequence 0000011 for W1. Thus, the
adaptation time is 5� 7 ¼ 35 time slices determined by
W1. On the other hand, for uj, we only need 5� 7ÿ 5 ¼
30 time slices because 0s in the last repetition is of no use
(W0 is already filled with uj). Therefore, the average
adaption time for the given SR is 32:5.

For two-state SR, it can be generally represented as
follows:

tadapt ¼
lw
m

� �
ðI0ðusÞ þ I1ðusÞÞ

ÿ 1

2

lw
m

� �
ÿ lw
m

� �
ðI0ðusÞ þ I1ðusÞÞ;

ð6Þ

where m ¼ minðI0ðusÞ; I1ðusÞÞ, thus dlwme represents the
number of repetitions required to fill the window for the
given sequence of which the length is I0ðusÞ þ I1ðusÞ. The
last term represents the unnecessary part of the sequence in
the last repetition. Finally, the last term is divided by 2 to
get the average value with the consideration of different
initial states.

6 POLICY IMPLEMENTATION

The proposed approaches were implemented on both a
desktop PC and a laptop PC to control the power state of
their hard disk drives. Policy implementation consists of
two parts—offline policy table computation and runtime
application. The optimization phase is similar to the policy
optimization procedure introduced in [12] except that the
optimization is repeated many times, for every different set
of user request probabilities, Ri; i ¼ 0; 1, to construct the
policy look-up table. The policy look-up table resides in
main memory as a part of PM and PM is implemented on
the PC thanks to an open standard called Advanced
Configuration and Power Interface (ACPI) [22].

ACPI specifies protocols between hardware components
and operating systems to enable operating-system directed
power management (OSPM); the OS can adopt system-wide

power management policies. Fig. 14 shows the ACPI
interface; it consists of the OS, which controls the power
states, the ACPI interface, and the hardware that responds
to ACPI commands and changes power states. An ACPI-
compliant device can have up to four power states:
pwerDeviceD0 (D0), the working state, and Power-

DeviceD1 (D1) to PowerDeviceD3 (D3), representing
three different sleeping states. But, only D0 and D3 states
are used in our implementation because the hard disk
drives provide only single sleep state.

We use Microsoft Windows 2000 in our implementation.
In Windows, power management commands are processed
as IO commands using I/O request packets (IRP). Special IRPs
are required to synchronize ACPI commands so that the
transient current does not exceed the maximum capability
of the power supply. We implement power managers using
a filter driver (FD) template [24]. A filter driver is a device
driver attached upon another device driver; it can intercept
commands from the OS and responses from the lower
driver. The filter driver observes IO activities generated
from OS and applications to update the estimation of
stochastic parameters. When the power manager deter-
mines to shut down a device, it issues a power IRP to the
lower level driver to control the power states.

By implementing power managers in a commercial
operating system, we can experiment with different algo-
rithms running realistic workloads. Because our filter
drivers are visible only to the OS and its lower-layer driver,
application programs can run without any modifications.
Based on the software-controlled architecture described
above, both single and multiple window approaches were
implemented and tested.

7 EXPERIMENTAL RESULTS

We performed two sets of experiments: First, we simulated
the proposed algorithms in the context of the system model
of Fig. 2; second, we applied them to real-world power-
manageable systems. We used simulation to analyze and
discuss the inherent properties of the adaptive power
management techniques proposed in Section 5, while we
carried out real-world experiments to make a fair compar-
ison with other techniques. The experiments were per-
formed on a Sony VAIO PCG-F150 laptop computer, and on
a VA Research VArStation desktop computer. The service
providers for our experiments were commercial power-
manageable HDDs by Fujitsu (VAIO PCG-F150) and IBM
(VArStation). Table 1 reports their average power con-
sumption measured in the active and sleep states (Pa and
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Ps) and during shut-down and wake-up transitions (Psd and

Pwu). Transition timesTsd andTwu are also reported in Table 1.
The numbers reported in Table 1 are obtained from real

measurement using the hardware setup shown in Fig. 15.
The 12V and 5V power lines go through two digital

multi-meters, as shown in Fig. 15 and both meters are

connected to a data collection computer through the RS232

port. Readers interested in the details of measurement may
refer to [37], [38].

7.1 Simulation-Based Analysis

We modeled the Fujitsu’s HDD of Table 1 as an SP with

four power states, representing active, sleep, wakeup, and
shutdown operating modes. When active, the SP serves one

request per time slice, while it has no throughput when in

sleep and transient states. A queue SQ is available to store
up to three incoming requests when the SP is not ready to

serve them. The SR is a two-state Markov chain that issues
a request per time slice when in state 1 and no requests

when in state 0. The overall system is a Markov chain with

32 states.
According to the actual behavior of the HDD, wake-up

transitions are triggered by incoming requests, while shut-

down transitions are triggered by a GO_TO_SLEEP

command issued by the PM. In practice, the PM controls
the SP by issuing two alternative commands, GO_TO_
SLEEP and GO_TO_ACTIVE. When the SP is in active state
with no incoming and waiting requests, the GO_TO_SLEEP
causes a shut-down transition, while GO_TO_ACTIVE
leaves the SP in the active state. On the other hand, when
the SP is in sleep state with no incoming and waiting
requests, GO_TO_SLEEP leaves the SP in the sleep state,
while GO_TO_ACTIVE wakes up the SP . In all other
conditions (there are incoming or waiting requests or the
SP is in either shutdown or wakeup state), the PM has no
control over the SP . Though the complete PM policy can be
viewed as a 32� 2 matrix, there are only two significant
rows, corresponding to a state (SP ¼ active, SR ¼ 0,
SQ ¼ 0) and the other state (SP ¼ sleep, SR ¼ 0, SQ ¼ 0).
For all other states, the power manager does not issue any
command, which reduces the computation overhead due to
power management.

Moreover, the two entries in the row represent com-
plementary probabilities so that the second one can be
obtained as the 1’s complement of the first one, representing
the conditional probability of issuing a GO_TO_SLEEP
command. The value of such a probability is the only
degree of freedom available for policy optimization. Thus,
the memory space required to store the decision table is
only a few bytes. Therefore, total memory required for the
policy table is under 1K bytes, even when NSi for each
dimension i (number of sampling points for each dimen-
sion) is 10. This low memory requirement is especially
advantageous when multiple devices must be controlled by
our power management policy.
PM policies were designed to minimize power con-

sumption subject to performance constraints expressed in

1354 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 11, NOVEMBER 2002

Fig. 14. ACPI interface and PC platform.

TABLE 1
Power States of Commercial HDDs from Fujitsu and IBM



terms of upper bounds on two performance metrics: the
average waiting time (hereafter called waiting time and
denoted by Wp) and the average probability of losing an
incoming request because of a queue-full condition (here-
after called request loss and denoted by Lp).

2

For our experiments, we used Lp ¼ 0:05, representing the
probability of losing up to 5 percent of incoming requests,
and Wp ¼ 1, representing an average delay of one time slice
experienced by each service request. The look-up table
(LUT) of PM policies was constructed by keeping the
constraints unchanged while varying workload parameters
R0 and R1 with a 0.05 step. For each (R0; R1) pair policy,
optimization was performed (as described in [12]) and the
resulting policy stored in the corresponding entry of the
LUT. The entire process took less than 10 minutes on a Sun
Sparc2, with a 200MHz clock rate and 520MB of memory.

The estimation and control approach proposed in this
paper is characterized by two sources of error: estimation
and interpolation. In the following subsections, we report
the results of simulations performed to isolate and analyze
the effects of estimation and interpolation errors. The
overall quality of the estimation and control strategy
applied to nonstationary workloads is reported and dis-
cussed in Section 7.1.2. All simulations were performed
using an in-house cycle-accurate stochastic simulator, with
106 time steps by default.

7.1.1 Estimation and Interpolation Error

Since the asymptotic convergence of the maximum like-
lihood estimators is theoretically demonstrated, we need
only to evaluate the dynamic properties of the estimators,
i.e., their capability of tracing the time-varying parameters
of a nonstationary workload. For this purpose, we used a
family of nonstationary two-state SRs with self-loop
probabilities defined as sinusoidal functions of time:

R0ðtÞ ¼ 0:5þA� sin 2�
t

T

� �
R1ðtÞ ¼ 0:5þA� cos 2�

t

T

� �
;

ð7Þ

where T is the period and A is the amplitude of the
variation. Since (7) depend only on T and A, we use the
notation SRðT;AÞ to represent sinusoidal SRs.

We simulated SRðT;AÞ for different values of T and we
applied single and double-window estimators to trace the
variation of R0 and R1. Fig. 16 shows the actual behavior of
R0ðtÞ for T ¼ 1; 000 and A ¼ 0:45, together with the
estimates provided by a double window of length 20
(DW20), a single window of length 50 (SW50), and a double
window of length 100 (DW100). We can compare the
estimated waveforms with the original one in terms of:
attenuation, that is, the ratio between the amplitude of the
estimated waveform Ae and that of the original one A, delay,
evaluated as the time gap between a local maximum of the
original waveform and the corresponding maximum of the
estimated one, and noise, that adds higher-frequency
fluctuations to the sinusoidal waveforms. In Fig. 16, it is
apparent that DW100 is less noisy than DW20 and SW50, at
the cost of sizable estimation delay and attenuation. It is
also worth noting that DW20 is closer to the actual
waveform and less noisy than SW50.

The above observations are supported by the results of
the analysis in the frequency domain, reported in Fig. 17.
We repeated the simulation experiment of Fig. 16 for
different values of T and we computed attenuation and
delay for each estimator. Estimation delays were divided by
T=2� and expressed in degrees to obtain comparable phase
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Fig. 16. Ideal and estimated curve at f ¼ 0:001.

Fig. 15. Hardware setup for HDD power measurement.

2. The request loss is a model for the incoming requests when the queue
is full. In practice, no request is lost in the implementation because a queue
full state will trigger alternative mechanism for buffering. Still, the queue
full state is undesirable.



shifts. Attenuation and phase shift were then plotted as

functions of T , as shown in Fig. 17a and Fig. 17b,

respectively.
As expected, all window-based estimators act as low-

pass filters: As the period T of workload variations

decreases, both the attenuation and the phase shift become

critical, while they are negligible for values of T larger than

a cut-off value that depends on the estimator. In general, the

larger the window the higher the cut-off period. This can be

better explained by thinking of a nonstationary workload

obtained as the concatenation of two stationary ones, u0 and

u1. When the workload statistics switch from u0 to u1,

adaptation time proportional to the window length lw (see

Section 5) is required to completely update the contents of

the windows in order to estimate the parameters of u1

independently of u0. This effect can be appreciated in Fig. 17
by comparing the curves associated with DW20 and
DW100, while the comparison between DW20 and SW50
suggests a different trend. This counterintuitive result is
due to the inherent capability of double-window estimators
of selectively keeping track of significant past events whose
distance in time may exceed the window length.

We also conducted experiments to evaluate the accuracy
of policy interpolation. For a set of 20 stationary workloads
which were artificially generated with random R0 and R1,
we compared the unknown stationary approach to the
known stationary approach. From this experiment, we
found that the average penalty of adaptation in unknown
stationary approach is below 5 percent in terms of both
power consumption and waiting time compared to the
known stationary approach.

7.1.2 Overall Quality of Estimation and Control

To evaluate the overall quality of the proposed approach,
we simulated an highly nonstationary workload, built as
the concatenation of SR traces of variable lengths (ranging
from 40,000 to 60,000 time steps) generated by the
20 stationary workloads which were used in the interpola-
tion error estimation. For the sake of conciseness, in the
following, we use U20 to denote the nonstationary workload
trace and us (s ¼ 0; � � � ; 19) to denote each of the stationary
traces that compose it.

We simulated the effect on U20 of adaptive control based
on single-window (SW) and double-window (DW) estima-
tors with different window sizes. We also implemented and
simulated known stationary (KS), unknown stationary
(US), and best-adaptive (BA) mentioned Section 5.

We compared the above five policies to the best oracle
(BO) policy. BO is the most ideal policy in the sense that it
perfectly knows the arrival of future requests determinis-
tically. It deterministically decides to shut down the SP at
the beginning of idle periods longer than the break-even
time tbe (i.e., long enough to compensate for the shut-down
and wake-up cost) [13]. Also, it wakes up the SP Twu before
the next incoming request is issued by SR, thus BO never
pays a performance penalty for power saving. This policy
cannot be implemented in practice, but its effect can be
quantified through offline analysis of any workload. Since it
is the “best” possible policy, it is useful for comparisons.

The power consumption and waiting time provided by
the power management strategies are reported in Fig. 18a
and Fig. 18b as functions of the sliding window size lw. For
a wide range of values of lw (from 50 to about 5,000) both
SW and DW approaches provide almost the same power-
performance trade-off of BA policy. Outside this range,
estimation errors cause sizeable violations of performance
constraints, mainly due to the estimation noise for lw < 50,
and to the estimation delay for lw > 5000.

It is also worth mentioning that the given performance
constraint represents the maximum performance penalty
allowed to achieve minimum power consumption. Thus, if
increasing the performance penalty (but still less than the
given constraint) does not help to save more power, the
waiting time is kept smaller than the given constraint by the
control policy. One extreme case can be shown when SR
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Fig. 17. Attenuation and phase shift of window-based estimates.

(a) Attenuation. (b) Phase shift.



generates requests without idle periods longer than break-

even time Tbe. In this situation, shutdown does not decrease
power consumption, but it increases performance penalty.

These points will be further explained by means of Fig. 19.
As for KS and US, though they provide more power

savings than BA, they completely violate performance
constraints (again, represented by the average waiting time

of BA). Their constraint violations are caused by the wrong

hypothesis of stationary Markov SR on which they are
based. It is also worth noting that the estimation errors

made by the SW and DW approaches when the windows

they use are too small or too large are never as critical as
those caused by the stationarity assumption.

Fig. 19a and Fig. 19b show the power and performance

values achieved by the PM strategies for each stationary

subtrace us in U20. Index s is reported on the x axis. Boxes
are used to point out the cases in which the constraint on Wp

was inactive either because it was dominated by that on Lp
or because there were no idle periods longer than the break-
even time. In both cases, the actual waiting time was well
below the given constraint, causing the overall average
reported in Fig. 18b to be around 0.5 instead of 1.

Interestingly, the performance of SW and DW (for
lw ¼ 50) is always comparable to that of BA, both in terms
of power and in terms of waiting time, meaning that both
estimation and interpolation errors may be made almost
negligible by carefully selecting lw. On the other hand, the
ideal BO strategy often provides a much better (but
unreachable) trade-off. As for US and KS, their apparent
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Fig. 19. Local power consumption and average waiting time provided by

the PM policies for each subtrace us of U20 (Lp ¼ 0:05,Wp ¼ 1). (a) Local

power consumption. (b) Local average waiting time.

Fig. 18. Power and average waiting time comparison for various window

size (Lp ¼ 0:05, Wp ¼ 1). (a) Power consumption. (b) Average waiting

time.



advantage in terms of power is paid in terms of
performance violations that become evident in Fig. 19.
The average waiting time they impose often exceeds by
50 percent the given constraint.

It is also worth noting that, when there are no idle
periods longer than the break-even time, all adaptive
policies take the correct decision of keeping the resource
always on, locally reaching the same quality of BO (see, for
instance, us ¼ 8). In contrast, US and KS policies still issue
GO_TO_SLEEP commands that cause both a power waste
and a performance penalty.

7.2 Experiments with Policies Implemented on
Computers

We implemented single and double-window adaptive
control strategies on ACPI-compliant PCs mounting the
power-manageable HDDs of Table 1: The MHF2043AT
HDD (3.8GB) by Fujitsu was installed on a VAIO PCG-F150
laptop computer from Sony (Pentium II, 32MB memory),
while the DTTA-350640 HDD (6.44GB) by IBM was
installed on a VArStation desktop computer from VA
Research (Pentium II, 256MB memory). The base unit of
time slice was set to 1 second, which is large enough to
tolerate the computation cost of the power manager.

Alternative DPM algorithms [9], [10], [15], [26], [27], [28]
and timeout mechanisms [34] were implemented on the
same platforms for comparison. All PM schemes were
applied under the same workload conditions, represented
by an 11-hour trace of disk accesses generated by text
editors, debuggers, and graphical tools running on top of
Windows-NT. The quality of each control strategy was
evaluated based on five metrics:

. P : Average power consumption (unit: W ).

. Nsd: Number of shutdowns.

. Nwd: Number of wrong shutdowns causing a power
overhead.

. Tss: Average sleeping time per shut-down (unit: sec).

. Tbs: Average idle time before shutdown (unit: sec).

Notice that all of the metrics shown above are related to
only HDD, namely, P is the power consumption of HDD
alone. The experimental environment described in Section 6
provides the runtime support for online computation of the
above metrics.

While average power consumption P provides a direct
measure of the objective function of policy optimization,
performance metrics are more involved and need some
explanations. The number of shutdowns Nsd is directly
related to the performance penalty that has to be paid
(regardless of the PM scheme) to wake up the SP . The
number of wrong shutdown decisions Nwd is a measure of
inefficiency: A wrong decision causes both a performance
and a power penalty. On the contrary, the average sleeping
time per shut-down, Tss, is a measure of efficiency: The
longer the sleeping time, the lower the number of shut-
downs required to achieve the same power savings. Finally,
Tbs can be viewed as a measure of inefficiency since it
represents wasted idle time. In summary, good PM
strategies should be characterized by low values of P ,
Nsd, Nwd, and Tbs and by large values of Tss.

Experimental results are reported in Table 2: Rows are
associated with PM algorithms, columns with power/
performance metrics. Algorithms are sorted for increasing
power consumption. Notice that the reported power value
is only consumed by each target HDD.

It is also worth mentioning that DPM aims at reducing
average power consumption of the target device, but it can
increase the peak power consumption because changing
power state (especially when the device is waked up)
usually requires more power than active state, as shown in
Table 1.

When possible, PM schemes are denoted by a reference
to the paper they were presented in. BO, SW, DW, and US
stay for best-oracle, single-window, double-window, and
unknown-stationary policies, according to the notation
introduced in Section 7.1.2. Performance constraints used
for policy optimization were Lp � 0:05 and Wp � 2, while
window sizes of 50 and 20 were chosen for SW and DW,
respectively. As for simulation, BO policy was designed
based on the offline analysis of the trace. Rows referring to
timeout policies are denoted by the corresponding timeout
values (� ¼ 30 and � ¼ 120). Finally, the always-on row
reports the power consumption of the HDD without power
management.

Notice that we could not implement a best-adaptive (BA)
policy as we did for simulation because of the nature of the
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Algorithm Comparison:
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workload. In fact, best-adaptive policies can only be

conceived for piecewise stationary workloads as those

artificially constructed in Section 7.1 for simulation experi-

ments. Real-world workloads are not piecewise stationary.
The method proposed by Karlin et al. [26] achieved the

best power-performance trade-off on the desktop computer,

but DW provided comparable results both in terms of

performance (Ns) and in terms of power (P ), the difference

being within 5 percent. A different trade-off (with higher

consumption at lower performance penalty) was provided

by � ¼ 30, [27] and [28], while all other approaches

provided much worse results.
On the laptop computer, DW provided the lowest power

consumption, followed by [26] and [28]. We remark,

however, that, in this case, results are not comparable:

The performance penalty caused by [26] is almost twice that

of DW, with lower power savings.
The performance of SW is worth being discussed. Both

on desktop and laptop experiments, SW results were much

worse than DW, while they provided comparable results on

simulation experiments. We believe this is due to the bursty

nature of real-world workloads. As discussed in Section 5.2,

if the SR does not enter a given state for more than lw cycles,

SW provides no information about state transition prob-

abilities from that state. The arbitrary assumptions made in

this case by (3) about workload parameters may cause

sizeable estimation errors. On the contrary, this situation

does not impair the performance of DW.
We also run a set of experiments on the desktop PC to

analyze the sensitivity of DW to window size lw. Results are

shown in Table 3. Power savings increase monotonically as

lw decreases because of a lower adaptation delay. Perfor-

mance metrics, on the other hand, show that the minimum

penalty is achieved when lw ¼ 20. Since a further reduction

of lw does not reduce power significantly, while impairing

estimation accuracy, lw ¼ 20 provides the best trade-off

between power and performance.
Finally, we measured the power overhead caused by the

policy computation and the power saving of the overall

system achieved by our approach. For this purpose, we

compare DW and the competitive approach proposed in

[26] to always-on policy on the laptop computer. There are

two reasons to select the competitive approach: 1) Its power

saving for HDD is comparable to our approach, 2) its policy

computation is very simple because it is a timeout approach

by setting the timeout value to the break-even time,

whereas our approach requires more complex computation.

We measured the current drawn by the overall system by
connecting the multimeter to the AC adaptor. For each
policy, we prepared two versions of the power manager.
The first version is the same as the power manager used for
Table 2, but the second version does not issue any
command to HDD. In other words, the second version also
performs the entire policy computation, but it does not
change the power state of the HDD. The first version is
useful to measure the impact of each policy on the power
saving of the overall system, while the second version can
be used to measure the impact of the policy computation
overhead on the overall system. Using the second version,
we measured the power overhead of the policies for the
entire system; it was very small for both approaches
(0.8 percent for ours and 0.6 percent for the competitive
approach).

On the other hand, the measurement of the overall
power saving by our approach was not obvious due to the
power consumption and fluctuation caused by other
components such as display and processor. The impact of
the power saving for HDD on the entire system can vary
significantly, depending on the power control policies of
other components. To eliminate such variation, we mea-
sured the power reduction by our approach for the OS
controllable fraction3 of the total system power budget. Our
approach achieved 20.2 percent of power saving, while the
competitive appraoch did 15.7 percent of power saving
(both include the power overhead of the policy computa-
tion). Also, the peak power of the system was increased by
6 percent for both approaches. To summarize, our approach
outperforms the competitive approach in terms of overall
power saving, while preserving the same peak power.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we described how to derive adaptive power
management policies for nonstationary workloads. Our
adaptive approach is based on sliding windows and two-
dimensional linear interpolation to find an optimal policy
from a optimal policy table which is precomputed. Thus,
the online computational requirements are mild (0.8 percent
of the overall system power consumption). The proposed
approach deals effectively with highly nonstationary work-
loads. Moreover, our adaptive method offers the possibility
of trading off power for performance in a controlled
fashion. Simulation results show that our method outper-
forms nonadaptive policies. In addition, experiments on
personal computers show that the proposed approach is
superior to other algorithms in terms of both power and
performance.

As in the case of most current and previous research, we
addressed the problem of power managing a single device
(e.g., hard disk) abstracted as a single service provider. We
believe that our method can be extended to control multiple
devices as long as their number is small. Nevertheless, the
problem of performing concurrent power management of
multiple devices, under nonstationary workloads, remains
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TABLE 3
Experimental Results for Window-Size Sensitivity Analysis

3. This subtracts the quiescent power from the total power. The quiescent
power is consumed by the laptop computer when no user program is
running and HDD is shut down; it was not controlled by our policy.



a challenging problem for future research that goes beyond

the scope of this paper.
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