
1284 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

Dynamic Frequency Scaling With Buffer Insertion
for Mixed Workloads

Yung-Hsiang Lu, Luca Benini, and Giovanni De Micheli, Fellow, IEEE

Abstract—This paper presents a method to reduce the energy of
interactive systems for mixed workloads: multimedia applications
that require constant output rates and sporadic jobs that need
prompt responses. The authors’ method divides multimedia
programs into stages and inserts data buffers between them.
Data buffering has three purposes: 1) to support constant output
rates; 2) to allow frequency scaling for energy reduction; and 3) to
shorten the response times of sporadic jobs. The authors construct
frequency-assignment graphs. Each vertex represents the current
state of the buffers and the frequencies of the processor. The
authors develop an efficient graph-walk algorithm that assigns
frequencies to reduce energy. The same method can be applied
to perform voltage scaling and the combination of frequency and
voltage scaling. The authors’ experimental results on a Strong-
ARM-based computer show that four discrete frequencies are
sufficient to achieve nearly maximum energy saving. The method
reduces the power consumption of an MPEG program by 46%.
The authors also demonstrate a case that shortens the response
time of a sporadic job by 55%.

Index Terms—Frequency scaling, multimedia, power reduction.

I. INTRODUCTION

PORTABLE computers, like iPAQ, are increasingly pop-
ular. Such systems can execute multimedia programs that

require consistent audio and video output rates to maintain
satisfactory quality of service. Meanwhile, these systems
continue accepting user inputs that need prompt responses. In
sum, they execute mixed workloads. Most of these systems
operate on batteries and require low power consumption to keep
long the operational time between the recharging of batteries.
This paper presents a method to reduce power consumption for
mixed workloads.

Most processors use CMOS-based circuits; they consume
power mainly during switching from logic true to false, or
vice versa. The switching power is proportional to the clock
frequency and the square of the supply voltage. Therefore, low-
ering clock frequencies and/or supply voltages reduces power
[33]. This is calleddynamic frequency(voltage) scaling [7],

Manuscript received November 15, 2001; revised April 3, 2002. This work
was supported in part by the MARCO/Defense Advanced Research Projects
Agency Gigascale Silicon Research Center and by the National Science Foun-
dation under Contract CCR-9901190. This paper was recommended by Asso-
ciate Editor R. Gupta.

Y.-H. Lu was with Stanford University, Stanford, CA 94305 USA. He is now
with the School of Electrical and Computer Engineering, Purdue University,
West Lafayette, IN 47907-1285 USA.

L. Benini is with the Department of Electronics and Computer Science, Uni-
versity of Bologna, Bologna 40136 Italy.

G. De Micheli is with the Department of Electrical Engineering and the De-
partment of Computer Science, Stanford University, Stanford, CA 94305-9030
USA.

Digital Object Identifier 10.1109/TCAD.2002.804087

[13]. Scaling may have a negative impact on timing-sensitive
programs, for example, by failing to meet the output rate for
a multimedia program. How to scale frequencies and voltages
while meeting timing constraints has been an active research
topic in recent years [1], [19], [25], [27], [29], [28], [30], [31],
[35], [36].

This paper proposes a software-based technique to reduce
power by dynamic frequency scaling on processors that have
only finite frequencies. Our method inserts data buffers in a mul-
timedia program. Data are processed and stored in the buffers
when the processor runs at a higher frequency. Later, the pro-
cessor runs at a lower frequency to reduce power and data are
taken from the buffers to maintain the same output rate. Be-
fore the buffers become empty, the processor begins to run at a
higher frequency again. Inserting data buffers provides opportu-
nities to reduce power consumption. Buffering can also shorten
the response time of a sporadic job. If there are enough data in
the buffers, the processor can handle a sporadic job without af-
fecting the output rate of the multimedia program. Our method
computes the optimal assignments of processor frequencies by
traversing a finite graph. In this graph, each vertex represents
the current state of the buffers, the processor frequencies, and
how the buffers are filled (or drained). We present an efficient
method to compute optimal solutions by graph walking. The
same method can be applied to voltage scaling or the combi-
nation of frequency and voltage scaling.

This method was implemented on a StrongARM-based
hand-held computer. Our experimental results show that
inserting buffers can achieve nearly optimal power saving
with only a few discrete frequencies. Our method reduces the
power consumption of an MPEG program by 46%, after the
nonscaleable base power is excluded. We also present a case
that reduces the response time by 55% with negligible increase
in energy consumption.

II. BACKGROUND

A. Jobs and Constraints

A program can be decomposed into smaller units, called
“jobs” [8]. For example, an MPEG player program can be
divided into two jobs: processing and displaying images. The
processing job may be further divided into smaller units,
including reading the file and decoding the data. If a job must
execute before another job, there is aprecedence constraint
between these two jobs. Precedence constraints are determined
by the structure of a program. For instance, an MPEG player
has to decode an image before displaying it. We use “”
to represent precedence constraints. If jobhas to execute

0278-0070/02$17.00 © 2002 IEEE

LU et al.: DYNAMIC FREQUENCY SCALING WITH BUFFER INSERTION FOR MIXED WORKLOADS 1285

Fig. 1. Precedence constraints form a directed acyclic graph.

Fig. 2. Three types of deadlines.

before job , their relationship is expressed as . For
example, suppose and are the jobs to decode
and display an MPEG image. The precedence relationship is

. Precedence constraints are often repre-
sented as adirected acyclic graph(DAG). Fig. 1 is an example
of precedence constraints: has to execute before and
has to execute before and . Precedence constraints also
occur because of the sequential relationship of data. The first
frame of an MPEG video must be displayed before the second
frame.

A timing constraintrequires that a job finish within a given
duration. Timing constraints can be classified according to three
categories: firm, soft, and on-time [8]. Fig. 2 illustrates the dif-
ferences between these constraints. Suppose there is a “value” if
a job finishes before the deadline. For a firm deadline, the value
drops sharply if the job finishes after the deadline. Examples of
firm deadlines are flight control systems: finishing a job after the
deadline can lead to severe damage or even loss of lives. For a
soft deadline, the value decreases more smoothly after the dead-
line. If a job has an on-time constraint, it should finish near the
deadline, neither too early nor too late. Playing an MPEG movie
requires a consistent frame rate (number of frames per second).
In other words, has to execute repetitively at a constant
rate. The time between and should be a
constant, here is the job to display theth frame. For
playing an MPEG movie at 30 frames/s, the player has to display
one frame every 33 ms, neither much shorter nor much longer.
This is a periodic on-time constraint.

User inputs create “sporadic” jobs. Usually, sporadic jobs are
processed concurrently with other already running programs.
For example, a user may move the mouse cursor while watching
an MPEG movie. The movement of the cursor has to be pro-
cessed and displayed on the screen. Sporadic jobs need to be
processed promptly for interactivity. We can specify two types
of timing constraints for sporadic jobs: 1) the processing time
of each sporadic job is shorter than a given value and 2) the av-
erage processing time is shorter than a given value.

B. Dynamic Frequency and Voltage Scaling

The dynamic power of a CMOS gate can be approximated
by , here is the load capacitance,
is the supply voltage, is the switching activity, and is

the clock frequency [38]. Power can be reduced by lowering
and/or . This is called dynamic frequency (voltage) scaling.
The total energy consumed during the time interval is the
integration of power in this duration: . If we re-
place the load capacitance and the switching activity by their
averages, the energy is given by the proportionality relation:

. Some commercial processors, such as Strong-
ARM, have instructions to adjust the clock frequency. Strong-
ARM processors have special registers to specify the current
clock frequencies [21]. Modifying the values in these registers
changes the frequencies. There are 11 frequency settings avail-
able, between 59 and 206 MHz. StrongARM processors do not
have software-controlled voltage scaling; voltage scaling can
be achieved by adding external voltage regulators [32]. Intel’s
Xscale processors support both frequency and voltage scaling
[40].

Suppose frequencies and voltages can change only at time
, , , and . The frequency and voltage during

is and , . Then, the energy
is computed by the following formula:

(1)

If the voltage is kept constant, the energy is determined by
the frequencies. Thus, we obtain the following relationship:

(2)

Many existing scaling schemes assume that voltage and fre-
quency can scale continuously [7], [13], [37], [25], [31]. This
assumption is false for commercial processors, such as Strong-
ARM. Some schemes consider discrete frequencies and formu-
late the problem as integer linear programming [22], [26], [28];
unfortunately, they are computationally expensive. This paper
will present an efficient scaling method using graph traversal
techniques.

C. Buffer Insertion

As explained earlier, an MPEG player can be divided into
stages, such as decoding and displaying. These stages form a
pipeline. Let and be the jobs to process (i.e., decode)
and to display theth frame. A frame has to be decoded be-
fore being displayed, therefore . Without additional
storage between the two stages, no frame can be processed be-
fore the previous frame is displayed. This requires

. Fig. 3 is the precedence relationship for such a pipeline.
If there are data buffers between the two stages, a frame can
be processed even if the previous frame has not been displayed.
Hence, does not have to precede . The precedence re-
lationship is changed, as shown in Fig. 4. This figure assumes
that the data have to be processed sequentially, consequently

. Also, frames should be displayed sequentially:
. After buffers are inserted between the stages,

there are multiple options to arrange the execution order of these
jobs. For example, can execute before .

1) Energy Reduction With Buffers:An MPEG player has to
maintain a constant output rate: it has to display a frame every

1286 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

Fig. 3. Processing and displaying form a pipeline.

Fig. 4. Inserting buffers changes the precedence relationship.

Fig. 5. (a) Constant output rate for display. (b) Scaling frequency to avoid
slack time. (c) Discrete frequencies cause idleness and waste energy. (d) Scale
to a lower frequency and miss the output rate.

units of time; is called aperiod. For a movie with 30 frames/s,
is 33 ms. Fig. 5(a) shows this requirement:executes once

every period. If a processor’s frequency can be set to any value,
the processor consumes the minimum energy when it takes ex-
actly to process and display one frame [22]. As Fig. 5(b)
showns, there is no slack time.

However, if a processor has only finite frequencies and this
optimal frequency is unavailable, the processor has to run at a
higher frequency. Since this frequency is higher than optimal,
the processor consumes more power. The processor is idle after
processing and displaying one frame, as shown in Fig. 5(c). The
processor cannot enter a lower frequency because if it does,
it will fail to provide the required output rate. Fig. 5(d) illus-
trates this situation. While it is possible to set a processor to
the sleeping state to save power during the idleness, the wakeup
delay can be prohibitively long. For example, it takes 160 ms
to wake up a StrongARM processor from the sleeping state [4].
In contrast, it takes only a fews to change the processor fre-
quency. Consequently, this paper focuses on frequency scaling
only and does not consider using the sleeping state.

One solution to save power is scaling down the processor
frequency whenever it is idle. However, changing frequencies
takes time; hence, it is preferable to avoid changing the frequen-
cies too often. Another solution is to insert buffers between jobs
so that the processor can process more frames at a higher fre-
quency. When enough frames have been processed and stored
in the buffers, the processor retrieves processed frames from the

buffer to maintain the output rate. Since the processor does not
have to process images, it can enter a lower frequency and still
meet the output rate requirement. Fig. 6 depicts this approach.
In this figure, the height means the processor frequency. Four
frames are processed in the first two and half periods. Then,
the processor is scaled down to a lower frequency. Before the
buffers become empty, the processor enters the higher frequency
and refills the buffers. Buffers are used to reduce the power in
pipelines [18], [6], [9] or to smoothen run-time variations [20].
Previous studies have not considered the advantages of buffers
on processors with finite frequencies.

2) Reducing Response Time:In addition to being able to re-
duce power, buffer insertion can also improve the performance
of sporadic jobs without disrupting other jobs. Imagine that a
user moves the mouse cursor and clicks one button at the end
of the 12th period as shown in Fig. 7. This command can be di-
vided into two jobs: and . The first job draws the move-
ment of the cursor; the second job processes the click command.
Fig. 7 shows two scenarios: with and without a buffer. In (a), no
additional frame is buffered: has to execute once every pe-
riod. Only can execute during the 13th period; has to
wait until the 14th period. In contrast, (b) shows four additional
frames being buffered (executes at the 12th period); both

and can execute during the 13th period. As a result,
the user can see the response of this command in the 13th pe-
riod in (b). Buffering reduces the response time of a sporadic
command.

Even though buffering images requires additional memory, a
typical computer has enough memory to buffer multiple frames.
For example, palm-size computers often have more than 8-MB
memory. A frame of 240 160 pixels with 256 colors per pixel
requires 240 160 bytes, or 38 KB. Four hundred kilobytes are
enough to buffer ten frames and are only 5% of the available
memory.

III. RELATED WORK

Scaling techniques can be split into two categories according
to whether or not they consider timing constraints. The first cat-
egory does not guarantee that timing constraints are met. In [37],
the authors propose several methods that periodically estimate
process utilization and adjust the power states. Simulations of
various techniques are presented in [14] and [31]. In [36], the au-
thors model the arrival of jobs as random processes. While this
approach can meet timing constraints statistically, it does not
guarantee toalwaysmeet them. The second category considers
timing constraints. In [19], the authors use off-line analysis to
determine whether it is possible to meet hard deadlines and to
assign the power states. Linear programming methods are pro-
posed in [22] and [28] to find optimal voltages/frequencies for
processors with discrete power states while meeting deadlines.
Some techniques have been implemented on real systems. In
[1], [17], and [32], the authors use StrongARM-based systems
to demonstrate the effectiveness of scaling and point out some
limitations in implementation. Our work differs from existing
approaches in the following ways.

Frequencies are assigned to processors that have finite
frequencies.

LU et al.: DYNAMIC FREQUENCY SCALING WITH BUFFER INSERTION FOR MIXED WORKLOADS 1287

Fig. 6. Process more than one frame at the higher frequency, then scale to the lower frequency.

Data buffers are inserted into a program that needs a con-
stant output rate.

An efficient graph-based method is presented to assign fre-
quencies for reducing energy.

Workloads with very long time horizons can be handled by
this method.

The response times of sporadic jobs are shortened without
affecting the output rate.

The minimum buffer sizes can be calculated to meet the
timing constraints of sporadic jobs.

IV. A SSUMPTIONS

We make the following assumptions to simplify the formu-
lation of the problem. These assumptions may be removed as
extensions of the work presented in this paper.

The processor has only discrete and finite frequencies. The
processor changes frequencies (or voltage) only at the beginning
of a period of length.

Data processing is sequential on a single processor: there is
no forward data dependence.1

The total energy is determined by frequencies only: we
will use formula (2) to calculate energy. We consider the av-
erage power for a given duration. Since the integration of power
over time is the energy, minimizing energy is equivalent to min-
imizing power. We use the terms energy and power interchange-
ably unless it is necessary to distinguish them.

The jobs in the multimedia program are atomic and their
execution cannot cross period boundaries. Jobs are schedulable
at the highest frequency. Buffers are not shared among jobs.

The computational work of a job is measured by the number
of operations. One operation takes one time unit at unit fre-
quency. Hence, the execution time of the same job increases
linearly to the reciprocal of the frequency. The number of op-
erations for a specific job is constant.

It takes no time to start executing a job and there is no con-
text-switching overhead. This assumption is valid for a multi-
media program because there is no real context switching. All
jobs belong to the same process.

V. ANALYTICAL MODEL BY MATHEMATICAL PROGRAMMING

With the assumptions stated above, the power reduction
problem can be modeled as a mathematical programming
problem. For a complete comparison, we show the details of
such modeling before transforming it into a graph-walking

1The B (bidirectional) frames in MPEG are not considered. One example of
video without forward dependence is motion JPEG. B frames cause forward data
dependence and they cannot be decoded based on the information available from
previous frames. However, MPEG is divided into group of frames so only finite
“look-ahead” is needed. Our method can be applied to MPEG by considering a
group of frames as the basic unit.

Fig. 7. (a) No buffer. (b) Buffer additional frames to reduce the response time
of a sporadic job.

TABLE I
SYMBOLS AND MEANINGS

problem later. This section derives an analytical model for en-
ergy minimization under performance and resource constraints.
We start with integer linear programming. The formulation
becomes more general and more complex as we consider
additional factors.

A. Two Frequencies and Two Jobs

This section assumes: 1) there are two repetitive jobs; 2) the
processor allows two integer frequencies: and ; and
3) changing frequencies takes no time. We will remove these
assumptions later. An MPEG movie hasframes to display
in periods. The length of a period is. For each frame,
there are two jobs: processing () and displaying (). A
frame is processed before being displayed (). Table I
summarizes the symbols used in this section.

The th period is the time interval of . Let
. We use to indicate the frequency during

the th period, and . Let be the number
of frames processed during theth period; it is a nonnegative
integer. If , one frame is processed during this period.
Suppose and are the number of operations for processing
and displaying one frame. It takes to process one frame

1288 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

Fig. 8. The processor changes frequencies every period.

at frequency . During the th period, the total number of op-
erations is for processing and for displaying. They
have to finish within a period. Therefore, ,

. This can be rewritten as

(3)

The number of frames processed up to() is the
sum of frames processed in each period: . At least
frames have to be processed beforebecause frames have
been displayed at . This can be expressed by the constraint:

, . Since frames have been pro-
cessed but only frames are displayed. The additional frames
are stored in a buffer. Suppose one frame takes one unit of space
and the buffer size is. The following constraint restricts the
number of frames processed so that they do not overflow the
buffer at : , . These two con-
straints are expressed as follows:

(4)

As explained in Section II-B, when the voltage is kept con-
stant, the total energy for frames is proportional to the sum of
frequencies of during all periods. The energy is proportional to

(5)

This is the cost function. The problem of energy minimiza-
tion is to find a frequency assignment (the value offor)
and an execution order (the value of) to minimize the total
energy, expressed in formula (5), while meeting all constraints.
This is an integer linear programming problem (ILP). The pa-
rameters depend on the processor (and), the system (),
and the workload (, , , and). While this formulation may
appear excessive for minimizing the energy for a processor run-
ning two jobs at one of two possible frequencies, we use it as the
foundation for handling more complex and realistic situations.

Example 1: Suppose , , , , ,
, and . There are four inequalities from the con-

straints specified in (3). There are four other inequalities from

the precedence constraints and the resource constraints speci-
fied in (4)

(6)

By (5), the cost function is

(7)

The minimum energy can be obtained by setting
. The processor always stays in the lower fre-

quency, . One frame is processed each period:
.

Example 2: Consider . In this case,
is no longer a valid solution because the constraints in

(6) are violated. The minimum energy can be obtained by setting
and . Two frames are processed in the

first and third periods and no frame is processed in the second
and fourth periods: , . The processor
changes frequencies every period as shown in Fig. 8. Note that
it is prohibited to process four frames in the first two periods
by setting , , , and

, because this violates the buffer size constraints in
(6).

B. Multiple Jobs

We can generalize the formulation to handle multiple jobs.
Suppose there are jobs: and
has to execute once every period. Let be .
We use for the th execution of , . For any

, job has to execute before ,
where . Fig. 9 shows the precedence relationship between
these jobs. Let be the number of operations performed by.
Let be the number of executions ofduring the th period;

LU et al.: DYNAMIC FREQUENCY SCALING WITH BUFFER INSERTION FOR MIXED WORKLOADS 1289

Fig. 9. Precedence of multiple jobs.

means that executes once in this period. Since
executes exactly once each period, for any value of

. The total number of operations performed in theth
period is . All operations have to finish within
the period. Therefore

(8)

At , has processed frames. The following con-
straints allow one frame to be displayed each period:

(9)

At time , job has executed times and job
has executed times. The additional frames are

stored in a buffer. Let be the size of the buffer betweenand
. The following constraint avoids buffer overflow:

and (10)

The goal is finding and to minimize energy (5) under
the constraints expressed by (8)–(10).

C. Multiple Frequencies

Consider a processor withinteger frequencies: , , ,
. Suppose is the frequency during theth period, then
, , , . The cost function is the same, as expressed in

(5). The execution time constraint in (8) is also the same, except
that can be one of the available frequencies.

Example 3: Consider a processor with three frequencies:4,
2, 1 for three jobs: , , and . The numbers of operations
for the jobs are , , and . The length
of a period is 11. There are two buffers, and ; each can
accommodate one frame. There are three frames, . Table II
shows the execution time of each job at different frequencies.
Since and it takes 12 time units to execute three jobs at
frequency 2, the processor must run at the highest frequency in
the first period. Fig. 10 shows the solution for the lowest energy.
In this figure, is the sequence of for the th period. In the
first period, . This means and

TABLE II
EXECUTION TIME AT DIFFERENTFREQUENCIES FOREXAMPLE 3

Fig. 10. Lowest energy solution for Example 3.

. The frequencies in the first, second, and third periods
are 4, 2, and 2, respectively.

D. Multiple Voltages

This section generalizes the formulation to consider both fre-
quency and voltage scaling. Suppose the processor hasdis-
crete voltage settings: , , , . Let be the voltage
at the th period. The power consumption during theth period
is proportional to . We need to choose the value of
and to minimize the overall energy, which is proportional
to

(11)

The values of and should be determined so that all
the constraints expressed in (8)–(10) are satisfied. Note that the
maximum value of can be determined from analytically
[33]. When voltage scaling is considered, the cost function (11)
contains the products of and . This is no longer a linear
programming problem. We can further generalize the problem
for noninteger values of and . Consequently, energy min-
imization with both voltage and frequency scaling can be formu-
lated as a (cubic) mathematical programming problem.

E. Scaling Overhead

Suppose changing frequencies and/or voltages takes
time regardless of the original and new frequencies and
voltages. Furthermore, the processor cannot execute any job
during frequency and/or voltage changes. In [17], the authors
report 0.2 ms for changing frequencies on a StrongARM
processor. This is less than 1% of a period (33 ms). While it
is possible to change frequencies multiple times within each
period, this will enlarge the solution space. We, therefore,
assume that the change can finish within one period. The
definition of and are refined as follows: and
are the frequency and the voltage at the end of theth period.
If (or), the frequency (or voltage)
changes at the beginning of theth period. We use a binary

1290 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

variable, , to indicate whether the processor changes
frequencies (or voltages) at beginning of theth period. If the
frequency (or voltage) is changed, is one; otherwise, is
zero. The processor does not change frequencies in the first
period. Thus, we set to be zero.

During the th period, time is used for frequency scaling,
so is left for processing jobs. All operations have to
finish in this period. The constraint expressed in (8) is modified
to include the scaling overhead

(12)

In summary, the problem is to minimize energy for a pro-
cessor with frequencies and voltages for jobs

(13)

under the following constraints:

,

if
and

otherwise

. (14)

Example 4: Consider Example 3 again with . If ,
the minimum energy is 10 if the frequencies are set to4, 1, 4,
1 . When is nonzero, this assignment is invalid becauseand

cannot execute twice in the third period after the frequency
change. If , the minimum energy is 11 when the frequen-
cies are 4, 1, 4, 2.

F. Summary

This section formulates power reduction as mathematical
programming problems. This is a general formulation to
minimize the energy of a processor with finite frequencies
and voltages for running a program under timing and resource
constraints. The formulation can consider different variations of
the same problem, including multiple frequencies (or voltages)
and scaling overhead. We can also formulate the problem
to find the buffer requirements when the available energy is
fixed. A large amount of literature has been devoted to solving
mathematical programming more efficiently [5], [23], [24],
[34], [39]. One major challenge of this approach is the large
number of equations because the value ofrepresents the
number of frames and a typical MPEG movie has thousands
of frames. In the next section, we present a different approach

Fig. 11. Encoding of a vertex.

to solve the problem based on graph-walking techniques. Our
method can significantly reduce the computation for finding
optimal solutions. In particular, it efficiently finds frequency
assignments for many periods (large). Furthermore, our
method can handle sporadic jobs more easily.

VI. FREQUENCYSCALING BY GRAPH WALKING

The energy-minimization problem has additional structures
that allow us to solve it more efficiently. In fact, there are only
finite choices in each period, so eventually the assignments of

, and will be cyclic when is large. This section explains
how to find such a cycle. This section is divided into three parts.
First, we construct a finite directed graph to represent all fre-
quency assignments. Second, we show that there is a repeating
subwalk in any long walk of the graph. Finally, we demonstrate
how to use the graph to find frequency assignments for energy
minimization.

A. Assignment Graph

An assignment graph contains all possible choices for fre-
quency assignments. Each vertex encodes the current state: it
contains the frequency of the processor, the amount of data
stored in buffers, and how the data will be consumed or refilled.
In other words, the graph represents the state space of frequency
assignments.

1) Vertices: Let be a directed graph: is the
set of vertices and is the set of edges. Each vertex encodes
the states of the buffers, the frequency, and the execution of
each job. A vertex is identified by a vector of ele-
ments: , , here is
the number of jobs. Fig. 11 illustrates the encoding of a vertex.
In this encoding, () indicates the
amount of data stored in buffer before the period; is the
frequency in the period (or the frequency after a change). The
value of indicates how many times executes; it corresponds
to defined in the previous section. Alls and s are integers.
We calculate the value ofby traversing vertices, as explained
later. Each vertex has a cost . The cost is the frequency of
the vertex, i.e., and all costs are positive. Since a vertex
represents a period, we can use “vertex” and “period” inter-
changeably. Table III lists the symbols and their meanings used
in this section. We can also include voltage scaling by changing
the vertex encoding: the value ofis changed to . The
new encoding method increases the graph size because one fre-
quency may have multiple voltage settings. However, including
voltage scaling does not affect the graph’s properties. For sim-
plicity, we consider frequency scaling only in the rest of this
section.

LU et al.: DYNAMIC FREQUENCY SCALING WITH BUFFER INSERTION FOR MIXED WORKLOADS 1291

TABLE III
SYMBOLS AND MEANINGS FORASSIGNMENTGRAPHS

Example 5: For Example 2, the processor has two frequen-
cies, so can be 1 or 2. The buffer can be filled or empty, so

is 0 or 1. If the processor is at frequency 1,and cannot
execute within one period; consequently,is zero when is 1.
The assignment graph includes five vertices: (1, 2, 0), (1, 1, 0)
(0, 2, 1), (1, 2, 1), and (0, 2, 2).

Now, we compute an upper bound of the number of vertices.
First, we consider the possible values of. Before one period
starts, the buffer between and may have zero, one, two, …,
or items; there are possible values for . Similarly,
has possible values and has possible values. The
processor has frequencies, so has choices. At frequency

, job can execute at most times. This is
an upper bound for . It is an upper bound because the range
for may decrease at a lower frequency. We call this upper
bound . The value of is between zero and , so there are

options. We can find upper bounds for others in the
same way. The following formula is an upper bound of the size
of an assignment graph:

(15)

This is a loose upper bound because we have not removed
invalid vertices. There are three types of invalid vertices; they
violate timing, resource, or precedence constraints.

Example 6: For Example 3, at frequency 1, and cannot
execute in a single period because this violates the timing con-
straint specified by (8). The vertex is invalid re-
gardless of the value for. For the same example, vertex (0, 1,
4, 2, 2) starts with one frame in buffer and executes twice.
Since only one frame is consumed by, two frames have to
be stored in buffer at the end of this period. However, can
store only one frame. Therefore, (0, 1, 4, 2, 2) overflows the
buffer and is an invalid vertex. Vertex (0, 0, 4, 0, 2) violates the
precedence constraint becauseexecutes twice but the buffer
between and is empty and does not execute.

Timing constraints require the processor to operate at a fre-
quency high enough to finish all scheduled jobs. The timing con-
straint of vertex , is
specified below. It is equivalent to the constraint specified in
(8), namely . Resource constraints state
that buffers cannot overflow. Before a new period starts, there

are items (or frames) in the buffer betweenand . In
this period, executes times and executes times.
Before this period ends, items must be stored in
this buffer and these items cannot exceed the buffer size. This is
equivalent to the constraint specified in (10)

(16)

We define as one because one frame is displayed each pe-
riod. Finally, precedence constraints prevent buffer underflow.
Since executes times, there must be enough data ei-
ther from the buffer or produced by. We rewrite the constraint
in (9) for the vertices in the assignment graph

(17)

Example 7: In Example 3, either buffer can accommodate
one item, so . There are three frequen-
cies. Job can execute at most times and

can execute at most times. The graph has
vertices by (15). There are only 21

valid vertices after invalid vertices are removed.
2) Starting Vertices:Since all buffers are empty at the be-

ginning, the first elements in the encoding must be zero.
Let , be the first vertex. The
value for and the values of s have to satisfy the following
conditions based on (14), except thatis always zero for the
first period

(18)

Any vertex that satisfies these conditions can be a starting
vertex. After we remove invalid vertices, any vertex with the

format is a valid starting
vertex. We will use as one starting vertex. If a vertex cannot
be reached from any starting vertices, it is eliminated from the
assignment graph.

3) Edges: An edge connects two vertices
and . It indicates a transition from state to state

after one period. A transition from to is represented as
. We call a precedessorof and a successor

of . There is at most one edge between two vertices. Some
transitions are prohibited. There are two types of invalid
transitions. The first type violates continuity conditions.
Suppose ,

, , and
. The continuity conditions require that the data stored

in the buffers remain the same at the end of the first period
(leaving) and at the beginning of the next period (entering

). Before the period represented by starts, there are
items in the th buffer. During , more items are added
to the buffer, and of these items are consumed by job

. Consequently, there are items left before
the period represented by starts. The following formula
expresses this continuity condition:

(19)

1292 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

Fig. 12. Assignment graph for Example 2.

Example 8: In Example 3, (0, 0, 4, 2, 2) (1, 0, 2, 0, 1) is
an invalid transition. Before the period represented by the first
vertex begins, buffer is empty. The first vertex executes both

and twice, so is still empty. However, the following
vertex starts with nonempty buffer . This violates continuity
principle.

The second type of invalid transitions violates timing con-
straints. Consider Example 4, which includes scaling overhead.
It takes one time unit to change the frequencies; therefore,
and cannot execute twice at frequency 4 if the previous fre-
quency is different from 4. In other words, (0, 1, 1, 0, 0)(0,
0, 4, 2, 2) is an invalid transition.

4) Merging Vertices:After constructing the graph, we can
further reduce its size by merging vertices. Two vertices can
merge if they have identical predecessors and successors. This
happens when two vertices differ only in their frequencies; the
merged vertex uses the lower frequency because it suffices to use
the lower frequency. For example, (0, 1, 2, 0, 0) can merge with
(0, 1, 1, 0, 0) in Example 3. Since these vertices have the same
inward and outward edges, they perform identical operations.
Consequently, it is unnecessary to use a higher frequency if a
lower frequency is sufficient.

Example 9: Fig. 12 shows the assignment graph for Example
2 after invalid vertices are removed and equivalent vertices are
merged. This graph has one vertex with frequency 1 and three
vertices with frequency 2. Vertex (0, 2, 1) can reach itself. This
means the processor can keep running at frequency 2 and exe-
cuting once every period. Both successors of (1, 1, 0) have
frequency 2. This means that the processor can run at frequency
1 for only one period. Then, it has to run at frequency 2 for at
least one period before entering (1, 1, 0) again.

5) Walks: A walk of a graph is a sequence of vertices
such that for any

. A walk is a sequence of assignments
of frequencies () and executions () by the vertices. Walk

visits a vertex if appears in the sequence. Vertices
, , , are intermediatevertices in the walk. The

length of a walk is the number of vertices in the sequence,2

or . A closed walkof starts and ends at the same vertex:
[3], [12]. If , the walk is called

a loop. A subwalkis a walk contained in a longer walk; for
example, is a subwalk of
if . This subwalk starts from , ends at , and
visits vertices. A walk is apath if all vertices are
distinct [3], [12]. Graph walking has been applied to a wide
range of problems, such as finding the resistance in an electric
network and the locations for servers [10], [41]. Two walks
can be concatenated. We useas the concatenation operator:

2Some texts use the number of edges as the length of a walk.

walk is concatenated with walk
, written as . The result is a

longer walk, , .
Walks can concatenate if .

Example 10: Fig. 13 shows three examples of
walks. The first is a walk from to . The second
walk, contains a closed walk,

. The third walk
contains two closed walks,3 one starting from and the other
starting from .

Fig. 12 has a loop of vertex (0, 2, 1). This is not incidental.
We assume jobs are scheduleable at the highest frequency, so
there is always a loop of vertex here

is the highest frequency. This is equivalent to executing each
job once per period and storing no additional data in the buffers.

6) Cost of a Walk:The cost of a walk, , is the sum of
the cost of each vertex: . The average cost
is defined as

(20)

A minimum-cost walk can be defined for two different con-
ditions: 1) A walk starts from a given vertex () and visits
a given number () of vertices. This walk is represented as

. The ending vertex () is not
specified. The cost is expressed as . 2) A walk starts
from a given vertex () and ends at another given vertex ().
We use to represent such a
walk. The number of visited vertices is not specified. The cost
is expressed as .

Example 11: Fig. 12 has several walks, including the
following.

• two loops: (0, 2, 1) (0, 2, 1) and (1, 2, 1) (1, 2, 1).
• (1, 1, 0) (0, 2, 1) (0, 2, 2).
• (1, 1, 0) (0, 2, 2) (1, 2, 1).
• (1, 1, 0) (0, 2, 2) (1, 1, 0). This walk has the minimum

average cost among all walks in this example.

B. Energy Minimization by Assignment Graphs

1) Minimum-Cost Subwalks:Because a walk is an assign-
ment of frequencies, a minimum-cost walk is equivalent to an
assignment that minimizes the energy consumption. This sec-
tion finds a minimum-cost walk for periods, namely, the cost
for visiting vertices.

Theorem 1: Suppose is a
minimum-cost walk from and visits vertices. A subwalk

of is a minimum-cost walk from
to and visits vertices.

Proof: This can be proven by contradiction. The
cost of is , or

. If the walk
is not minimum-cost, then we can find another walk

that starts from , ends at ,
visits the same number of vertices, and has a lower
cost: . Replacing

3We assume the walk stops after it visitsv twice.

LU et al.: DYNAMIC FREQUENCY SCALING WITH BUFFER INSERTION FOR MIXED WORKLOADS 1293

Fig. 13. Examples of walks.

by will re-
duce the cost of the original walk . This contradicts
the premise that is a minimum-cost walk. Therefore,

is a minimum-cost walk from to and
visits vertices.

This theorem is similar to finding shortest subpaths while
computing a shortest path between two vertices in a graph [11].
A minimum-cost walk differs from a shortest path in three ways.

1) It specifies the number of vertices, not the ending vertex.
2) Its cost is determined by the vertices, , not by

the weights on the edges.
3) It allows visiting the same vertex multiple times.

The methods presented in [11] compute the shortest paths
between two given vertices. Because the power-reduction
problem is different, we approach this problem by modifying
the methods in [11].

2) Finding Subwalk Recursively:Suppose is
, then

. By definition, is and is .
We can divide into two walks:

and , here . The cost of
can be computed by

(21)

Fig. 14 illustrates this concept. This is a recursive relation:
each time, we reduce the length of the walk by one. Equa-
tion (21) computes by reducing the length of the
walk through the recursive relation. Since there may be multiple
choices for , it takes exponential time to find a minimum-cost
walk by (21) [16]: , is the average number of succes-
sors of each vertex and . We clearly need a more efficient
method.

3) Memorization of Subwalks:We can reduce the time
complexity by memorizing shorter walks to construct long
walks. If we already know the minimum-cost walk ,
it is unnecessary to compute it again. Memorization eliminates
computing the same subwalks multiple times. The algorithm in
Fig. 15 computes a minimum-cost walk of by mem-
orizing shorter walks. For each iteration of , at most

vertices are visited and the execution time is .
Memorization reduces the complexity from exponential to
linear in .

Fig. 14. DivideW (v) into two subwalks.

Fig. 15. Find minimum-cost walks by (21).

C. Efficient Assignments

Even though MinimumCostWalk has complexity ,
there are still two problems. First, the time is linear ineven
though the graph size is independent of. Second, the algorithm
in Fig. 15 computes for every value of , whereas we are
interested only in . Because assignment graphs are finite,
we can compute minimum-cost walks even more efficiently for
large . This section explains how to find minimum-cost walks
efficiently when .

1) Minimum-Cost Walks Between Two Vertices:Based on
the Floyd–Warshall algorithm for finding the shortest paths in
a graph [11], we can find a minimum-cost walk between vertex

and vertex . The algorithm is called MinimumCostWalk2V
and is shown in Fig. 16. This algorithm has complexity
because of the nested iteration.

2) Pigeonhole Principle:Suppose there are pigeons and
holes. We want to assign thesepigeons to the holes. If

there are more pigeons than holes (), at least one hole
must have two or more pigeons. This is called thepigeonhole
principle [15]. Consider another example. There areballs

1294 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

Fig. 16. Find minimum-cost walks between two vertices.

labeled as stored in a box. Every minute, we select
one ball from the box, record its number, and put it back to
the box. After minutes, we have seen balls. If ,
one number between 1 and must occur two or more times,
according to the pigeonhole principle. The pigeonhole principle
can be applied to walks. If a walk visitsvertices and is larger
than the number of vertices in the graph (), at least one
vertex must be visited twice or more often. Hence, there is at
least one closed walk.

3) Redefining Closed Walk:A closed walk has the format
where . In the rest of this paper, we

restrict closed walks so that is visited exactly twice and no
other vertex is visited twice or more often: if

except and . We call such closed
walks s. According to the pigeonhole principle, any
closed walk in visits at most vertices (is
counted twice). Fig. 17 is an algorithm for finding all s
that have minimum average costs. The average cost of a walk
is defined by (20). If two closed walks have the same average
cost, this algorithm keeps the shorter one. It first finds all min-
imum-cost walks of lengths up to . Then, it determines
whether the walks are closed and computes the average cost; fi-
nally, it keeps only closed walks with minimum average costs.
Since the jobs are scheduleable, there is at least one trivial solu-
tion: a loop of vertex , where is the
highest frequency. Since , it takes to call
Minimum-Cost Walk. For each vertex, changes from
2 to and it takes to compute the average cost of

. It takes time for each vertex. Hence, this
algorithm takes time.

Fig. 17. Find the closed walks of minimum average costs.

Fig. 18. A walk of infinite length must repeat a closed walk indefinitely.

4) Walks of Infinite Length:After finding the minimum-cost
s, we can easily find an infinite-length walk with

the minimum average cost. When approaches infinity, a
minimum-cost walk starts from one starting vertex, defined in
Section VI-A-2, reaches a closed walk, and repeats this closed
walk. Fig. 18 illustrates such a walk. This closed walk is chosen
because it has the minimum average cost, defined as

(22)

If vertex is not a starting vertex, we can find a minimum-cost
walk that connects one to by MinimumCostWalk2V. Since
FindClosedWalk takes time, time is required
to find a walk of infinite length with the minimum average
cost. Because the walk is infinite, the “initial cost” from
to can be ignored. A natural question is whether this closed
walk is reachable from a starting vertex. Since the jobs are
scheduleable at the highest frequency, an infinite walk must
be available. One trivial solution is the loop of the vertex

, where is the highest frequency.
There may be other solutions that satisfy all constraints and
require lower power consumptions. Our method finds these
solutions with time complexity and is independent
of .

LU et al.: DYNAMIC FREQUENCY SCALING WITH BUFFER INSERTION FOR MIXED WORKLOADS 1295

Fig. 19. The walk for four jobs with 80% processor utilization.

According to the pigeonhole principle, frequency assign-
ments must form a closed walk for a workload with an infinite
time horizon. We need to emphasize that our method does
not have to know the length of the closed walk in advance.
In contrast, using mathematical programming, one has to
determine this length in advance and select anlarge enough
for the inequalities in (14). A typical MPEG movie contains
thousands of frames, so we can reasonably approximate it with
infinite frames. No real movie has infinite frames. Appendix
explains how to find a minimum-cost walk with a finite length.
A finite walk is different in three ways: 1) the initial cost needs
to be considered; 2) it has a “tail” that may not be a complete
closed walk; and 3) the cost of the tail needs to be considered.

Example 12: A processor has five frequencies: 10, 7, 5, 4,
and 3; a program keeps the processor 80% utilized at frequency
10. There are four jobs with equal numbers of operations: each
job takes 20% of the total time in a period. Without any buffer,
the processor is idle 20% of the time in each period. If there is
one buffer between two jobs, a low-power schedule is used, as
presented in Fig. 19. In each period at frequency 10, one of the
buffers is filled; then, the processor runs at frequency 3 to reduce
energy. The average frequency is 8.25, or 3% above optimal.
This walk also shows that some frequencies (7, 5, and 4) are not
used.

In summary, we demonstrate how to use graph-walking tech-
niques for energy minimization. This method is based on the
fact that only finite frequencies and buffers are available. The
solution space is enumerated as a directed graph and the graph
size is trimmed by removing invalid vertices and edges. A ef-
ficient algorithm (cubic time complexity) is proposed to find
a minimum-energy walk for frequency assignments. While our
method is developed for frequency scaling, it can be easily ex-
tended for voltage scaling. When voltage scaling is considered,
the cost of each vertex is the power of a period: . In-
cluding voltage scaling increases the graph size but it does not
affect the properties of the graph. Consequently, the algorithm
for finding the minimum-cost walk is still applicable.

VII. RESPONSETIME OF SPORADIC JOBS

The previous section considered periodic jobs and showed
how frequency scaling and data buffering can reduce the en-
ergy consumption. The optimal assignments of frequencies are
determined by a graph-based algorithm. This section computes
the response time of a sporadic job in the presence of periodic
jobs. We show how to calculate the response time of a sporadic
job if it arrives at a period represented by a vertex in a walk.
For simplicity, this section ignores scaling overhead. We also
assume that a sporadic job completes before another sporadic
job arrives.

The following scenario is an example to illustrate the mix-
ture of periodic and sporadic jobs. When a user is watching an
MPEG movie, the movie creates periodic jobs. Occasionally, the
user may move the mouse to a slider and adjust the volume; this
movement creates a sporadic job. A desirable outcome consists
of three parts: 1) the sporadic job is processed promptly; 2) the
frame rate of the MPEG movie remains constant; and 3) the
power consumption is minimized. When a sporadic job arrives,
the processor has to execute additional operations. These oper-
ations can be executed in two ways. First, the sporadic job is
executed with only the “spare” operations in each period. Al-
ternatively, if the buffers are nonempty, data can be retrieved
from them and some jobs do not have to execute. By draining
the buffers, the sporadic job can finish earlier.

A. Unused Operations

Some time periods may have “unused” operations because
these operations are not used to execute any of jobsto .
We use as the number of unused operations of vertex. For
vertex , ,
can be found by the following formula:

(23)

In this formula, is the total number of allowed operations
and is the number of operations needed
to execute the jobs that have to be executed this period. The
difference between these two quantities difference determines
how many additional operations can be conducted in this period.

Example 13: In thisexample,werepresentunusedoperations
as the percentage of a period at the highest frequency. If the pro-
cessor is completely idle while running at the highest frequency,
the unused operation is 100%. If the processor is idle but runs at
halfof thehighest frequency, theunusedoperation is50%.

Let us reconsider Example 12. If there is no sporadic job, the
minimum energy is achieved by repeating a closed walk with
four vertices. This solution is shown in Fig. 19. In the period
represented by vertex , and
execute once because . In the same period,
executes twice because . The fourth job always executes
once each period. Since each job takes 20% of the time, the
total time required to execute these four jobs is

. Consequently, and no additional
operation can be executed.

For the period represented by, only executes because
. Notice that the frequency is only 30% of

the highest frequency; . Because
this is insufficient to execute any of , , or , it is unused.
However, this period can execute a sporadic job if it needs half
of the operations of .

Consider a sporadic job that needs operations. Suppose
the MPEG player still maintains the same output rate. The spo-
radic job can execute only by using unused operations in each
vertex. The sporadic job can finish in one period if the number
of unused operations is larger than this job’s number of oper-
ations, or . Suppose the sporadic job arrives at the
beginning of a walk of vertices: . The

1296 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

Fig. 20. Find the response time of a sporadic job.

sporadic job can finish within periods if there are enough un-
used operations in these vertices. This condition is expressed by
the following inequality:

(24)

B. Effects of Buffers

Equation (23) does use buffers to reduce the response time of
a sporadic job. To execute once each period, the data required
by may be obtained in one of the two ways: 1) from the
buffer between and or 2) generated by job in the
same period. Job has to execute only if the buffer between

and is empty. Condition 1) means and
condition 2) means . Together, must
be at least one so that can execute in this period. We can
generalize this relationship. Suppose jobexecutes in a period.
Job must execute in the same period if the buffer between

and is empty (). We define an indicator function
to determine whether job has to execute

if and

otherwise
(25)

We define since job executes once every period.
Because thes are the minimum requirements to keep the output
rate, must be smaller or equal to , or . During
this period, the minimum number of operations to sustain the
constant output rate is

(26)

Let be the maximum number of operations available
for a sporadic job when the effects of buffers are considered

(27)

Since , must be larger than or equal to . In
other words, buffering allows the processor to spend more time
on the sporadic job. The response time can be computed using
the procedure presented in Fig. 20. This procedure first checks

Fig. 21. A sporadic job finishes in two periods if it arrives atv (left). It takes
three periods if it arrives atv (right).

whether there are enough unused operations in one pe-
riod. Then, it checks whether the sporadic job can finish in one
period by draining the buffers . If neither is successful,
it recursively computes the response time by adding one period
each time.

After processing a sporadic job, the processor may reach a
vertex which does not belong to a steady-state minimum-cost
walk. For such a vertex, we can find a path to return to the min-
imum-cost walk. This can be computed in advance with
time complexity using all-pairs shortest path algorithms pre-
sented in [11]. The vertex does not have to store the complete
path returning to the minimum-cost walk. Instead, it needs to
store only the next vertex of the path. The next vertex also stores
only the following vertex of the path. The complete return path is
available by following the chain of vertices until the steady-state
minimum-cost walk is reached. Consequently, storing the return
paths require memory.

Example 14: Consider Example 12 again for computing the
response time of a sporadic job. Suppose a sporadic job needs
one period at frequency 10 to complete. Without buffers, the job
takes five periods to complete this job because the processor can
spend only 20% of the time in each period on this job.

Now, let us consider how buffering reduces the response time.
For vertex in Fig. 19, equals one but and equal zero.
Since only and have to execute, the processor can spend
60% of the time in this period for a sporadic job. Becauseand

do not execute, the next vertex is different from. Using the
continuity conditions, we find one vertex to follow; it is (1, 0,
0, 10, 0, 1, 1) as shown in Fig. 21. This vertex can spend 40% of
the time executing the sporadic job. The sporadic job finishes in
two periods, which is a 60% reduction from five periods. Simi-
larly, we can compute the response time of the sporadic job if it
arrives at . The job takes three periods as shown in Fig. 21; this
is 40% improvement with respect to the original five periods.
Two periods are required to finish the sporadic job if it arrives
at or . On average, the response time of the sporadic job
is periods, which is a 55% improvement
with respect to the original five periods.

C. Timing Constraints of Sporadic Jobs

The previous section analyzed the average response time of
a sporadic job. Using the same technique, we can determine
whether it is possible to meet the timing constraint of a sporadic
job. The timing constraint is the maximum acceptable execution
time after a sporadic job arrives. In order to decide whether it is
possible to finish a sporadic job within time periods, we
have to find the shortest response time of. The response time

LU et al.: DYNAMIC FREQUENCY SCALING WITH BUFFER INSERTION FOR MIXED WORKLOADS 1297

Fig. 22. ' (v) decreases as more buffers become empty.

is shortest when all buffers are full and the processor is running
at the highest frequency. Thus, we assume all buffers are full
and the frequency is the highest whenarrives. We also as-
sume that no sporadic job arrives before another sporadic job
completes (because they are “sporadic”). In (27), the maximum
number of operations occurs when :

, here is the length of a period,
is the highest frequency, and is the number of operations
executed by job . If , then it is impos-
sible to meet the timing constraint because there are insufficient
operations in each period. Allocating more memory for buffers
will not solve the problem; the only solution is to find a faster
processor with higher .

The value of is only if the buffer be-
tween and has data. Since the buffer size is , the
buffer will become empty in periods after arrives. If

and , then can finish in pe-
riods. Job does not have to execute during theseperiods
and can still execute once each period. When , the
buffer between and becomes empty before com-
pletes. Thus, must execute times so that can
execute once each period. The maximum value of drops
to after periods. Consequently,
when , can finish in periods if

(28)

As becomes larger, more buffers become empty and the
values of decrease. This condition is illustrated in Fig. 22.
Following this analysis, we can derive the condition to finish
within periods after arrives:

(29)

where . The conditions in (29) indicate that en-
larging the last buffer (larger) is most effective because it
is multiplied by the largest coefficient, . This anal-
ysis further suggests how to calculate the minimum number of
items stored in each buffer. In fact, buffers do not always have to
remain full. As long as these conditions are satisfied,is guar-
anteed to finish within periods. This sets the lower limits of
the buffer sizes. No existing scaling technique is able to analyze
the relationship between buffer sizes and the response time of a
sporadic job.

In the assignment graph, thevalues of a vertex represent
the numbers of items stored in buffers. Since (29) specifies the
minimum number for each buffer, a vertex should be removed
if its values are too small. After excluding these vertices,
a minimum-cost walk can meet all constraints of the mixed
workloads and also achieves the minimum energy consump-
tion. There is, however, an initial walk after the system starts
and the buffers are being filled: during this period the timing
constraint of a sporadic job cannot be met. The minimum time
period to fill all buffers can be calculated by finding a shortest
path from one starting vertex to a vertex whose encoding
is . Algorithms for finding
shortest paths between vertices can be found in [11].

In summary, this section describes how to compute the re-
sponse times of sporadic jobs based on the assignment graphs
developed in Section VI. We explain how to take advantage of
the buffered data to reduce the response times without affecting
the on-time constraints of periodic jobs. We also analyze the re-
sponse time of a sporadic job.

VIII. E XPERIMENTS

In this section, we first describe our experimental environ-
ment. Then, we show the power savings of a synthesized work-
load. We describe an MPEG player modified to scale frequen-
cies for power reduction. We also discuss how buffer sizes and
job sizes affect power saving.

A. Experimental Setup

We set up a system to measure power saving by frequency
scaling. The system was composed of a palm-size com-
puter using Intel’s StrongARM processor [21] (also called
Assabet). The processor has eleven frequencies, between
59 and 206 MHz. It has a 320 240 touchscreen, 16-MB
SDRAM, and a Compact Flash interface. This interface can be
used for networking. This system runs Linux ported for ARM

1298 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

Fig. 23. Setup for our experiments.

Fig. 24. Power consumption at different frequencies.

processor [2]. We used a National Instrument Data Acquisition
Card (DAQ) to measure the dc current from the ac/dc adapter.
This is the total power consumption of the whole system and
directly affects battery lifetime. Fig. 23 illustrates the setup
for our experiments. Assabet supports frequency scaling but it
does not support voltage scaling. It takes approximately 2s to
change frequencies.4 Assabet can also connect to a companion
board, calledNeponset, that provides interfaces for PCMCIA,
USB, a serial port, and audio input/output. Unfortunately,
Assabet/Neponset need special additional hardware to support
voltage scaling. To conduct the experiments on the target
hardware, we report here frequency scaling only.

Fig. 24 shows the power consumption at different frequen-
cies. We kept the processor busy by running an infinite loop.
When the processor is busy, the system consumes 1.89 W at 206
MHz and 1.17 W at 59 MHz; the difference is 0.72 W or a 38%
reduction of power consumption. The scalable range of power
consumption is 0.72 W; this range excludes the power that is
unaffected by frequency scaling. When the processor is idle, it
consumes 1.22 W at 206 MHz and 0.97 W at 59 MHz; the power
reduction is 0.25 W. There is a baseline power that cannot be re-
duced by frequency scaling, such as the power for the LCD dis-
play. Fig. 25 compares the performance at different frequencies.
The performance scales up almost linearly with frequencies.

B. Synthesized Workload

A synthesized workload is used to compare the power con-
sumption in the following scenarios. We use the procedures

4The implementation in Linux 2.4.1 recalibrates a software timer each time
the clock frequency changes. This recalibration synchronizes the software timer
and the hardware interrupt timer to determine their correct ratios in different
clock frequencies. Linux kernel executes awhile block until the ratio converges;
our measurements show that it can take up to 150 ms to converge. However,
such recalibration is not always necessary. A lookup table of the ratios can be
calculated in advance; this reduces the scaling delay to 2�s. The shorter delay
comes from the hardware internal synchronization and cannot be further reduced
by software.

Fig. 25. Performance at different frequencies.

Fig. 26. Schedules for five and six jobs with 60% processor utilization.

presented in Section VI to find a minimum-cost walk for each
scenario.

three to six jobs. The last job has to execute once every
period.

two to five frequencies. We start with 206 and 103 MHz.
Then, we add 59, 147, and 89 MHz.

40% to 70% processor utilization at the highest frequency.
In this paper, utilization always means the utilization at the
highest frequency (206 MHz in our setup).

Each job increments a counter until the counter’s value
reaches a threshold. Then, the job stops and resets the counter.
The threshold value is determined by the parameters listed
above.

Each period is one second, and one buffer is inserted between
two jobs. Fig. 26 shows the schedules for five and six jobs with
three frequencies (206, 103, and 59 MHz) when the processor
utilization is 60%. Since the processor is 60% busy, it cannot
stay at 103 MHz or 59 MHz indefinitely; if it did, it would vi-
olate the timing constraints. The frequency in each period is
written inboldface. Notice that 59 MHz is not used even though
it is available.

Fig. 27 depicts the measured power consumption in three
cases: no frequency scaling, scaling down to 59 MHz during
idleness, and scaling using our method. These data were ob-
tained with 70% processor utilization. As can be seen at the top
of the figure, the system consumes less power when the pro-
cessor is idle. The boundaries of periods are clearly visible. If
we scale down the frequency during idleness, period boundaries
are also distinguishable. The “valleys” of the power consump-
tion are deeper, indicating lower consumption during idleness.

LU et al.: DYNAMIC FREQUENCY SCALING WITH BUFFER INSERTION FOR MIXED WORKLOADS 1299

Fig. 27. No frequency scaling (top), scale down to 59 MHz during idleness
(middle), and using graph-walking technique with buffer insertion (bottom). Our
method saves 40% power in the scalable range.

However, the power remains virtually unchanged when the pro-
cessor is busy. Finally, the bottom of this figure is the power
consumption of our method. The period boundaries are now
blurred. This is because our method rearranges the execution
order of jobs. Some jobs execute at a higher frequency whereas
some other jobs execute at a lower frequency. This figure shows
clearly that our method has lower average power, namely, ap-
proximately 1.6 W. This is nearly a 40% reduction in the scal-
able range .

Because Figs. 24 and 25 show almost linear scaling in power
and performance, we can predict the power consumption accu-
rately for different scenarios. The average error is 2.5% and the
maximum error is 8%. Fig. 28 depicts the predicted and mea-
sured power with four and five frequencies. The horizontal axes
are the processor utilization at 206 MHz, and the vertical axes
are the power consumption. The squares and diamonds repre-
sent the predicted power consumption. The lines connect the
measurement results. The triangles are the optimal solutions
(minimum power) if the processor’s frequency can be contin-
uously scaled. Squares, diamonds, and triangles almost overlap
in the figure because their values are very close. Fig. 28 shows
that four frequencies (206, 147, 103, and 59 MHz) can achieve

Fig. 28. Estimated, measured, and optimal power for three (top) and four jobs
(bottom).

almost the minimum power consumption. The minimum power
is computed as follows. Let (1.167 W) and (1.886 W)
be the power at 59 and 206 MHz, respectively. The power is a
linear interpolation obtained from the following formula:

(30)

C. Reducing Power for Playing MPEG Video

An MPEG player differs from the previously synthesized
workload in two major ways: the execution time varies from
frame to frame and it has many IO operations. We charac-
terize an MPEG player ported to Assabet. At 206 MHz, the
program can display approximately 20 frames/s. We divided
the program into three stages: reading data, decoding data, and
displaying images. To conquer the variations in execution time,
we assigned fixed duration to each stage: 1) 10 ms to read one
frame, 2) 25 ms to decode one frame, and 3) 10 ms to display
one frame. The allocated time durations cover all cases and
can be considered as the worst case requirements. Together, the
execution takes 45 ms. Our target frame rate was 15 frames/s
so the processor utilization was 68% (67 ms for one frame,

). We compared the power consumption in
several scenarios listed below. We obtained the measurements
using the same setup illustrated in Fig. 23 and all values
included the power of a network card.

No frequency scaling, frame rate controlled by busy
waiting. The system consumes 2.45 W.

No frequency scaling, frame rate controlled by calling
. This function suspends the execution of the calling

process; the units are microseconds. Using reduces
the power consumption to 2.30 W. Calling reduces the
power when a job finishes earlier than the time allocated. For

1300 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

example, if reading one frame takes 9 ms, the processor is idle
for 1 ms. The function will cause the operating system
kernel to schedule the idle process (pid0) which executes a
low-power instruction.

Frequency scaling with two frequencies: 206 and 103 MHz.
A buffer with three slots is inserted between stages. The power
consumption is 2.16 W.

Frequency scaling with three frequencies: 206, 103, and
59 MHz. The power consumption is 2.16 W. The frequency of
59 MHz is not used because it does not help reduce the power
consumption.

Frequency scaling with four frequencies: 206, 147, 103, and
59 MHz. The processor stays at 147 MHz and the power con-
sumption is 2.12 W. This means a 46% reduction in the scalable
range .

In the first case, the processor is kept busy while it waits for
the beginning of the next period. The following code illustrates
this busy waiting, which is implemented to control the frame
rate

In contrast, the second scenario calls if there is slack
time

When a process calls , this process voluntarily sus-
pends its own execution. If no process needs the processor,
the processor becomes idle and consumes less power. In our
measurement, approximately 0.15 W power is saved by calling

. We call this intraperiod power saving because it
saves power inside each period. In contrast, our method uses
buffers across the boundaries of periods to save power, and
we therefore call it aninterperiod power-saving technique.
Combining our method with the intraperiod technique saves
0.33 W, 46% in the scalable range or 14%
of the original power. This is very close to the 0.33 W predicted
by (30). Notice that after buffers are inserted, the power is
reduced by 0.29 W, even when there are only two frequencies.
This example shows that adding buffers is more effective than
adding available frequencies to the processor.

D. Buffer Size

Fig. 28 indicates that our predicted power consumption is
very close to the measured values. In the rest of this section,
we use the same method to estimate the power consumption
for different buffer sizes, job sizes, and arrival rates of sporadic
jobs. The experimental results in Section VIII-B show that after
buffers are inserted, a few frequencies are sufficient to save a
significant amount of power. We use the same workload to study

Fig. 29. Power consumption with different buffer sizes.

the effect of buffer sizes. We consider five frequencies (206, 147,
103, 89, 59 MHz), four jobs with an equal number of operations,
and 45% to 75% processor utilization at 206 MHz. Fig. 29 com-
pares the power consumption with different buffer sizes. In all
cases, inserting one or two buffers between two jobs has iden-
tical effects. For 55%, 65%, and 75% utilization, adding one
buffer between two jobs reduces the power because the pro-
cessor can switch to low frequencies. When the utilization is
45%, adding buffers has no effect because the system consumes
the minimum power if the processor stays at 103 MHz. This
figure shows that whereas adding one buffer between two jobs
is very effective, adding two buffers has no additional advan-
tages. This example suggests that buffer insertion does not need
a substantial amount of memory. The actual size of one buffer
depends on the application programs. For an image of 240
160 pixels with 256 colors per pixel requires 240160 bytes,
or 38 KB, for one frame. It is a small portion of the memory on
most systems.

E. Job Size

In this section, we examine how job partition affects power
consumption. The synthesized workload we discussed in
Section VIII-B assumes all jobs need the same number of
operations. Dividing a program into equal-size stages can
be difficult: for example, the MPEG player described in
Section VIII-C is naturally divided into three stages, and these
stages take different amounts of time. Suppose the total number
of operations of all jobs () is a constant. Dividing the
operations in different ways may affect power consumption.
Consider the following possible ways to divide the operations.
We are interested in finding the best one for power saving.

1) , .
2) , , .
3) , , .
4)
5) , .
6) , .
Fig. 30 depicts the relationships of these cases. The widths

indicate the relative numbers of operations in each case. We
consider five frequencies of the processor; one buffer is inserted
between two jobs. Fig. 31 is the ratio of power consumption
related to the first case. For 60% utilization (white bars), the first
case consumes more power than the other cases. This is because

is so large that the processor cannot executetwice in one

LU et al.: DYNAMIC FREQUENCY SCALING WITH BUFFER INSERTION FOR MIXED WORKLOADS 1301

Fig. 30. Different ways to divide operations into four jobs.

Fig. 31. Power consumption of job sizes in Fig. 30.

period to fill the first buffer. Because the first buffer is not filled,
the processor cannot scale down the frequency. This case result
in the most power consumption. In the other cases, the size of

is smaller, so data can fill the buffers to reduce power. For
80% processor utilization, however, only case three and case
four can use the buffers to save power. This example suggests
the following rule: earlier jobs, such as and , should need
fewer operations so that the buffers can be filled. Ifneeds too
many operations, then the first buffer cannot be filled and all the
other buffers are unused. If the buffers are unused, they cannot
facilitate power saving.

F. Arrival Rate of Sporadic Jobs

If sporadic jobs arrive frequently, the average power con-
sumption is higher. This section discusses how the arrival rate of
sporadic jobs affects the average power. Fig. 32 is a redraw of the
five-job case in the top of Fig. 26. Consider a sporadic job that
takes one period at the peak frequency (206 MHz) to complete.
Suppose this sporadic job arrives at the period represented by.
We can follow the procedure explained in Example 14 to com-
pute the response time of the sporadic job. The result is shown
in Fig. 33. After running at 206 MHz for three periods, the spo-
radic job completes and the processor returns to the closed walk
shown in Fig. 32, starting from . Even though the closed walk
was “interrupted” by the sporadic job at, the frequency as-
signment does not necessarily continue fromafter the job has
been processed. If there is no sporadic job, the average power
in the next four periods from is 1.51 W. In contrast, the pro-

Fig. 32. Closed walk for five jobs with 60% processor utilization, a redraw of
Fig. 26.

Fig. 33. Processing a sporadic job that arrives at the period represented byv .

Fig. 34. Average power consumption for different intervals between two
sporadic jobs.

cessing of a sporadic job causes the average power in the same
time interval to rise to 1.76 W.

The same method can be applied to compute the response
time of the sporadic job if it arrives at the period represented by

, , or . We can also find the additional energy required to
process this sporadic job. After processing the sporadic job, the
frequency assignment will eventually return to the closed walk
in Fig. 32, but it does not always start from.

Suppose that the time interval between two sporadic jobs is
long enough so that the processor can return to the original
closed walk in Fig. 32. Fig. 34 shows the power consumption
for different arrival rates of the sporadic job. The horizontal axis
is the average number of periods between two sporadic jobs;
the vertical axis is the average power consumption. This figure
shows that the average power decreases rapidly as the time be-
tween two sporadic jobs increases. Since sporadic jobs are “spo-
radic” and the time interval between them should generally be
large, their effect on power is insignificant.

1302 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

Fig. 35. Maximum number of operations of a sporadic job.

G. Timing Constraints and Maximum Operations of Sporadic
Jobs

Section VII-C derives the relationship between buffer sizes
and the response time of a sporadic job. We use a synthesized
workload described in Section VIII-B to pictorially illustrate
the conditions. There are four jobs and each takes 20% time
in a period when the processor runs at the highest frequency.
Without any buffers, 20% of the processor time is unused in
each period. Let be the total memory allocated for buffers:

. Let be the maximum number of op-
erations a sporadic job can complete withinperiods. If
is zero, there is no buffer, so is 20% of a period. We
use 20% of a period as the normalization base. Fig. 35 shows

for different s and s. In this figure, we can observe
that is largest when and have compatible values.
This can be understood by examining the conditions of (29) in
Section VII-C. When is small and is sufficiently large,
adding more buffers will not increase ; this corresponds to
the first condition in (29) and the lower left side of the surface in
Fig. 35. In contrast, when is too small, increases lin-
early with because buffers become empty before the sporadic
job completes. This situation corresponds to the last condition
in (29) and the lower right side of the surface.

H. Summary

We set up an experimental environment using a StrongARM-
based system. Our measurements indicate that power and per-
formance scale almost linearly with the processor frequency. We
used the graph-based algorithm presented in Section VI to find
frequency assignments for different scenarios. Our experiments
show that inserting buffers effectively reduces power consump-
tion even for a processor with only a few frequencies. Inserting
buffers can achieve nearly the minimum power with four fre-
quencies. We also demonstrate that adding one buffer between
two jobs is sufficient in many cases. We also provide a guideline
for dividing operations into multiple jobs. Finally, we show that
sporadic jobs have negligible effects on power increases.

Fig. 36. A walk with a closed walk.

Fig. 37. A walk with multiple closed walks.

IX. CONCLUSION

This paper addresses power reduction by frequency scaling
for mixed workloads. We explain existing methods based on
mathematical programming and point out the need for efficient
solutions. Our method inserts buffers between jobs and builds
an assignment graph: each vertex encodes the current states of
the buffers and the frequency of the processor. We develop a
graph-based method that has complexity where is
the number of vertices of the state-space graph. We use a fre-
quency-scalable system to demonstrate the effectiveness of our
method. By inserting buffers, we can achieve nearly optimal
power saving using only four frequencies. Furthermore, this
method is able to dramatically reduce the response time of spo-
radic jobs. This method saves approximately 46% of the power
required to run an MPEG player, after the nonscaleable base
power is excluded. We also analyze the effects of buffer sizes
and how to divide programs into multiple jobs.

APPENDIX

Section VI explained how to find a minimum-cost walk for a
workload that has an infinite time horizon. Because an MPEG
movie usually has thousands of frames, it is valid to approxi-
mate the movie as infinite frames. When a workload is infinite,
we can ignore the initial cost in the walk that determines the fre-
quency assignment. This initial cost is the cost of the walk from
a starting vertex to a minimum-cost closed walk. In reality, no
workload can have an infinite time horizon. For a finite-length
workload the initial cost cannot be ignored. Also, there may be
a “tail” that does not form a complete closed walk. Recall that

is an assignment graph for frequency scaling. When
the number of vertices in a walk exceeds the number of vertices
in , the walk must contain at least one closed walk, according
to the pigeonhole principle. Fig. 36 illustrates such a long walk.

Even though a long walk must contain one closed walk, the
pigeonhole does not explain whether may contain multiple

LU et al.: DYNAMIC FREQUENCY SCALING WITH BUFFER INSERTION FOR MIXED WORKLOADS 1303

Fig. 38. Find minimum-cost walks.

nonoverlapping closed walks. In fact, it is possible that a min-
imum-cost long walk contains multiple closed walks. However,
we can always find another walk whose cost is also minimum
but has a special format. This special format dividesinto
three parts as shown in Fig. 36. The first part starts at one starting
vertex and ends at the beginning of the first closed walk; the
second part repeats this closed walk; the third part leaves this
closed walk and finishes . We can prove that the length of the
third part is always less than the length of the closed walk.

Theorem 2: If a finite walk contains a closed walk con-
structed by FindClosedWalk, there is a walk of equal or smaller
cost such that the subwalk after leaving the closed walk is
shorter than the length of the closed walk. Suppose the walk in
Fig. 36 is a minimum-cost walk of a finite length and it contains
a closed walk of with length . There is a minimum-cost
walk such that the subwalk after leaving the closed walk is
shorter, or .

Proof: We prove the theorem by contradiction. If
, there is a walk from of length with a lower average cost

than the closed walk, or . Oth-
erwise, this minimum-cost walk should repeat the closed walk
more times until is less than . However, this is impossible
because FindClosedWalk finds only closed walks that have the
minimum average cost among all walks from. Since the orig-
inal walk contains a closed walk of, the walk must have a lower
average cost than (or equal average cost). If ,
the original walk is not a minimum cost walk and this violates
the premise. Hence, cannot be larger than .

Notice that this theorem does not claim that all minimum-cost
walks have such a format; instead, it guarantees that among all
same-length walks of the minimum cost, there is one walk with
this format. It is possible that a walk may have a different format
and have the same cost.

Corollary 3: If a minimum-cost walk has multiple closed
walks, there is a walk of the same cost such that the length of
the subwalk after it leaves the first closed walk is shorter than
the length of the first closed walk.

For example, a minimum-cost walk has two closed walks
as shown in Fig. 37. Let and be the lengths of the first
and second closed walks. If this minimum-cost walk repeats the
second walk times, then . Here,
we need to subtract one from because the length of a closed
walk counts the starting and ending vertices () twice. When
this closed walk repeats multiple times, the same vertex should
be counted only once.

The above theorem states that the “tail” after a subwalk leaves
the closed walk is shorter than the length of the closed walk.
We can find a minimum-cost walk by dividing it into three sub-
walks: before entering a closed walk, the closed walk, and after
leaving the closed walk, as illustrated in Fig. 36. The lengths of
the first and the third subwalks (and) must be less than

by the pigeonhole principle.
In order to find a minimum-cost, finite-length walk, our al-

gorithm first checks whether is small. For a small , a min-
imum-cost walk does not necessarily contain a closed walk.
Such a walk can be found directly by MinimumCostWalk. For a

1304 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

larger , the algorithm finds a closed walk that has a minimum
cost. Since the first and the third subwalks are shorter than,
they can be found by MinimumCostWalk. Fig. 38 shows the
algorithm; it compares which closed walks produce the min-
imum cost. For each vertex that has a closed walk, the algorithm
finds a minimum-cost walk from a starting vertex. The length
of this walk is ; this is in Fig. 36. Then, it com-
putes ; this is the number of times the closed walk repeats:

. Finally, it computes the length of the
walk after leaving the closed walk: .
The cost of this walk is

(31)

The complexity of this algorithm is . When is
small, LongFiniteWalk takes , the same as Minimum-
CostWalk. When is larger than , LongFiniteWalk calls
MinimumCostWalk, MinimumCostWalk2V, and FindClosed-
Walk. Their complexity is . Then, LongFiniteWalk
considers every closed walk reachable from a starting vertex.
This takes iterations. Consequently, LongFiniteWalk
takes . This is independent of . The minimum-cost
walk can be constructed by applyingrepeated squaringof the
closed walk [11]; this takes iterations.

REFERENCES

[1] A. Acquaviva, L. Benini, and B. Riccó, “An adaptive algorithm for low-
power streaming multimedia processing,” inDesign Automation Test
Europe, Mar. 2001, pp. 273–279.

[2] ARM Linux.. [Online]. Available: http://www.arm.linux.org.uk.
[3] R. Balakrishnan and K. Ranganathan,A Textbook of Graph

Theory. New York: Springer, 2000.
[4] L. Benini, A. Bogliolo, and G. D. Micheli, “A survey of design

techniques for system-level dynamic power management,”IEEE Trans.
VLSI Syst., vol. 8, pp. 299–316, June 2000.

[5] J. R. Birge and F. Louveaux,Introduction to Stochastic Program-
ming. New York: Springer, 1997.

[6] J. J. Brown, D. Z. Chen, G. W. Greenwood, X. Hu, and R. W. Taylor,
“Scheduling for power reduction in a real-time system,” inInt. Symp.
Low Power Electronics and Design, Monterey, CA, Aug. 1997, pp.
84–87.

[7] T. D. Burd and R. W. Brodersen, “Design issues for dynamic voltage
scaling,” in Int. Symp. Low Power Electronics and Design, July 2000,
pp. 9–14.

[8] G. C. Buttazzo,Hard Real-Time Computing Systems: Predictable Sched-
uling Algorithms and Applications. New York: Kluwer, 1997.

[9] L. H. Chandrasena and M. J. Liebelt, “A rate selection algorithm for
quantized undithered dynamic supply voltage scaling,” inInt. Symp.
Low Power Electronics and Design, July 2000, pp. 213–215.

[10] D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir, “Random walks
on weighted graphs and applications to on-line algorithms,”J. Assoc.
Computing Machinery, vol. 40, no. 3, pp. 421–453, July 1993.

[11] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to Algo-
rithms. New York: McGraw-Hill, 1990.

[12] R. Diestel,Graph Theory. New York: Springer, 1997.
[13] A. Forestier and M. R. Stan, “Limits to voltage scaling from the low

power perspectiv,” inSymp. Integrated Circuits Systems Design, Sept.
2000, pp. 365–370.

[14] K. Govil, E. Chan, and H. Wasserman, “Comparing algorithms for dy-
namic speed-setting of a low-power CPU,” inACM Int. Conf. Mobile
Computing Networking, Nov. 1995, pp. 13–25.

[15] R. L. Graham, D. E. Knuth, and O. Patashnik,Concrete Mathe-
matics. New York: Addison-Wesley, 1989.

[16] R. P. Grimaldi,Discrete and Combinatorial Mathematics, 2 ed. New
York: Addison-Wesley, 1989.

[17] D. Grunwald, P. Levis, K. I. Farkas, C. B. M. III, and M. Neufeld, “Poli-
cies for dynamic clock scheduling,” inSymp. Operating System Design
Implementation, Oct. 2000, pp. 73–86.

[18] V. Gutnik and A. P. Chandrakasan, “Embedded power supply for low-
power DSP,”IEEE Trans. VLSI Syst., vol. 5, pp. 425–435, Dec. 1997.

[19] I. Hong, M. Potkonjak, and M. B. Srivastava, “On-line scheduling of
hard real-time tasks on variable voltage processor,” inInt. Conf. Com-
puter-Aided Design, Nov. 1998, pp. 653–656.

[20] C. Im, H. Kim, and S. Ha, “Dynamic voltage scheduling techniques for
low power multimedia applications using buffers,” inInt. Symp. Low
Power Electronics and Design, Aug. 2001, pp. 34–39.

[21] Intel. StrongARM development kit. [Online]. Available: devel-
oper.intel.com/design/strong.

[22] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynami-
cally variable voltage processors,” inInt. Symp. Low Power Electronics
Design, Aug. 1998, pp. 197–202.

[23] P. Kall and S. W. Wallace,Stochastic Programming. New York: Wiley,
1997.

[24] A. I. Kibzun and Y. S. Kan,Stochastic Programming Problems. New
York: Wiley, 1996.

[25] C. Krishna and Y.-H. Lee, “Voltage-clock-scaling adaptive scheduling
techniques for low power in hard real-time systems,” inReal-Time Tech-
nology Applications Symp., May 2000, pp. 156–165.

[26] Y.-R. Lin, C.-T. Hwang, and A. C. Wu, “Scheduling techniques for vari-
able voltage low power designs,”ACM Trans. Design Automation Elec-
tron. Syst., vol. 2, no. 2, pp. 81–97, Apr. 1997.

[27] J. Luo and N. K. Jha, “Power-conscious joint scheduling of periodic task
graphs and aperiodic tasks in distributed real-time embedded systems,”
in Int. Conf. Computer-Aided Design, Nov. 2000, pp. 357–364.

[28] A. Manzak and C. Chakrabarti, “Variable voltage task scheduling for
minimizing energy or minimizing power,” inInt. Conf. Acoustics,
Speech, Signal Processing, June 2000, pp. 3239–3242.

[29] T. L. Martin and D. P. Siewiorek, “The impact of battery capacity and
memory bandwidth on CPU speed-setting: A case study,” inInt. Symp.
Low Power Electronics Design, Aug. 1999, pp. 200–205.

[30] T. Okuma, T. Ishihara, and H. Yasuura, “Real-time task scheduling for a
variable voltage processor,” inInt. Symp. System Synthesis, Nov. 1999,
pp. 24–29.

[31] T. Pering, T. Burd, and R. Brodersen, “The simulation and evaluation
of dynamic voltage scaling algorithms,” inInt. Symp. Low Power Elec-
tronics and Design, Aug. 1998, pp. 76–81.

[32] J. Pouwelse, K. Langendoen, and H. Sips, “Energy priority scheduling
for variable voltage processors,” inInt. Symp. Low Power Electronics
and Design, Aug. 2001, pp. 28–33.

[33] J. M. Rabaey and M. Pedram, Eds.,Low Power Design Methodolo-
gies. New York: Kluwer, 1996.

[34] S. Ross,Introduction to Stochastic Dynamic Programming. New York:
Academic, 1983.

[35] Y. Shin, K. Choi, and T. Sakurai, “Power optimization of real-time em-
bedded systems on variable speed processors,” inInt. Conf. Computer-
Aided Design, Nov. 2000, pp. 365–368.

[36] T. Šimunić, L. Benini, A. Acquaviva, P. Glynn, and G. D. Michel,
“Dynamic voltage scaling for portable systems,” inDesign Automation
Conf., June 2001, pp. 524–529.

[37] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for re-
duced CPU energy,” inSymp. Operating Systems Design Implementa-
tion, Monterey, CA, Nov. 1994, pp. 13–23.

[38] N. H. Weste and K. Eshraghian,Principles of CMOS VLSI De-
sign. New York: Addison Wesley, 1993.

[39] L. A. Wolsey,Integer Programming. New York: Wiley, 1998.
[40] XScale.. [Online]. Available: http://www.intel.com/design/intelxscale/.
[41] A. Zemanian, “Wandering through infinity,” inIEEE Int. Symp. Circuits

Systems, May 1992, pp. 1749–1750.

Yung-Hsiang Lu received the Ph.D. degree in
electrical engineering from Stanford University,
Stanford, CA, in 2002.

He is an Assistant Professor in the School of
Electrical and Computer Engineering at Purdue
University, W. Lafayette, IN. His research interests
include computer system design, embedded system
design, and energy-efficient high-performance
computing.

LU et al.: DYNAMIC FREQUENCY SCALING WITH BUFFER INSERTION FOR MIXED WORKLOADS 1305

Luca Benini received the Ph.D. degree in electrical
engineering from Stanford University, Stanford, CA,
in 1997.

He is an Associate Professor in the Depart-
ment of Electronics and Computer Science at
the University of Bologna, Italy. He also holds
visiting researcher positions at Stanford University
and the Hewlett-Packard Laboratories, Palo Alto,
CA. His research interests include all aspects of
computer-aided design of digital circuits, with
special emphasis on low-power applications, and in

the design of portable systems. On these topics he has published more than
120 papers in international journals and conferences, a book, and several book
chapters.

Dr. Benini is a member of the organizing committee of the International
Symposium on Low Power Design. He is a member of the technical program
committee for several technical conferences, including the Design and Test in
Europe Conference, International Symposium on Low Power Design, and the
Symposium on Hardware–Software Codesign.

Giovanni De Micheli (S’79–M’79–SM’80–F’94)
received the nuclear engineer degree from Politec-
nico di Milano, in 1979, and the M.S. and Ph.D.
degrees in electrical engineering and computer
science from the University of California, Berkeley,
in 1980 and 1983, respectively.

He is a Professor of Electrical Engineering, and
by courtesy, of Computer Science at Stanford Uni-
versity, Stanford, CA. Previously, he held positions
at the IBM T.J. Watson Research Center, Yorktown
Heights, NY, at the Department of Electronics of the

Politecnico di Milano, Italy, and at Harris Semiconductor, Melbourne, FL. His
research interests include several aspects of design technologies for integrated
circuits and systems, with particular emphasis on synthesis, system-level design,
hardware/software co-design and low-power design. He is the author ofSyn-
thesis and Optimization of Digital Circuits, (New York: McGraw-Hill, 1994)
and co-author and/or co-editor of five other books and of over 250 technical
articles. He is a member of the technical advisory board of several EDA compa-
nies, including Magma Design Automation, Coware, and Aplus Design Tech-
nologies. He was a member of the technical advisory board of Ambit Design
Systems.

Dr. De Micheli is a Fellow of ACM. He received the Golden Jubilee Medal
for outstanding contributions to the IEEE CAS Society in 2000. He received
the 1987 IEEE TRANSACTIONS ONCOMPUTER-AIDED DESIGN/ICAS Best Paper
Award and two Best Paper Awards at the Design Automation Conference, in
1983 and 1993. He is President Elect of the IEEE CAS Society in 2002 and
he was its Vice President (for publications) in 1999 through 2000. He was Ed-
itor-in-Chief of the IEEE TRANSACTIONS ONCOMPUTER-AIDED DESIGN/ICAS
from 1987 to 2001. He was the Program Chair and General Chair of the Design
Automation Conference (DAC) from 1996 to 1997 and 2000, respectively. He
was the Program and General Chair of the International Conference on Com-
puter Design (ICCD) in 1988 and 1989, respectively. He was also codirector of
the NATO Advanced Study Institutes on Hardware/Software Co-design, held in
Tremezzo, Italy, 1995, and on Logic Synthesis and Silicon Compilation, held
in L’Aquila, Italy, 1986. He was a founding member of the ALaRI institute at
Universita’ della Svizzera Italiana (USI), in Lugano, Switzerland, where he is
currently scientific counselor.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

