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Synthesis of Hardware Models in C With Pointers
and Complex Data Structures
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Abstract—One of the greatest challenges in a C/&+-based memory (through pointers) and to manage memory and 1/O
design methodology is efficiently mapping C/G-+ models into  ysing the standard C libraryn@lloc, free, etc.). These

hardware. Many networking and multimedia applications imple-  ¢qngtrycts are widely used in software. Nevertheless, many of
mented in hardware or mixed hardware/software systems now

use complex data structures stored in multiple memories, so many the net\Norklng_ and mulimedia applications implemented |_n
CIC++ features that were originally designed for software appli-  hardware or mixed hardware/software systems are also using
cations are now making their way into hardware. Such features complex data structures stored in one or multiple memory
include dynamic memory allocation and pointers for managing panks. As a result, many of the GG features that were

data. We present a solution for efficiently mapping arbitrary . ; it ;
C code with pointers and malloc/free into hardware. Our orlglnally QeS|gned for software applications are now making
their way into hardware.

solution, which fits current memory management methodologies, X . . .
instantiates an application-specific hardware memory allocator In order to help designers refine their code from a simula-
coupled with a memory architecture. Our work also supports the tion model to a synthesizable behavioral description, we are
resolution of pointers without restriction on the data structures.  trying to efficiently synthesize the full ANSI C standard [9],
We present an implementation based on the SUIF framework 115] This task turns out to be particularly difficult because of

along with case studies such as the realization of a video filter and - . . .
an ATM segmentation engine dynamic memory allocation, function calls, recursigofos ,

. type casting, and pointers.
Index Terms—Computer architecture, computer language, de- In th ¢ t diff t thesis tools h b
sign automation, memory management, program compilers. n the recent past, di e_ren syn eSI$ 00Is have been an-
nounced to ease the mapping of C code into hardware [6], [23].
All of these tools support a subset of the language (e.g., restric-
. INTRODUCTION tions on pointers, function calls, etc.). In particular, they do not

IFFERENT languages have been used as input to higHPPOrt dyn.amic memory allocation using the ANSI standard
level synthesis. Hardware description languages (HDL$rary functionsmalloc  andfree . . .
such as Verilog HDL and VHDL, are the most commonly used. The overall objective of our research is to explore synthesis
However, designers often write system-level models using pf6em full ANSI C. In our tool SpC [17], [19], pointer variables
gramming languages, such as C o€, to estimate the system &€ resolved at gomplle time to synthesize C functional models
performance and verify the functional correctness of the desid¢fhardware efficiently. In this paper, we focus on the mapping of
Using C/Gt+ offers higher level of abstraction, fast simulationcomplex data structures into hardware. Specifically, we present
and the possibility of leveraging a vast amount of legacy cofl@W arrays of pointers as well as pointers inside of complex
and libraries, which facilitates the task of system modeling. data structures can be efficiently mapped to hardware. In ad-
The use of C/G-+ or a subset of C/G+ to describe both dition, a solution for the synthesis of dynamic memory alloca-
hardware and software accelerates the design process #pfy(malloc/free ) is also presented. By definition, storage
facilitates software/hardware migration. Designers can descrigé dynamically allocated data structures cannot be assigned
their system using C/€+. The system can then be partitioned@t compile time. The synthesis of C code involving dynamic
into software and hardware blocks, implemented using symemory allocation requires access to some allocation and deal-
thesis tools. The recent SystemC initiativis an attempt to Ioca_tion primitives i_mplemented either in software, as in an op-
standardize a C/+-based language for both hardware an@fating system, or in hardware. o
software design. Dynamic memory allocation is tightly coupled with pointers
The C language was originally designed to developutiie and the notion of a single continuous address space. Pointer
operating system. It provides constructs to directly accedgreferenceddad, storesetc.) as well as memory allocation are
all referring to a main memory. However, in application-specific
, _ _ _ hardware, designers may want to optimize the memory architec-
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resolution are key features for C-based synthesis. They are fi®] from Cadence based on C and EstereiNBLE-C3 and
ablers for the efficient design of applications involving compleBACH-C [7] originally based on OcAM, SPECC* based on
data structures. SPEQCHART, and C&'NLIB.5 In order to map functionality to
The contribution of this paper is to present a solutiohardware, a synthesizable-G{G- subset is usually defined.
for efficiently mapping arbitrary C code with pointers andVe can distinguish two approaches. The first approach consists
malloc/free into hardware. Our solution fits currentof translating a subset of C into HDL (Verilog or VHDL),
memory management methodologies. It consists of instamhich will eventually be synthesized using today’s synthesis
tiating a hardware allocator tailored to an application andtaols. Examples of such an approach include the eaxiyH3C
memory architecture. Our work also supports the resoluti@ompiler [7] from Sharp, OCAPI [16] from IMEC as well
and optimization of pointers without restriction on the datas other commercial tools. The second approach consists of
structures. using C/G++ directly, as an input to behavioral synthesis. In
In Section II, we give an overview of the memory-manageparticular, this approach has been chosen by Synopsys with
ment methodology for embedded applications and present hO@CENTRIC SYSTEMC COMPILER (formerly known as SENIC
it can be applied to the synthesis of hardware from C. The rd6}) and by NEC with GBER [23].
olution of mallocs and pointers is based on an accurate anal-In practice, current tools do not support dynamic memory
ysis of the operations performed on the different memory locallocation and have restriction on pointers’ usage [13]. SpC [17],
tions. In Section Ill, we present our memory representation H9] enables the behavioral synthesis of C code with pointer
well as some pointer-analysis techniques. Then, in Section riables to variables and arrays. In Section IV, we present how
we show how pointers and dynamic memory allocation can gfeinters in general (e.g., array of pointers, pointers in structures,
fectively and efficiently be synthesized. In Section V, some oppointers to structures etc.) and dynamic memory allocation can
timizations are presented. We introduce our library of custoaiso be efficiently synthesized.
hardware memory allocators. Finally, in Section VI, we present A methodology for the design of custom memory systems has
an implementation and some results for different examples lzsen described by Catthoet al. [1]. It is defined for two sets
well as the realization of a video filter and an asynchronowd applications, networking and signal processing, and supports

transfer mode (ATM) segmentation engine. a limited subset of C/&+. The basic concepts presented in
Catthoor's work can be generalized to support a larger subset of
II. METHODOLOGY AND RELATED WORKS the C syntax for an extended set of applications. Two main steps

can be distinguished in the methodology: we describe briefly

For decades, memory management has been one of the MAEE the transformations performed first at the system level, and
development areas for both software and computer architect P
y

X ClFn at the architectural level.
In software, at the user level, memory management is typica

; d by th i q In hard At the system level, the functionality of the algorithm is ver-
performed by the operating system. In hardwareé, Memogy npata formats are refined. For example, after quantiza-

bangw'dth. 'S (Tften a bpttleneckhl_n appl(ljcatlons ?UCh“/?S n(?it()n, the format of data can be refined from floating-point to
Worh_ltng,t5|gna plr oc?_ssmg, grar;r' ICS, f‘n encryption. emoﬁ%ed—point [8]. Data structures can also be refined for example
architecture exploration and €flicient memory manageémejtl o j,ce the number of indirect memory references. Examples

technology are key to the design of new high—_performangﬁ such transformations for networking applications have been
systems. Memory generators commercially available tbda)ét?died by Wuytaclet al. [28]

enable fast integration of memories in a system. Scheduling o
memory accesses has also been integrated into most com
cial high-level synthesis (HLS) tools. Most of the refineme
and compilation steps developed for software applications ¢
also be used for hardware. Nevertheless, a software meth
ology usually assumes a fixed memory architecture, whi
may be general purpose or application specific, like in a digit
signal processor or application-specific IP. In hardware, at t

At the architectural level, after partitioning, the system
ically consists of multiple communicating processes to be
apped to hardware or softwargs], [21]. Memory segments
defined for internal storage and/or shared memory. These
2mory segments can then be mapped to one or multiple
emories during synthesis. Some of the storage area (e.g.,
ternal variables, etc.) can be statically allocated during

?nthesis or compilation. However, to support dynamic storage

behavioral Iﬁ\;el,tdeggnerz W?UItd té/plcfe;lly explodre d'ﬁer?rgllocation (e.g., for recursive data structures), allocation and
Mmemory architectures In order to trade off area and pOWer 10f,) o cation primitives implemented in software or hardware
given timing constraint. shall be defined

In the recent past, a few projects have been looking at mean :

¥n software, memory allocation and deallocation are imple-
to use C/G-+ as an input to current design flow [13]. The gen ' y p

mented as primitives that are part of the operating system (OS).

gral |(tjeat|s to bo;hdegt(fn(:han:j restrict thf G;!E:(Ijarlwguages. These primitives can be called in a C program using the func-
ons" rﬁc S are addeo (i. € andgudagtest 0 mo Fe coarscta_-gt[%HS defined in the standard library (e.gralloc, free,

barallelism, communication, and data types. For reactiv c¥tc.). Many schemes have been developed for OS to manage
SysTEMC [11] from Synopsys, CoWare, and Frontier Design
supports a mixed synchronous and asynchronous approachee http://oldwww.comlab.ox.ac.uk/oucl/groups/hwcweb/handel/
implemented as a-€+ library. Other extensions include ECL “See http://www.specc.gr.jp/

5See http://www.cynapps.com/

6See http://www.imec.be/ocapi/

2Sjlicon Access, DRAMatic: http://www.siliconaccess.com/ 7See http://www.coware.com/
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malloc_size________J} malloc mantics of pointers is the address of an element in memory.
malloe_sddress . | Even thougtregister  declaration may allow programmers
to specify the variables to place in registers, the assignment of
variables to registers is generally done by the compiler. The no-
tions of caches and memory pages are transparent to program-
Fig. 1. Interface of the allocator block implementingalloc and free mers.
functions. In hardware, at the behavioral level, designers want to have
control on where data are stored and want to optimize the lo-
memory. An extensive survey by Wilst al. [24] presents cality of the storagg. Typ!cally, aphip design gontains mu]tiple
many of the techniques used for memory allocation and deBI€Mory banks, register files, registers, and wires. To efficiently
location in software. map C code onto hardware, the storage space must be parti-
Memory management can also be implemented in hardwali@ned. During synthesis, each partition is then mapped to areg-
For memory allocation and deallocation, instead of the systdpe"> & wire, or a memory. Some of these partitions may also
calls to the OS, requests are sent through signals adlacator "€Present pointers. Pointers may be used to reference any vari-
block (also known as girtual memory managef29]) imple- able no m.atter where its information is available. Pointers are
mented in hardware. Its interface is shown on Fig. 1. Internalf§1€n considered as references: references to memory elements,
the allocator stores a list of the free blocks in memory as well FJISters, wires, or ports. In particular, pointers can be used to
a list of the allocated blocks. To allocate memory, the size of tiRdocate, read, write, and deallocate data. In this paper, we call
block to be allocatedngalloc_sizg is sent. The allocator then the action of reading data using a pointéoad. Subsequently, a
searches in its free list for a big enough block and returns tREPTelS the action of writing data using a pointer. Allocation and
address of the beginning of this blocklloc_address Two qeallocatlon are performed thrqugh the staljdard library func-
techniques are often usdist fit where the first acceptable freetions malloc  andfree . Their implementation is, however,
block is returned obest fitwhere the block of minimal size is tailored for a given application and memory architecture.
returned. To free previously allocated memory, the address ofl N€ Synthesis of hardware from C consists first of partitioning
the block to be deallocatedrée_addreskis sent to the allo- the memory. Each partition is then mapped to a scalar vari-
cator. The allocator then searches inside of the allocated list #f€ (@kin to wire or register in the final implementation) or an
block and adds it back to the free list. Adjacent free blocks c&HaY (akin to memory or register file). The synthesis of pointers
then be merged. An optimized architecture to speed up mem&RSISts of generating the appropriate circuit for allocating, ac-
allocation in hardware is presented by Chatgl.[2]. The im- C€SSING, an.d deallocating Qata. For this purpose, we change the
plementation itself of the allocator may also vary according &fdresses into numbers (i.e., encode pointers’ values) and re-
the application and the data structures. A number of these Bfceloadsandstoresby some assignments directly accessing
plication-specific implementations are presented by Wuymckt_he data the pointer may reference (i.e., resolve pointers). Func-
al. [29]. tlonsm_alloc andfr_ee _are subsequen_tly changed_, as memory
Once an architecture is decided, hardware can be impfiilocation can be distributed onto multiple memories.
mented using synthesis tools and compilers can be used foFX@mple 1: Letus consider an application where a hardware
software. As far as memory management is concerned, schl@ck receives objects of different sizes and processes them. In
uling of memory accesses, register/memory allocation, aHif final implementation, after partitioning the memory, some
address generation can be integrated into synthesis tools hH€ intermediate data are stored in registers or memories. In
compilers. In current commercial synthesis tools, each arr&}fS €xample, some of the objects received are copied into a reg-
is manually mapped to register files or memories of differeftler (€9 ). Some others are only used within this block and are
types. For scheduling, the characteristics of the memorigi@red in private memonydcal_RAM ). Finally, some larger
(number of ports, read/write latency, etc.) are defined as pghjects may also be accessed by other blocks and are stored in
of the components library. Researches have been looking2atnared memonshared_RAM).
techniques to automatically perform memory assignment,
address generation, and optimized scheduling according to e reg;
type of the memory. The latest development of these techniquéls *p;
have been presented by Catthebal.[1] and Panda&t al.[14]. struct {char type; int data; int data2;}
Our contribution fits in the methodology described above. In object;
particular, we present techniques to automate the synthesis of C

free_nddress f e

code with pointers and dynamic memory allocation into hardf(object.type == REQG)
ware. The outcome of our research is a tool that maps and opP = &reg;
timizes hardware models in C into Verilog HDL synthesizablé(object.type == INTERNAL)
by commercially available synthesis tools. /I allocate memory in local_RAM
p = malloc(4);
else
lll. B ACKGROUND

/I allocate memory in shared_RAM
In software, a C program is targeted to a virtual architecturep = malloc(8);
consisting of one memory in which all data are stored. The se-
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/I store in reg, local_ RAM or shared RAM TABLE |
*p = object.data; LOCATION SET EXAMPLES (f = OFFSET OFFIELD F), (s = STRIDE OR
’ ! ARRAY ELEMENT SIZE)

if(object.type ! = REG) Trpe Exprisiion Location Sel

/I free storage in local RAM or it = (@, 0,0

/I'in shared_RAM - _ -

free(p); aEruck [imt: F;} = B F L, L

int &]): &li] [ ]

struct {imt F3}

c[i].F tr, f.5}
L1 [i] | ]

In order to implement the storég = object.data ), the
tool has to schedule a write operation into the registgr, the SEruek ik :
memorylocal_RAM , or the memoryshared_RAM. It also F[1011} i T.FLi] {x, fmods, 5)
needs to instantiate the correct circuit (steering logic) to access
these locations. For this purpose, we need to know at compile

time the set of locations the pointprmay point to (points-to

dha [40lb [dija (o [d2la [qao]qa |

set).
To implement free(p) , assuming that the memories c-ﬁ?f* -:_I:}I_—F % -?r?“rf »Z.E_
local_ RAM and shared_RAM are each managed by a ’
specific allocator, the tool also needs to schedule a deallocatigf) 2. Representation aftruct{int a; int b} r[: the offset

operation on one allocator or the other. The points-to informagd stride correspond to the locatiafiib ~ wherei is integer.
tion for the pointep is also necessary.

As we can see in Example 1, in order to efficiently map Gy of the data structures available in C including arrays, struc-
code into hardware, we first need to partition the memory. Wyres, arrays of structures, and structures containing arrays. This

our implementation, memory is represented as a set of locati@iyresentation is also relatively simple, as it combines the dif-

sets, described in Section [1I-A. ferent elements of an array or of recursive data structures. It can
Subsequently, to synthesikeads, storesandfree opera- iperefore be used for large C programs.

tions into hardware, we need to know at compile time the set| ot 13 pe the set of memory blocks corresponding to the dif-
of locations the pointers may refereng®ipts-toinformation). ferent variable declarations. A location get (loc, f, s) €

Such information is also widely used in compilers. In order i@, N x 7 represents the set of locations with offsgfst-i.s|i €
parallelize programs onto distributed architectures, the indep%}— in a particular block of memorjoc. That is,  is an offset
dent sets of data, which can be processed in parallel, have (Qiin a block ands is the stride. If the stride is zero, the loca-
extracted. The problem there is to find statements in the progragh set contains a single element. Otherwise, it is assumed to be

thatmay read or write the same locations (aliasing problem). Rt ,nhounded set of locations. Table | shows the location sets
this purpose, thaliasinginformation has to be determined besqy various expressions.

tween pointers. The points-to information and the aliasing infor-'FOr simple data structures (arrays, structures, array of struc-

mation are equivalent and can be determined by recent analy§ig.s) offsets are used to identify the different fields of struc-
techniques callegiointer analysisor alias analysisdescribed a5 whereas strides are used to record array-element sizes.

in Section 1ll-B. Fig. 2 gives an example of representation for an array of struc-
tures. The representation does not distinguish the different ele-
A. Memory Representation ments within the array, but it distinguishes the different instan-

] ] . . tiations of variables and structures. This makes sense since all
The simplest memory representation consists of a single asments of an array are usually alike.

o_Iress space in which all da_ta_a_re stored. This trivial represgntaNested arrays and structures, type casting, and pointer arith-

tion, however, prevents optimizing the locality and parallellzm_g“aﬁC are making things more complicated, leading to some ad-

the code. On the other hand, the most accurate representaligfional inaccuracies. Example 2 shows how references to array

which would distinguish each element of arrays or of recursiy@sted in structures are represented approximately. The array
data structures, is not practical. As a result, most analysis teglyynd information in the declared type cannot be used because
niques combine elements within a single data structure. SOfag ¢ Janguage does not provide array-bounds checking. A ref-

techniques combine elements based on their allocation conteXisnce to an array nested in a structure could access other fields
[25], [26] or on limiting the length of access paths to some fixegk the structure by using out-of-bound array indexes.

constant §-limiting). Shape analysis [3], [5] gives the most ac- Example 2: Consider the arragF[]  nested in a structure
curate representation, as it may distinguish trees from dirgct

acyclic graphs, linear lists from cyclic lists, and so on. How-
ever, its implementation to support large C programs remains
challenging. struct {

In order to find both an accurate and a practical representachar a;
tion for hardware synthesis, we use the notioiogfation sets  char b;
introduced by Wilson and Lam [25], [26]. Location sets support int F[8];} r;
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References to one of the array elements (e[2] ) Example 4:In the code segment presented in Example 1,
are represented approximately by the locations &eb, annotations are inserted by the pointer analysis to specify what
sizeof(int) ), which regroups all of the elements of thgointers may point to at loads, stores, dree calls.
array as well as.a.

Dynamically allocated memory locations (also known ggobject.type == REG)
heap-allocated objects) are represented by a specific locatiopy — greg; // (p, 0, 0 ) —> {(reg, 0, 0 )}
set. As far as accuracy, it would not be practical to distinguisfiopject.type == INTERNAL)
every element of a recursive data structure. Therefore, the gogh — malloc(4); // (p, 0, 0 ) —> {malloc1}
of this representation is to distinguish complete data structurgge
The different elements of a recursive data structure wouldp — malloc(8); // (p, 0, 0 ) —> {malloc2}
typically be combined into one location set. For example, we
want to distinguish one list from another but we do not wantty — opject.data; // (p —> {reg, malloci,

distinguish the different elements of a list. Heuristics are usedmajoc2}

to distinguish dynamically allocated data. Storage allocated

in the same context is assumed to be part of the same equiyject.type I = REG)

lence class. Within one function, storage allocated by a givenfree(p); // p —> {reg, malloci,
malloc in the code is represented by one location set. Whenmgjjoc2}

malloc is called inside of a function, a different location set is

created for each call chain (context). These heuristics have bee(r th . d t th tati 0
proven to work well as long as the program uses the stand%s n_> {e<repgrew8uso> C?meallsgme:{allocez ?os?a'ggé fo’r

memory allocation routines [25]. “p may point to variablereg or some storage allocated b
Example 3:In the code segment shown in Example 1, the? May Pol varl 9 9 N y
alloc1(fist malloc call) ormalloc2(second malloc call).

memory can be represented by the following set of location st
(p, 0, O, (reg, O, O, (object , 0, O for object.type C. Definiti f the Subset
(object , 4, ) for object.data  , (object , 8, 0) for ob- - Detinition ot the Subse

jectdata2 , (malloc, 0, 0 for the storage allocated by the I this section, we only talk about the restrictions on the syn-
first malloc  call (malloc (4)), and(malloc2 0, 0) for the thesizable subset. Limitations on the generated architecture may

storage allocated by the second malloc calhfloc (8)). also exist akin to the limitations of the behavioral synthesis tool
used as a back end to our tool. In particular, the techniques pre-
sented here do not depend on the type of memories (SRAM,
B. Pointer Analysis DRAM, etc.). _
The pointer analyses and memory representation presented
Pointer analysis is a compiler technique to identify at conif? the previous sections support the complete ANSI C syntax.
pile-time the potential values of the pointers in the prograr} this paper, however, we define our own synthesizable
This information is used to determine the set of locations &/bset. Our subset includesalloc/free as well as all
which the pointer may point. For synthesis, in the cadeads, yPes of pointers and type casting. The code is assumed to
stores,andfree , we want to synthesize the logic to acces$€ correct. Tools such as Pufifpr LCLInt® [4] can be used
modify, or deallocate the location referenced by the pointer. Fé find memory leaks and check memory reads, writes, and
this purpose, the points-to information must be keztfeandac- deallocations. In addition, we set the following two restrictions.
curate safe because we have to consider all locations the pointer e first restriction applies to systems described as a set of

mayreference andccuratebecause the smaller the points-to sét@rallel processes: pointers that reference data outside of the
is, the fewer logic circuits we have to generate. scope of a process (e.g., global variables or data internal to some

other processes) are not allowed. Their resolution would require

Two main types of analyses can be distinguished. Rlosti- h thesis of kind of interf bet the circuit
and context-insensitiveanalyses [22] do not distinguish the € Synthesis of Ssome Kind ot interface between the circuits re-

order in which the statements are executda\(-insensitivity aI|Z|tng the F[)_?Cesses' dSuf;:h mter{)ac;e 'S usutfally _def'|6r\1ed durmﬁ]
and the different calls of a functioncgntext-insensitivigy S>Y>.c Parttioning and, nence, belore syninesis. As a resutt,

They are the least accurate, but the relative simplicity of thﬂe‘r'emory allocated in one process is assumed to be accessed and

implementation makes them more suitable for very lar pallocated only W'th'.n this same process.

programs.Flow- and context-sensitivanalyses, such as the Th? second I!mltatlon stems from the_ fact that most com-

one developed by Wilson and Lam [25], [26], on the Othéperglal §yntheS|s tools also have restrictions on functions. Re-

hand, provide more accuracy with an increased complexity. cursion is usually UOt supported. P'ro.cedures that are.mapped
Even though the computational complexity of flow- and cor{fo components typically have restrictions both on their func-

text-sensitive analyses may be exponential, it is not a limitatidl9 nality _an.d the|r parameters. For example, the same function
for hardware synthesis because we deal with rather small led within different contexts may usually not be shared. Be-

simple programs with limited calling contexts for functions an ides, most synthesis tools do not synthesize parameter passed

often no recursion. Besides, these analyses lead to more a é/ur_eference, because this is not supported by most HDL syntax.

rate results, which makes them more suitable for hardware syresee nhttp://www.rational.com/
thesis. 9See http://Iclint.cs.virginia.edu/
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continuous memory 0xdd . ,
i 1
space el . . .
csi.cl ocEl.ol cEi,s

0x08 1

! esili
set of location sets Oxld : : !
s s s sl s s e

Fig. 4. Memory layout obtruct {char c1; char c2; short s;
int i;} csi

variables|l= = - -

plementation [20], for each location sgbc, f, s), we define
SPCloc_f _s as follows.
For a singleton location set (i.es,null), SPCloc_f_s is a
register i ters wires/ variable. In the case of a location set representing a variable of
files ports basic type (e.gghar , short ,int ), the mapping is straight-
E(?rward. For structures, their different fields can be mapped to
separate variables (akin to registers or wires in the final hard-
ware) as long as they are represented by separate location sets.
] ] ] _ For a location set with nonzero stride (i.e.,not null),
Th_e synthesis of functions in C and there_fore t_he resolution Qf:’Cloc_f_s is defined as an array (e.g., array of integers).
pointers andnalloc/free inside of functions, is beyond the g ,ch an array may then typically either be mapped to a memory

memories

Fig. 3. Memory refinement from a continuous memory space to a set
memories, registers, and wires

scope of this paper. or a register file manually or according to current methodology
[1], [14] during high-level synthesis. For arrays of structures,
IV. MAPPING TOHARDWARE the different fields of the structures can be mapped to different

memories as long as their representations do not overlap. This

In this section, we present how C code can be efficientiflows one to independently access the different fields of the
mapped onto hardware. First, memory is partitioned into a s@fuctures, leading to more flexibility and potentially better
of location sets, which can be mapped onto wires, registegarformances.
or memories. Some of these location sets represent pointersxample 5: Consider the following structure variable:
Pointers are resolved by encoding the value of the pointers and
creating branching statements for loads and stores. Finally, dyq,ct {
namic memory allocation and deallocation are performed by -p4r cl:

custom hardware memory allocators. char c2:
short s;
A. Memory Refinement int i

After analysis, the storage in the program can be represen}eas';
as a set of distinct locations sets. This set of location sets rep-
resents a partitioning of the memory. Each location set is ulti- Four location sets represent the four fields of the structure
mately mapped to a wire, a register, or a section of memorydsi . On our specific target architecture, the fields.c1,
the final design, as shown in Fig. 3. The allocation of a giversi.c2, csi.s, andcsi.i  are, respectively, represented
scalar variable to a register or a wire as well as the mappinghyp the location setécsi , 0, 0), {csi , 1, 0), {csi , 2, 0 and
memories or register files are typically the result of HLS. In thi&si , 4, 0. The layout in memory before synthesis is repre-
section, we present how distinct location sets can be mappedénted in Fig. 4.

a set of arrays and variables. We do not consider pointers andVe create the following variables corresponding to each lo-
heap objects. The synthesis of pointers aralloc/free is cation set:

presented in Sections IV-B and IV-C. In the rest of this paper,

we use the following representation femdamentalor basic) char SPC c¢si 0 0: // csi.cl

types:char andunsigned char are represented as 8 bitschar SPC csi 1 0: // csi.c2

short andunsigned short  are represented as 16 bits, andhort SPC csi 2 0: // csi.s

int andunsigned int  are represented as 32 bits. Thesgit SPC csi 4 0: // csi.i

representations are the most common on 32-bit architecture. o

Derived types such as pointers, arrays, and structures are co
structed from these fundamental data types.

We can distinguish two types of location sets for statically .
allocated data: location sets whose strides are null (i.e., sing%/
tons, sets of one location) and location sets with nonzero strides
(i.e., sets of multiple locations). A singleton location set may is replaced by
therefore be treated as a simple variable, whereas a location
set with nonzero stride may be mapped to an array. In our i8PC csi 1 0 = O;

Ks a result, during the mapping to hardware, the assignment

c2 = 0;
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Out-of-bound array accesses, as well as copies of structugSRC_my_str 0_2[0], SPC_my_str_0_2[1]} =
can make things more complicated. With our memory represenSPC_a 0 _0;
tation, one data (e.g., an entire structure) may be represente@B\C b 0 0 = {SPC_my_str_0_2[0],
the concatenation of multiple elements of location sets. In Ex- SPC_my_str 0 _2[1]}
ample 6, a structure is represented as two integers. In Example

7, an integer inside of a structure is represented by the concaée-

nation of two short integers.

Pointers

Example 6: This example illustrates the implementation of a In the previous section, we did not consider pointers and type

structure copy.

struct {int x; int y;} A, B;
A = B;

casting. In software, the semantics of pointers is the address of
data in memory. This semantics assumes the target architecture
consists of a single continuous memory space in which all data
are stored.

In hardware, as discussed in Section lll, data my be stored
in multiple registers, memories, or even wires (e.g., output of

After translation, the following synthesizable code is genes functional block). Therefore, to efficiently map C code into

ated:

int SPC_A 0 0, SPC B 0 0; /l Ax, Bx
int SPC_A 4 0, SPC B 4 0; /| Ay, By
I A = B;

SPC A 0 0= SPC B 0 0;

SPC A 4 0 = SPC B 4 0;

hardware, pointers may not only address data in memory but
may also reference registers, wires, or ports. Our synthesis tool
generates the appropriate circuit to dynamically access these lo-
cations according to the pointers’ value. The implementation
presented here is a generalization of previous work [17], [18]
to deal with complex data structures such as arrays of pointers,
pointers within structures, type casting, and dynamic memory
allocation.

Pointers can be used to allocate, read, write, and deallocate
data. Allocation and deallocation performed through the stan-

The structure copy is broken into two assignments CoITgard library functionsnalloc andfree are dealt within the

sponding to the two fields of the structure.

next section. For loads (=*p ) and stores*p =...), we distin-

Example 7:1n the following code segment, the structurgyyish two types of pointers: pointers to a single location, which

variableits contains an array of short integers.

struct {
int i;
short ts[2];
} its;
int a, b;
its.i = a;
b = its.i

Because of potential out-of-bound array accesses (e\g
its.t  [—1]), the structure variabligs is entirely represented
by the location sefits , 0, 2. The code segment is then

transformed into:

short SPC_its_0_2[4];
int SPC_a 0 0, SPC b 0 0;

Il its.i = a;

SPC _its 0_2[0] = SPC a 0 0 > > 16;
SPC_its 0_2[1] = SPC_a 0 0 & Oxffff;
Il b = its.;

SPC b 00 = SPC_its 0 2[0] < < 16 |
SPC_its_0_2[1];

can be removed, and pointers to multiple locations.

Loads from pointers to a single location are simply replaced
by assignments from the location accessed. Similarly, stores
are simply replaced by assignments to the location referenced.
During memory partitioning, these locations are mapped to lo-
cation sets. As seen previously in Examples 6 and 7, the loca-
tions accessed may correspond to the concatenation of multiple
elements of location sets. Moreover, because of pointer type
casting, the location on which the load or store is performed
may correspond to only part of an element of a location set, as
shown in Example 8.

Example 8: Consider the following code segment, in which
& have a load and a store with type casting from type pointer
tointeger (nt * )to type pointer to short integesifort * ):

short s[2];

int i;

s[0] = *(short *)&i;
*(short *)&i = s[1];

The code segment is transformed into:

short SPC_s _0_2[2];
int SPC_i_0_0;

SPC_s 0 2[0] = SPC_i_0 0 >16;

Note that using a concatenation operator {...}, these assiggPC_i 0 0 = (SPC_i_0_0 & Oxffff) |

ments can be written as:

SPC_s 0 2[1] <16;
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Il p.ta = 1 /I p.index =2*4
tobde_pl1 I[_‘ tehle P_It] | table_pli+ SP%_{?_O_O T <p< 16 | 8
tag 5116
Fig. 5. Encoding of pointers in an array. SPCP OO =SPCp OO+ 4/Mp =p+1
iflt SPCp00>>16 ==0)1/

Note that the expressiori({nt *)s ) inaload or astore (ptag ==0)
would lead to an implementation using the concatenation/; out = {SPC_itc_0_2[p.index/2],
{SPC_s_0_2[0], SPC_s_0_2[1]} , as in Example 7. Il SPC_itc_0_2[p.index/2+1]};

Loads and stores from pointers to multiple locations are re-out = SPC_its_0_2|
placed by a set of assignments in which the locations are dy- SPC_p_0_0&0xffff > >1
namically accessed according to the pointer’s value. ] < 16 |

The addresses (i.e., pointers’ values) are encoded. The en- SPC_its_0_2[ SPC_p_0_0&Oxffff > >
coded value of a pointgr consists of two fields: thiagp.tag 1+ 1];
(left part of the code) corresponds to the location set referencgde // (tag ==1)
by the pointer and thindexp.index  (right part of the code)  // out = SPC_itc_0_2[p.index/4]

stores the number of bytes corresponding to the data referencegut = SPC b 0 4] SPC_p_0_0&Oxffff > >2

within the location set. After encoding, the size of the pointers J;

(tag part) can be reduced as shown in [17], [18]. However, in

order to support type casting and out-of-bound array accesses,

we assume that pointers have a fixed size of 32 bits. In the resf he resolution of pointers can be further optimized. Loads

of this paper, the size of the tag and the index are supposed@®s! stores can be optimized when the pointers’ location set has

be equal to 16 bits. a stride null (i.e., case of a scalar variable) [17]. Encoding tech-
Theindexpart is stored within the first bits (least significanthiques [18] can also be to used reduce the size of the pointers’

bits) of the code to support pointer arithmetic and type castirgplue ¢ag part).

An example of implementation for an array of pointers is rep-

resented on Fig. 5. It is important to note that with this imple. Resolution ofmalloc andfree

mentation, pointer arithmetic, even performed after type casting, order to support dynamic memory allocation and deallo-

from pointer type to integer type, is straightforward to implegation, the hardware needs to access an allocator. In general, the
ment. _ allocator could be implemented in software (for mixed hard-
Loadsandstorescan then be removed using temporary variare/software implementations) or completely in hardware.
ables and branching statements. _ For example, in a mixed hardware/software implementation,

Example 9:1n the code segment below, the poinfemay  the hardware can send an interrupt to the processor to perform
point to the location setgits , 0, 2) and(b, 0, 4. memory allocation and deallocation. In the case of an alloca-
tion, the software, typically the operating system running on

int *p; the processor, would then send the address of the allocated
struct {int i; short ts[2];} its; block in memory to the hardware. Since this paper is on the
int b[5]; hardware synthesis of C code, only a hardware implementation
is presented. Nevertheless, the techniques presented here could

if(...) also be targeted to a software implementation.

p = &its.i; In software,malloc andfree are implemented as stan-
else dard library functions. Similarly, for hardware synthesis, we use

p = &b[2]; a library of hardware components implementinglloc and
p = p+1; free . The idea here is to have one component, catifo-
out = *p; cator,implementing both thenalloc andfree functions, as

introduced in Section Il. In order to efficiently manage memory,

Th i de aft ing the load and store i twe want to support multiple customized memory allocators that
€ resulting code after removing the foad and store 1S Iﬂ‘?ay allocate storage in multiple memories in parallel. As a re-

following: sult, we partition the memory space in which data are dynam-
ically allocated (heap space) into a setroémory segments
int SPC_p_0_0; (pools of blocks).
short SPC its 0_2[4]; Definition 1: A memory segmerns defined as an array of
int SPC_b_0_4[5]; finite size in which data are allocated by a unique allocator. This
array may later on be mapped to one or more memories during
if(...) high-level synthesis.
Il p.tag = 0 // p.index =0 In our tool, the partitioning of the memory into the different
SPC_p 0.0 = 0 < <16 | ©O; memory segments is done by the designer. Other tools could be

else used to assist this task at the system level. For example, tools
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such as the one defined in the Matisse research ptojER8], megl sepl |
[29] could be used in order to refine data structures and define 3 B 3
different arrangements and architectures of hardware memory
Sain Maodule * alloc_seg ]
allocators. -
For eachmalloc in the code, the designer selects in which =
memory segment the storage is allocated. Since the size of the alloc_seg2

dynamically allocated memory cannot be found by static anal-
ysis, the designer also sets the size of each memory segnféht- Architecture for multiple memories and allocators.
manually. The tool instantiates then the hardware memory allo-
cators corresponding to each memory segment and synthesiags = *p;
the appropriate circuit to allocate, access, and deallocate dafeee(p);
For each memory segment, a different allocator is instanti-

placed by a call to the specific allocator. The pointer that takggg1andmalloc2is mapped to the memory segmegy2 Both
the result of themalloc ~ function is defined as follows: it memory segments are of size 32 bytes (set by the user). The re-

is set according to the corresponding memory segment a”d§(f§ting code, after removingalloc/free  , is the following:
indexis set by the allocator. When multipiealloc calls are

mapped to a single memory segment, the corresponding ag?far seg1[32]:
cator is shared. char se92[32]j

For a callfree(p) , the data to be deallocated may be ir i —=0) { '
one memory segment or another depending on the value of { % 0.0 = alloc_segl(SPC_MALLOC,1):
pointerp. We generate branching statements in which the d.}f'eEe_{ - - o
ferent allocators corresponding to the different memory seg- 00
ments may dynamically be called according to the pointegs -
The pointer'sndexis then sent to the allocator to indicate whicﬁ

= alloc_seg2(SPC_MALLOC,4);

block should be de'allocated..Loads, s.tores, and addresses;I EO_O > > 16 ==0) // p.tag __
resolved as shown in the previous section. Examples 10 and 1177 o _
illustrate howmalloc andfree calls are resolved while re- seg_l[a 0_0&OXfff]; // segl[p.index]
moving pointers. else - = '

Example 10: Consider the following code segment: ot 00 =

seg2[p_0_O0&Oxffff]; /I seg2[p.index]

p = ma*llo.c(l); if(p_0 0 >>16 ==0)/ ptag ==
out = p; alloc_seg1(SPC_FREE,p_0_0);
free(p); else

alloc_seg2(SPC_FREE,p_0_0);
If malloc is mapped to a memory segment called segl of
size 32 bytes, we generate the following code (assuming tha‘

the size ofchar is one byte): f each memory segment is mapped to a different RAM during

synthesis, we end up with the architecture shown in Fig. 6.

char segl1[32]; // memory segment: segl

V. LIBRARY OF ALLOCATORS AND OPTIMIZATIONS
p_0 0 = alloc_segl(SPC_MALLOC,1);

out 0 0 = In the previous sections, we have seen hoalloc and
s_eg_l[p 0_0 |Oxffff]; // segl[p.index] free can be implemented using hardware memory allocators.
alloc Seg_l(gpc FREE,p_0_0); Each allocator can perform both memory allocation and deal-

location. We provide a library of such allocators. The designer
s then the freedom to pick the allocator architecture most suit-
able to the application. Our library of allocator components con-
tains three basic types of allocators. In Section V-A, we define
gsgeneral—purposan allocator that can allocate blocks of any
size. In addition, we introduce here aptimized general-pur-
pose allocatorfor which the deallocation scheme is optimized
for latency. When the size of the block to be allocated is a fixed

The allocator component corresponding to the functi
alloc_segl is called for bothmalloc and free . It
implements both the allocation and deallocation functions.

Example 11: Let us now consider a more complex exampl
where pointep may point to different memory segments:

(i —::rr?gtlloc(l)' // mallocl constant, the architecture of the allocator can be greatly simpli-
elspe o ' fied. Thespecific-purpose allocatopresented in Section V-B
o = malloc(4): // malloc2 can be used in such case.

The designer could also add new allocators in the library. The
105ee http://www.imec.be/matisse/ basic allocators presented here may be modified (e.g., to change
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—_— E LIEH B ] CRETE - HEEEH
HW optimized general-purpose allocator K - I :I: i _{“hlz-ﬁill I ;.|.I. II' |

1l i p| si 1
maroesice siee , ™ list of allocated blocks alloc_tsg  'tag 'index
p.index—Maddress  ‘index[address | Ox-0c
p.alloc_tag ¥ index - . 0 0x-00 size Fig. 8. Encoding of pointers in an array for optimized general-purpose
o1 | ox-04 4 allocator.
malloc/free ¥ malloc/free ) \\2 / 0x-08 2

the block inside of the list of allocated blocks. In our implemen-
free list tation, the allocation tag corresponds to the 8 most significant
address | size bits in the pointer’s value, the tag corresponds to the following 8
0x-06 2 bits, and the index corresponds to the 16 least significant bits (as
0x-14 12 defined in Section 1V-B). Fig. 8 shows how the different fields
are laid out for an array of pointers.

. . o B. Specific-Purpose Allocator
Fig. 7. Architecture of an optimized general-purpose allocator.

The malloc function takes one argument: the size of the

) . block to be allocated. When this size is a unique condafur
the allocation or deallocation schemes, allocate a larger ””mgﬁrmalloc calls mapped one memory segment, this memory

of blocks, or handle new sizes of elements) and added to lig,ent can then be represented as an array of elements of size
library. Other types of allocators, such as those described RYAIIocating memory in this segment can simply be performed
Changet al. [2] and Wuytacket al. [29], could also be added y, et rning the first available elementin the array. For dealloca-
to our framework as new components in the library. tion, the array element to deallocate can easily be derived from
In some cases, the code can also be optimized. Callsyl h5ck address. The architecture of the corresponding allo-
malloc  andfree can be removed and memory allocation oo can then be simplified. For example, a simple bit vector
can be done statically. In Section V-C, we present a compilel, he ysed to keep track of the allocated and free blocks in
technique to automatically remove some of the dynamjfie memory segment. Such an allocator, which can only deal
memory allocations for sequencesmaélloc  andfree . with blocks of one size, is callespecific-purposeUsing a spe-
cific-purpose allocator solves also the problem of memory frag-
mentation common to general-purpose allocators.
General-purpose allocators are defined as allocators that magonstant propagation can be performed before selecting the
allocate blocks of various sizes. These allocators consist of #ilkocator in order to have as manyalloc s as possible with
circuit that performs allocation/deallocation and two lists thatonstant size.
keep track of the free blocks and the allocated blocks inside of
the memory segment. To allocate memory, the size of the blok Optimizing Sequencesmilloc andfree Calls

to be allocatedrpalloc_sizgis sent to the allocator. The allo-  gome of the dynamic memory allocations are sometimes
cator then searches in its free list a big enough block and retuft necessary and can be automatically removed at com-
the address corresponding to the beginning of this block in thge time. This is especially true for legacy code, in which
memory segment. In our implementation, the first acceptaligy|ioc/free  are used to manually control storage. The idea
free block is returned (first fit). The block that has just been afere is to analyze to code and isolate the finite sequences of

viously allocated memory, the address of the block to be degligcated data.

located is sent to the allocator. The allocator then searches thigyample 12: Consider the following code segment:
block inside of its list of allocated blocks and adds it back to the
free list. Adjacent free blocks are then merged.

In order to simplify the process of looking up for a give
block during deallocation, we propose to encode the charact@[g]
istics of the allocated block inside of the pointetdg). In our )
implementation shown in Fig. 7, the allocator stores the list g]ee(p[l])i I freel
allocated blocks in an array. The index corresponding to the |(_ae(p[2]), il free2
located block in this array is then encoded in the pointer’s value.

During deallocation, this index is sent to the allocator. The allo- In this example, a finite number of objects (two) are allocated
cator can then directly find the allocated block according to thiy mallocl and malloc2 Later on, these blocks are freed by
index, without having to search the entire array. The resultifigel andfree2 The dynamic memory allocation in this case
optimized allocator is calledptimized general-purpose can be optimized by creating the two temporary array elements

The encoded value of a pointer consists then of three fieldsip_malloc 1[4] andtmp_malloc 2[8]. The size of these
theallocation tagthetag,and thendex For a pointep, thetag elements corresponds to the size of the object allocated at each
p.tag andthdandexp.index are defined asin Section IV-B. malloc . Themalloc calls are then replaced by references to
Theallocation tagp.alloc_tag corresponds to the index ofthese temporary variables and fiee calls are removed. We

A. Optimized General-Purpose Allocator

rp[l] = malloc(4); // mallocl
= malloc(8); // malloc2
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System-Level refimement

— — — — o —

end up with the following code segment in which memory is
statically allocated:

i+ memory hinding
(fanctional description |

char tmp_malloc1[4]; R o e oot e i By gplc 1
char tmp_malloc2[8]; [t J'"'":'I““ |

p[l] = tmp_mallocl; // malloc(4) Dynamic Memory Allocation

p[2] = tmp_malloc2; // malloc(8) Eesolution

| |
| |
I [ I
| | Poanters Reaoludmon | |
| |
| |

Il free(p[]):
Il free(p[2]);

| Partition Memory I
I

- | Cawif2verilog | -
The optimization can be performed under two conditions. TR : -;ri‘.n_lnd_l _____
First, the size of the block to allocate has to be constant. If i-u..ffi'.j,,.:.'i'aﬁ.-.i"pﬁ.:,,,,

the size of the block to allocate is not known at compile time, - :

a general-purposeor optimized general-purposellocator ;]ET,T_:.‘,,_:]'“T,;E;'UZL'::
would have to be used. Second, if a block is allocated within ¥

an unbounded loop, it has to be deallocated within the same
unbounded loop. Using the results of the pointer analysis, we
have implemented a dataflow analysis [12] that finds at comp@
time themalloc andfree calls that can be optimized (i.e.,
removed).

We outline briefly how the analysis is conducted. For each d{Rolflow is shown on Fig. 9. Our tool SpC takes a C function
namically allocated location set (i.e., eatialloc call in the With complex data structures and generates a Verilog module.
example), a counter is defined. The analysis steps through fha front end to high-level synthesis, it is the first step for map-
flowgraph of the procedure. The counter is incremented ea@#d C code involving pointers and dynamic memory allocation
time an element of the corresponding location set is allocaté@to hardware. SpC can be seen as aback end to the system-level
Subsequently, each time an element of the location set is dealRfls presented above. Such tools can help define a memory ar-
cated (result from the pointer analysis), the associated countef¥ecture and an arrangement of hardware memory allocators
decremented. Location sets allocated and not deallocated witfligmory binding

. 9. Resolution of dynamic memory allocation and pointers for hardware
thesis from C.

the same loop can be found. Thealloc andfree corre- The different techniques presented in Sections IV and V have
sponding to these locations cannot be optimized. Otherwi§€en implemented using the SUIF compiler environrigaf].
they can be optimized. The memory representation, consisting of distinct location sets,

During the optimization, a temporary variable is created fé¢ Used to map memory locations onto variables and arrays in
eachmalloc that can be removed. The size of each tempora¥grilog. The resulting Verilog module can then be synthesized
variable corresponds to the size in thalloc  call. These tem- Using the Behavioral Compiler of Synopsys.

porary variables are then statically allocated during synthesis!n addition to the C input function, a set of memory segments
The correspondin§ree calls are removed. as well as the mapping of eachalloc call to one of these

memory segmentsriemory bindingmust be defined. We first
try to remove some ahalloc/free calls using the optimiza-
VI. IMPLEMENTATION AND RESULTS tion in Section V-C. The remaininmalloc/free s are then
A. Toolflow replaced by calls to a custom allocator functiepécific-pur-
pose, general-purpose, or optimized general-purjpdsearing
In the previous sections, we have shown how pointeiemory partitioning, locations represented by location sets with
malloc/free, and complex data structures can be resolvedstride null are mapped to variables of fundamental type (e.g.,
at compile time. A methodology to efficiently map C cod&har, short, int ), and locations represented by location
onto hardware was also presented. At the system level, daégs with nonzero stride are mapped to arrays derived from a fun-
structures are refined and a memory architecture is defing@mental type (e.g., arrayiokt ). Pointers are removed and the
At the architectural level, the system consists of a set phde gets translated into Verilog. Each type of allocator is de-
communicating processes. Each of these processes can thefh@@ as a hardware component in our library. During the trans-
mapped to software or hardware. lation into HDL, the different allocators corresponding to each
Several tools can be used in this methodology. For memaf{emory segment are instantiated and the custom allocator func-
management at the system level, tools are used to help in §igns are mapped to these allocator modules. The communica-
fining data structures [28] and defining a memory architecturgon between each allocator and the main module is done using

Once an architecture is defined, high-level synthesis tools Gg&ndshakes. The resulting HDL code can then be synthesized
be used to map functionality onto hardware. These high-ley@ing traditional high-level synthesis tools.

synthesis tools may also perform memory assignment, address
generation, and scheduling of memory accesses [1], [14]. Ou¥iSee http://suif.stanford.edu/
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TABLE I TABLE I
IMPLEMENTATION OF THE DIFFERENT ALLOCATORS [AREA IN LIBRARY RESULTS FOR THEDIFFERENT EXAMPLES AND OPTIMIZATIONS (SIZE IN
UNITS USING THE TSMC.35 TARGET LIBRARY; comb AND noncomb LIBRARY UNITS USING THEtsmc.35 TARGET LIBRARY; FREQUENCY 100 MHz
REPRESENT RESPECTIVELY, THE AREA OF COMBINATIONAL LOGIC AND FORTESTL, TEST2 AND ATM, 50 MHz FORJPEG; CPU TME FOR SYNTHESIS
NONCOMBINATIONAL LOGIC (i.e., REGISTERS etc.)AT 100 MHz] MEASURED ONSUN ULTRA2 DOES NOTINCLUDE HIGH-LEVEL SYNTHESIS)
B SR ; total | same (DOOx) [CFU
albosaiog . - T test '"'f'“"": C et miEa on E-.Im' lagency | I | imme
< HIH. comih mEi-copmb Tree | lines lities ) | comb, | non-c o
] an
I 3 T 5! s ] (AL : - - :
general parposs 27| 353 204,19 80,193 | oal| 372 | 72| gen.alloc. | 384| 713| S568| 260| 14E
generl purpose (opty | X9 3149 22065 %1 652 i sharing)
specific purpose B5| 135 13,576 & 50 gen. alloc, | 315|  T735| 391 180|138
gen. alloe, | 343 al7 an5 1) 44
{eplimized)

We have recently ported our research to the Synopsys Cod seqoence (167 32| 133 B7| 183
tric SystemC Compiler to synthesize C models into hardwg test2 312 | ih| gen alloe, | 330 1425 551 271 138
directly, without having to translate C into HDL. (m sharing)

genoallos, | 3100 17321 338 177 134
. . . een, alboe, | 31| 1,221 172 177 132
B. Experimental Results and Discussion ,-Tﬂ,,in,imd-,

For the set of examples presented here, we have synthes specalloc. | 204) 1) 180] 108) 12

three types of allocators in our library. In the results present| IPeg @/ & [ 150 gen.alloc. | 659 &35 L2857 747 217
in Table 11, allocators are designed to allocate up to 16 blocks (g alhcaririg)
memory. They are synthesized directly from C using SpC a gen.alloc, | B30( S65( 1023 632 306
Synopsys Behavioral Compiler. The general-purpose allocat pemalloc ( BA0) 203 1023 637 A6
usefirst-fit to allocate blocks and merge adjacent free bloc (opliznited)

during deallocation. The first row presents the results f(4IM /2 405 specalloc. | 618 5510 50 419 353
the general-purpose allocatowithout any optimization. The (i shaseig)
second row shows the size of tloptimized general-purpose gen.allos. | B11( 904| 1359 693) 353
allocatorfor which the deallocation scheme has been optimiz¢ gemalloc | 574  606| 1055 S547) 353
using the modifiedtag, as presented in Section V-A. Even [oplienized)

though the complexity of the controller is reduced (from 52

states to 46), the size of the optimized allocator is roughly

the same because of an increase in the steering logic. Ta@ée queue elements and the other to allocate connection status
latency of the deallocation task is, however, reduced as shol@gords.

later in Table III. Finally, the third row presents the results for For each example, the first set of results illustrates the case
the specific-purpose allocatointroduced in Section V-B. As Wheremalloc calls are mapped to twgeneral-purposallo-
expected, its size is much smaller than treneral-purpose cators (o sharing. For the ATM segmentation engine, twpe-
allocators cific-purposeallocators are used instead of tjEneral-purpose

Table 11l shows the results for four different examples. Thallocators. In the other results, one allocator is shared. As ex-
first two examplestest1and test2 consists of threenalloc ~ Pected, the latency (measured by simulation at the RTL level)
calls and twdree calls. Allmalloc  calls allocate objects of INcreases wnhoyt sharing with a decrease in area. In Table I,
the same constant size. Hencepecific-purpose allocatazan W€ can also .ve.r|fy that the total latency of the design decreases
be used. For the first example, all callsrt@lloc  andfree  When theoptimized general-purpose allocat(gen. alloc. op-
can be removed during optimizations. For the second exampiBiz€d is used. The use of specific-purpose allocatafspec.
one of themalloc s is called inside of an unbounded loop an@!lo¢-) when possible provides significant reduction both in la-
cannot be removed. The third example is a filter used in tikgncy and area. Finally, further optimizations can be performed
JPEG library of Synopsys@sapand is used, for example, forWhen sequences ofalloc andfree calls can be removed
RGB to YCrCb transformations. The filter implements the o S€duence
erationY [{] = dip(A- X[i]+ B, C) for== {1, 2, ..., n},
whereA is a 3x 3 matrix, B andC are vectors, ant” and X
are two 3xn dynamically allocated matrix. Finally, the last ex-
ample is the implementation of an ATM segmentation engine.We have presented how C code with pointers and
The segmentation engine receives frames to be sent from thalloc/free can be efficiently mapped to hardware.
host. These frames are segmented into 48-byte cells (payldsith our methodology, memory is partitioned into a set of
of an ATM cell) to be transmitted on the network. The engincation sets and pointer analysis is used to define which loca-
keeps track of each frame in a queue. For every new frame, a rtews are accessed and deallocated in the program. Pointers are
virtual connection is opened and a new queue element is aldynthesized by encoding their values and generating circuits to
cated. As a result, we have two sets of malloc calls: one to alldynamically access the different locations they may reference.

VIl. CONCLUSION
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Dynamic memory allocation and deallocation are implementegis]
using one or multiple hardware allocators.

Our toolflow fits into current memory management method-
ology. High-level synthesis is used to map data to multiple memgL7]
ories, registers, and wires. Different schemes for allocating and
deallocating memory are also supported by adding hardware
memory allocators in our library of allocators. As part of this[18]
library, we have presented an optimized architecture for a gen-
eral-purpose allocator. This optimization consists in encoding )
the characteristics of the allocated block referenced as part of
the pointer’s value to speed up deallocation. When the size of
the block to allocate is a fixed constant, a specific-purpose allop,
cator may also be used to optimize both area and latency.

The synthesis of pointers anualloc/free raises the
level of abstraction at the input of high-level synthesis. It facil-[o1
itates the description and implementation of custom memory
architectures. Models can be described at the behavioral levg]
using the notions of a single address space and indirect memo&y
references found in many programming languages. The tech-
niques presented here can be generalized to support more 87!
the C/G++ syntax as well as other programming languages,
enabling the mapping of functions and complex data structureig4]
including object-oriented features into hardware.

(25]
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