1284 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

Dynamic Frequency Scaling With Buffer Insertion
for Mixed Workloads

Yung-Hsiang Lu, Luca Benini, and Giovanni De Michdtellow, IEEE

Abstract—This paper presents a method to reduce the energy of [13]. Scaling may have a negative impact on timing-sensitive
interactive systems for mixed workloads: multimedia applications programs, for example, by failing to meet the output rate for
thrztmreth:gg Z?gsét?”t_r%‘étpghtrha;?:, arzgtﬁggr%?\'z dlgsbsngtitirr?;;g a multimedia program. How to scale frequencies and voltages
Srogrgms ir?to stages and inserts data buffers between them. whl_le_meetlng timing constraints has been an active research
Data buffering has three purposes: 1) to support constant output tOpiC in recent years [1], [19], [25], [27], [29], [28], [30], [31],
rates; 2) to allow frequency scaling for energy reduction; and 3) to [35], [36].
shorten the response times of sporadic jobs. The authors construct This paper proposes a software-based technique to reduce
frequency-assignment graphs. Each vertex represents the current power by dynamic frequency scaling on processors that have
state of the buffers and the frequencies of the processor. The i . . .
authors develop an efficient graph-walk algorithm that assigns qnlyﬁ_nlte frequencies. Our method inserts data buff_ersmamul—
frequencies to reduce energy. The same method can be appliedtimedia program. Data are processed and stored in the buffers
to perform voltage scaling and the combination of frequency and when the processor runs at a higher frequency. Later, the pro-
voltage scaling. The authors’ experimental results on a Strong- cessor runs at a lower frequency to reduce power and data are

ARM-based computer show that four discrete frequencies are ayen from the buffers to maintain the same output rate. Be-
sufficient to achieve nearly maximum energy saving. The method

reduces the power consumption of an MPEG program by 46%. 0re the buffers become empty, the processor begins to run at a
The authors also demonstrate a case that shortens the responseligher frequency again. Inserting data buffers provides opportu-
time of a sporadic job by 55%. nities to reduce power consumption. Buffering can also shorten
Index Terms—Frequency scaling, multimedia, power reduction. the response time of a sporadic job. If there are enough data in
the buffers, the processor can handle a sporadic job without af-
fecting the output rate of the multimedia program. Our method
computes the optimal assignments of processor frequencies by
ORTABLE computers, like iPAQ, are increasingly popiraversing a finite graph. In this graph, each vertex represents
ular. Such systems can execute multimedia programs tifa@ current state of the buffers, the processor frequencies, and
require consistent audio and video output rates to maintdiaw the buffers are filled (or drained). We present an efficient
satisfactory quality of service. Meanwhile, these systen®ethod to compute optimal solutions by graph walking. The
continue accepting user inputs that need prompt responsessame method can be applied to voltage scaling or the combi-
sum, they execute mixed workloads. Most of these systemation of frequency and voltage scaling.
operate on batteries and require low power consumption to keeg his method was implemented on a StrongARM-based
long the operational time between the recharging of batterié@nd-held computer. Our experimental results show that
This paper presents a method to reduce power consumptionif@erting buffers can achieve nearly optimal power saving
mixed workloads. with only a few discrete frequencies. Our method reduces the
Most processors use CMOS-based circuits; they consup@ver consumption of an MPEG program by 46%, after the
power mainly during switching from logic true to false, omonscaleable base power is excluded. We also present a case
vice versa. The switching power is proportional to the clodkat reduces the response time by 55% with negligible increase
frequency and the square of the supply voltage. Therefore, lo-energy consumption.
ering clock frequencies and/or supply voltages reduces power
[33]. This is calleddynamic frequencyvoltagg scaling [7], Il. BACKGROUND

. INTRODUCTION

A. Jobs and Constraints
Manuscript received November 15, 2001; revised April 3, 2002. This work

was supported in part by the MARCO/Defense Advanced Research Projectdd program can be decomposed into smaller units, called

Agency Gigascale Silicon Research Center and by the National Science Foggg” [8] For example an MPEG player program can be
dation under Contract CCR-9901190. This paper was recommended by As o-.d di iobs: ’ . d displavi . Th
ciate Editor R. Gupta. Ivided into two jobs: processing and displaying images. The

Y.-H. Lu was with Stanford University, Stanford, CA 94305 USA. He is nowprocessing job may be further divided into smaller units,

with the School of Electrical and Computer Engineering, Purdue Universitmduding reading the file and decoding the data. If a jOb must
West Lafayette, IN 47907-1285 USA.

L. Benini is with the Department of Electronics and Computer Science, Ur{-;‘_xecute before another JOb7 there |sp|a>cedence constraint
versity of Bologna, Bologna 40136 Italy. between these two jobs. Precedence constraints are determined
G. De Micheli is with the Department of Electrical Engineering and the Deyy the structure of a program. For instance, an MPEG player
partment of Computer Science, Stanford University, Stanford, CA 94305—90%6/ -

USA. as to decode an image before displaying it. We us€

Digital Object Identifier 10.1109/TCAD.2002.804087 to represent precedence constraints. If jgbhas to execute

0278-0070/02$17.00 © 2002 IEEE

LU et al: DYNAMIC FREQUENCY SCALING WITH BUFFER INSERTION FOR MIXED WORKLOADS 1285

and/orvgg. This is called dynamic frequency (voltage) scaling.

@ the clock frequency [38]. Power can be reduced by lowefing
S et The total energy consumed during the time intefgall'] is the
~ integration of power in this duratiore = jOT pdt. If we re-
place the load capacitance and the switching activity by their
averages, the energy is given by the proportionality relation:
T .
Fig. 1. Precedence constraints form a directed acyclic graph. € X fo v34-f dt. Some commercial processors, such as Strong-
ARM, have instructions to adjust the clock frequerfcystrong-
value ARM processors have special registers to specify the current
— 7 soft clock frequencies [21]_. Modifying the values in these r_egisters_
changes the frequencies. There are 11 frequency settings avail-
ontime / | \ | able, between 59 and 206 MHz. StrongARM processors do not
deadline time have software-controlled voltage scaling; voltage scaling can
be achieved by adding external voltage regulators [32]. Intel's

Xscale processors support both frequency and voltage scaling

Fig. 2. Three types of deadlines.

. o [40].
before jobj;, their relationship is expressed as — j». For Suppose frequencies and voltages can change only at time
example, SUpPOSRiccode @Nd jaisplay are the jobs to decode, 2¢, ..., nt andnt = T'. The frequency and voltage during

and display an MPEG image. The prece_dence relc'zltionship(q'§_1)t7 it]is f; andvga 4,3 € {1, 2, ..., n}. Then, the energy
Jdecode — Jdisplay- Precedence constraints are often reprgs computed by the following formula:

sented as directed acyclic grapiiDAG). Fig. 1 is an example T n n

of precedence constraintg; has to execute beforg and j, e O(/ V2. fdt = o V2t o V2 (1
has to execute beforg and j,. Precedence constraints also o M f 2 (vas)*f: ;(aa,i)"fi (1)
occur because of the sequential relationship of data. The first

frame of an MPEG video must be displayed before the secondf the voltqge Is kept constar_lt, the energy Is detgrmin_ed by
the frequencies. Thus, we obtain the following relationship:

=1

frame.
A timing constraintrequires that a job finish within a given n
duration. Timing constraints can be classified according to three € x Z fi. (2)
=1

categories: firm, soft, and on-time [8]. Fig. 2 illustrates the dif-

ferences between these constraints. Suppose there is a “value” Many existing scaling schemes assume that voltage and fre-
a job finishes before the deadline. For a firm deadline, the valgaency can scale continuously [7], [13], [37], [25], [31]. This
drops sharply if the job finishes after the deadline. Examples afsumption is false for commercial processors, such as Strong-
firm deadlines are flight control systems: finishing a job after theRM. Some schemes consider discrete frequencies and formu-
deadline can lead to severe damage or even loss of lives. Fdgita the problem as integer linear programming [22], [26], [28];
soft deadline, the value decreases more smoothly after the daatfertunately, they are computationally expensive. This paper
line. If a job has an on-time constraint, it should finish near th&ill present an efficient scaling method using graph traversal
deadline, neither too early nor too late. Playing an MPEG mouiechniques.

requires a consistent frame rate (number of frames per second).

In other words,jgisplay has to execute repetitively at a constarfe. Buffer Insertion

rate. The time betweep, display andji41, display Should be a Ag explained earlier, an MPEG player can be divided into
constant, herg; dispay is the job to display théth frame. For stages such as decoding and displaying. These stages form a
playing an MPEG movie at 30 frames/s, the player has to displgipeline Let j; , and; 4 be the jobs to process (i.e., decode)
one frame every 33 ms, neither much shorter nor much longgrd to display theth frame. A frame has to be decoded be-
This is a periodic on-time constraint. fore being displayed, therefogig , — j; 4. Without additional
User inputs create “sporadic” jobs. Usually, sporadic jobs aggorage between the two stages, no frame can be processed be-
processed concurrently with other already running programgre the previous frame is displayed. This requijes, 4 —
For example, a user may move the mouse cursor while watching . Fig. 3 is the precedence relationship for such a pipeline.
an MPEG movie. The movement of the cursor has to be pi@there are data buffers between the two stages, a frame can
cessed and displayed on the screen. Sporadic jobs need tgdrocessed even if the previous frame has not been displayed.
processed promptly for interactivity. We can specify two typ&3ence,j;_; 4 does not have to precegle, . The precedence re-
of timing constraints for sporadic jobs: 1) the processing timgtionship is changed, as shown in Fig. 4. This figure assumes
of each sporadic job is shorter than a given value and 2) the gyat the data have to be processed sequentially, consequently
erage processing time is shorter than a given value. ji.p — jit1.p- Also, frames should be displayed sequentially:
Ji,a — Ji+1,q. After buffers are inserted between the stages,
there are multiple options to arrange the execution order of these
The dynamic power of a CMOS gate can be approximatgubs. For examplej, , can execute beforf 4.
byp = c¢-v3, - sw- f, herec is the load capacitancey, 1) Energy Reduction With BuffersAn MPEG player has to
is the supply voltagesw is the switching activity, angf is maintain a constant output rate: it has to display a frame e@very

B. Dynamic Frequency and Voltage Scaling

1286 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

buffer to maintain the output rate. Since the processor does not

—>—>—>'>_>""' have to process images, it can enter a lower frequency and still
meet the output rate requirement. Fig. 6 depicts this approach.

In this figure, the height means the processor frequency. Four
frames are processed in the first two and half periods. Then,
the processor is scaled down to a lower frequency. Before the
buffers become empty, the processor enters the higher frequency

g -> and refills the buffers. Buffers are used to reduce the power in

pipelines [18], [6], [9] or to smoothen run-time variations [20].

Previous studies have not considered the advantages of buffers
@@ 9 @ - on processors with finite frequencies.
2) Reducing Response Timé&n addition to being able to re-

duce power, buffer insertion can also improve the performance

Fig. 3. Processing and displaying form a pipeline.

Fig. 4. Inserting buffers changes the precedence relationship. of sporadic jobs without disrupting other jobs. Imagine that a
user moves the mouse cursor and clicks one button at the end
] - . of the 12th period as shown in Fig. 7. This command can be di-
(a) m m m vided into two jobsy, ; andj, ». The firstjob draws the move-
: ' —>] "time mentofthe cursor; the second job processes the click command.
t t t Fig. 7 shows two scenarios: with and without a buffer. In (a), no

additional frame is buffered;, has to execute once every pe-
riod. Only 7, 1 can execute during the 13th perigg;2 has to
wait until the 14th period. In contrast, (b) shows four additional
© jp ig jp ’_jd—’ jp Il frames bging bufferedi{s, , exgcutes at the 12'Fh period); both
, T , jr,1 andj, o can execute during the 13th period. As a result,
the user can see the response of this command in the 13th pe-
@ | Jp | Jd | riod in (b). Buffering reduces the response time of a sporadic
' ' ' command.
Fig. 5. (a) Constant output rate for display. (b) Scaling frequency to avoid Even though buffering images requires additional memory, a
slack time. (c) Discrete frequencies cause idleness and waste energy. (d) Siygiécal computer has enough memory to buffer multiple frames.
to a lower frequency and miss the output rate. For example, palm-size computers often have more than 8-MB
memory. A frame of 240« 160 pixels with 256 colors per pixel

units of timet is called gperiod For a movie with 30 frames/s, requires 240< 160 bytes, or 38 KB. Four hundred kilobytes are
t is 33 ms. Fig. 5(a) shows this requirement:executes once €nough to buffer ten frames and are only 5% of the available
every period. If a processor’s frequency can be set to any valiRgmory.
the processor consumes the minimum energy when it takes ex-
actly ¢ to process and display one frame [22]. As Fig. 5(b)
showns, there is no slack time.

However, if a processor has only finite frequencies and this Scaling techniques can be split into two categories according
optimal frequency is unavailable, the processor has to run atoavhether or not they consider timing constraints. The first cat-
higher frequency. Since this frequency is higher than optimalgory does not guarantee that timing constraints are met. In [37],
the processor consumes more power. The processor is idle afterauthors propose several methods that periodically estimate
processing and displaying one frame, as shown in Fig. 5(c). Tpcess utilization and adjust the power states. Simulations of
processor cannot enter a lower frequency because if it doearious techniques are presented in [14] and [31]. In [36], the au-
it will fail to provide the required output rate. Fig. 5(d) illus-thors model the arrival of jobs as random processes. While this
trates this situation. While it is possible to set a processor approach can meet timing constraints statistically, it does not
the sleeping state to save power during the idleness, the wakguprantee talwaysmeet them. The second category considers
delay can be prohibitively long. For example, it takes 160 misning constraints. In [19], the authors use off-line analysis to
to wake up a StrongARM processor from the sleeping state [dletermine whether it is possible to meet hard deadlines and to
In contrast, it takes only a fews to change the processor freassign the power states. Linear programming methods are pro-
qguency. Consequently, this paper focuses on frequency scaluged in [22] and [28] to find optimal voltages/frequencies for
only and does not consider using the sleeping state. processors with discrete power states while meeting deadlines.

One solution to save power is scaling down the processdome techniques have been implemented on real systems. In
frequency whenever it is idle. However, changing frequencigl], [17], and [32], the authors use StrongARM-based systems
takes time; hence, it is preferable to avoid changing the frequéa-demonstrate the effectiveness of scaling and point out some
cies too often. Another solution is to insert buffers between jolimitations in implementation. Our work differs from existing
so that the processor can process more frames at a higher &gproaches in the following ways.
guency. When enough frames have been processed and storedFrequencies are assigned to processors that have finite
in the buffers, the processor retrieves processed frames fromfileguencies.

()] Jp Ja Jp Ja Jp Ja

I1l. RELATED WORK

LU et al: DYNAMIC FREQUENCY SCALING WITH BUFFER INSERTION FOR MIXED WORKLOADS 1287

s‘gale down frequency

jl,p jl,d j2,p j3,p jl,d j4,p j3 d j5 P j4,d

| | | |
t t t t time

Fig. 6. Process more than one frame at the higher frequency, then scale to the lower frequency.

e Data buffers are inserted into a program that needs a con- sporadic jobs arrive
stant output rate. 3

e An efficient graph-based method is presented to assign fre- (@ """ | jip jlz.du Jiap m
quencies for reducing energy. - | rime

¢ Workloads with very long time horizons can be handled by 24
this method. O I P (Y jisa

e The response times of sporadic jobs are shortened without r< —>time
affecting the output rate. T T
. . The m'”'m“m buffer S|z_es_, can be calculated to meet ﬂl}% 7. (@) No buffer. (b) Buffer additional frames to reduce the response time
timing constraints of sporadic jobs. of a sporadic job.

IV. ASSUMPTIONS TABLE |

SYMBOLS AND MEANINGS

We make the following assumptions to simplify the formu-
lation of the problem. These assumptions may be removed as " number of frames
extensions of the work presented in this paper. m numberofjobs
e The processor has only discrete and finite frequencies. The ° number of frequencies
- - w; number of operations of job j;
pfrocess_ordch]:’:llngestlftrequenmes (or voltage) only at the beginning ai; number of executions of j; in the i** period
of a period of lengtfz.

UL .)) one of the available frequencies, ¢, > ¢2,...,> @5
e Data processing is sequential on a single processor: there is time to change frequencies and/or voltages
no forward data dependente.

g
A
b; size of the buffer between j; and jj+1
e The total energy is determined by frequencies only: we ¢ length of a period
will use formula (2) to calculate energy. We consider the av- A {1,2,..,n}
erage power for a given duration. Since the integration of power M {1,2,...,m}
over time is the energy, minimizing energy is equivalent to min- ; f“gex °£ Pe;“;d’ er/tN
imizing power. We use the terms energy and power interchange- £ lffe:l’:e?lcjyoin’ thi ith period
ably unless it is necessary to distinguish them. 6: frequency or voltage changed in the i** period
e The jobs in the multimedia program are atomic and their
execution cannot cross period boundaries. Jobs are schedulable]))]
at the highest frequency. Buffers are not shared among jobs_problem _Iat.er. Th|s section derives an analytical model for en-
« The computational work of a job is measured by the numbgfdY Minimization under. performance an_d resource constraints.
of operations. One operation takes one time unit at unit frd/e start with integer linear programming. The formulation
quency. Hence, the execution time of the same job increa@§§0mes more general and more complex as we consider

linearly to the reciprocal of the frequency. The number of oftdditional factors.

erations for a specn‘mob is constgnt. . _ A. Two Frequencies and Two Jobs
o It takes no time to start executing a job and there is no con-_~ . o

text-switching overhead. This assumption is valid for a multi- This section assumes: 1) there are two repetitive jobs; 2) the

media program because there is no real context switching. Riocessor allows two integer frequencies; and ¢.; and
jobs belong to the same process. 3) changing frequencies takes no time. We will remove these

assumptions later. An MPEG movie hasframes to display
V. ANALYTICAL MODEL BY MATHEMATICAL PROGRAMMING 1N 7 Periods. The length of a period is For each frame,
)) there are two jobs: processing,) and displaying {;). A
With the assumptions stated above, the_ power reductmgme is processed before being displaygd 4 jg4). Table |
problem can be modeled as a mathematical programmiggmmarizes the symbols used in this section.
problem. For a complete comparison, we show the details ofthe th period is the time interval i — 1)¢, it]. LetA” =
such modeling before transforming it into a graph-walking; 2 3 . 1}. We usef; to indicate the frequency during

1The B (bidirectional) frames in MPEG are not considered. One examplemeith peI’IOd,f,,; € {¢1> ‘/)2} anqi € N Let_ a_vi be the numb?r
video without forward dependence is motion JPEG. B frames cause forward dafaframes processed during thi period; it is a nonnegative

dependence and they cannot be decoded based on the information availablefmr@ger_ Ifa; = 1. one frame is processed during this period.
previous frames. However, MPEG is divided into group of frames so only fini y ’

“look-ahead” is needed. Our method can be applied to MPEG by considerin &'PPQS% ?—ndwd are the number of operations for processing
group of frames as the basic unit. and displaying one frame. It takes, /¢; to process one frame

1288 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

1 scale u scale down
sga e down G p S
jl,p jl,d j2,p j2,d j3,p j3,d j4,p j4,d time
|
T T T
buffer
T I
a 2 0 2 0
f 2 1 2 1

Fig. 8. The processor changes frequencies every period.

at frequencyyp; . During the:ith period, the total number of op-the precedence constraints and the resource constraints speci-
erations isa; - w, for processing anav, for displaying. They fied in (4)
have to finish within a period. Thereforgy; - w, +wq)/ fi < t,

Vi € N. This can be rewritten as day +2 <6f1
daz 42 <6

a;-wp+wg <t-f; VieN. (3) daz + 2 <6fs

day +2<6fy

The number of frames processed upkto(k € N) is the

sum of frames processed in each per@f..":1 a;. At leastk Osa—1s1

frames have to be processed befbtebecause: frames have 0<ar+az—-2<1

been displayed att. This can be expressed by the constraint: 0<a;+as+az3—3<1

Sk ai >k VkeN. Sincer:1 a; frames have been pro- 0<aj+as+as+as—4<1

cessed but only frames are displayed. The additional frames 19 6
are stored in a buffer. Suppose one frame takes one unit of space fi o fs fa €41, 2} ©)

and the buffer size is. The following constraint restricts the By (5), the cost function is
number of frames processed so that they do not overflow the
buffer atkt: (Zle a;) — k < b,Vk € N. These two con- min(fy + fo + f3 + f1). (7)
straints are expressed as follows:
The minimum energy can be obtained by settfag= f» =

k f3 = fi = 1. The processor always stays in the lower fre-
0< Z a; | —kE<b VkeN. (4) quency,¢,. One frame is processed each period:= a; =
i=1 az = (4 = 1. <>

. _ _ _ Example 2: Considenw,, = 5. In this casef; = fo = f3 =
As explained in Section II-B, when the voltage is kept cony, _ | s ng |onger a valid solution because the constraints in

stant, the total energy for frames is proportional to the sum of gy are violated. The minimum energy can be obtained by setting
frequencies of during all periods. The energy is proportional tﬂ — fy =2andfs = f, = 1. Two frames are processed in the
n first and third periods and no frame is processed in the second
Z fi. (5) and fourth periodsgl =a3 = 2,_a2 =ay =0. The_processor
P changes frequencies every period as shown in Fig. 8. Note that
it is prohibited to process four frames in the first two periods
This is the cost function. The problem of energy minimizay settingfi = fo = 2, fs = fa = 1, a1 = a2 = 2, and
tion is to find a frequency assignment (the valugdbri € N) a3 = a4 = 0, because this violates the buffer size constraints in
and an execution order (the valueq) to minimize the total (6). %
energy, expressed in formula (5), while meeting all constraints. .
This is an integer linear programming problem (ILP). The p&- Multiple Jobs
rameters depend on the processbr énd¢-), the systemi), We can generalize the formulation to handle multiple jobs.
and the workloadi,,, wq, n, andt). While this formulation may Suppose there are: jobs: J = (j1, j2, ..., jm) and jm,
appear excessive for minimizing the energy for a processor ruras to execute once every period. Let be {1, 2, ..., m}.
ning two jobs at one of two possible frequencies, we use itas e usey; ; for the ith execution ofj;, | € M. For any
foundation for handling more complex and realistic situationd. € {1, 2, 3, ..., m — 1}, job j; ; has to execute befoge 141,
Example 1: Supposé = 6, ¢1 = 2,2 = 1,n = 4,b =1, wherei € N.Fig. 9 shows the precedence relationship between
wp, = 4, andwg = 2. There are four inequalities from the conthese jobs. Lety; be the number of operations performedjpy
straints specified in (3). There are four other inequalities froiret a; ; be the number of executions ffduring theith period;

LU et al: DYNAMIC FREQUENCY SCALING WITH BUFFER INSERTION FOR MIXED WORKLOADS 1289

different number of executions TABLE 1l
obs EXECUTION TIME AT DIFFERENT FREQUENCIES FOREXAMPLE 3

‘_:’._)‘_)' frequency | executiontime | total
J1_J2 J3
.z‘h execution 4 3 2 1 6
2 6 4 2 12
OfJOb Jl 1 12 8 4 24
: : scale down
v
9

Fig. 9. Precedence of multiple jobs.

I |diz fies| Jan [d2z | Jau || j2a | | sz l I Jjas J time
) T

T

buffer between j, and j,

a;,; = 1 means thay; executes once in this period. Singg buffer between j; and j;
executes exactly once each periag,,, = 1 for any value of

a <2,2,1> <1,0,1> <0,1,1>

1 € N. The total number of operations performed in ttie f
T m . o I 4 2 2
period is)",”, a;; - w;. All operations have to finish within
the period. Therefore Fig. 10. Lowest energy solution for Example 3.
Z a1 -w <t fi vieN. (8) 01.3= 1. The frequencies in the first, second, and third periods
’ - are 4, 2, and 2, respectively. O

=1

At kt, j; has processell._, a;,; frames. The following con- D. Multiple Voltages

straints allow one frame to be displayed each period: This section generalizes the formulation to consider both fre-

A A X quency and voltage scaling. Suppose the processoy s
Z 4> Z Qg > o> Z ai) =k VkeN. (9 crete voltagg settinggwy, va, ..., vy }. L.etvdd,i'be the voltgge

— — — at thesth period. The power consumption during tile period

is proportional tqvaq, . ;)2 f;. We need to choose the value f

At time kt, job J, has executedET 1 ai,; times and job andvgq, ; to minimize the overall energy, which is proportional

Ji41 has executer_1 a;,1+1 times. The additional frames areto

stored in a buffer. Lefi; be the size of the buffer betwegnand n
Ji+1- The following constraint avoids buffer overflow: Z (vd(M)Z - fi. (11)
=1
E Wil — Z ai 131 < by The values off; andvgq, ; should be determined so that all
- the constraints expressed in (8)—(10) are satisfied. Note that the
VkeN and VIie M —{m}. (10) maximum value off; can be determined fromy, ; analytically

S o [33]. When voltage scaling is considered, the cost function (11)
The goal is findingf; anda;,; to minimize energy (5) under contains the products ef;, ; and f;. This is no longer a linear

the constraints expressed by (8)—(10). programming problem. We can further generalize the problem
for noninteger values afy, ; andf;. Consequently, energy min-
C. Multiple Frequencies imization with both voltage and frequency scaling can be formu-
Consider a processor withinteger frequencieg;, ¢», ..., lated as a (cubic) mathematical programming problem.
¢s}. Supposed; is the frequency during thith period, thery; € .
{1, b, ..., b5 }. The cost function is the same, as expressedn Scaling Overhead
(5). The execution time constraint in (8) is also the same, excepSuppose changing frequencies and/or voltages takes

that f; can be one of the available frequencies. time regardless of the original and new frequencies and
Example 3: Consider a processor with three frequenci@s: voltages. Furthermore, the processor cannot execute any job
2, 1} for three jobsyi, j2, andjs. The numbers of operationsduring frequency and/or voltage changes. In [17], the authors
for the jobs arew; = 12, wy = 8, andws = 4. The length report 0.2 ms for changing frequencies on a StrongARM
of a period is 11. There are two buffefs, and by; each can processor. This is less than 1% of a period (33 ms). While it
accommodate one frame. There are three frames3. Table Il is possible to change frequencies multiple times within each
shows the execution time of each job at different frequencigeriod, this will enlarge the solution space. We, therefore,
Sincet = 11 and it takes 12 time units to execute three jobs assume that the change can finish within one period. The
frequency 2, the processor must run at the highest frequencyléfinition of f; andvg,, ; are refined as followsf; andwvqq, ;
the first period. Fig. 10 shows the solution for the lowest energgre the frequency and the voltage at the end ofithgeriod.
In this figure,a is the sequence af; ; for thesth period. Inthe If f;_1 # f; (Or v4a,i—1 # vaa,:), the frequency (or voltage)
first period,a = (2, 2, 1). This meansy; 1 = a1,2 = 2 and changes at the beginning of tith period. We use a binary

1290 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

variable§; € {0, 1}, to indicate whether the processor changes frequency in this period

frequencies (or voltages) at beginning of thie period. If the

frequency (or voltage) is changefl, is one; otherwiseg; is By By -

zero. The processor does not change frequencies in the first

period. Thus, we sé4; to be zero. buffer contents number of execution
During theith period.6; A time is used for frequency scaling, before this period ~ corresponding to a

sot — §; - A is left for processing jobs. All operations have to

finish in this period. The constraint expressed in (8) is modifiedd- 11. Encoding of a vertex.

to include the scaling overhead

Bm—l’ f» Oy, Oy, .. o m-l)

to solve the problem based on graph-walking techniques. Our
Z a1 -w < (t—6;-A)f; VieN. (12) method can significantly reduce the computation for finding
optimal solutions. In particular, it efficiently finds frequency
O.';_1ssignments for many periods (largg. Furthermore, our

In summary, the problem is to minimize energy for a pr o .
method can handle sporadic jobs more easily.

cessor withs frequencies ang voltages forn jobs

mian: (UMJ)Q i (13) VI. FREQUENCY SCALING BY GRAPH WALKING
i= The energy-minimization problem has additional structures

under the following constraints: thgt allow us tp solve it more efficiently. In fact, therg are only
finite choices in each period, so eventually the assignments of
f+vaq anda will be cyclic whenn is large. This section explains
how to find such a cycle. This section is divided into three parts.
First, we construct a finite directed graph to represent all fre-

b guency assignments. Second, we show that there is a repeating
(Z @il — Z i, l+1> —bi <0 VkeN, subwalk in any long walk of the graph. Finally, we demonstrate

’ how to use the graph to find frequency assignments for energy
Vie M—{m} minimization.

k
Zal 12> Zal 2> 2 Y ai VEkeN A. Assignment Graph
=l An assignment graph contains all possible choices for fre-

D ain-w = (=6 -A)f; <0 Vie N

0, gn{jl 1=1 . . guency assignments. Each vertex encodes the current state: it
b = Vdd,i—1 = Vdd, i VieN contains the frequency of the processor, the amount of data

1, otherwise stored in buffers, and how the data will be consumed or refilled.
fi € {1, ba, ..., Ps} VieN In other words, the graph represents the state space of frequency
Vdd,i € {vl, V2, ..., vy} VieN. (14) assignments.

1) Vertices: Let G = (V, &) be a directed graphy is the
Example 4: Consider Example 3againwith=4.1f A =0, set of vertices and is the set of edges. Each vertex encodes
the minimum energy is 10 if the frequencies are se#{dl, 4, the states of the buffers, the frequency, and the execution of
1). WhenA is nonzero, this assignmentis invalid becajisend each job. A vertex is identified by a vector @fn — 1 ele-

J2 cannot execute twice in the third period after the frequengyents:(3,, B, ..., Bm—1, f, o1, A2, ..., tm_1), herem is
change. IfA = 1, the minimum energy is 11 when the frequenthe number of jobs. Fig. 11 illustrates the encoding of a vertex.
ciesare(4,1,4, 2. ¢ In this encoding,8; (I € {1,2, ..., m — 1}) indicates the

amount of data stored in bufféy before the periody is the
frequency in the period (or the frequency after a change). The

This section formulates power reduction as mathematioadlue of«; indicates how many timeg executes; it corresponds
programming problems. This is a general formulation twa; ; defined inthe previous section. Al andxs are integers.
minimize the energy of a processor with finite frequencied/e calculate the value afby traversing vertices, as explained
and voltages for running a program under timing and resourieger. Each vertex has a cost(v). The cost is the frequency of
constraints. The formulation can consider different variations tife vertex, i.e.¢(v) = f and all costs are positive. Since a vertex
the same problem, including multiple frequencies (or voltagepresents a period, we can use “vertex” and “period” inter-
and scaling overhead. We can also formulate the problerthangeably. Table Ill lists the symbols and their meanings used
to find the buffer requirements when the available energy iisthis section. We can also include voltage scaling by changing
fixed. A large amount of literature has been devoted to solvirtige vertex encoding: the value ¢fis changed tdvqq)%f. The
mathematical programming more efficiently [5], [23], [24]new encoding method increases the graph size because one fre-
[34], [39]. One major challenge of this approach is the largguency may have multiple voltage settings. However, including
number of equations because the valuenofepresents the voltage scaling does not affect the graph’s properties. For sim-
number of frames and a typical MPEG movie has thousanplicity, we consider frequency scaling only in the rest of this
of frames. In the next section, we present a different approasdction.

F. Summary

LU et al: DYNAMIC FREQUENCY SCALING WITH BUFFER INSERTION FOR MIXED WORKLOADS 1291

TABLE Il are g, items (or frames) in the buffer betwegnand j;11. In
SYMBOLS AND MEANINGS FORASSIGNMENT GRAPHS this period,j; executesy; times andj;; executesy 4, times.
c(v) cost of vertex v, the frequency of v Before this period end$}; + o — a4 items must be stored in
v = Vg v and v, are connected, or (v1,v2) € € this buffer and these items cannot exceed the buffer size. This is
w a walk, general format: < vy, V2, ..., Up > equivalent to the constraint specified in (10)
c(W) cost of walk W
Wi (v) a minimum-cost walk from v B+ — iy < b l e M —{m}. (16)

and visits n vertices . L
L We definen,,, as one because one frame is displayed each pe-
W(vg,vs) aminimum-cost walk

between vertices v, and vs riod. Finally, precedence constraints prevent buffer underflow.
* concatenate two walks Sincej;+1 executesy;; times, there must be enough data ei-
o(v) unused operation of vertex v ther from the buffer or produced ky. We rewrite the constraint
in (9) for the vertices in the assignment graph

Example 5: For Example 2, the processor has two frequen- B+ ar > ap le M—{m}. (17)
cies, sof can be 1 or 2. The buffer can be filled or empty, so
(3 is 0 or 1. If the processor is at frequencyji,andj, cannot) - - i
execute within one period; consequentlyis zero whenf is 1. 21 e sdby + 1) = (b + 1) = 2. There are three frequen

. ; i o jes. Joby; can execute at most1 x 4 — 4)/12 = 3 times and
The assignment graph includes five vertices: (1, 2, 0), (1, 1, Hf} i B e
(0.2,1). (1, 2, 1), and (0, 2, 2). o U2 can execute at moét1 x 4 —4)/8 = 5 times. The graph has

Now, we compute an upper bound of the number of vertice2s.>< 2 x 3 x4 x 6 = 288 vertices by (15). There are only 21

. . . . “valid vertices after invalid vertices are removed. &
First, we consider the possible valuestf Before one period . T
) . 2) Starting Vertices:Since all buffers are empty at the be-
starts, the butffer betwegp and;, may have zero, one, two, ..., inning, the firstn — 1 elements in the encoding must be zero
or by items; there aré, + 1 possible values fg#, . Similarly, 55 9 9, 9 '

hasb, + 1 possible values an6 hash; + 1 possible values. The Let(0,0, ..., 0, f, a1, a2,..., 1) be the firstvertex. The
. . value for f and the values ofis have to satisfy the following
processor has frequencies, s¢ hass choices. At frequency i, .
S ; .2 conditions based on (14), except tltais always zero for the
¢1,Jjob j; can execute at mostt - ¢1 — w,,) /wy | times. Thisis

an upper bound fot; . It is an upper bound because the rangftlerSt period

Example 7: In Example 3, either buffer can accommodate

for «; may decrease at a lower frequency. We call this upper m—1
bounday. The value ofy; is between zero andy, so there are ft>wn + Z oy - Wy
@y + 1 options. We can find upper bounds for othes in the 1=1
same way. The following formula is an upper bound of the size ap—oupr <b 1€{1,2,...,m-2}
of an assignment graph: oL >y > > Qe > 1L (18)
(by +1) x (ba +1) x -+ X (bpp—1 + 1) Any vertex that satisfies these conditions can be a starting
Xsx(@+1)x (@+1)x (@7 +1) vertex. After we remove invalid vertices, any ver.tex W|t_h the
mo1 (0,0,...,0, f, @1, g, ..., am—1) format is a valid starting
—sx H (b + 1)@ +1). (15) Vvertex. We will usey* as one starting vertex. If a vertex cannot
=1 be reached from any starting vertices, it is eliminated from the

. assignment graph.
This is a loose upper bound because we have not remove) Edges: An edge (vi, v2) € € connects two vertices
. ?

invalid vertices. There are three types of invalid vertices; the{zx and v, It indicates a transition from state to statev,

woéate terlng., ;esoEurce, (I)r 2rect?cdence constralgt's. . after one period. A transition from; to v is represented as
xample 6: For Example 3, at frequency , and;j> canno = wv9. We callv; a precedessoof v, andwv, a successor

execute in a single period because this violates the timing cqﬁ—vl There is at most one edge between two vertices. Some

stra(;Ttspe;:ifriwed b>|’ (8?; TT:e ver:téx, e, 1,1,1) :S invalid reo— 1transitions are prohibited. There are two types of invalid
ga; ;\ssto tt e.¥€ ue (f;r or_t Esf?me e;amp e{ vgr;[ex(' “transitions. The first type violates continuity conditions.
, 2, 2) starts with one frame in buffey and executes, twice. SUPPOSEsT = (B1, Bos s Bty fo 1y @2s o es Gt

Since only one frame is consumed by two frames have to _ 1 gl / VAR ’ d
be stored in buffeb, at the end of this period. Howeves can > . (Br, B, -0 By f'5 01, 0, ooy Q) 8N
2 P . b v1 = vy. The continuity conditions require that the data stored

store only one frame. Therefore, (0, 1, 4, 2, 2) overflows ”lﬁ the buffers remain the same at the end of the first period

buffer and is an inva!id vertex: vertex (0, 0, 4 0, 2) violates thﬁ’eavingvl) and at the beginning of the next period (entering
precedence constraint becaysexecutes twice but the bufferm)_ Before the period represented by starts, there arg,

between;; andj, is empty andj, does not execute. ¢ items in thelth buffer. Duringv:, a; more items are added

Timing constraints require the processor to operate at a f'ES'the buffer, andhy,, of these items are consumed by job

quency high enough to finish all scheduled jobs. The timing con- Conseaquently. there a . items left before
straint of vertex 31, (2, - - -, Bm—1, fr 1, @2, - .., Q1) it d ¥, B+ o= i

o bolon 1t o . : 'fl'sd the period represented by, starts. The following formula
Speciiie elow. It Is equiva ent to the constraint Speciiie |&presses this Continuity condition:

(8), namely>";", «; - w; < f - t. Resource constraints state
that buffers cannot overflow. Before a new period starts, there] = 3 + a; — ay41 le{1,2,...,m—1}. (19)

1292 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

walk Wi = (v1, va, ..., v,) is concatenated with walk
Ny N Wy = (u1, ug, ..., uy), written asWy; x Ws. The result is a
Iongerwalk,Wl*Wg = <’l)17’l)27 ceey Up, UL, U9, ...,um).
< Walks can concatenate (i, u1) € €.
D Example 10:Fig. 13 shows three examples of
walks. The first is a walk fromwv; to v;. The second
Fig. 12. Assignment graph for Example 2. walk, (v, ve, vs, v4, v2, vs) coNtains a closed walk,

<U2, v3, U4, ’U2>. The third walk <’U1, v2, U3, V4, V2, Us, ’Ul)

Example 8: In Example 3, (0, 0, 4, 2, 2 (L, 0, 2, 0, 1) is contains two closed walkspne starting fronv; and the other
: A P rgﬁarting fromu,. &

an invalid transition. Before the period represented by the fi Fig. 12 has a loop of vertex (0, 2, 1). This is not incidental,

vertex begins, buffe; is empty. The first vertex executes botI\N . .
. . . L . e assume jobs are scheduleable at the highest frequency, so
j1 andjs twice, sob; is still empty. However, the following there is alwajys a loop of verte®, 0 b1 ? 1)ﬂere y

veytex starts with nonempty bufféy. This violates continuity ¢1 is the highest frequency. This is equivalent to executing each
principle
) job once per period and storing no additional data in the buffers.
S

The second type of invalid transitions violates timing co i .
straints. Consider Example 4, which includes scaling overhe?}q@ Cost of a Walk:The cost of a walkg(W), is the sum of

_ n .
It takes one time unit to change the frequencies; therefore, . € cost of each vertex(W) = 3_;_, c(v:). The average cost

andj, cannot execute twice at frequency 4 if the previous frd> defined as

guency is different from 4. In other words, (0, 1, 1, 09)(0, W) 1 &

0, 4, 2, 2) is an invalid transition. == c(v;). (20)
4) Merging Vertices: After constructing the graph, we can " "

further reduce its size by merging vertices. Two vertices can . . .
merge if they have identical predecessors and successors. Thé ml.nlmum—cost walk can be de_fmed for two dlﬁerent_con-
happens when two vertices differ only in their frequencies; tﬁjét'qns' 1) A walk starts fr_om a given vert_ex;l() and visits
merged vertex uses the lower frequency because it suffices to ven number+) of vertices. This v_valk IS represgnted as
the lower frequency. For example, (0, 1, 2, 0, 0) can merge wi ”(1.’1.) = (o1, AR vn). The ending vertexig,) is not
(0,1, 1,0, 0)in Example 3. Since these vertices have the sa] (?C'f'eq' The cost is expressed:g8Yy (v1)). 2).A walk starts
inward and outward edges, they perform identical operatio Om a given vertexd;) and ends at another given vertex)
Consequently, it is unnecessary to use a higher frequency i USEW (Va, vy) = {va, 1, .., Un, V) 10 represent such a
lower frequency is sufficient. yvalk. The number of visited vertices is not specified. The cost
Example 9: Fig. 12 shows the assignment graph for Examp'g. expressed aﬂ_(W(“m w))- . .
2 after invalid vertices are removed and equivalent vertices rﬁExa_mpIe 11:Fig. 12 has several walks, including the
merged. This graph has one vertex with frequency 1 and th?@ owing.
vertices with frequency 2. Vertex (0, 2, 1) can reach itself. This * twoloops: (0, 2, 1)= (0, 2, 1) and (1, 2, 13> (1, 2, 1).
means the processor can keep running at frequency 2 and exe* (1,1,0=(0,21)=(02,2).
cuting j, once every period. Both successors of (1, 1, 0) have * (1,1, 0= (0,2, 2)= (1,2, 1). .
frequency 2. This means that the processor can run at frequency’ (1, 1,0)= (0,2,2)= (1, 1, 0). This walk has the minimum
1 for only one period. Then, it has to run at frequency 2 for at ~ average cost among all walks in this example. %
least one period before entering (1, 1, 0) again. O
5) Walks: A walk W of a graph is a sequence of vertice®. Energy Minimization by Assignment Graphs
W = (v1, v2, ..., v,) such that(v;, vi11) € € forany 1) Minimum-Cost SubwalksBecause a walk is an assign-
i € {1,2,...,n—1}. Awalk is a sequence of assignmentsnent of frequencies, a minimum-cost walk is equivalent to an
of frequencies () and executions«) by the vertices. Walk assignment that minimizes the energy consumption. This sec-

W visits a vertexv if v appears in the sequence. Verticeion finds a minimum-cost walk for periods, namely, the cost
v2, U3, ..., Up—1 areintermediatevertices in the walk. The for visiting » vertices.

length of a walk is the number of vertices in the sequénce, Theorem 1:SupposeW, (v1) = (v1, v2, ..., v,) iS a
or n. A closed walkof v, starts and ends at the same vertexhinimum-cost walk fromw; and visitsn vertices. A subwalk
v1 = vy [3], [12]. If (vi, vi) € €, the walk(v;, v;) is called (v, v, 1, ..., v;) of W, (v1) is @ minimum-cost walk from;
a loop. A subwalkis a walk contained in a longer walk; fortg v; and visitsj — i + 1 vertices.
example,(v;, viy1, - .-, v;) is a subwalk of(vy, va, ..., vy) Proof: This can be proven by contradiction. The
if 1 <4 < j < n.This subwalk starts from;, ends at;, and cost of W,(v1) is S c(vg), or 22;11 clop) +
visits j — i + 1 vertices. A walk is goathif all vertices are 57 () + 7 ¢(vy). If the walk (v; v v;)

isti H H . k=i k k=j+1 k)- 1y Ui41ly «+ oy Uj
distinct [3], [12]. Graph walking has been applied to a widg "not minimum-cost, then we can find another walk

range of problems, such as finding the resistance in an electrjc iy, -.., vi_y, v;) that starts fromu;, ends atv;,
network and the locations for servers [10], [41]. Two walkgisits the same number of vertices, and has a lower

can be concatenated. We us@s the concatenation operatorgost: Zi:l-ﬂ c(v},) < Z;;}H c(vy). Replacing

2Some texts use the number of edges as the length of a walk. 3We assume the walk stops after it visits twice.

LU et al: DYNAMIC FREQUENCY SCALING WITH BUFFER INSERTION FOR MIXED WORKLOADS 1293

oW =

.00 edley

Fig. 13. Examples of walks.

(Vi, Vig1, ooy v5) DY (Ui vy, e, vy, vy) Wil re- @ W, (v,) @
duce the cost of the original walkV,,(v1). This contradicts

the premise thatV,,(v1) is @ minimum-cost walk. Therefore, W ()

(vi, vig1, - .., v;) is @ minimum-cost walk fromy; to v; and @"’@f—'\/\»@

visits j — ¢ + 1 vertices.
This theorem is similar to finding shortest subpaths whilgg. 14. DivideW, (v,) into two subwalks.
computing a shortest path between two vertices in a graph [11].

A minimum-cost walk differs from a shortest path in three ways.
e . . MinimumCostWalk(input graph: G = (V, £), integer: n)
1) It specifies the number of vertices, not the ending verte /« Wi(v): minimum-cost walk from v with length i

2) Its cost is determined by the verticgs,” ; ¢(v;), not by weost(v,): cost of Wj(v)
the weights on the edges. n: maximum length of walks */
3) It allows visiting the same vertex multiple times. begin

/* initialization */
foreachv €V
weost(v, 1) = c(v);

The methods presented in [11] compute the shortest pat
between two given vertices. Because the power-reductis

problem is different, we approach this problem by modifying Wi(v) =< v >;
the methods in [11].

2) Finding Subwalk RecursivelySuppose W, (v1) is for (wlength := 2; wlength < n; wlength ++)
(v1, vy« oy Un), thene(Wy(v1)) = c(v1) + ¢(ve) + -+ + for eachv; € V
c(vy,). By definition, Wy (vy) is (v1) ande(Wi(v1)) is ¢(vq). weost(vy, wlength) = oo; /* initialize */
We can divideW,,(v1) = (v, va, ..., v,) iNto two walks: for each v; € V and (vy,v;3) € €

newcost := c(v1) + weost(vy, wlength — 1);

if (wcost(vy, wlength) > newcost)
wcost(vy , wlength) := newcost;
leength(vl) =< > *leength—-l('u2);
/* %: concatenation of two walks */

(v1) and (va, vs, ..., vy,), here(vy, vo) € E. The cost of
Wh,.(v1) can be computed by

cWalv1) = Y c(v;) end
=1
n Fig. 15. Find minimum-cost walks by (21).
=c(v1) + Z c(v;)
=2
=c(v1) + cWp_1(v2)) (v1, v2) € €. (21) C. Efficient Assignments
Even though MinimumCostWalk has complexi®(n|V|?),

Fig. 14 illustrates this concept. This is a recursive relatiothere are still two problems. First, the time is lineamireven
each time, we reduce the length of the walk by one. Equidrough the graph size is independento$econd, the algorithm
tion (21) computes (W, (v1)) by reducing the length of the in Fig. 15 compute®V;(v) for every value of, whereas we are
walk through the recursive relation. Since there may be multiglgterested only in = n. Because assignment graphs are finite,
choices fon,, it takes exponential time to find a minimum-costve can compute minimum-cost walks even more efficiently for
walk by (21) [16]:O(x™), x is the average number of succeskargen. This section explains how to find minimum-cost walks
sors of each vertex ang > 1. We clearly need a more efficientefficiently whenn > [V|.
method. 1) Minimum-Cost Walks Between Two Vertic&ased on

3) Memorization of SubwalksWe can reduce the time the Floyd—Warshall algorithm for finding the shortest paths in
complexity by memorizing shorter walks to construct long graph [11], we can find a minimum-cost walk between vertex
walks. If we already know the minimum-cost walk,,_, (v2), v, and vertexy,. The algorithm is called MinimumCostWalk2V
it is unnecessary to compute it again. Memorization eliminatasd is shown in Fig. 16. This algorithm has complexit})|?)
computing the same subwalks multiple times. The algorithm brecause of the nested iteration.

Fig. 15 computes a minimum-cost walk ¥¥,,(v;) by mem- 2) Pigeonhole Principle:Suppose there ane pigeons and
orizing shorter walks. For each iteration efength, at most m holes. We want to assign thesegigeons to then holes. If
|V|? vertices are visited and the execution timelign|V|?). there are more pigeons than holes¥ m), at least one hole
Memorization reduces the complexity from exponential tmust have two or more pigeons. This is called piigeonhole
linear inn. principle [15]. Consider another example. There aneballs

1294

MinimumCostWalk2V(input graph: G = (V,£))
/* W (vq,vs): minimum-cost walk from v, to vy
W™ (va,vp): W(va,vp) without visiting the last vertex, vp
if W(v,,vp) =< vq,01,02, ..., Un, vp > then
W_(va’vb) =< Vg, V1,02 .0y Un >
mcost(vq,vp): cost of W(vg, vp)
nW(v,,vp): number of vertices in W(vq,vp) */
begin
for eachv, € V
for eachv, € V
if (vg,) € E
W(va,0p): = < Vg, Up >;
mcost(Vq, vp): = c(vq) + c(s);
nW (g, vp): =2;
else
W(vg,): = <>;
mMcost(Vg, Vp): = 00;
W (Vq, Vp): = 00;
for each v, € V /* intermediate vertex */
for eachv, € V
for each vy € V
costpassc = mcost(va, ve) + meost(ve, vp) — c(ve);
/* subtract c(v.) because it is counted twice */
if (mcost(v,, vp) > costpassc)

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

FindClosedWalk(input graph: G = (V,£))
¥ CW.ALK(v): closed walk of v with minimum average cost
cwcost(v): the cost of CWALK (v)
nwalk(v): the length of CWALK (v) */
begin
MinimumCostWalk(G, |V| + 1);
for eachv € V
/* initialization */
CWALK(v) := empty;

cwcost(v) := 00;

for (wlength := 2; wlength < |V| + 1; wlength ++)
v’ := last vertex of Wayiengtn(v);

. th
if Zlfj:f,:((;’)) > wc”:u(;;‘:fglf -)y /* smaller average cost */

if (v = v') /* a closed walk */ and
(Watengtn(v) visits v exactly twice) and
(no other vertex is visited more than once)
CW.AL:’C(U) = leength. (U);
cwcost(v) := weost(v, wlength);
nwalk(v) = wlength;
else
CWALK(v) := empty;
cweost(v) = co;

end

mcost(vg,vp) = costpassc;
nW(vq, vp) = nW(vg,vc) + nW (v, vp) — 1;

Fig. 17.
W (Va,vp): = W™ (Va, Vc) * W(vc, vp);

Find the closed walks of minimum average costs.

end

Fig. 16. Find minimum-cost walks between two vertices. /

labeled ag, 2, ..., m stored in a box. Every minute, we select
one ball from the box, record its number, and put it back to
the box. Aftern minutes, we have seem balls. If n > m,
one number between 1 amd must occur two or more times,
according to the pigeonhole principle. The pigeonhole principle
can be applied to walks. If a walk visitsvertices andv is larger 4) Walks of Infinite Length:After finding the minimum-cost
than the number of vertices in the grapht [V|), atleast one ¢y ALKs, we can easily find an infinite-length walk with
vertex must be visited twice or more often. Hence, there is#@fe minimum average cost. When approaches infinity, a
least one closed walk. minimum-cost walk starts from one starting vertex, defined in
3) Redefining Closed WalkA closed walk has the format Section VI-A-2, reaches a closed walk, and repeats this closed
(v1, va, ..., va) Wherev, = v;. In the rest of this paper, we walk. Fig. 18 illustrates such a walk. This closed walk is chosen

restrict closed walks so thaj is visited exactly twice and no pecause it has the minimum average cost, defined as
other vertex is visited twice or more often; # v; if 1 <

1 < j < nexcepti = 1 andj = n. We call such closed
walks CW.ALKs. According to the pigeonhole principle, any
closed walk inG = (V, £) visits at mos{V| + 1 vertices ¢, is
counted twice). Fig. 17 is an algorithm for finding 8. ALKs If vertexw is not a starting vertex, we can find a minimum-cost
that have minimum average costs. The average cost of a wadklk that connects ong* to v by MinimumCostWalk2V. Since

is defined by (20). If two closed walks have the same averagedClosedWalk take®(|V|?) time, O(|V|*) time is required
cost, this algorithm keeps the shorter one. It first finds all mirie find a walk of infinite length with the minimum average
imum-cost walks of lengths up {®’| + 1. Then, it determines cost. Because the walk is infinite, the “initial cost” fromt
whether the walks are closed and computes the average costpfiv can be ignored. A natural question is whether this closed
nally, it keeps only closed walks with minimum average costaalk is reachable from a starting vertex. Since the jobs are
Since the jobs are scheduleable, there is at least one trivial salcheduleable at the highest frequency, an infinite walk must
tion: a loop of vertex0, 0, ..., ¢1, 1, 1, ...), whereg, isthe be available. One ftrivial solution is the loop of the vertex
highest frequency. Since = |V| + 1, it takesO(|V|*) to call (0,0, ..., ¢1, 1, 1, ...), where¢, is the highest frequency.
Minimum-Cost Walk. For each vertexslength changes from There may be other solutions that satisfy all constraints and
2to|V|+1 and it takesvlength to compute the average cost ofrequire lower power consumptions. Our method finds these
Wivlength (v). It takesO(|V|?) time for each vertex. Hence, thissolutions with time complexityO(|V|?) and is independent
algorithm takeO(|V|3) time. of n.

Fig. 18. A walk of infinite length must repeat a closed walk indefinitely.

cweost(v)

vey nwalk(v) (22)

LU et al: DYNAMIC FREQUENCY SCALING WITH BUFFER INSERTION FOR MIXED WORKLOADS 1295

The following scenario is an example to illustrate the mix-
ture of periodic and sporadic jobs. When a user is watching an
MPEG movie, the movie creates periodic jobs. Occasionally, the
user may move the mouse to a slider and adjust the volume; this
movement creates a sporadic job. A desirable outcome consists
of three parts: 1) the sporadic job is processed promptly; 2) the
Fig. 19. The walk for four jobs with 80% processor utilization. frame rate of the MPEG movie remains constant; and 3) the

power consumption is minimized. When a sporadic job arrives,
. . o . the processor has to execute additional operations. These oper-
According to the pigeonhole principle, frequency assign-,. . . h dic iob is
ments must form a closed walk for a workload with an im‘inité"ltlons can pe executed“m twci ways. F'rSt’.t € sporadic Jo
time horizon. We need to emphasize that our method do%xsecu_ted W'.th only the "spare” operations in each perlod_. Al-
. térnatively, if the buffers are nonempty, data can be retrieved
not have to know the length of the closed walk in advancg, ; o
In contrast, using mathematical programming, one has 8m them and some 19b§ do not _hgve to gxecute. By draining
) . . the buffers, the sporadic job can finish earlier.
determine this length in advance and select.darge enough
for the inequalities in (14). A typical MPEG movie containsA
thousands of frames, so we can reasonably approximate it with
infinite frames. No real movie has infinite frames. Appendix Some time periods may have “unused” operations because
explains how to find a minimum-cost walk with a finite lengththese operations are not used to execute any ofjjots;,, ;.
A finite walk is different in three ways: 1) the initial cost need¥Ve Usep(v) as the number of unused operations of verteior
to be considered; 2) it has a “tail” that may not be a comple¥rexv = (51, B2, ..., Bm-1, f, a1, 2, ..., am_1), ¥(v)
closed walk; and 3) the cost of the tail needs to be considereg@n be found by the following formula:

Example 12: A processor has five frequencies: 10, 7, 5, 4, mel
and 3; a program k_eeps the processor 80% utilized at frequency p(v)=t-f— (wm + Z a ~wz>) (23)

10. There are four jobs with equal numbers of operations: each =1

job takes 20% of the total time in a period. Without any buffer,)))

the processor is idle 20% of the time in each period. If there is !N this formgllg,lt-f is the total number of allowed operations
one buffer between two jobs, a low-power schedule is used, ¥ (Wm + 322, ai - w) is the number of operations needed
presented in Fig. 19. In each period at frequency 10, one of meexecute the jobs that have to be_e_xecu_ted this period. _The
buffers is filled; then, the processor runs at frequency 3 to red éference between these two quantities difference determines
energy. The average frequency is 8.25, or 3% above optin‘!?;ﬂ’.w many add|t|onql operations can be conducted in this pe.rlod.
This walk also shows that some frequencies (7, 5, and 4) are noEX@mple 13: Inthis example, we representunused operations
used. as the percentage of a period at the highest frequency. If the pro-

In summary, we demonstrate how to use graph-walking tedpgssor is complete_ly ic_jle while running at the high_est frequency,
niques for energy minimization. This method is based on ﬂlllée unused_operatlon is 100%. If the processor is |_dle but runs at
fact that only finite frequencies and buffers are available. THifofthe highestirequency, the unused operationis 50%.
solution space is enumerated as a directed graph and the gragtft Us reconsider Example 12. If there is no sporadic job, the
size is trimmed by removing invalid vertices and edges. A effinimum energy is achieved by repeating a closed walk with
ficient algorithm (cubic time complexity) is proposed to ﬁn(jour vertices. This solution is shown in Fig. 19. Ip the p‘enod
a minimum-energy walk for frequency assignments. While offgPresented by vertexe = (1, 0, 1, 10, 1, 2, 1), ji and js
method is developed for frequency scaling, it can be easily X€cute once because = as = 1. In the same period;,
tended for voltage scaling. When voltage scaling is consider&eCutes twice because = 2. The fourth job always executes
the cost of each vertex is the power of a periodig)2f. In- once 'each perlod. Since each job take; 20% of the time, the
cluding voltage scaling increases the graph size but it does Hj@! time required to execute these four job8(%0 + (1 + 2 +
affect the properties of the graph. Consequently, the algorithih* 20% = 100%. Consequentlyp(v2) = 0 and no additional

for finding the minimum-cost walk is still applicable. operation can be executed. _
For the period represented by, only j, executes because

a1 = as = az = 0. Notice that the frequency is only 30% of
the highest frequencyy(vy) = 30% — 20% = 10%. Because

The previous section considered periodic jobs and showthik is insufficient to execute any gf, j», or js, it is unused.
how frequency scaling and data buffering can reduce the dfewever, this period can execute a sporadic job if it needs half
ergy consumption. The optimal assignments of frequencies afghe operations of;. &
determined by a graph-based algorithm. This section compute€onsider a sporadic job that needs operations. Suppose
the response time of a sporadic job in the presence of periottie MPEG player still maintains the same output rate. The spo-
jobs. We show how to calculate the response time of a sporadidic job can execute only by using unused operations in each
job if it arrives at a period represented by a vertex in a walkertex. The sporadic job can finish in one period if the number
For simplicity, this section ignores scaling overhead. We alsd unused operations is larger than this job’s nhumber of oper-
assume that a sporadic job completes before another sporadiens, orp(v) > w,. Suppose the sporadic job arrives at the
job arrives. beginning of a walk of. verticesW = (vy, v, ..., v,). The

v,~=(1,1,1,3,0,0,0)

Unused Operations

VIl. RESPONSETIME OF SPORADIC JOBS

1296 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

ResponseTime(input vertex: v = (01, ..., Bm—1, f, 01, -y ¥m—1), sporadic job sporadic job
job: wy) @

/% find how many periods (t) are needed to finish the sporadic (1,1,1,3,0,0,0)

job that needs w, operations */

begin (1,0,0,10,0,1,1) (1,1,0,10,0,0,1)

compute ¢ (v) by equation (23);

. * : *
if w(:‘lztfr:‘v;'/ enough unused operations */ (1.0,0,10,0,1.1)

compute p(v) by equation (27);
if op(v) > w,
find one next vertex v’ by the continuity condition (19);

iy

Fig. 21. A sporadic job finishes in two periods if it arrivesiat(left). It takes
three periods if it arrives at, (right).

return t;
/: the job will take more than ¢ to ex"f”“‘- ¥ whether there are enough unused operatigris)) in one pe-
/* find the response time recursively */ riod. Then, it checks whether the sporadic job can finish in one

find one next vertex v' by the continuity condition (19);
return ¢ + ResponseTime(v', w, — @p(v));
end

period by draining the buffersp,(v)). If neither is successful,

it recursively computes the response time by adding one period

each time.

Fig. 20. Find the response time of a sporadic job. After processing a sporadic job, the processor may reach a
vertex which does not belong to a steady-state minimum-cost

sporadic job can finish within periods if there are enough un-walk. For such a vertex, we can find a path to return to the min-

used operations in these vertices. This condition is expressedriaym-cost walk. This can be computed in advance With/|*)

the following inequality: time complexity using all-pairs shortest path algorithms pre-
n sented in [11]. The vertex does not have to store the complete

Z o(v;) > w,. (24) path returning to the minimum-cost walk. Instead, it needs to
i=1 store only the next vertex of the path. The next vertex also stores

only the following vertex of the path. The complete return pathis

B. Effects of Buffers available by following the chain of vertices until the steady-state

Equation (23) does use buffers to reduce the response tim@wfimum-cost walk is reached. Consequently, storing the return
a sporadic job. To execufe, once each period, the data require@aths require(|V|) memory.
by j.. may be obtained in one of the two ways: 1) from the Example 14: Consider Example 12 again for computing the
buffer between,,, and;j.._1 or 2) generated by jofy.,_; inthe response time of a sporadic job. Suppose a sporadic job needs
same period. Jofy,_1 has to execute only if the buffer betweerpne period at frequency 10 to complete. Without buffers, the job
jm andj,,_i is empty. Condition 1) means,,_; > 0 and takes five periods to complete this job because the processor can
condition 2) means,,,_; > 0. Togetherg,,_1 + a,,_; must spend only 20% of the time in each period on this job.
be at least one so thaf, can execute in this period. We can Now, letus consider how buffering reduces the response time.
generalize this relationship. Suppose jpbxecutes in a period. For vertexv; in Fig. 19,73 equals one but; andy, equal zero.
Jobj;_; must execute in the same period if the buffer betweégince onlyjz andj, have to execute, the processor can spend
jrandj;_q isempty (31 = 0). We define an indicator function 60% of the time in this period for a sporadic job. Becagisand

~; to determine whether joly has to execute j2 do not execute, the next vertex is different frog Using the
1, if v = 1andB =0 continuity conditions, we find one vertex to followy; it is (1, O,
v { 0’ therwi le M—{m}. (25) 0,10,0,1,1)asshowninFig.21. This vertex can spend 40% of
, otherwise

the time executing the sporadic job. The sporadic job finishes in
We definey,, = 1 since jobj,, executes once every periodiwo periods, which is a 60% reduction from five periods. Simi-
Because thes are the minimum requirements to keep the outpirly, we can compute the response time of the sporadic job if it
rate,v; must be smaller or equal te;, or v; < ;. DUring arrives aw,. The job takes three periods as shown in Fig. 21; this
this period, the minimum number of operations to sustain thi& 40% improvement with respect to the original five periods.

constant output rate is Two periods are required to finish the sporadic job if it arrives
m—1 atw, or vs. On average, the response time of the sporadic job
Wy, + Z wy - Y. (26) is (2 x 3+ 3)/4 = 2.25 periods, which is a 55% improvement
1=1 with respect to the original five periods. &

Let ¢ (v) be the maximum number of operations available
for a sporadic job when the effects of buffers are considered C. Timing Constraints of Sporadic Jobs

m—1 The previous section analyzed the average response time of
po(v) =t f— <wm + Z wy '%) . (27) a sporadic job. Using the same technique, we can determine
1=1 whether it is possible to meet the timing constraint of a sporadic
Sincey; < ay, pp(v) Must be larger than or equal¢dv). In job. The timing constraint is the maximum acceptable execution
other words, buffering allows the processor to spend more tirtime after a sporadic job arrives. In order to decide whether it is
on the sporadic job. The response time can be computed ugiogsible to finish a sporadic jofp within n time periods, we
the procedure presented in Fig. 20. This procedure first chetlare to find the shortest response timg,ofThe response time

LU et al: DYNAMIC FREQUENCY SCALING WITH BUFFER INSERTION FOR MIXED WORKLOADS 1297

Pp(V) = tf - Wi, . Pp(V) = 1f - Wiy - Wiy g | Op(V) =t - Wiy - We- W2 L.,

] I
< bm-1 bm-2

«— bpg— s ... time (period)

Fig. 22. ¢,(v) decreases as more buffers become empty.

is shortest when all buffers are full and the processor is running m—1 m
at the highest frequency. Thus, we assume all buffers are full Sw, <Y biftgi— Y w,
and the frequency is the highest whgnarrives. We also as- 1=1 p=l+1

sume that no sporadic job arrives before another sporadic job
completes (because they are “sporadic”). In (27), the maximum
number of operations occurswhen= vy, = - .- = ~,,_1 = 0:
max @p(v) = t - ¢1 — wp, heret is the length of a periody;

is the highest frequency, and,, is the number of operations
executed by joby,,. If w,./n >t - ¢1 — w,y,, then it is impos-
sible to meet the timing constraint because there are insuffici s further suggests how to calculate the minimum number of

operauons in each period. Allocating more memory for buffe tems stored in each buffer. In fact, buffers do not always have to
will not solvg the. problem; the only solution is to find a faSteFemain full. As long as these conditions are satisfjeds guar-
processor with hlgheﬁ.l' , anteed to finish withim periods. This sets the lower limits of
The ‘value Of%’b(’”) IS ¢ - 1 - Wm only if th_e b_uffer be- the buffer sizes. No existing scaling technique is able to analyze
tweenjm__l andj,, has dat‘?‘- Since th_e buffer S|_zeb;§__1, the the relationship between buffer sizes and the response time of a
buffer will become empty irb,,_; periods afterle_ arrives. If sporadic job.
I < b1 _andw,,/n < by —wp, thenj, can finish Inn pe- In the assignment graph, thievalues of a vertex represent
r|od§. ‘]Objmil does not have to execute during thesgeriods the numbers of items stored in buffers. Since (29) specifies the
andj,, can still gxecute once each period. When b"?—l' the minimum number for each buffer, a vertex should be removed
bufer benNegmm_l andj,, becomes empty beforﬁ' com- it jts [values are too small. After excluding these vertices,
pletes. Thusjy, 1 must gxecute— bm_—l times so thay,, can a minimum-cost walk can meet all constraints of the mixed
execute once each period. The maximum valuggh) drops workloads and also achieves the minimum energy consump-
tot- ¢ — (wn + “’mfl), afterb'm_,l penods: Copsequently, tion. There is, however, an initial walk after the system starts
whenn < b1 + bm—2, j- can finish inn periods if and the buffers are being filled: during this period the timing
constraint of a sporadic job cannot be met. The minimum time
Wy < by X (b 1 = wm) period to fill all buffers can be calculated by finding a shortest
+(n = bm-1) X (t - ¢1 — Wy —wm-1). (28) path from one starting vertex* to a vertex whose encoding
is (b1, ba, ..., b1, ®, @, ..., ®). Algorithms for finding
As n _becomes larger, more buffers become empty and thgortest paths between vertices can be found in [11].
values Of(pb(’l}) decrease. This condition is illustrated in F|g 22. In summary, this section describes how to Compute the re-
Following this analysis, we can derive the condition to finjsh sponse times of sporadic jobs based on the assignment graphs
within n periods after;, arrives: developed in Section VI. We explain how to take advantage of
the buffered data to reduce the response times without affecting
n < by the on-time constraints of periodic jobs. We also analyze the re-
= w, < n(t- 1 — wy) sponse time of a sporadic job.

bmfl <n S bmfl + bm72
= Wy S bm(f ' (bl - wm) + (’I’L - bm—l)

wherel < k < m. The conditions in (29) indicate that en-
larging the last buffer (largér,, 1) is most effective because it
is multiplied by the largest coefficient, ¢; — w,,. This anal-

VIIl. EXPERIMENTS

X (t'¢1_wm_wm—1)

In this section, we first describe our experimental environ-
ment. Then, we show the power savings of a synthesized work-
load. We describe an MPEG player modified to scale frequen-

m—1 m—1
by <n < b cies for power reduction. We also discuss how buffer sizes and
=F I—he1 job sizes affect power saving.
m—1 m
=w, < by |ty — Z w, A. Experimental Setup
I=k p=I+1 We set up a system to measure power saving by frequency
m—1 m scaling. The system was composed of a palm-size com-
+(n- b tepy — Z w, puter using Intel's StrongARM processor [21] (also called
=k ok Assabét The processor has eleven frequencies, between
S 59 and 206 MHz. It has a 32&@ 240 touchscreen, 16-MB

SDRAM, and a Compact Flash interface. This interface can be
used for networking. This system runs Linux ported for ARM

1298 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

B DAQ 4
LCD Display DC/AC (] a5 R
53
Assabet g 3 /
o /
Processor £ /
s 2
§_ /
Fig. 23. Setup for our experiments. 1.5
1 T T T T -
idle ---e-- - busy 1 1.5 2 2.5 3 3.5
clock frequency (ratio)
21
.. Fig. 25. Performance at different frequencies.
181 '”_‘,_,w
3 e
5 1.5 P
- W
50 100 150 200 250

(1,0,0,0,0,206,2,3,2,1,1)

,,,,,,,,,,

(0,0,1,0,0,703,1,1,0,1,1) (1,0,1,0,0,703,0,1,1,1,1)

Schedules for five and six jobs with 60% processor utilization.

frequency (MHz)

Fig. 24. Power consumption at different frequencies.

yyyyyyyyyy

processor [2]. We used a National Instrument Data Acquisition
Card (DAQ) to measure the dc current from the ac/dc adapter.
This is the total power consumption of the whole system and
directly affects battery lifetime. Fig. 23 illustrates the setupg. 6.
for our experiments. Assabet supports frequency scaling but it
does not support voltage scaling. It takes approximately .)] o
change frequencigsAssabet can also connect to a Companiotp,resen.ted in Section VI to find a minimum-cost walk for each
board, calledNeponsetthat provides interfaces for PCMCIA, Sc€nario. o .

USB, a serial port, and audio input/output. Unfortunately, ® three to six jobs. The last job has to execute once every
Assabet/Neponset need special additional hardware to suprﬁ’&rt'Od-

voltage scaling. To conduct the experiments on the target® two to five frequencies. We start with 206 and 103 MHz.
hardware, we report here frequency scaling only. Then, we add 59, 147, and 89 MHz.

Fig. 24 shows the power consumption at different frequen- ® 40% to 70% processor utilization at the highest frequency.
cies. We kept the processor busy by running an infinite |Oom this paper, utilization always means the utilization at the
When the processor is busy, the system consumes 1.89 W at @hest frequency (206 MHz in our setup).

MHz and 1.17 W at 59 MHz; the difference is 0.72 W or a 38% ® Each job increments a counter until the counter’s value
reduction of power consumption. The scalable range of pow@&aches a threshold. Then, the job stops and resets the counter.
consumption is 0.72 W; this range excludes the power thatfi§e threshold value is determined by the parameters listed
unaffected by frequency scaling. When the processor is idleafove.
consumes 1.22 W at 206 MHz and 0.97 W at 59 MHz; the power Each period is one second, and one buffer is inserted between
reduction is 0.25 W. There is a baseline power that cannot be #0 jobs. Fig. 26 shows the schedules for five and six jobs with
duced by frequency scaling, such as the power for the LCD difree frequencies (206, 103, and 59 MHz) when the processor
play. Fig. 25 compares the performance at different frequencigélization is 60%. Since the processor is 60% busy, it cannot
The performance scales up almost linearly with frequencies.stay at 103 MHz or 59 MHz indefinitely; if it did, it would vi-
olate the timing constraints. The frequency in each period is

B. Synthesized Workload written inboldface Notice that 59 MHz is not used even though
A synthesized workload is used to compare the power coiFl—is available.
y P b Fig. 27 depicts the measured power consumption in three

sumption in the following scenarios. We use the procedurggses: no frequency scaling, scaling down to 59 MHz during

4The implementation in Linux 2.4.1 recalibrates a software timer each timdleness, and scaling using our method. These data were ob-

the clock frequency changes. This recalibration synchronizes the software tifigined with 70% processor utilization. As can be seen at the top
and the hardware interrupt timer to determine their correct ratios in differen

clock frequencies. Linux kernel executeshile block until the ratio converges; O% the figure, the system consumes less power when the pro-
our measurements show that it can take up to 150 ms to converge. Howe@@ssor is idle. The boundaries of periods are clearly visible. If
such recali_bration is not glways necessary. A lookup table of the ratios can\@ scale down the frequency during idleness, period boundaries
calculated in advance; this reduces the scaling delayts. Zhe shorter delay - . w ”

comes from the hardware internal synchronization and cannot be further redu@é8 also dIStIHQU!SthIQ. The “valleys” of th_e power consump-
by software. tion are deeper, indicating lower consumption during idleness.

LU et al: DYNAMIC FREQUENCY SCALING WITH BUFFER INSERTION FOR MIXED WORKLOADS 1299

no frequency scaling o 4 freq, predicted ------- 4 freq, measured ¢© 5 freq, predicted
5 freq, measured a optimal
3 -
25 -
g 2. -
5 =3
£ 1.5 g
g 3
14 a
0.5 ; , ‘
0 1 2 3 4 5 6 40 50 60 70
lina d tirge _(perjglci) processor utilization (%)
scaling down during idleness o 4freq, predicted -..---- 4 freq, measured ¢ 5 freq, predicted
3 5 freq, measured A optimal
2.5 - ‘ 1B o e 2
o : :
1 5 1.4
g g
1 8
0.5 : ; . ; 5 é 12 ‘ ,
0 ! 2 3 4 40 50 60 70
time (period) S
scaling by graph walking processor utilization (%)
Fig. 28. Estimated, measured, and optimal power for three (top) and four jobs
3 (bottom).
2.5 -
g 2 ‘ ML almost the minimum power consumption. The minimum power
2 15 ‘ | is computed as follows. Letsg (1.167 W) andhzos (1.886 W)
o : . .
s » be the power at 59 and 206 MHz, respectively. The power is a
linear interpolation obtained from the following formula:
0.5 1 ; ; . ; :
0 1 2 3 4 5 6 utilization — 2%

P59 + (P206 — Ps9) [_ 50 206 (30)

time (period) 506

Fig. 27. No frequency scaling (top), scale down to 59 MHz during idleness . .
(middle), and using graph-walking technigue with buffer insertion (bottom). O&. Reducing Power for Playing MPEG Video
method saves 40% power in the scalable range.

An MPEG player differs from the previously synthesized
workload in two major ways: the execution time varies from
However, the power remains virtually unchanged when the prfbame to frame and it has many 10 operations. We charac-
cessor is busy. Finally, the bottom of this figure is the poweerize an MPEG player ported to Assabet. At 206 MHz, the
consumption of our method. The period boundaries are n@rogram can display approximately 20 frames/s. We divided
blurred. This is because our method rearranges the executio® program into three stages: reading data, decoding data, and
order of jobs. Some jobs execute at a higher frequency wherdaplaying images. To conquer the variations in execution time,
some other jobs execute at a lower frequency. This figure shows assigned fixed duration to each stage: 1) 10 ms to read one
clearly that our method has lower average power, namely, d@me, 2) 25 ms to decode one frame, and 3) 10 ms to display
proximately 1.6 W. This is nearly a 40% reduction in the scabne frame. The allocated time durations cover all cases and
able rangd (1.89 — 1.6)/(1.89 — 1.17) = 40%). can be considered as the worst case requirements. Together, the

Because Figs. 24 and 25 show almost linear scaling in powexecution takes 45 ms. Our target frame rate was 15 frames/s
and performance, we can predict the power consumption aceo-the processor utilization was 68% (67 ms for one frame,
rately for different scenarios. The average error is 2.5% and th®/67 = 68%). We compared the power consumption in
maximum error is 8%. Fig. 28 depicts the predicted and meseveral scenarios listed below. We obtained the measurements
sured power with four and five frequencies. The horizontal axesing the same setup illustrated in Fig. 23 and all values
are the processor utilization at 206 MHz, and the vertical axexluded the power of a network card.
are the power consumption. The squares and diamonds repre No frequency scaling, frame rate controlled by busy
sent the predicted power consumption. The lines connect thaiting. The system consumes 2.45 W.
measurement results. The triangles are the optimal solution® No frequency scaling, frame rate controlled by calling
(minimum power) if the processor’s frequency can be contimsleep. This function suspends the execution of the calling
uously scaled. Squares, diamonds, and triangles almost ovepapcess; the units are microseconds. Usingeep reduces
in the figure because their values are very close. Fig. 28 shatlise power consumption to 2.30 W. Callingleep reduces the
that four frequencies (206, 147, 103, and 59 MHz) can achiepewer when a job finishes earlier than the time allocated. For

1300 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

example, if reading one frame takes 9 ms, the processor is i —e—75% utilization ---u... 65% —-a--55% —-e--45%

for 1 ms. Theusleep function will cause the operating systemr 44

kernel to schedule the idle process (pidD) which executes a

low-power instruction. =17
e Frequency scaling with two frequencies: 206 and 103 MH %

A buffer with three slots is inserted between stages. The povag’

consumption is 2.16 W. S1sl TTe e -a

e Frequency scaling with three frequencies: 206, 103,a @ Y~~~ ~~"~"~"~~"7777777 ST ¢
59 MHz. The power consumption is 2.16 W. The frequency «) 2
59 MHz is not used because it does not help reduce the po\ P

consumption.
¢ Frequency scaling with four frequencies: 206, 147, 103, ar@. 29. Power consumption with different buffer sizes.
59 MHz. The processor stays at 147 MHz and the power con-

sumption is 2.12 W. This means a 46% reduction in the scalable
range((2.45 — 2.12)/(1.89 — 1.17) = 46%). lﬂ!1e effect of buffer sizes. We consider five frequencies (206, 147,

In the first case, the processor is kept busy while it waits flros’ 89, 59 MHz), four jobs with an equal number of operations,
’ b P y nd 45% to 75% processor utilization at 206 MHz. Fig. 29 com-

the beginning of the next period. The following code illustrates res the power consumption with different buffer sizes. In all

) - A a
this busy waiting, which is implemented to control the framgases, inserting one or two buffers between two jobs has iden-

rate tical effects. For 55%, 65%, and 75% utilization, adding one
-+ - after finish one frame buffer between two jobs reduces the power because the pro-
while (target finish time cessor can switch to low frequencies. When the utilization is
> current time) 45%, adding buffers has no effect because the system consumes
{update current time; } the minimum power if the processor stays at 103 MHz. This
target finish time+ = one period.; figure shows that whereas adding one buffer between two jobs

is very effective, adding two buffers has no additional advan-

In contrast, the second scenario calieep if there is slack tages. This example suggests that buffer insertion does not need

time a substantial amount of memory. The actual size of one buffer
-+ after finish one frame depends on the application programs. For an image of»240
slack time = target finish time 160 pixels with 256 colors per pixel requires 240160 bytes,
—current time; or 38 KB, for one frame. It is a small portion of the memory on
if (slack time > 0) most systems.
{usleep(slack time); }
target finish time+ = one period.; E. Job Size

When a process callssleep, this process voluntarily sus- In this section, we examine how job partition affects power
pends its own execution. If no process needs the process@fsumption. The synthesized workload we discussed in
the processor becomes idle and consumes less power. In 9getion VIII-B assumes all jobs need the same number of
measurement, approximately 0.15 W power is saved by calliggerations. Dividing a program into equal-size stages can
usleep. We call this intraperiod power saving because itbe difficult: for example, the MPEG player described in
saves power inside each period. In contrast, our method u&gstion VIII-C is naturally divided into three stages, and these
buffers across the boundaries of periods to save power, &iages take different amounts of time. Suppose the total number
we therefore call it arinterperiod power-saving technique. of operations of all jobs}C,", w;) is a constant. Dividing the
Combining our method with the intraperiod technique savé@perations in different ways may affect power consumption.
0.33 W, 46% in the scalable range or 140633/2.45 = 14%) Consider the following possible ways to divide the operations.
of the original power. This is very close to the 0.33 W predicted@/e are interested in finding the best one for power saving.
by (30). Notice that after buffers are inserted, the power is 1) w; = 7Tws, wy = w3 = wy.
reduced by 0.29 W, even when there are only two frequencies.2) w, = 4wy, wy = 3wy, w3 = 2wy.

This example shows that adding buffers is more effective than3) 4w, = wy, 3w, = wy, 2w = ws.

adding available frequencies to the processor. 4) wy = wy = w3 = Wy
. 5) w1, = wWyq = 41112, w9y = W3.
D. Buffer Size 6) wy = wy = 4wy, w1 = wy.

Fig. 28 indicates that our predicted power consumption is Fig. 30 depicts the relationships of these cases. The widths
very close to the measured values. In the rest of this sectiomgicate the relative numbers of operations in each case. We
we use the same method to estimate the power consumptiomsider five frequencies of the processor; one buffer is inserted
for different buffer sizes, job sizes, and arrival rates of sporadietween two jobs. Fig. 31 is the ratio of power consumption
jobs. The experimental results in Section VIII-B show that afteelated to the first case. For 60% utilization (white bars), the first
buffers are inserted, a few frequencies are sufficient to savease consumes more power than the other cases. This is because
significant amount of power. We use the same workload to study is so large that the processor cannot exegutavice in one

LU et al: DYNAMIC FREQUENCY SCALING WITH BUFFER INSERTION FOR MIXED WORKLOADS 1301

w_1 W2\ W_3| W_4 (0,0,1,0,103,1,1,0,1) (0,1,0,0,103,1,0,1,1)
w_1 w_2 w_3s w_4
(1,0,1,0,703,0,1,1,1) (1,0,0,0,206,2,2,2,1)
w_1 w_2 w_3 w_4
Fig. 32. Closed walk for five jobs with 60% processor utilization, a redraw of
w_1 w2 w_3 w_4 Fig. 26.
w_1 w2 w.a3a w_4
sporadic job
w_1 w2 w_3 w_4

v,=(0,1,0,0,703,0,0,1,1)

Fig. 30. Different ways to divide operations into four jobs.
(0,0,0,0,206,1,1,1,1)

0 60% utilization @ 80%

(0,0,0,0,206,1,1,1,1)

(0,0,0,0,206,2,2,2,1) > > Sporadic job

_.
.

E finished
&
T 0.95 4
g (0,0,1,0,103,1,1,0,1)= v
g
0.9 Fig. 33. Processing a sporadic job that arrives at the period represented by
1 2 3 4 5 6
cases
1.6

Fig. 31. Power consumption of job sizes in Fig. 30. s 158

8 1.56 4

period to fill the first buffer. Because the first buffer is not filled, &
the processor cannot scale down the frequency. This case re é: 1.54 1
in the most power consumption. In the other cases, the size S 152
wi IS smaller, so data can fill the buffers to reduce power. F
80% processor utilization, however, only case three and c¢ 1.5 T T T T "
four can use the buffers to save power. This example sugge 0 20 40 60 80 100
the following rule: earlier jobs, such gs and s, should need time between sporadic jobs (periods)
fewer operations so that the buffers can be filleg; Iheeds too _ . . .

. . . Fig. 34. Average power consumption for different intervals between two
many operations, then the first buffer cannot be filled and all ﬂgggoradic jobs.
other buffers are unused. If the buffers are unused, they cannot
facilitate power saving.

cessing of a sporadic job causes the average power in the same
time interval to rise to 1.76 W.

The same method can be applied to compute the response

If sporadic jobs arrive frequently, the average power cotime of the sporadic job if it arrives at the period represented by
sumption is higher. This section discusses how the arrival rateqf v3, or v4. We can also find the additional energy required to
sporadic jobs affects the average power. Fig. 32 is aredraw of tirecess this sporadic job. After processing the sporadic job, the
five-job case in the top of Fig. 26. Consider a sporadic job th&kequency assignment will eventually return to the closed walk
takes one period at the peak frequency (206 MHz) to compleie Fig. 32, but it does not always start from.
Suppose this sporadic job arrives at the period represented by Suppose that the time interval between two sporadic jobs is
We can follow the procedure explained in Example 14 to corteng enough so that the processor can return to the original
pute the response time of the sporadic job. The result is shoalosed walk in Fig. 32. Fig. 34 shows the power consumption
in Fig. 33. After running at 206 MHz for three periods, the spder different arrival rates of the sporadic job. The horizontal axis
radic job completes and the processor returns to the closed wialithe average number of periods between two sporadic jobs;
shown in Fig. 32, starting frony, . Even though the closed walkthe vertical axis is the average power consumption. This figure
was “interrupted” by the sporadic job at, the frequency as- shows that the average power decreases rapidly as the time be-
signment does not necessarily continue frgnafter the job has tween two sporadic jobs increases. Since sporadic jobs are “spo-
been processed. If there is no sporadic job, the average povagtic’ and the time interval between them should generally be
in the next four periods from, is 1.51 W. In contrast, the pro- large, their effect on power is insignificant.

F. Arrival Rate of Sporadic Jobs

1302 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

1

Fig. 36. A walk with a closed walk.

TJO. O
Fig. 35. Maximum number of operations of a sporadic job. > . »@ @ """"
No

MW, normalized based on BM=0 and n

2

G. Timing Constraints and Maximum Operations of Sporadic

Jobs Fig. 37. A walk with multiple closed walks.

Section VII-C derives the relationship between buffer sizes
and the response time of a sporadic job. We use a synthesized
workload described in Section VIII-B to pictorially illustrate This paper addresses power reduction by frequency scaling
the conditions. There are four jobs and each takes 20% timg mixed workloads. We explain existing methods based on
in a period when the processor runs at the highest frequengathematical programming and point out the need for efficient
Without any buffers, 20% of the processor time is unused #p|utions. Our method inserts buffers between jobs and builds
each period. }GBM be the total memory allocated for buffersian assignment graph: each vertex encodes the current states of
BM =372 bi.Let MW (n) be the maximum number of op-the buffers and the frequency of the processor. We develop a
erations a sporadic job can complete withiperiods. IfBM graph-based method that has complexi)V|?) where|V| is
is zero, there is no buffer, st/ W (1) is 20% of a period. We the number of vertices of the state-space graph. We use a fre-
use 20% of a period as the normalization base. Fig. 35 show(gency-scalable system to demonstrate the effectiveness of our
MW for differentns andBMs. In this figure, we can observemethod. By inserting buffers, we can achieve nearly optimal
that MW is largest whem3M andn have compatible values. power saving using only four frequencies. Furthermore, this
This can be understood by examining the conditions of (29) jRethod is able to dramatically reduce the response time of spo-
Section VII-C. Whem is small andBM is sufficiently large, radic jobs. This method saves approximately 46% of the power
adding more buffers will not increasd W'; this corresponds to required to run an MPEG player, after the nonscaleable base
the first condition in (29) and the lower left side of the surface iﬂower is excluded. We also ana|yze the effects of buffer sizes
Fig. 35. In contrast, wheR M is too small MW increases lin- and how to divide programs into multiple jobs.
early withn because buffers become empty before the sporadic
job completes. This situation corresponds to the last condition APPENDIX
in (29) and the lower right side of the surface.

IX. CONCLUSION

Section VI explained how to find a minimum-cost walk for a
workload that has an infinite time horizon. Because an MPEG
H. Summary movie usually has thousands of frames, it is valid to approxi-

mate the movie as infinite frames. When a workload is infinite,

We set up an experimental environment using a StrongARMee can ignore the initial cost in the walk that determines the fre-
based system. Our measurements indicate that power and pgeency assignment. This initial cost is the cost of the walk from
formance scale almost linearly with the processor frequency. \Westarting vertex to a minimum-cost closed walk. In reality, no
used the graph-based algorithm presented in Section VI to fimrkload can have an infinite time horizon. For a finite-length
frequency assignments for different scenarios. Our experimewtsrkload the initial cost cannot be ignored. Also, there may be
show that inserting buffers effectively reduces power consumg-tail” that does not form a complete closed walk. Recall that
tion even for a processor with only a few frequencies. Insertig = (V, £) is an assignment graph for frequency scaling. When
buffers can achieve nearly the minimum power with four frehe number of vertices in a walk exceeds the number of vertices
guencies. We also demonstrate that adding one buffer betwéerr, the walk must contain at least one closed walk, according
two jobs is sufficient in many cases. We also provide a guideline the pigeonhole principle. Fig. 36 illustrates such a long walk.
for dividing operations into multiple jobs. Finally, we show that Even though alongwalky must contain one closed walk, the
sporadic jobs have negligible effects on power increases. pigeonhole does not explain whethéi may contain multiple

LU et al: DYNAMIC FREQUENCY SCALING WITH BUFFER INSERTION FOR MIXED WORKLOADS 1303

LongFiniteWalk(input graph: G = (V, £), integer: n)
/* mincost: minimum cost of a walk visiting n vertices */
begin
mcost .= 00;
/* if n is small, find a minimum-cost walk directly */
if(n<|V|+1)
MinimumCostWalk(G, n);
for each v* /* starting vertex */
if mincost > wcost(v*,n)
mincost := wcost(v*,n);
return mincost;

/* n is large */

MinimumCostWalk(G, |V| + 1);

MinimumCostWalk2V(G);

FindClosedWalk(G);

for each v*

for eachv € V
if (Cwalk(v) not empty)
Ir =]_%
ns := (n — nW(v*,v)) mod (nwalk(v) —1);
newcost := mcost(v*,v) + Ir X (cwcost(v) — ¢(v)) + weost(v,ng — 1);
if (mincost > newcost)
mincost := newcost;
return mincost;
end

Fig. 38. Find minimum-cost walks.

nonoverlapping closed walks. In fact, it is possible that a min- Notice that this theorem does not claim that all minimum-cost
imum-cost long walk contains multiple closed walks. Howevewalks have such a format; instead, it guarantees that among all
we can always find another walk whose cost is also minimusame-length walks of the minimum cost, there is one walk with
but has a special format. This special format divid®sinto this format. Itis possible that a walk may have a different format
three parts as shown in Fig. 36. The first part starts at one startargl have the same cost.

vertexv* and ends at the beginning of the first closed walk; the Corollary 3: If a minimum-cost walk has multiple closed
second part repeats this closed walk; the third part leaves thvalks, there is a walk of the same cost such that the length of
closed walk and finishel/. We can prove that the length of thethe subwalk after it leaves the first closed walk is shorter than
third partis always less than the length of the closed walk. the length of the first closed walk.

Theorem 2:If a finite walk contains a closed walk con- For example, a minimum-cost walk has two closed walks
structed by FindClosedWalk, there is a walk of equal or smallas shown in Fig. 37. Let; andns be the lengths of the first
cost such that the subwalk after leaving the closed walk amd second closed walks. If this minimum-cost walk repeats the
shorter than the length of the closed walk. Suppose the walksecond walk, times, therly x (ny — 1) + ng — 1 < n;. Here,

Fig. 36 is a minimum-cost walk of a finite length and it containg/e need to subtract one from because the length of a closed

a closed walk ofv with lengthn;. There is a minimum-cost walk counts the starting and ending vertices) (twice. When
walk such that the subwalk after leaving the closed walk this closed walk repeats multiple times, the same vertex should
shorter, oms < n;. be counted only once.

Proof: We prove the theorem by contradiction.nf > The above theorem states that the “tail” after a subwalk leaves
n1, there is a walk from of lengthns with a lower average cost the closed walk is shorter than the length of the closed walk.
than the closed walk, ¢V, (v))/n2 < (cwcost(v))/ny. Oth- We can find a minimum-cost walk by dividing it into three sub-
erwise, this minimum-cost walk should repeat the closed walkalks: before entering a closed walk, the closed walk, and after
more times untih is less tham. However, this is impossible leaving the closed walk, as illustrated in Fig. 36. The lengths of
because FindClosedWalk finds only closed walks that have the first and the third subwalks{ andn,) must be less than
minimum average cost among all walks fremSince the orig- || by the pigeonhole principle.
inal walk contains a closed walk of the walk must have alower In order to find a minimum-cost, finite-length walk, our al-
average cost thaw,,, (v) (or equal average cost).4f;, > ny, gorithm first checks whethet is small. For a smalh, a min-
the original walk is not a minimum cost walk and this violatesnum-cost walk does not necessarily contain a closed walk.
the premise. Hencey,, cannot be larger tham, . & Suchawalk can be found directly by MinimumCostWalk. For a

1304

largern, the algorithm finds a closed walk that has a minimum
cost. Since the first and the third subwalks are shorter flian

they can be found by MinimumCostWalk. Fig. 38 shows the[18]
algorithm; it compares which closed walks produce the min-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2002

[17] D. Grunwald, P. Levis, K. I. Farkas, C. B. M. lll, and M. Neufeld, “Poli-
cies for dynamic clock scheduling,” Bymp. Operating System Design
ImplementationOct. 2000, pp. 73-86.

V. Gutnik and A. P. Chandrakasan, “Embedded power supply for low-
power DSP,"IEEE Trans. VLSI Systvol. 5, pp. 425-435, Dec. 1997.

imum cost. For each vertex that has a closed walk, the algorithfd9] ! Hong, M. Potkonjak, and M. B. Srivastava, "On-line scheduling of

finds a minimum-cost walk from a starting vertex. The length
of this walk isnW(v*, v); this isng in Fig. 36. Then, it com-
putesir; this is the number of times the closed walk repeats
Ir = [(n—mng)/(n1—1)]. Finally, it computes the length of the
walk after leaving the closed walky = (n—ng) mod (n3—1).
The cost of this walk is

mcost(v*, v) + Ir x (cweost(v) — ¢(v)) + weost(v, ng — 1).
(31)

The complexity of this algorithm i$)(|V|?). Whenn is
small, LongFiniteWalk take®(|V|?n), the same as Minimum-
CostWalk. Whemn is larger than|V|, LongFiniteWalk calls
MinimumCostWalk, MinimumCostWalk2V, and FindClosed-
Walk. Their complexity isO(|V|?). Then, LongFiniteWalk

considers every closed walk reachable from a starting vertex.

This takesO(|V|?) iterations. Consequently, LongFiniteWalk
takesO(|V|?). This is independent ofi. The minimum-cost
walk can be constructed by applyingpeated squaringf the
closed walk [11]; this take®(log Ir) iterations.

REFERENCES

[1] A.Acquaviva, L. Benini, and B. Ricco, “An adaptive algorithm for low-
power streaming multimedia processing,” resign Automation Test
Europe Mar. 2001, pp. 273-279.

[2] ARM Linux.. [Online]. Available: http://www.arm.linux.org.uk.

[3] R. Balakrishnan and K. Ranganatha® Textbook of Graph
Theory New York: Springer, 2000.

[4] L. Benini, A. Bogliolo, and G. D. Micheli, “A survey of design

techniques for system-level dynamic power managem#eEE Trans.

VLSI Syst.vol. 8, pp. 299-316, June 2000.

J. R. Birge and F. Louveauxntroduction to Stochastic Program-

ming New York: Springer, 1997.

J. J. Brown, D. Z. Chen, G. W. Greenwood, X. Hu, and R. W. Taylor,

“Scheduling for power reduction in a real-time system,ih Symp.

Low Power Electronics and DesigiMonterey, CA, Aug. 1997, pp.

84-87.

T. D. Burd and R. W. Brodersen, “Design issues for dynamic voltage

scaling,” inInt. Symp. Low Power Electronics and Desidaly 2000,

pp. 9-14.

G. C. ButtazzoHard Real-Time Computing Systems: Predictable Sched-

uling Algorithms and Applications New York: Kluwer, 1997.

L. H. Chandrasena and M. J. Liebelt, “A rate selection algorithm for

quantized undithered dynamic supply voltage scaling,tnin Symp.

Low Power Electronics and Desigduly 2000, pp. 213-215.

(5]
(el

(7]

(8]
El

[10]
on weighted graphs and applications to on-line algorithrisAssoc.
Computing Machineryvol. 40, no. 3, pp. 421-453, July 1993.

T. H. Cormen, C. E. Leiserson, and R. L. Rivdstroduction to Algo-
rithms New York: McGraw-Hill, 1990.

R. Diestel,Graph Theory New York: Springer, 1997.

A. Forestier and M. R. Stan, “Limits to voltage scaling from the low
power perspectiv,” irSymp. Integrated Circuits Systems Desig§apt.
2000, pp. 365-370.

K. Govil, E. Chan, and H. Wasserman, “Comparing algorithms for dy
namic speed-setting of a low-power CPU,”ACM Int. Conf. Mobile
Computing NetworkingNov. 1995, pp. 13-25.

R. L. Graham, D. E. Knuth, and O. PatashniRpncrete Mathe-
matics New York: Addison-Wesley, 1989.

R. P. Grimaldi,Discrete and Combinatorial Mathematicg ed. New
York: Addison-Wesley, 1989.

(11]
[12]
(13]

(14]

(18]

[16]

hard real-time tasks on variable voltage processor|lhinConf. Com-
puter-Aided DesignNov. 1998, pp. 653-656.

[20] C.Im, H. Kim, and S. Ha, “Dynamic voltage scheduling techniques for

low power multimedia applications using buffers,” limt. Symp. Low

Power Electronics and Desigiug. 2001, pp. 34-39.

Intel. StrongARM development kit. [Online]. Available: devel-

oper.intel.com/design/strong.

[22] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynami-
cally variable voltage processors,”limt. Symp. Low Power Electronics
Design Aug. 1998, pp. 197-202.

[23] P.Kalland S. W. Wallacestochastic Programming New York: Wiley,
1997.

[24] A. 1. Kibzun and Y. S. KanStochastic Programming ProblemsNew
York: Wiley, 1996.

[25] C. Krishna and Y.-H. Lee, “Voltage-clock-scaling adaptive scheduling
techniques for low power in hard real-time systemsR&gl-Time Tech-
nology Applications SympMay 2000, pp. 156-165.

[26] Y.-R.Lin, C.-T. Hwang, and A. C. Wu, “Scheduling techniques for vari-
able voltage low power designsXCM Trans. Design Automation Elec-
tron. Syst.vol. 2, no. 2, pp. 81-97, Apr. 1997.

[27] J.Luoand N. K. Jha, “Power-conscious joint scheduling of periodic task

graphs and aperiodic tasks in distributed real-time embedded systems,”

in Int. Conf. Computer-Aided DesigNov. 2000, pp. 357-364.

[28] A. Manzak and C. Chakrabarti, “Variable voltage task scheduling for
minimizing energy or minimizing power,” irint. Conf. Acoustics,
Speech, Signal Processintune 2000, pp. 3239-3242.

[29] T. L. Martin and D. P. Siewiorek, “The impact of battery capacity and
memory bandwidth on CPU speed-setting: A case studyyitinSymp.
Low Power Electronics Desigiug. 1999, pp. 200-205.

[30] T.Okuma, T. Ishihara, and H. Yasuura, “Real-time task scheduling for a
variable voltage processor,” int. Symp. System Synthediov. 1999,
pp. 24-29.

[31] T. Pering, T. Burd, and R. Brodersen, “The simulation and evaluation
of dynamic voltage scaling algorithms,” int. Symp. Low Power Elec-
tronics and DesignAug. 1998, pp. 76-81.

[32] J. Pouwelse, K. Langendoen, and H. Sips, “Energy priority scheduling
for variable voltage processors,” Int. Symp. Low Power Electronics
and DesignAug. 2001, pp. 28-33.

[33] J. M. Rabaey and M. Pedram, Edsgw Power Design Methodolo-
gies New York: Kluwer, 1996.

[34] S.Rosslntroduction to Stochastic Dynamic ProgrammingNew York:
Academic, 1983.

[35] Y. Shin, K. Choi, and T. Sakurai, “Power optimization of real-time em-
bedded systems on variable speed processors;t.iConf. Computer-
Aided DesignNov. 2000, pp. 365-368.

[36] T. Simunic L. Benini, A. Acquaviva, P. Glynn, and G. D. Michel,
“Dynamic voltage scaling for portable systems, iesign Automation
Conf, June 2001, pp. 524-529.

[37] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for re-
duced CPU energy,” iymp. Operating Systems Design Implementa-
tion, Monterey, CA, Nov. 1994, pp. 13-23.

38] N. H. Weste and K. EshraghiarRrinciples of CMOS VLSI De-
sign New York: Addison Wesley, 1993.

[39] L. A. Wolsey,Integer Programming New York: Wiley, 1998.

[40] XScale.. [Online]. Available: http://www.intel.com/design/intelxscale/.

[21]

D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir, “Random walkd41] A.Zemanian, “Wandering through infinity,” iFEEE Int. Symp. Circuits

SystemsMay 1992, pp. 1749-1750.

Yung-Hsiang Lu received the Ph.D. degree in
electrical engineering from Stanford University,
Stanford, CA, in 2002.

He is an Assistant Professor in the School of
Electrical and Computer Engineering at Purdue
University, W. Lafayette, IN. His research interests
include computer system design, embedded system
design, and energy-efficient high-performance
computing.

LU et al: DYNAMIC FREQUENCY SCALING WITH BUFFER INSERTION FOR MIXE

Luca Benini received the Ph.D. degree in electrical
engineering from Stanford University, Stanford, CA,
in 1997.

He is an Associate Professor in the Depart:
ment of Electronics and Computer Science a
the University of Bologna, Italy. He also holds
visiting researcher positions at Stanford University
and the Hewlett-Packard Laboratories, Palo Alto
CA. His research interests include all aspects o
computer-aided design of digital circuits, with

special emphasis on low-power applications, and in

D WORKLOADS 1305

Giovanni De Micheli (S'79-M'79-SM'80-F'94)
received the nuclear engineer degree from Politec-
nico di Milano, in 1979, and the M.S. and Ph.D.
degrees in electrical engineering and computer
science from the University of California, Berkeley,
in 1980 and 1983, respectively.

He is a Professor of Electrical Engineering, and
by courtesy, of Computer Science at Stanford Uni-
versity, Stanford, CA. Previously, he held positions
at the IBM T.J. Watson Research Center, Yorktown
Heights, NY, at the Department of Electronics of the

the design of portable systems. On these topics he has published more fPalitecnico di Milano, Italy, and at Harris Semiconductor, Melbourne, FL. His
120 papers in international journals and conferences, a book, and several bheskarch interests include several aspects of design technologies for integrated

chapters.

circuits and systems, with particular emphasis on synthesis, system-level design,

Dr. Benini is a member of the organizing committee of the Internationdlardware/software co-design and low-power design. He is the auttyrof
Symposium on Low Power Design. He is a member of the technical prograhesis and Optimization of Digital Circuit§New York: McGraw-Hill, 1994)
committee for several technical conferences, including the Design and Tesaimd co-author and/or co-editor of five other books and of over 250 technical
Europe Conference, International Symposium on Low Power Design, and iréicles. He is a member of the technical advisory board of several EDA compa-

Symposium on Hardware—Software Codesign.

nies, including Magma Design Automation, Coware, and Aplus Design Tech-
nologies. He was a member of the technical advisory board of Ambit Design
Systems.

Dr. De Micheli is a Fellow of ACM. He received the Golden Jubilee Medal
for outstanding contributions to the IEEE CAS Society in 2000. He received
the 1987 IEEE RANSACTIONS ONCOMPUTER-AIDED DESIGNICAS Best Paper
Award and two Best Paper Awards at the Design Automation Conference, in
1983 and 1993. He is President Elect of the IEEE CAS Society in 2002 and
he was its Vice President (for publications) in 1999 through 2000. He was Ed-
itor-in-Chief of the IEEE RANSACTIONS ONCOMPUTER-AIDED DESIGNICAS
from 1987 to 2001. He was the Program Chair and General Chair of the Design
Automation Conference (DAC) from 1996 to 1997 and 2000, respectively. He
was the Program and General Chair of the International Conference on Com-
puter Design (ICCD) in 1988 and 1989, respectively. He was also codirector of
the NATO Advanced Study Institutes on Hardware/Software Co-design, held in
Tremezzo, Italy, 1995, and on Logic Synthesis and Silicon Compilation, held
in L'Aquila, Italy, 1986. He was a founding member of the ALaRlI institute at
Universita’ della Svizzera Italiana (USI), in Lugano, Switzerland, where he is
currently scientific counselor.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

