
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 6, DECEMBER 2001 743

Synthesis of Hardware Models in C With Pointers
and Complex Data Structures

Luc Séméria, Koichi Sato, and Giovanni De Micheli, Fellow, IEEE

Abstract—One of the greatest challenges in a C/C++-based
design methodology is efficiently mapping C/C++ models into
hardware. Many networking and multimedia applications imple-
mented in hardware or mixed hardware/software systems now
use complex data structures stored in multiple memories, so many
C/C++ features that were originally designed for software appli-
cations are now making their way into hardware. Such features
include dynamic memory allocation and pointers for managing
data. We present a solution for efficiently mapping arbitrary
C code with pointers and malloc/free into hardware. Our
solution, which fits current memory management methodologies,
instantiates an application-specific hardware memory allocator
coupled with a memory architecture. Our work also supports the
resolution of pointers without restriction on the data structures.
We present an implementation based on the SUIF framework
along with case studies such as the realization of a video filter and
an ATM segmentation engine.

Index Terms—Computer architecture, computer language, de-
sign automation, memory management, program compilers.

I. INTRODUCTION

D IFFERENT languages have been used as input to high-
level synthesis. Hardware description languages (HDLs),

such as Verilog HDL and VHDL, are the most commonly used.
However, designers often write system-level models using pro-
gramming languages, such as C or C, to estimate the system
performance and verify the functional correctness of the design.
Using C/C offers higher level of abstraction, fast simulation,
and the possibility of leveraging a vast amount of legacy code
and libraries, which facilitates the task of system modeling.

The use of C/C or a subset of C/C to describe both
hardware and software accelerates the design process and
facilitates software/hardware migration. Designers can describe
their system using C/C . The system can then be partitioned
into software and hardware blocks, implemented using syn-
thesis tools. The recent SystemC initiative1 is an attempt to
standardize a C/C -based language for both hardware and
software design.

The C language was originally designed to develop theUNIX

operating system. It provides constructs to directly access

Manuscript received October 25, 2000. This work was supported in part by
ARPA, MARCO Gigascale Research Center, and Synopsys Inc.

L. Séméria is with Clearwater Networks, Inc., Los Gatos, CA 95023 USA
(e-mail: luc@clearwaternetworks.com).

G. De Micheli is with the Computer Systems Laboratory, Stanford University,
Stanford, CA 95305 USA (e-mail: nanni@galileo.stanford.edu).

K. Sato is with the System LSI Design Engineering Division, NEC Corpora-
tion (e-mail: koichi@ax.jp.nec.com).

Publisher Item Identifier S 1063-8210(01)03357-1.

1See http://www.systemc.org/.

memory (through pointers) and to manage memory and I/O
using the standard C library (malloc, free, etc.). These
constructs are widely used in software. Nevertheless, many of
the networking and multimedia applications implemented in
hardware or mixed hardware/software systems are also using
complex data structures stored in one or multiple memory
banks. As a result, many of the C/C features that were
originally designed for software applications are now making
their way into hardware.

In order to help designers refine their code from a simula-
tion model to a synthesizable behavioral description, we are
trying to efficiently synthesize the full ANSI C standard [9],
[15]. This task turns out to be particularly difficult because of
dynamic memory allocation, function calls, recursion,gotos ,
type casting, and pointers.

In the recent past, different synthesis tools have been an-
nounced to ease the mapping of C code into hardware [6], [23].
All of these tools support a subset of the language (e.g., restric-
tions on pointers, function calls, etc.). In particular, they do not
support dynamic memory allocation using the ANSI standard
library functionsmalloc andfree .

The overall objective of our research is to explore synthesis
from full ANSI C. In our tool SpC [17], [19], pointer variables
are resolved at compile time to synthesize C functional models
in hardware efficiently. In this paper, we focus on the mapping of
complex data structures into hardware. Specifically, we present
how arrays of pointers as well as pointers inside of complex
data structures can be efficiently mapped to hardware. In ad-
dition, a solution for the synthesis of dynamic memory alloca-
tion (malloc/free ) is also presented. By definition, storage
for dynamically allocated data structures cannot be assigned
at compile time. The synthesis of C code involving dynamic
memory allocation requires access to some allocation and deal-
location primitives implemented either in software, as in an op-
erating system, or in hardware.

Dynamic memory allocation is tightly coupled with pointers
and the notion of a single continuous address space. Pointer
dereferences (load, stores,etc.) as well as memory allocation are
all referring to a main memory. However, in application-specific
hardware, designers may want to optimize the memory architec-
ture by using register banks, multiple memories etc. Therefore,
memory allocations may be distributed onto multiple memories,
and pointers may reference data stored in registers, memories, or
even wires (e.g., output of a functional unit). To enable efficient
mapping of C code with pointers andmallocs into hardware,
the synthesis tool has to automatically generate the appropriate
circuit to dynamically allocate, access (read/write), and deallo-
cate data. Memory management as well as accurate pointers’

1063–8210/01$10.00 © 2001 IEEE



744 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 6, DECEMBER 2001

resolution are key features for C-based synthesis. They are en-
ablers for the efficient design of applications involving complex
data structures.

The contribution of this paper is to present a solution
for efficiently mapping arbitrary C code with pointers and
malloc/free into hardware. Our solution fits current
memory management methodologies. It consists of instan-
tiating a hardware allocator tailored to an application and a
memory architecture. Our work also supports the resolution
and optimization of pointers without restriction on the data
structures.

In Section II, we give an overview of the memory-manage-
ment methodology for embedded applications and present how
it can be applied to the synthesis of hardware from C. The res-
olution ofmallocs and pointers is based on an accurate anal-
ysis of the operations performed on the different memory loca-
tions. In Section III, we present our memory representation as
well as some pointer-analysis techniques. Then, in Section IV,
we show how pointers and dynamic memory allocation can ef-
fectively and efficiently be synthesized. In Section V, some op-
timizations are presented. We introduce our library of custom
hardware memory allocators. Finally, in Section VI, we present
an implementation and some results for different examples as
well as the realization of a video filter and an asynchronous
transfer mode (ATM) segmentation engine.

II. M ETHODOLOGY AND RELATED WORKS

For decades, memory management has been one of the major
development areas for both software and computer architecture.
In software, at the user level, memory management is typically
performed by the operating system. In hardware, memory
bandwidth is often a bottleneck in applications such as net-
working, signal processing, graphics, and encryption. Memory
architecture exploration and efficient memory management
technology are key to the design of new high-performance
systems. Memory generators commercially available today2

enable fast integration of memories in a system. Scheduling of
memory accesses has also been integrated into most commer-
cial high-level synthesis (HLS) tools. Most of the refinement
and compilation steps developed for software applications can
also be used for hardware. Nevertheless, a software method-
ology usually assumes a fixed memory architecture, which
may be general purpose or application specific, like in a digital
signal processor or application-specific IP. In hardware, at the
behavioral level, designers would typically explore different
memory architectures in order to trade off area and power for a
given timing constraint.

In the recent past, a few projects have been looking at means
to use C/C as an input to current design flow [13]. The gen-
eral idea is to both extend and restrict the C/C languages.
Constructs are added to the languages to model coarse-grain
parallelism, communication, and data types. For reactivity,
SYSTEMC [11] from Synopsys, CoWare, and Frontier Design
supports a mixed synchronous and asynchronous approach
implemented as a C library. Other extensions include ECL

2Silicon Access, DRAMatic: http://www.siliconaccess.com/

[10] from Cadence based on C and Esterel, HANDLE-C3 and
BACH-C [7] originally based on OCCAM, SPECC4 based on
SPECCHART, and CYNLIB.5 In order to map functionality to
hardware, a synthesizable-C/C subset is usually defined.
We can distinguish two approaches. The first approach consists
of translating a subset of C into HDL (Verilog or VHDL),
which will eventually be synthesized using today’s synthesis
tools. Examples of such an approach include the early BACH-C
compiler [7] from Sharp, OCAPI6 [16] from IMEC as well
as other commercial tools. The second approach consists of
using C/C directly, as an input to behavioral synthesis. In
particular, this approach has been chosen by Synopsys with
COCENTRIC SYSTEMC COMPILER (formerly known as SCENIC

[6]) and by NEC with CYBER [23].
In practice, current tools do not support dynamic memory

allocation and have restriction on pointers’ usage [13]. SpC [17],
[19] enables the behavioral synthesis of C code with pointer
variables to variables and arrays. In Section IV, we present how
pointers in general (e.g., array of pointers, pointers in structures,
pointers to structures etc.) and dynamic memory allocation can
also be efficiently synthesized.

A methodology for the design of custom memory systems has
been described by Catthooret al. [1]. It is defined for two sets
of applications, networking and signal processing, and supports
a limited subset of C/C . The basic concepts presented in
Catthoor’s work can be generalized to support a larger subset of
the C syntax for an extended set of applications. Two main steps
can be distinguished in the methodology: we describe briefly
here the transformations performed first at the system level, and
then at the architectural level.

At the system level, the functionality of the algorithm is ver-
ified. Data formats are refined. For example, after quantiza-
tion, the format of data can be refined from floating-point to
fixed-point [8]. Data structures can also be refined for example
to reduce the number of indirect memory references. Examples
of such transformations for networking applications have been
studied by Wuytacket al. [28].

At the architectural level, after partitioning, the system
typically consists of multiple communicating processes to be
mapped to hardware or software7 [6], [21]. Memory segments
are defined for internal storage and/or shared memory. These
memory segments can then be mapped to one or multiple
memories during synthesis. Some of the storage area (e.g.,
internal variables, etc.) can be statically allocated during
synthesis or compilation. However, to support dynamic storage
allocation (e.g., for recursive data structures), allocation and
deallocation primitives implemented in software or hardware
shall be defined.

In software, memory allocation and deallocation are imple-
mented as primitives that are part of the operating system (OS).
These primitives can be called in a C program using the func-
tions defined in the standard library (e.g.,malloc, free,
etc.). Many schemes have been developed for OS to manage

3See http://oldwww.comlab.ox.ac.uk/oucl/groups/hwcweb/handel/
4See http://www.specc.gr.jp/
5See http://www.cynapps.com/
6See http://www.imec.be/ocapi/
7See http://www.coware.com/



SÉMÉRIA et al.: SYNTHESIS OF HARDWARE MODELS IN C 745

Fig. 1. Interface of the allocator block implementingmalloc and free
functions.

memory. An extensive survey by Wilsonet al. [24] presents
many of the techniques used for memory allocation and deal-
location in software.

Memory management can also be implemented in hardware.
For memory allocation and deallocation, instead of the system
calls to the OS, requests are sent through signals to anallocator
block (also known as avirtual memory manager[29]) imple-
mented in hardware. Its interface is shown on Fig. 1. Internally,
the allocator stores a list of the free blocks in memory as well as
a list of the allocated blocks. To allocate memory, the size of the
block to be allocated (malloc_size) is sent. The allocator then
searches in its free list for a big enough block and returns the
address of the beginning of this block (malloc_address). Two
techniques are often used:first fit where the first acceptable free
block is returned orbest fitwhere the block of minimal size is
returned. To free previously allocated memory, the address of
the block to be deallocated (free_address) is sent to the allo-
cator. The allocator then searches inside of the allocated list the
block and adds it back to the free list. Adjacent free blocks can
then be merged. An optimized architecture to speed up memory
allocation in hardware is presented by Changet al. [2]. The im-
plementation itself of the allocator may also vary according to
the application and the data structures. A number of these ap-
plication-specific implementations are presented by Wuytacket
al. [29].

Once an architecture is decided, hardware can be imple-
mented using synthesis tools and compilers can be used for
software. As far as memory management is concerned, sched-
uling of memory accesses, register/memory allocation, and
address generation can be integrated into synthesis tools and
compilers. In current commercial synthesis tools, each array
is manually mapped to register files or memories of different
types. For scheduling, the characteristics of the memories
(number of ports, read/write latency, etc.) are defined as part
of the components library. Researches have been looking at
techniques to automatically perform memory assignment,
address generation, and optimized scheduling according to the
type of the memory. The latest development of these techniques
have been presented by Catthooret al.[1] and Pandaet al.[14].

Our contribution fits in the methodology described above. In
particular, we present techniques to automate the synthesis of C
code with pointers and dynamic memory allocation into hard-
ware. The outcome of our research is a tool that maps and op-
timizes hardware models in C into Verilog HDL synthesizable
by commercially available synthesis tools.

III. B ACKGROUND

In software, a C program is targeted to a virtual architecture
consisting of one memory in which all data are stored. The se-

mantics of pointers is the address of an element in memory.
Even thoughregister declaration may allow programmers
to specify the variables to place in registers, the assignment of
variables to registers is generally done by the compiler. The no-
tions of caches and memory pages are transparent to program-
mers.

In hardware, at the behavioral level, designers want to have
control on where data are stored and want to optimize the lo-
cality of the storage. Typically, a chip design contains multiple
memory banks, register files, registers, and wires. To efficiently
map C code onto hardware, the storage space must be parti-
tioned. During synthesis, each partition is then mapped to a reg-
ister, a wire, or a memory. Some of these partitions may also
represent pointers. Pointers may be used to reference any vari-
able no matter where its information is available. Pointers are
then considered as references: references to memory elements,
registers, wires, or ports. In particular, pointers can be used to
allocate, read, write, and deallocate data. In this paper, we call
the action of reading data using a pointer aload. Subsequently, a
storeis the action of writing data using a pointer. Allocation and
deallocation are performed through the standard library func-
tions malloc and free . Their implementation is, however,
tailored for a given application and memory architecture.

The synthesis of hardware from C consists first of partitioning
the memory. Each partition is then mapped to a scalar vari-
able (akin to wire or register in the final implementation) or an
array (akin to memory or register file). The synthesis of pointers
consists of generating the appropriate circuit for allocating, ac-
cessing, and deallocating data. For this purpose, we change the
addresses into numbers (i.e., encode pointers’ values) and re-
placeloadsandstoresby some assignments directly accessing
the data the pointer may reference (i.e., resolve pointers). Func-
tionsmalloc andfree are subsequently changed, as memory
allocation can be distributed onto multiple memories.

Example 1: Let us consider an application where a hardware
block receives objects of different sizes and processes them. In
the final implementation, after partitioning the memory, some
of the intermediate data are stored in registers or memories. In
this example, some of the objects received are copied into a reg-
ister (reg ). Some others are only used within this block and are
stored in private memory (local_RAM ). Finally, some larger
objects may also be accessed by other blocks and are stored in
a shared memory (shared_RAM ).

int reg;
int *p;
struct {char type; int data; int data2;}

object;
…
if(object.type REG)

p &reg;
if(object.type INTERNAL)

// allocate memory in local_RAM
p malloc(4);

else
// allocate memory in shared_RAM
p malloc(8);

…



746 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 6, DECEMBER 2001

// store in reg, local_RAM or shared_RAM
*p object.data;
…
if(object.type REG)

// free storage in local_RAM or
// in shared_RAM
free(p);

In order to implement the store (*p object.data ), the
tool has to schedule a write operation into the registerreg , the
memorylocal_RAM , or the memoryshared_RAM . It also
needs to instantiate the correct circuit (steering logic) to access
these locations. For this purpose, we need to know at compile
time the set of locations the pointerp may point to (points-to
set).

To implement free(p) , assuming that the memories
local_RAM and shared_RAM are each managed by a
specific allocator, the tool also needs to schedule a deallocation
operation on one allocator or the other. The points-to informa-
tion for the pointerp is also necessary.

As we can see in Example 1, in order to efficiently map C
code into hardware, we first need to partition the memory. In
our implementation, memory is represented as a set of location
sets, described in Section III-A.

Subsequently, to synthesizeloads, stores,and free opera-
tions into hardware, we need to know at compile time the set
of locations the pointers may reference (points-toinformation).
Such information is also widely used in compilers. In order to
parallelize programs onto distributed architectures, the indepen-
dent sets of data, which can be processed in parallel, have to be
extracted. The problem there is to find statements in the program
that may read or write the same locations (aliasing problem). For
this purpose, thealiasing information has to be determined be-
tween pointers. The points-to information and the aliasing infor-
mation are equivalent and can be determined by recent analysis
techniques calledpointer analysisor alias analysis,described
in Section III-B.

A. Memory Representation

The simplest memory representation consists of a single ad-
dress space in which all data are stored. This trivial representa-
tion, however, prevents optimizing the locality and parallelizing
the code. On the other hand, the most accurate representation,
which would distinguish each element of arrays or of recursive
data structures, is not practical. As a result, most analysis tech-
niques combine elements within a single data structure. Some
techniques combine elements based on their allocation contexts
[25], [26] or on limiting the length of access paths to some fixed
constant ( -limiting). Shape analysis [3], [5] gives the most ac-
curate representation, as it may distinguish trees from direct
acyclic graphs, linear lists from cyclic lists, and so on. How-
ever, its implementation to support large C programs remains
challenging.

In order to find both an accurate and a practical representa-
tion for hardware synthesis, we use the notion oflocation sets
introduced by Wilson and Lam [25], [26]. Location sets support

TABLE I
LOCATION SET EXAMPLES (f = OFFSET OFFIELD F ), (s = STRIDE OR

ARRAY ELEMENT SIZE)

Fig. 2. Representation ofstruct{int a; int b;} r[]; the offset
and stride correspond to the locationsr[i].b wherei is integer.

any of the data structures available in C including arrays, struc-
tures, arrays of structures, and structures containing arrays. This
representation is also relatively simple, as it combines the dif-
ferent elements of an array or of recursive data structures. It can
therefore be used for large C programs.

Let be the set of memory blocks corresponding to the dif-
ferent variable declarations. A location set

represents the set of locations with offsets
in a particular block of memoryloc. That is, is an offset

within a block and is the stride. If the stride is zero, the loca-
tion set contains a single element. Otherwise, it is assumed to be
an unbounded set of locations. Table I shows the location sets
for various expressions.

For simple data structures (arrays, structures, array of struc-
tures), offsets are used to identify the different fields of struc-
tures, whereas strides are used to record array-element sizes.
Fig. 2 gives an example of representation for an array of struc-
tures. The representation does not distinguish the different ele-
ments within the array, but it distinguishes the different instan-
tiations of variables and structures. This makes sense since all
elements of an array are usually alike.

Nested arrays and structures, type casting, and pointer arith-
metic are making things more complicated, leading to some ad-
ditional inaccuracies. Example 2 shows how references to array
nested in structures are represented approximately. The array
bound information in the declared type cannot be used because
the C language does not provide array-bounds checking. A ref-
erence to an array nested in a structure could access other fields
of the structure by using out-of-bound array indexes.

Example 2: Consider the arrayr.F[] nested in a structure
r :

struct {
char a;
char b;
int F[8];} r;



SÉMÉRIA et al.: SYNTHESIS OF HARDWARE MODELS IN C 747

References to one of the array elements (e.g.,r.F[2] )
are represented approximately by the locations set ,
sizeof(int) , which regroups all of the elements of the
array as well asr.a.

Dynamically allocated memory locations (also known as
heap-allocated objects) are represented by a specific location
set. As far as accuracy, it would not be practical to distinguish
every element of a recursive data structure. Therefore, the goal
of this representation is to distinguish complete data structures.
The different elements of a recursive data structure would
typically be combined into one location set. For example, we
want to distinguish one list from another but we do not want to
distinguish the different elements of a list. Heuristics are used
to distinguish dynamically allocated data. Storage allocated
in the same context is assumed to be part of the same equiva-
lence class. Within one function, storage allocated by a given
malloc in the code is represented by one location set. When
malloc is called inside of a function, a different location set is
created for each call chain (context). These heuristics have been
proven to work well as long as the program uses the standard
memory allocation routines [25].

Example 3: In the code segment shown in Example 1, the
memory can be represented by the following set of location sets:
p, 0, 0 , reg , 0, 0 , object , 0, 0 for object.type ,
object , 4, 0 for object.data , object , 8, 0 for ob-

ject.data2 , malloc1, 0, 0 for the storage allocated by the
first malloc call (malloc (4)), and malloc2, 0, 0 for the
storage allocated by the second malloc call (malloc (8)).

B. Pointer Analysis

Pointer analysis is a compiler technique to identify at com-
pile-time the potential values of the pointers in the program.
This information is used to determine the set of locations to
which the pointer may point. For synthesis, in the case ofloads,
stores,and free , we want to synthesize the logic to access,
modify, or deallocate the location referenced by the pointer. For
this purpose, the points-to information must be bothsafeandac-
curate: safe because we have to consider all locations the pointer
mayreference andaccuratebecause the smaller the points-to set
is, the fewer logic circuits we have to generate.

Two main types of analyses can be distinguished. First,flow-
and context-insensitiveanalyses [22] do not distinguish the
order in which the statements are executed (flow-insensitivity)
and the different calls of a function (context-insensitivity).
They are the least accurate, but the relative simplicity of their
implementation makes them more suitable for very large
programs.Flow- and context-sensitiveanalyses, such as the
one developed by Wilson and Lam [25], [26], on the other
hand, provide more accuracy with an increased complexity.

Even though the computational complexity of flow- and con-
text-sensitive analyses may be exponential, it is not a limitation
for hardware synthesis because we deal with rather small and
simple programs with limited calling contexts for functions and
often no recursion. Besides, these analyses lead to more accu-
rate results, which makes them more suitable for hardware syn-
thesis.

Example 4: In the code segment presented in Example 1,
annotations are inserted by the pointer analysis to specify what
pointers may point to at loads, stores, andfree calls.

if(object.type REG)
p &reg; // p, 0, 0 { reg, 0, 0 }

if(object.type INTERNAL)
p malloc(4); // p, 0, 0 {malloc1}

else
p malloc(8); // p, 0, 0 {malloc2}

…
*p object.data; // p {reg, malloc1,

malloc2}
…
if(object.type REG)

free(p); // p {reg, malloc1,
malloc2}

In the previous code segment, the notationp, 0,
0 { reg , 0, 0 , {malloc1 , malloc2 } stands for
“ may point to variablereg or some storage allocated by
malloc1(fist malloc call) ormalloc2(second malloc call).”

C. Definition of the Subset

In this section, we only talk about the restrictions on the syn-
thesizable subset. Limitations on the generated architecture may
also exist akin to the limitations of the behavioral synthesis tool
used as a back end to our tool. In particular, the techniques pre-
sented here do not depend on the type of memories (SRAM,
DRAM, etc.).

The pointer analyses and memory representation presented
in the previous sections support the complete ANSI C syntax.
In this paper, however, we define our own synthesizable
subset. Our subset includesmalloc/free as well as all
types of pointers and type casting. The code is assumed to
be correct. Tools such as Purify8 or LCLint9 [4] can be used
to find memory leaks and check memory reads, writes, and
deallocations. In addition, we set the following two restrictions.

The first restriction applies to systems described as a set of
parallel processes: pointers that reference data outside of the
scope of a process (e.g., global variables or data internal to some
other processes) are not allowed. Their resolution would require
the synthesis of some kind of interface between the circuits re-
alizing the processes. Such interface is usually defined during
system partitioning and, hence, before synthesis. As a result,
memory allocated in one process is assumed to be accessed and
deallocated only within this same process.

The second limitation stems from the fact that most com-
mercial synthesis tools also have restrictions on functions. Re-
cursion is usually not supported. Procedures that are mapped
to components typically have restrictions both on their func-
tionality and their parameters. For example, the same function
called within different contexts may usually not be shared. Be-
sides, most synthesis tools do not synthesize parameter passed
by reference, because this is not supported by most HDL syntax.

8See http://www.rational.com/
9See http://lclint.cs.virginia.edu/



748 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 6, DECEMBER 2001

Fig. 3. Memory refinement from a continuous memory space to a set of
memories, registers, and wires

The synthesis of functions in C, and therefore the resolution of
pointers andmalloc/free inside of functions, is beyond the
scope of this paper.

IV. M APPING TOHARDWARE

In this section, we present how C code can be efficiently
mapped onto hardware. First, memory is partitioned into a set
of location sets, which can be mapped onto wires, registers,
or memories. Some of these location sets represent pointers.
Pointers are resolved by encoding the value of the pointers and
creating branching statements for loads and stores. Finally, dy-
namic memory allocation and deallocation are performed by
custom hardware memory allocators.

A. Memory Refinement

After analysis, the storage in the program can be represented
as a set of distinct locations sets. This set of location sets rep-
resents a partitioning of the memory. Each location set is ulti-
mately mapped to a wire, a register, or a section of memory in
the final design, as shown in Fig. 3. The allocation of a given
scalar variable to a register or a wire as well as the mapping to
memories or register files are typically the result of HLS. In this
section, we present how distinct location sets can be mapped to
a set of arrays and variables. We do not consider pointers and
heap objects. The synthesis of pointers andmalloc/free is
presented in Sections IV-B and IV-C. In the rest of this paper,
we use the following representation forfundamental(or basic)
types:char andunsigned char are represented as 8 bits,
short andunsigned short are represented as 16 bits, and
int and unsigned int are represented as 32 bits. These
representations are the most common on 32-bit architecture.
Derived types such as pointers, arrays, and structures are con-
structed from these fundamental data types.

We can distinguish two types of location sets for statically
allocated data: location sets whose strides are null (i.e., single-
tons, sets of one location) and location sets with nonzero strides
(i.e., sets of multiple locations). A singleton location set may
therefore be treated as a simple variable, whereas a location
set with nonzero stride may be mapped to an array. In our im-

Fig. 4. Memory layout ofstruct {char c1; char c2; short s;
int i;} csi .

plementation [20], for each location set , we define
SPC as follows.

For a singleton location set (i.e.,null), SPC is a
variable. In the case of a location set representing a variable of
basic type (e.g.,char , short , int ), the mapping is straight-
forward. For structures, their different fields can be mapped to
separate variables (akin to registers or wires in the final hard-
ware) as long as they are represented by separate location sets.

For a location set with nonzero stride (i.e.,not null),
SPC is defined as an array (e.g., array of integers).
Such an array may then typically either be mapped to a memory
or a register file manually or according to current methodology
[1], [14] during high-level synthesis. For arrays of structures,
the different fields of the structures can be mapped to different
memories as long as their representations do not overlap. This
allows one to independently access the different fields of the
structures, leading to more flexibility and potentially better
performances.

Example 5: Consider the following structure variable:

struct {
char c1;
char c2;
short s;
int i;

} csi;

Four location sets represent the four fields of the structure
csi . On our specific target architecture, the fieldscsi.c1,
csi.c2, csi.s, andcsi.i are, respectively, represented
by the location setscsi , 0, 0 , csi , 1, 0 , csi , 2, 0 and
csi , 4, 0 . The layout in memory before synthesis is repre-

sented in Fig. 4.
We create the following variables corresponding to each lo-

cation set:

char SPC_csi_0_0; // csi.c1
char SPC_csi_1_0; // csi.c2
short SPC_csi_2_0; // csi.s
int SPC_csi_4_0; // csi.i

As a result, during the mapping to hardware, the assignment

csi.c2 0;

is replaced by

SPC_csi_1_0 0;



SÉMÉRIA et al.: SYNTHESIS OF HARDWARE MODELS IN C 749

Out-of-bound array accesses, as well as copies of structures,
can make things more complicated. With our memory represen-
tation, one data (e.g., an entire structure) may be represented by
the concatenation of multiple elements of location sets. In Ex-
ample 6, a structure is represented as two integers. In Example
7, an integer inside of a structure is represented by the concate-
nation of two short integers.

Example 6: This example illustrates the implementation of a
structure copy.

struct {int x; int y;} A, B;
A B;

After translation, the following synthesizable code is gener-
ated:

int SPC_A_0_0, SPC_B_0_0; // A.x, B.x
int SPC_A_4_0, SPC_B_4_0; // A.y, B.y

// A B;
SPC_A_0_0 SPC_B_0_0;
SPC_A_4_0 SPC_B_4_0;

The structure copy is broken into two assignments corre-
sponding to the two fields of the structure.

Example 7: In the following code segment, the structure
variableits contains an array of short integers.

struct {
int i;
short ts[2];

} its;
int a, b;

its.i a;
b its.i;

Because of potential out-of-bound array accesses (e.g.,
its.t [ 1]), the structure variableits is entirely represented
by the location set its , 0, 2 . The code segment is then
transformed into:

short SPC_its_0_2[4];
int SPC_a_0_0, SPC_b_0_0;

// its.i a;
SPC_its_0_2[0] SPC_a_0_0 > > 16;
SPC_its_0_2[1] SPC_a_0_0 & 0xffff;

// b its.i;
SPC_b_0_0 SPC_its_0_2[0] < < 16

SPC_its_0_2[1];

Note that using a concatenation operator {…}, these assign-
ments can be written as:

{SPC_my_str_0_2[0], SPC_my_str_0_2[1]}
SPC_a_0_0;

SPC_b_0_0 {SPC_my_str_0_2[0],
SPC_my_str_0_2[1]};

B. Pointers

In the previous section, we did not consider pointers and type
casting. In software, the semantics of pointers is the address of
data in memory. This semantics assumes the target architecture
consists of a single continuous memory space in which all data
are stored.

In hardware, as discussed in Section III, data my be stored
in multiple registers, memories, or even wires (e.g., output of
a functional block). Therefore, to efficiently map C code into
hardware, pointers may not only address data in memory but
may also reference registers, wires, or ports. Our synthesis tool
generates the appropriate circuit to dynamically access these lo-
cations according to the pointers’ value. The implementation
presented here is a generalization of previous work [17], [18]
to deal with complex data structures such as arrays of pointers,
pointers within structures, type casting, and dynamic memory
allocation.

Pointers can be used to allocate, read, write, and deallocate
data. Allocation and deallocation performed through the stan-
dard library functionsmalloc andfree are dealt within the
next section. For loads (…*p ) and stores (*p …), we distin-
guish two types of pointers: pointers to a single location, which
can be removed, and pointers to multiple locations.

Loads from pointers to a single location are simply replaced
by assignments from the location accessed. Similarly, stores
are simply replaced by assignments to the location referenced.
During memory partitioning, these locations are mapped to lo-
cation sets. As seen previously in Examples 6 and 7, the loca-
tions accessed may correspond to the concatenation of multiple
elements of location sets. Moreover, because of pointer type
casting, the location on which the load or store is performed
may correspond to only part of an element of a location set, as
shown in Example 8.

Example 8: Consider the following code segment, in which
we have a load and a store with type casting from type pointer
to integer (int * ) to type pointer to short integer (short * ):

short s[2];
int i;

s[0] *(short *)&i;
*(short *)&i s[1];

The code segment is transformed into:

short SPC_s_0_2[2];
int SPC_i_0_0;

SPC_s_0_2[0] SPC_i_0_0 16;
SPC_i_0_0 (SPC_i_0_0 & 0xffff)

SPC_s_0_2[1] 16;



750 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 6, DECEMBER 2001

Fig. 5. Encoding of pointers in an array.

Note that the expression (*(int *)s ) in a load or a store
would lead to an implementation using the concatenation
{SPC_s_0_2[0], SPC_s_0_2[1]} , as in Example 7.

Loads and stores from pointers to multiple locations are re-
placed by a set of assignments in which the locations are dy-
namically accessed according to the pointer’s value.

The addresses (i.e., pointers’ values) are encoded. The en-
coded value of a pointerp consists of two fields: thetagp.tag
(left part of the code) corresponds to the location set referenced
by the pointer and theindexp.index (right part of the code)
stores the number of bytes corresponding to the data referenced
within the location set. After encoding, the size of the pointers
(tag part) can be reduced as shown in [17], [18]. However, in
order to support type casting and out-of-bound array accesses,
we assume that pointers have a fixed size of 32 bits. In the rest
of this paper, the size of the tag and the index are supposed to
be equal to 16 bits.

The indexpart is stored within the first bits (least significant
bits) of the code to support pointer arithmetic and type casting.
An example of implementation for an array of pointers is rep-
resented on Fig. 5. It is important to note that with this imple-
mentation, pointer arithmetic, even performed after type casting
from pointer type to integer type, is straightforward to imple-
ment.

Loadsandstorescan then be removed using temporary vari-
ables and branching statements.

Example 9: In the code segment below, the pointerp may
point to the location setsits , 0, 2 and b, 0, 4 .

int *p;
struct {int i; short ts[2];} its;
int b[5];

if(…)
p &its.i;

else
p &b[2];

p p 1;
out *p;

The resulting code after removing the load and store is the
following:

int SPC_p_0_0;
short SPC_its_0_2[4];
int SPC_b_0_4[5];

if(…)
// p.tag 0 // p.index 0
SPC_p_0_0 0 < <16 0;

else

// p.tag 1 // p.index 2 * 4
SPC_p_0_0 1 < < 16 8;

SPC_p_0_0 SPC_p_0_0 4; // p p 1;

if( SPC_p_0_0 > > 16 0 ) //
(p.tag 0)
// out {SPC_itc_0_2[p.index/2],
// SPC_itc_0_2[p.index/2+1]};
out SPC_its_0_2[

SPC_p_0_0&0xffff > >1
] 16

SPC_its_0_2[ SPC_p_0_0&0xffff > >
1 1];

else // (tag 1)
// out SPC_itc_0_2[p.index/4]
out SPC_b_0_4[ SPC_p_0_0&0xffff > >2
];

The resolution of pointers can be further optimized. Loads
and stores can be optimized when the pointers’ location set has
a stride null (i.e., case of a scalar variable) [17]. Encoding tech-
niques [18] can also be to used reduce the size of the pointers’
value (tag part).

C. Resolution ofmalloc and free

In order to support dynamic memory allocation and deallo-
cation, the hardware needs to access an allocator. In general, the
allocator could be implemented in software (for mixed hard-
ware/software implementations) or completely in hardware.
For example, in a mixed hardware/software implementation,
the hardware can send an interrupt to the processor to perform
memory allocation and deallocation. In the case of an alloca-
tion, the software, typically the operating system running on
the processor, would then send the address of the allocated
block in memory to the hardware. Since this paper is on the
hardware synthesis of C code, only a hardware implementation
is presented. Nevertheless, the techniques presented here could
also be targeted to a software implementation.

In software,malloc and free are implemented as stan-
dard library functions. Similarly, for hardware synthesis, we use
a library of hardware components implementingmalloc and
free . The idea here is to have one component, calledallo-
cator, implementing both themalloc andfree functions, as
introduced in Section II. In order to efficiently manage memory,
we want to support multiple customized memory allocators that
may allocate storage in multiple memories in parallel. As a re-
sult, we partition the memory space in which data are dynam-
ically allocated (heap space) into a set ofmemory segments
(pools of blocks).

Definition 1: A memory segmentis defined as an array of
finite size in which data are allocated by a unique allocator. This
array may later on be mapped to one or more memories during
high-level synthesis.

In our tool, the partitioning of the memory into the different
memory segments is done by the designer. Other tools could be
used to assist this task at the system level. For example, tools



SÉMÉRIA et al.: SYNTHESIS OF HARDWARE MODELS IN C 751

such as the one defined in the Matisse research project10 [28],
[29] could be used in order to refine data structures and define
different arrangements and architectures of hardware memory
allocators.

For eachmalloc in the code, the designer selects in which
memory segment the storage is allocated. Since the size of the
dynamically allocated memory cannot be found by static anal-
ysis, the designer also sets the size of each memory segment
manually. The tool instantiates then the hardware memory allo-
cators corresponding to each memory segment and synthesizes
the appropriate circuit to allocate, access, and deallocate data.

For each memory segment, a different allocator is instanti-
ated. Eachmalloc mapped to this memory segment is then re-
placed by a call to the specific allocator. The pointer that takes
the result of themalloc function is defined as follows: itstag
is set according to the corresponding memory segment and its
index is set by the allocator. When multiplemalloc calls are
mapped to a single memory segment, the corresponding allo-
cator is shared.

For a callfree(p) , the data to be deallocated may be in
one memory segment or another depending on the value of the
pointerp. We generate branching statements in which the dif-
ferent allocators corresponding to the different memory seg-
ments may dynamically be called according to the pointer’stag.
The pointer’sindexis then sent to the allocator to indicate which
block should be deallocated. Loads, stores, and addresses are
resolved as shown in the previous section. Examples 10 and 11
illustrate howmalloc and free calls are resolved while re-
moving pointers.

Example 10: Consider the following code segment:

p malloc(1);
out *p;
free(p);

If malloc is mapped to a memory segment called seg1 of
size 32 bytes, we generate the following code (assuming that
the size ofchar is one byte):

char seg1[32]; // memory segment: seg1
p_0_0 alloc_seg1(SPC_MALLOC,1);
out_0_0

seg1[p_0_0 0xffff]; // seg1[p.index]
alloc_seg1(SPC_FREE,p_0_0);

The allocator component corresponding to the function
alloc_seg1 is called for both malloc and free . It
implements both the allocation and deallocation functions.

Example 11: Let us now consider a more complex example
where pointerp may point to different memory segments:

if(i 0)
p malloc(1); // malloc1

else
p malloc(4); // malloc2

10See http://www.imec.be/matisse/

Fig. 6. Architecture for multiple memories and allocators.

out *p;
free(p);

We assume thatmalloc1 is mapped to the memory segment
seg1andmalloc2is mapped to the memory segmentseg2. Both
memory segments are of size 32 bytes (set by the user). The re-
sulting code, after removingmalloc/free , is the following:

char seg1[32];
char seg2[32];
if(i 0) {

p_0_0 alloc_seg1(SPC_MALLOC,1);
} else {

p_0_0 alloc_seg2(SPC_MALLOC,4);
}
…
if(p_0_0 > > 16 0) // p.tag 0

out_0_0
seg1[p_0_0&0xffff]; // seg1[p.index]

else
out_0_0
seg2[p_0_0&0xffff]; // seg2[p.index]

…
if(p_0_0 > > 16 0) // p.tag 0

alloc_seg1(SPC_FREE,p_0_0);
else

alloc_seg2(SPC_FREE,p_0_0);

If each memory segment is mapped to a different RAM during
synthesis, we end up with the architecture shown in Fig. 6.

V. LIBRARY OF ALLOCATORS AND OPTIMIZATIONS

In the previous sections, we have seen howmalloc and
free can be implemented using hardware memory allocators.
Each allocator can perform both memory allocation and deal-
location. We provide a library of such allocators. The designer
has then the freedom to pick the allocator architecture most suit-
able to the application. Our library of allocator components con-
tains three basic types of allocators. In Section V-A, we define
asgeneral-purposean allocator that can allocate blocks of any
size. In addition, we introduce here anoptimized general-pur-
pose allocator,for which the deallocation scheme is optimized
for latency. When the size of the block to be allocated is a fixed
constant, the architecture of the allocator can be greatly simpli-
fied. Thespecific-purpose allocatorpresented in Section V-B
can be used in such case.

The designer could also add new allocators in the library. The
basic allocators presented here may be modified (e.g., to change



752 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 6, DECEMBER 2001

Fig. 7. Architecture of an optimized general-purpose allocator.

the allocation or deallocation schemes, allocate a larger number
of blocks, or handle new sizes of elements) and added to the
library. Other types of allocators, such as those described by
Changet al. [2] and Wuytacket al. [29], could also be added
to our framework as new components in the library.

In some cases, the code can also be optimized. Calls to
malloc and free can be removed and memory allocation
can be done statically. In Section V-C, we present a compiler
technique to automatically remove some of the dynamic
memory allocations for sequences ofmalloc andfree .

A. Optimized General-Purpose Allocator

General-purpose allocators are defined as allocators that may
allocate blocks of various sizes. These allocators consist of the
circuit that performs allocation/deallocation and two lists that
keep track of the free blocks and the allocated blocks inside of
the memory segment. To allocate memory, the size of the block
to be allocated (malloc_size) is sent to the allocator. The allo-
cator then searches in its free list a big enough block and returns
the address corresponding to the beginning of this block in the
memory segment. In our implementation, the first acceptable
free block is returned (first fit). The block that has just been al-
located is then added to the list of allocated blocks. To free pre-
viously allocated memory, the address of the block to be deal-
located is sent to the allocator. The allocator then searches this
block inside of its list of allocated blocks and adds it back to the
free list. Adjacent free blocks are then merged.

In order to simplify the process of looking up for a given
block during deallocation, we propose to encode the character-
istics of the allocated block inside of the pointer’stag. In our
implementation shown in Fig. 7, the allocator stores the list of
allocated blocks in an array. The index corresponding to the al-
located block in this array is then encoded in the pointer’s value.
During deallocation, this index is sent to the allocator. The allo-
cator can then directly find the allocated block according to this
index, without having to search the entire array. The resulting
optimized allocator is calledoptimized general-purpose.

The encoded value of a pointer consists then of three fields:
theallocation tag,thetag,and theindex. For a pointerp, thetag
p.tag and theindexp.index are defined as in Section IV-B.
Theallocation tagp.alloc_tag corresponds to the index of

Fig. 8. Encoding of pointers in an array for optimized general-purpose
allocator.

the block inside of the list of allocated blocks. In our implemen-
tation, the allocation tag corresponds to the 8 most significant
bits in the pointer’s value, the tag corresponds to the following 8
bits, and the index corresponds to the 16 least significant bits (as
defined in Section IV-B). Fig. 8 shows how the different fields
are laid out for an array of pointers.

B. Specific-Purpose Allocator

The malloc function takes one argument: the size of the
block to be allocated. When this size is a unique constantfor
all malloc calls mapped one memory segment, this memory
segment can then be represented as an array of elements of size

. Allocating memory in this segment can simply be performed
by returning the first available element in the array. For dealloca-
tion, the array element to deallocate can easily be derived from
the block address. The architecture of the corresponding allo-
cator can then be simplified. For example, a simple bit vector
can be used to keep track of the allocated and free blocks in
the memory segment. Such an allocator, which can only deal
with blocks of one size, is calledspecific-purpose. Using a spe-
cific-purpose allocator solves also the problem of memory frag-
mentation common to general-purpose allocators.

Constant propagation can be performed before selecting the
allocator in order to have as manymalloc s as possible with
constant size.

C. Optimizing Sequences ofmalloc and free Calls

Some of the dynamic memory allocations are sometimes
not necessary and can be automatically removed at com-
pile time. This is especially true for legacy code, in which
malloc/free are used to manually control storage. The idea
here is to analyze to code and isolate the finite sequences of
malloc calls that can be replaced by references to statically
allocated data.

Example 12: Consider the following code segment:

p[1] malloc(4); // malloc1
p[2] malloc(8); // malloc2
…
free(p[1]); // free1
free(p[2]); // free2

In this example, a finite number of objects (two) are allocated
by malloc1 and malloc2. Later on, these blocks are freed by
free1and free2. The dynamic memory allocation in this case
can be optimized by creating the two temporary array elements
tmp_malloc 1[4] and tmp_malloc 2[8]. The size of these
elements corresponds to the size of the object allocated at each
malloc . Themalloc calls are then replaced by references to
these temporary variables and thefree calls are removed. We



SÉMÉRIA et al.: SYNTHESIS OF HARDWARE MODELS IN C 753

end up with the following code segment in which memory is
statically allocated:

char tmp_malloc1[4];
char tmp_malloc2[8];
p[1] tmp_malloc1; // malloc(4)
p[2] tmp_malloc2; // malloc(8)
…
// free(p[1]);
// free(p[2]);

The optimization can be performed under two conditions.
First, the size of the block to allocate has to be constant. If
the size of the block to allocate is not known at compile time,
a general-purposeor optimized general-purposeallocator
would have to be used. Second, if a block is allocated within
an unbounded loop, it has to be deallocated within the same
unbounded loop. Using the results of the pointer analysis, we
have implemented a dataflow analysis [12] that finds at compile
time themalloc and free calls that can be optimized (i.e.,
removed).

We outline briefly how the analysis is conducted. For each dy-
namically allocated location set (i.e., eachmalloc call in the
example), a counter is defined. The analysis steps through the
flowgraph of the procedure. The counter is incremented each
time an element of the corresponding location set is allocated.
Subsequently, each time an element of the location set is deallo-
cated (result from the pointer analysis), the associated counter is
decremented. Location sets allocated and not deallocated within
the same loop can be found. Themalloc and free corre-
sponding to these locations cannot be optimized. Otherwise,
they can be optimized.

During the optimization, a temporary variable is created for
eachmalloc that can be removed. The size of each temporary
variable corresponds to the size in themalloc call. These tem-
porary variables are then statically allocated during synthesis.
The correspondingfree calls are removed.

VI. I MPLEMENTATION AND RESULTS

A. Toolflow

In the previous sections, we have shown how pointers,
malloc/free, and complex data structures can be resolved
at compile time. A methodology to efficiently map C code
onto hardware was also presented. At the system level, data
structures are refined and a memory architecture is defined.
At the architectural level, the system consists of a set of
communicating processes. Each of these processes can then be
mapped to software or hardware.

Several tools can be used in this methodology. For memory
management at the system level, tools are used to help in re-
fining data structures [28] and defining a memory architecture.
Once an architecture is defined, high-level synthesis tools can
be used to map functionality onto hardware. These high-level
synthesis tools may also perform memory assignment, address
generation, and scheduling of memory accesses [1], [14]. Our

Fig. 9. Resolution of dynamic memory allocation and pointers for hardware
synthesis from C.

toolflow is shown on Fig. 9. Our tool SpC takes a C function
with complex data structures and generates a Verilog module.
As a front end to high-level synthesis, it is the first step for map-
ping C code involving pointers and dynamic memory allocation
onto hardware. SpC can be seen as a back end to the system-level
tools presented above. Such tools can help define a memory ar-
chitecture and an arrangement of hardware memory allocators
(memory binding).

The different techniques presented in Sections IV and V have
been implemented using the SUIF compiler environment11 [27].
The memory representation, consisting of distinct location sets,
is used to map memory locations onto variables and arrays in
Verilog. The resulting Verilog module can then be synthesized
using the Behavioral Compiler of Synopsys.

In addition to the C input function, a set of memory segments
as well as the mapping of eachmalloc call to one of these
memory segments (memory binding) must be defined. We first
try to remove some ofmalloc/free calls using the optimiza-
tion in Section V-C. The remainingmalloc/free s are then
replaced by calls to a custom allocator function (specific-pur-
pose, general-purpose, or optimized general-purpose). During
memory partitioning, locations represented by location sets with
a stride null are mapped to variables of fundamental type (e.g.,
char, short, int ), and locations represented by location
sets with nonzero stride are mapped to arrays derived from a fun-
damental type (e.g., array ofint ). Pointers are removed and the
code gets translated into Verilog. Each type of allocator is de-
fined as a hardware component in our library. During the trans-
lation into HDL, the different allocators corresponding to each
memory segment are instantiated and the custom allocator func-
tions are mapped to these allocator modules. The communica-
tion between each allocator and the main module is done using
handshakes. The resulting HDL code can then be synthesized
using traditional high-level synthesis tools.

11See http://suif.stanford.edu/



754 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 6, DECEMBER 2001

TABLE II
IMPLEMENTATION OF THE DIFFERENTALLOCATORS [AREA IN LIBRARY

UNITS USING THE TSMC.35 TARGET LIBRARY; comb. AND noncomb.
REPRESENT, RESPECTIVELY, THE AREA OF COMBINATIONAL LOGIC AND

NONCOMBINATIONAL LOGIC (i.e., REGISTERS, etc.)AT 100 MHz]

We have recently ported our research to the Synopsys Cocen-
tric SystemC Compiler to synthesize C models into hardware
directly, without having to translate C into HDL.

B. Experimental Results and Discussion

For the set of examples presented here, we have synthesized
three types of allocators in our library. In the results presented
in Table II, allocators are designed to allocate up to 16 blocks of
memory. They are synthesized directly from C using SpC and
Synopsys Behavioral Compiler. The general-purpose allocators
usefirst-fit to allocate blocks and merge adjacent free blocks
during deallocation. The first row presents the results for
the general-purpose allocatorwithout any optimization. The
second row shows the size of theoptimized general-purpose
allocator for which the deallocation scheme has been optimized
using the modifiedtag, as presented in Section V-A. Even
though the complexity of the controller is reduced (from 52
states to 46), the size of the optimized allocator is roughly
the same because of an increase in the steering logic. The
latency of the deallocation task is, however, reduced as shown
later in Table III. Finally, the third row presents the results for
the specific-purpose allocatorintroduced in Section V-B. As
expected, its size is much smaller than thegeneral-purpose
allocators.

Table III shows the results for four different examples. The
first two examplestest1and test2consists of threemalloc
calls and twofree calls. All malloc calls allocate objects of
the same constant size. Hence aspecific-purpose allocatorcan
be used. For the first example, all calls tomalloc andfree
can be removed during optimizations. For the second example,
one of themalloc s is called inside of an unbounded loop and
cannot be removed. The third example is a filter used in the
JPEG library of Synopsys COSSAPand is used, for example, for
RGB to YCrCb transformations. The filter implements the op-
eration for ,
where is a 3 3 matrix, and are vectors, and and
are two 3 dynamically allocated matrix. Finally, the last ex-
ample is the implementation of an ATM segmentation engine.
The segmentation engine receives frames to be sent from the
host. These frames are segmented into 48-byte cells (payload
of an ATM cell) to be transmitted on the network. The engine
keeps track of each frame in a queue. For every new frame, a new
virtual connection is opened and a new queue element is allo-
cated. As a result, we have two sets of malloc calls: one to allo-

TABLE III
RESULTS FOR THEDIFFERENTEXAMPLES AND OPTIMIZATIONS (SIZE IN

LIBRARY UNITS USING THEtsmc.35 TARGET LIBRARY; FREQUENCY100 MHz
FORTEST1, TEST2 AND ATM, 50 MHz FORJPEG; CPU TIME FOR SYNTHESIS

MEASURED ONSUN ULTRA2 DOES NOTINCLUDE HIGH-LEVEL SYNTHESIS)

cate queue elements and the other to allocate connection status
records.

For each example, the first set of results illustrates the case
wheremalloc calls are mapped to twogeneral-purposeallo-
cators (no sharing). For the ATM segmentation engine, twospe-
cific-purposeallocators are used instead of thegeneral-purpose
allocators. In the other results, one allocator is shared. As ex-
pected, the latency (measured by simulation at the RTL level)
increases without sharing with a decrease in area. In Table III,
we can also verify that the total latency of the design decreases
when theoptimized general-purpose allocator(gen. alloc. op-
timized) is used. The use of aspecific-purpose allocator(spec.
alloc.) when possible provides significant reduction both in la-
tency and area. Finally, further optimizations can be performed
when sequences ofmalloc and free calls can be removed
(sequence).

VII. CONCLUSION

We have presented how C code with pointers and
malloc/free can be efficiently mapped to hardware.
With our methodology, memory is partitioned into a set of
location sets and pointer analysis is used to define which loca-
tions are accessed and deallocated in the program. Pointers are
synthesized by encoding their values and generating circuits to
dynamically access the different locations they may reference.



SÉMÉRIA et al.: SYNTHESIS OF HARDWARE MODELS IN C 755

Dynamic memory allocation and deallocation are implemented
using one or multiple hardware allocators.

Our toolflow fits into current memory management method-
ology. High-level synthesis is used to map data to multiple mem-
ories, registers, and wires. Different schemes for allocating and
deallocating memory are also supported by adding hardware
memory allocators in our library of allocators. As part of this
library, we have presented an optimized architecture for a gen-
eral-purpose allocator. This optimization consists in encoding
the characteristics of the allocated block referenced as part of
the pointer’s value to speed up deallocation. When the size of
the block to allocate is a fixed constant, a specific-purpose allo-
cator may also be used to optimize both area and latency.

The synthesis of pointers andmalloc/free raises the
level of abstraction at the input of high-level synthesis. It facil-
itates the description and implementation of custom memory
architectures. Models can be described at the behavioral level
using the notions of a single address space and indirect memory
references found in many programming languages. The tech-
niques presented here can be generalized to support more of
the C/C syntax as well as other programming languages,
enabling the mapping of functions and complex data structures
including object-oriented features into hardware.

REFERENCES

[1] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele,
and A. Vandecappelle,Custom Memory Management Method-
ology. Dordrecht, Germany: Kluwer Academic, June 1998.

[2] J. M. Chang and E. R. Gehringer, “A high-performance memory allo-
cator for object-oriented systems,”IEEE Trans. Comput., vol. 45, Mar.
1996.

[3] A. Deutsh, “Interprocedural may-alias analysis for pointers: Beyond
k-limiting,” in Proc. ACM SIGPLAN’94 Conf. Programming Language
Design and Implementation, June 1994, pp. 230–241.

[4] D. Evans, “Static detection of dynamic memory errors,” inProc. SIG-
PLAN Conf. Programming Language Design and Implementation (PLDI
’96), Philadelphia, PA, May 1996.

[5] R. Ghiya and L. Hendren, “Is it a tree, a DAG, or a cyclic graph? A
shape analysis for heap-directed pointers in C,” inProc. 23th Annu. ACM
Symp. Principle of Programming Languages.

[6] A. Ghosh, J. Kunkel, and S. Liao, “Hardware synthesis from C/C++,”
in Proc. Design, Automation and Test in Europe DATE’99, Munich, Ger-
many, 1999, pp. 387–389.

[7] A. Kay, T. Nomura, A. Yamada, K. Nishida, R. Sakurai, and T. Kambe,
“Hardware synthesis with Bach system,” inProc. IEEE Int. Symp. Cir-
cuits and Systems ISCAS’99, Orlando, FL, May 1999.

[8] H. Keding, M. Willems, M. Coors, and H. Meyr, “FRIDGE: A fixed-
point design and simulation environment,” inProc. Design Automation
and Test in Europe DATE’98, 1998, pp. 429–435.

[9] B. Kernighan and D. Ritchie, The C Programming
Language. Englewood Cliffs, NJ: Prentice-Hall, 1988.

[10] L. Lavagno and E. Sentovich, “ECL: A specification environment for
system-level design,” inProc. Design Automation Conf. DAC’99, New
Orleans, LA, June 1999, pp. 511–516.

[11] S. Liao, S. Tjang, and R. Gupta, “An efficient implementation of reac-
tivity for modeling hardware in the scenic design environment,” inProc.
Design Automation Conf. DAC’97, June 1997, pp. 70–75.

[12] S. Muchnick,Advanced Compiler Design and Implementation. San
Francisco, CA: Morgan Kaufmann, 1997.

[13] G. De Micheli, “Hardware synthesis from C/C++,” in Proc. Design,
Automation and Test in Europe DATE’99, Munich, Germany, 1999, pp.
382–383.

[14] P. R. Panda, N. D. Dutt, and A. Nicolau,Memory Issues in Embedded
Systems-on-Chip: Optimizations and Exploration. Norwell, MA:
Kluwer Academic, 1998.

[15] P. J. Plauger,The Standard C Library. Englewood Cliffs, NJ: Prentice-
Hall, 1991.

[16] P. Schaumont, S. Vernalde, L. Rijnders, M. Engels, and I. Bolsens,
“A programming environment for the design of complex high speed
ASICs,” in Proc. Design Automation Conf. DAC’98, San Francisco,
CA, June 1998, pp. 315–320.

[17] L. Séméria and G. De Micheli, “SpC: Synthesis of pointers in C. Appli-
cation of pointer analysis to the behavioral synthesis from C,” inProc.
Int. Conf. Computer-Aided Design ICCAD’98, San Jose, CA, Nov. 1998,
pp. 321–326.

[18] , “Encoding of pointers for hardware synthesis,” inProc. Int.
Workshop IP-based Synthesis and System Design IWLAS’98, Grenoble,
France, Dec. 1998, pp. 57–63.

[19] L. Séméria, K. Sato, and G. De Micheli, “Resolution of dynamic
memory allocation and pointers for the behavioral synthesis from C,” in
Proc. Design Automation and Test in Europe DATE’00, Paris, France,
Mar. 2000, pp. 312–319.

[20] , “Memory representation and hardware synthesis of C code with
pointers and complex data structures,” inProc. Synthesis and System
Integration of Mixed Technologies Workshop, SASIMI’00, Kyoto, April
2000, pp. 43–48.

[21] L. Séméria and A. Ghosh, “Methodology for hardware/software co-ver-
ification in C/C++,” in Proc. Asia South Pacific Design Automation
Conference ASP-DAC’00, Yokohama, January 2000, pp. 405–408.

[22] B. Steensgaard, “Point-to analysis by type inference of programs with
structures and unions,” inProc. Int. Conf. Compiler Construction
ICCC’96, Apr. 1996, pp. 136–150.

[23] K. Wakabayashi, “C-based synthesis with behavioral synthesizer,
cyber,” in Proc. Design, Automation and Test in Europe DATE’99,
Munich, Germany, 1999, pp. 390–391.

[24] P. Wilson, M. Johnstone, and D. Boles, “Dynamic storage allocation:
A survey and critical review,” inProc. Int. Workshop Memory Manage-
ment, Kinross, Scotland, Sept. 1995.

[25] R. Wilson, “Efficient, context-sensitive pointer analysis for C pro-
grams,” Ph.D. dissertation, Stanford Univ., 1997.

[26] R. Wilson and M. Lam, “Efficient context-sensitive pointer analysis
for C programs,” inProc. ACM SIGPLAN’95 Conf. Programming
Languages Design and Implementation, June 1995, pp. 1–12.

[27] R. P. Wilsonet al., “Suif: An infrastructure for research on parallelizing
and optimizing compilers,”ACM SIPLAN Notices, vol. 28, no. 9, pp.
67–70, Sept. 1994.

[28] S. Wuytack, F. Catthoor, and H. De Man, “Transforming set data types
to power optimal data structures,”IEEE Trans. Computer-Aided Design,
pp. 619–629, June 1996.

[29] S. Wuytack, J. da Silva Jr., F. Catthoor, G. de Jong, and C. Ykman,
“Memory management for embedded network applications,”IEEE
Trans. Computer-Aided Design, vol. 18, pp. 533–544, May 1999.

[30] “C Level Design, C2HDL, http://www.cleveldesign.com/,”.
[31] “CoWare, N2C, http://www.coware.com/,”.
[32] “CynApps, http://www.cynapps.com/,”.
[33] “Frontier Design, A/rt Builder, http://www.frontierd.com/,”.
[34] “Synopsys CoCentric SystemC Compiler, http://www.syn-

opsys.com/products/cocentric_systemC/cocentric_systemC.html,”.

Luc Sémériareceived the Engineer degree from the Ecole Nationale Supérieure
des Télécommunications, Paris, France, in 1996 and the M.S. and Ph.D. degrees
in electrical engineering from Stanford University, Stanford, CA, in 1998 and
2001, respectively.

While studying he held several summer positions at Synopsys Inc. He is cur-
rently working on C/C++ design methodology at Clearwater Networks, Inc. His
research interests include areas related to design, verification, and optimizing
compilers.

Koichi Sato received the B.E. and M.E. degrees
in electrical engineering from Waseda University,
Japan, in 1990 and 1992, respectively.

In 1992, he joined NEC Corporation, where
he is an Assistant Manager. In 1999, he was a
Visiting Scholar in the Electrical Engineering
Department, Stanford University, Stanford, CA.
His research interests include system-level design,
hardware/software codesign, timing optimization in
logic synthesis, and layout-driven synthesis.



756 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 6, DECEMBER 2001

Giovanni De Micheli (S’79–M’82–SM’89–F’94) is a Professor of Electrical
Engineering, and by courtesy, of Computer Science at Stanford University, Stan-
ford, CA. His research interests include several aspects of design technolo-
gies for integrated circuits and systems, with particular emphasis on synthesis,
system-level design, hardware/software codesign, and low-power design. He is
the author ofSynthesis and Optimization of Digital Circuits(New York: Mc-
Graw-Hill, 1994) and coauthor of four other books. He was also Co-Director of
the NATO Advanced Study Institutes on Hardware/Software Co-Design, held
in Tremezzo, Italy, 1995, and on Logic Synthesis and Silicon Compilation, held
in L’Aquila, Italy, 1986.

Dr. De Micheli received a Presidential Young Investigator award in 1988. He
received the 1987 IEEE TRANSACTIONS ONCOMPUTER-AIDED DESIGN/ICAS
Best Paper Award and two Best Paper Awards at the Design Automation Con-
ference, in 1983 and in 1993. He received the IEEE/CAS Golden Jubilee Medal
for his outstanding contribution to the IEEE/CAS Society in 2000. He was Vice
President (for publications) of the IEEE CAS Society from 1999 to 2000. He
is the Editor of the IEEE TRANSACTIONS ONCOMPUTER-AIDED DESIGN/ICAS.
He was the Program Chair and General Chair of the Design Automation Con-
ference (DAC) in 1996–1997 and 2000, respectively. He was also Program and
General Chair of International Conference on Computer Design (ICCD) in 1988
and 1989, respectively.


