
REDUCING POWER CONSUMPTION is a chal-

lenge to system designers. Portable systems, such

as laptop computers and personal digital assis-

tants (PDAs), draw power from batteries, so

reducing power consumption extends their oper-

ating times. For desktop computers or servers,

high power consumption raises temperature and

deteriorates performance and reliability. Soaring

energy prices early last year and rising concern

about the environmental impact of electronics

systems further highlight the importance of low

power consumption.

Power reduction techniques can be classi-

fied as static and dynamic. Static techniques,

such as synthesis and compilation for low

power, are applied at design time. In contrast,

dynamic techniques use runtime behavior to

reduce power when systems are serving light

workloads or are idle.1 These techniques are

known as dynamic power management

(DPM).2 DPM can be achieved in different ways;

for example, dynamic voltage scaling (DVS)

changes supply voltage at runtime as a method

of power management. Here, we use DPM

specifically for shutting down unused I/O

devices. We built an experimental environment

on a laptop computer running Microsoft

Windows. We implemented existing power-

management policies and quantitatively com-

pared their effects on power saving and perfor-

mance degradation. A qualitative survey of

power management is available in Benini et al.2

Power management
System-level power management saves

power of subsystems (also called devices).

Examples of devices include I/O controllers,

hard disk drives, network interface cards, and

displays. Shutting down hard disks and displays

is the most widely adopted system-level power

management on PCs.

Figure 1 illustrates the concept of power

management. A workload consists of multiple

requests. For hard disks, requests are read or

write commands; for network cards, requests

are packets to send or to be received. When

there are requests, the device is busy; other-

wise, it is idle. Here, the device is idle between

T1 and T4. When the device is idle, it can be shut

down to enter a low-power sleeping state. (The

“Standby or Sleeping?” sidebar discusses how

this work views these states.) In this illustration,

the device is shut down at T2 and woken up at

T4, when requests arrive again. Changing power

states takes time; Tsd and Twu are the shutdown

and wake-up delays. In the example of hard

disks and displays, it takes several seconds to

wake up these devices. Furthermore, waking

up a sleeping device may take extra energy.

In other words, changing power states has

overhead. If there were no overhead, power

management would be trivial: Just shut down

a device whenever it is idle. Unfortunately,

there is delay and/or energy overhead.

Consequently, a device should sleep only if the

Comparing System-Level
Power Management Policies

System-Level Power Management

10

System-level power management is a trade-off

among several factors, as this quantitative

analysis shows.

Yung-Hsiang Lu

Giovanni De Micheli
Stanford University

0740-7475/01/$10.00 © 2001 IEEE IEEE Design & Test of Computers

saved energy justifies the overhead. The rules

to determine whether to shut down a device

are called policies. For simplicity, this article

addresses only one device and one stream of

requests. Because power management does

not change requests, we are concerned about

only the power when a device is idle in either

the working or sleeping state. We don’t consid-

er the power required to serve requests.

Power management degrades
performance

After a device sleeps, at least one request

has to wait for the wake-up delay. Some

researchers propose predictive wake-up to

eliminate such waiting.3 Unfortunately, accu-

rate prediction is difficult. Waking up too early

wastes power; waking up too late does not elim-

inate waiting completely. Hence, this article

does not discuss predictive wake-up.

Performance for interactive workloads
Many policies focus on power saving and

ignore the performance impact, especially per-

formance for interactive systems. While perfor-

mance metrics for batch-mode workloads such

as the SPEC4 benchmarks have been widely

accepted, there are no universally adopted met-

rics for interactive workloads. This is partly

because of the difficulty in objectively quanti-

fying user perception. We discuss these differ-

ences in the “Repeatable Workload” sidebar.

One simple performance metric is average

delay: (the number of shutdown commands ×
state transition delay)/total execution time.

However, when users interact with computers,

they are concerned about worst-case as well as

average-case waiting. Worst-case performance

raises questions such as “What is the longest

possible waiting time within five minutes?” or

“How often do I have to wait while editing this

file?” These differ from batch mode perfor-

mance questions such as “How many transac-

tions can this computer finish today?” Many

users understand that occasional delays are

unavoidable and tend to be forgiving if they

occur infrequently. If delays occur frequently,

however, user satisfaction drops dramatically.

We call this phenomenon short-memory effect:

Users forget delays that happened a long time

11March–April 2001

Time
Idle

Tsd Twu

T1 T2 T3 T4

Sleeping

Requests

Busy

Working

Requests

Busy

Working

Workload

Device

Power state

Figure 1. Power management from the workload, device, and

power state points of view.

Standby or Sleeping?
Some devices have multiple low-power states. For

example, some hard disks have a standby state and a
sleeping state. These disks consume less power in their
sleeping states compared to the standby states.
However, a sleeping disk requires a hardware reset to
wake up; a standby disk does not need resetting. Most
power management policies assume only one working
state and one sleeping state. The device can serve
requests only in the working state. In this article, we
make the same assumption and use sleeping for the
low-power state. For hard disk drivers, this may actually
refer to the standby state shown in the manufacturer’s
specification.

Repeatable Workload
Repeatable workloads for interactive systems are different from

computation-intensive workloads, such as the SPEC benchmarks.
These benchmarks issue requests continuously to keep systems at
peak performance. In contrast, interactive systems are mostly idle,
waiting for user inputs. User inputs are extremely unrepeatable. It is
nearly impossible to ask a user to repeat exactly the same inputs at
the same speed. We conquer this problem by recording user activi-
ties through a filter driver and creating a one-day trace. The trace
includes all disk accesses with time stamps at 10 ms intervals.

In our experiments, we use two computers for measurement. The
first computer replays the trace while one of the policies is running.
Another computer detects the hard disk’s power state changes on
the first computer and records the time stamps of these changes.
This method reduces the interference of policies and data recording
on regenerating the requests from the trace.

We compute the power of a policy by (Pw × time in the working state
+ Ps × time in the sleeping state + Eo × the number of shutdowns) /
total time. This excludes the power while the disk is reading or writing
data because power management does not change requests.

ago. Figure 2 illustrates this concept. If the time

between two delays is too short, users remem-

ber two consecutive delays and feel dissatis-

fied. When the time between two delays is

longer, user memory decays and users will

accept the second delay’s occurrence.

We propose a new way to quantify perfor-

mance in interactive systems. It measures the

longest shutdown sequence in which the time

between two adjacent shutdowns is less than

threshold th, shown in Figure 2.

Policy classification and
representative policies

Power management policies can be classi-

fied into three categories based on the methods

to predict whether a device can sleep long

enough. These categories are time-out, predic-

tive, and stochastic.

Time-out
A time-out policy has a time-out value τ.

Time-out policies assume that after a device is

idle for τ, it will remain idle for at least Tbe. An

obvious drawback is the energy wasted during

this time-out period.

Time-out-based policies include fixed-time-

out, such as setting τ to three minutes. This is

widely adopted in commercial products. In

Microsoft Windows, users can set the time-out

values for hard disks and monitors in the con-

trol panel. Alternatively, time-out values can be

adjusted at runtime. For example, one adaptive

time-out policy (ATO) adjusts τ by the ratio of

τ and the previous idle period.5 If the ratio is too

small, this policy increases τ; if the ratio is too

large, it decreases τ.

Some time-out policies consider the variations

of hardware parameters. These device-depen-

dent time-out (DDT) policies select τ based on

the break-even time of the device under control.

(For an explanation, see the “Break-Even Time”

sidebar.) It can be proved that a policy using τ =

Tbe will consume at most twice the energy of an

ideal “oracle” policy. We explain the oracle pol-

icy in the “Oracle Power Manager” sidebar.6,7

Predictive
These policies predict the length of an idle

period before it starts, eliminating the time-out

period (T2 − T1 in Figure 1).8 If an idle period is

predicted to be longer than the break-even

System-Level Power Management

12 IEEE Design & Test of Computers

Time between
consecutive delays

Unhappy
Very

unhappy

th

D
eg

re
e

of
 u

se
r

di
ss

at
is

fa
ct

io
n

Forgiving

Figure 2. Relation between user dissatisfaction and delay. User

memory decays with time; the longer the time between delays, the

more forgiving the user.

Break-Even Time
Power management is a prediction problem; it seeks to forecast

whether an idle period will be long enough to compensate for the
overhead of power state changes. The minimum length of an idle
period to save power is called the break-even time (Tbe).2 It depends
on individual devices and is independent of requests. Consider a
device whose state transition delay is To (including shutdown and
wake-up delays) and the transition energy is Eo. Suppose its power
in the working and sleeping states is Pw and Ps. On the left of Figure
A, the device is kept in the working state; on the right, the device is
shut down. The break-even time makes energy consumption in both
cases equal. Namely, Pw × Tbe = Eo + Ps × (Tbe − To) or Tbe = (Eo − Ps ×
To)/(Pw − Ps). The break-even time has to be larger than the transition
delay; therefore, Tbe = max[(Eo − Ps × To)/(Pw − Ps), To].

It also is convenient to define the minimum sleeping time (Tms) as
the shortest duration in the sleeping state to save power. It excludes
the transition delay: Tms = Tbe − To. In Figure 1, the device does not
sleep immediately after it is idle. Its duration in the sleeping state is
more important than the length of this idle period. Power management
polices predict whether T4 − T3 > Tms instead of whether T4 − T1 > Tbe.

Figure A. Tbe makes the energy consumption equal.

Time TimeTbe Tsd Twu

Esd Ewu

Pw
Ps

Power Power

time, the device sleeps right after it is idle.

Requests make a device change between

busy and idle. The lengths of busy and idle peri-

ods form two sequences: B[1], B[2], ... and I[1],

I[2],... . Let B[n] be the busy period before idle

period I[n] for any integer n. One study finds

that busy and idle periods form an “L” shape.9

Figure 3 shows our measurement of the rela-

tionship between B[n] and I[n]; this is consis-

tent with the finding in Srivastava.9 Short busy

periods are followed by long idle periods (left

vertical stroke of the L); long busy periods are

followed by short idle periods (horizontal stroke

of L). Therefore, the L-shape policy shuts down

a device if it is busy for only a short period of

time.9 However, this policy does not handle the

situation when short busy periods are followed

by short idle periods near the origin (lower left

corner of L when two strokes intersect).

Some other predictive policies use only past

idle periods to predict the length of future idle

periods. Adaptive learning tree (LT) encodes

the sequence of idle periods into tree nodes.10

This policy predicts the length of an idle period

with finite-state machines similar to multibit

branch prediction in microprocessors. If an idle

period is predicted longer than Tbe and it is

indeed longer than Tbe, the confidence level

increases; otherwise, the confidence level

decreases. This policy uses the history encod-

ed on the nodes and the confidence level to

compute a node traversal path and to deter-

mine the power states for future idle periods.

Another predictive policy uses the predicted

and the actual lengths of a previous idle period.3

Suppose ρ[n] is the prediction for I[n], then ρ[n

+ 1] = a × I[n] + (1 − a) × ρ[n]; here a is a con-

stant between zero and one. This policy is

called exponential average (EA) because ρ[n +

1] essentially is the average of I[1], [2], ..., I[n]

weighted by an exponential sequence if we

repetitively replace ρ: ρ[n + 1] = (1 − a)n+1 ρ[0] +

a Σn
i = 0 (1 − a)i I[n − i]. This policy also limits the

speed of growth for ρ, ρ[n + 1] ≤ c × ρ[n] for a

constant c > 1, so that the prediction is not dom-

inated by one exceptionally long idle period.

Stochastic
Stochastic policies model the arrival of

requests and device power-state changes as

stochastic processes, such as Markov process-

es. Minimizing power consumption is a sto-

chastic optimization problem. A simple

stochastic policy models requests and power-

state transitions as stationary discrete-time

Markov (DM) processes.11 At any given time, a

request arrives with a probability; the device

sleeps with another probability. The optimal

probability for the device to sleep can be

obtained by solving the stochastic optimization

problem. Such a solution is valid only for geo-

metrically distributed stationary stochastic

processes. There are two ways to generalize this

model: extending it to other stochastic models

and including non-stationary behavior.

The first extension can be achieved by using

continuous-time Markov models12 or continu-

ous-time semi-Markov models.13 With these

models, there is no need to evaluate the appro-

priate power states periodically. Instead, the

13March–April 2001

Oracle Power Manager
A device’s power consumption varies widely according to different

policies. A device consumes Pw if no power management is applied.
On the other extreme, we can use an imaginary oracle power man-
ager (OPM) to find the lower bound of power consumption. An OPM
knows perfectly the arrival of future requests. It shuts down the device
immediately after the device becomes idle if this idle period is longer
than the break-even time. Hence, it achieves the best power saving.
Unfortunately, an OPM does not exist in reality; perfectly predicting
the future is impossible. An OPM can be simulated by analyzing a
request trace offline. We use such analyses to find the lower bound of
power consumption as a reference point for comparison.

Figure 3. Relation between busy and idle periods forms an “L”

shape.

10,000

1,000

100

10

1

Id
le

 p
er

io
d

(s
)

0 10 20 30 40 50 60

Busy period (s)

arrival and service of requests are the events

that trigger state transition decisions. Eliminat-

ing periodic state evaluation (as done in DM)

reduces processor power consumption.

Moreover, requests and devices can be mod-

eled by stochastic processes that are not neces-

sarily geometrically or exponentially distributed;

thus Markov processes cannot capture them.

For example, a study finds that the requests for

wireless communication are best modeled by

Pareto distributions. This study proposes the use

of time-index semi-Markov (SM) models and

determines a way to compute optimal policies.14

The second extension considers non-sta-

tionary (NS) requests. One approach computes

the optimal policies in advance for different

sets of arrival rates and stores the results. The

actual rates are estimated at runtime. If the esti-

mated rate is the same as any precomputed

rate, then the precomputed optimal policy is

used. Otherwise, interpolation is applied

between these precomputed solutions to

obtain the sleeping probability.15

Resource requirements
Prediction accuracy and power savings are

two major criteria in choosing an appropriate

policy for specific applications. Resource

requirements also are important, particularly for

portable embedded systems in which resources

are tightly limited. This section compares poli-

cies based on their resource requirements. We

consider memory, computation, and timer.

Memory requirement
Some policies require one-element memo-

ry. For example, timeout policies store τs; sta-

tionary stochastic policies store the optimal

shutdown probabilities. The exponential aver-

age policy stores four values: I[n], ρ[n], a, and

c. In contrast, some polices require a significant

amount of memory. NS stores optimal solutions

of multiple sets of parameters. LT stores the

lengths of idle periods in tree nodes. There is

no explicit mechanism to limit the sizes of the

trees, which can grow arbitrarily large.

Runtime computation
Time-out policies with fixed τs do not need

any computation. The exponential average

requires two multiplications and one addition

to compute ρ[n + 1]. ATO needs one division

for the ratio of τ and the previous idle period to

compute the next τ value. LT requires more

computation to find an appropriate traversal

path along the trees.

Timer generation
A timer is used to create an event in the

future. Timers are important resources espe-

cially for time-constrained systems such as real-

time systems. Timers are essential for time-out

policies. When a device is idle, a timer with

value τ is set. When the timer expires, the device

sleeps. Timers also are used in policies with dis-

crete-time models, such as Markov processes. In

these policies, timers generate periodic events

that trigger power managers to determine

appropriate power states. No study has been

devoted to investigating the optimal periods of

these triggering timers. If the periods are too

short, power managers are triggered too often

and consume too many computation resources.

If the periods are too long, power managers may

miss power-saving opportunities. Some policies

do not require timers; for example, continuous-

time Markov models are event driven.12

Similarly, adaptive learning trees do not need

timers while computing traversal paths.

Implementing policies in Microsoft
Windows

We built an environment to implement poli-

cies for controlling power states of the hard disk

on a laptop computer running Windows 2000.16

Our environment is based on the support of the

Advanced Configuration and Power Interface

(ACPI).17 ACPI is an interface specification

between hardware and software for system-

level power management. ACPI allows operat-

ing systems to control the power states of

hardware devices. In Microsoft Windows 2000,

ACPI commands are issued by creating I/O

request packets (IRP). As we write this article,

Microsoft Windows are the only commercial

operating systems supporting ACPI. Linux will

support ACPI in kernel 2.4.

Filter driver
We built a template using filter drivers in

System-Level Power Management

14 IEEE Design & Test of Computers

Windows; policies were implemented using

this template. A filter driver is a device driver

inserted between a Windows kernel and anoth-

er device driver (or between two drivers). This

is called attaching on the other driver. The fil-

ter driver intercepts communications between

Windows and the other driver; this filter driver

can pass, add, delete, or change the messages

between the other driver and Windows.

Figure 4 illustrates the process of power

management by a filter driver. A filter driver

attaches to another driver during machine

booting. This is accomplished by calling the

IoAttachDeviceToDeviceStack func-

tion available in Windows Driver Development

Kit (DDK). During initialization, the filter

receives a driver object created by Windows.

The filter specifies which messages to intercept

by providing a filter function. For example, if

the filter wants to intercept read commands, it

assigns a function (FilterReadFunc) to the

function pointer specified by the read major

number (IRP_MJ_READ) of the driver object

(DriObj):

NTSTATUS

FilterRead (IN DEVICE_OBJECT * DevObj,

IN IRP * Irp);

DriObj->MajorFunction[IRP_MJ_READ]

= FilterRead;

When Windows issues a read command,

this filter function is invoked with an IRP as a

parameter. The function can analyze the IRP

and then pass it to the original device driver.

Change power states
A filter driver also can create a new IRP. It

can change the power state of a device by cre-

ating a power IRP, for example:

PoRequestPowerIrp(DevObj,

IRP_MN_SET_POWER,

PowerState,

CompletionCallBack,

......);

This function call creates a power IRP to the

device pointed by DevObj. The second para-

meter specifies that an IRP should be created to

set the power state of this device. The third para-

meter assigns the power state for this device.

ACPI has one working state (PowerDeviceD0)

and three sleeping states (PowerDeviceD1 to

PowerDeviceD3). After the device enters the

desired state, a call-back function specified by

CompletionCallBackwill be invoked. This

allows the filter driver to perform needed tasks

after the device finishes the state transition.

Experimental results
We conduct our experiments on a Sony lap-

top computer, using a test set up as shown in

Figure 5. It has a primary internal hard disk and

can have a secondary external hard disk

through the PCMCIA (PC Memory Card

International Association) interface. We insert

15March–April 2001

Yes

No

Determine power state

Create power IRPShut down?

Observe requests

Attach filter driver

System booting

Figure 4. Power management by filter driver.

Data
acquisition

PC card
extender

PCMCIA-
IDE converter

2.5-inch
disk

Figure 5. Setup for measuring disk power through the PCMCIA

interface.

an Accurite PCMCIA Extender Card between

the laptop computer and a PCMCIA-IDE (inte-

grated drive electronics) converter and con-

nect a standard 2.5” IDE hard disk to the

computer through the converter. The extender

card allows us to measure the power of a hard

disk using a National Instruments data acquisi-

tion card. The laptop computer runs a beta ver-

sion of Windows 2000 (NT 5 beta-2).

Device parameters
Figure 6 shows the transition between power

states of two 2.5” hard disk drives. The first is a

Hitachi DK23AA-60 (6 Gbyte) disk and the sec-

ond is a Fujitsu MHF 2043AT (4 Gbyte) disk.

This figure clearly shows that waking up a disk

takes a significant amount of time and energy.

Furthermore, transient power is more than

twice that in the working state. Transition ener-

gy varies widely even for the same type of

devices. The Hitachi disk’s transition energy is

more than three times that of the

Fujitsu disk. Table 1 summarizes

the parameters of these disks.

From this point on, we discuss

only the Fujitsu disk.

Figure 7 shows the power, num-

ber of shutdowns, and the per-

centage of incorrect shutdowns for each policy

in one day. The power and the number of shut-

downs are normalized with respect to the ora-

cle power manager. The percentage of

incorrect shutdowns is defined as the percent-

age of shutdowns that causes the disk to sleep

for a period shorter than Tms. Figure 8 shows the

lengths of the longest shutdown sequences of

four policies. In this figure, the exponential

average (EA) policy has the worst interactive

performance. It may cause more delays than

other policies, with users experiencing delays

again and again within several minutes.

Grading policies
Power saving and performance of individual

policies depend on workloads. Some policies

(such as EA) are not designed for controlling

hard disks; some of their assumptions may not

be applicable to such devices. We include such

policies in our comparison to understand their

System-Level Power Management

16 IEEE Design & Test of Computers

2.5

2

1.5

1

0.5

0
0 2 4 6 8 10

Time (s)

P
ow

er
 (

W
)

2.5

2

1.5

1

0.5

0
0 2 4 6 8 10

Time (s)

P
ow

er
 (

W
)

2.5

2

1.5

1

0.5

0
0 2 4 6 8 10

Time (s)

P
ow

er
 (

W
)

1.2
1

0.8
0.6
0.4
0.2

0
0 2 4 6 8 10

Time (s)

P
ow

er
 (

W
)

(a) (b)

(c) (d)

Figure 6. State transitions of two hard disks: Hitachi disk (a) wake up and (b) shut down; and Fujitsu disk (c)

wake up and (d) shut down.

Table 1. Disk parameters.

Disk Pw (watts) Ps (watts) Eo (joules) To (s) Tbe (s)

DK23AA-60 0.78 0.39 17.83 10.72 35.0

MHF 2043AT 1.09 0.48 4.82 1.93 6.39

limitations. While the numbers in Figures 7 and

8 vary for different workloads and devices, the

grades are valid for wider ranges because we

consider their properties in addition to the

numbers obtained in our experiments.

Each policy is graded by six criteria: power,

number of shutdowns, shutdown accuracy,

interactive performance, memory requirements,

and computation requirements. We compare

the first two criteria with the oracle policy.

■ Power. If a policy consumes less than 1.15

times as much power compared to oracle,

its grade is A. If it consumes 50% more

power, its grade is C. Otherwise, its grade is

B. A is better than B and B is better than C.

■ Number of shutdowns. If a policy has

fewer shutdowns than oracle, its grade is A.

If a policy has more than 1.5 times as many

shutdowns, its grade is C.

■ Shutdown accuracy. If less than 30% of

shutdown commands cause the disk to

sleep a period shorter than Tms, the grade is

A. If more than 50% of shutdown commands

cause the disk to sleep shorter than Tms, the

policy has grade C.

■ Interactivity performance. We use one

minute as the threshold value in Figure 2 to

quantify interactivity. If the length of the

longest waiting sequence for a policy is

shorter than 10, its grade is A. If the

sequence is longer than 20, its grade is C.

■ Memory requirements. If a policy needs

storage for only one number, its memory

grade is A. If the storage is unbounded, its

grade is C. The memory of a policy is bound-

ed if the bound is explicit in the policy. For

example, exponential average requires the

storage of ρ[n], I[n], a, and c. In contrast,

adaptive learning trees do not specify such

a bound. At runtime, adaptive learning trees

can limit the tree sizes but these limits are

not specified in the policy itself. Similarly,

the nonstationary policy (NS) may precom-

pute as many sets of parameters as desired

and store the results.

■ Computation requirements. If a policy

needs none or only one arithmetic opera-

tion, its grade is A. If the number of opera-

tions is unbounded, its grade is C. We

consider only runtime computation regard-

less of any computation performed in

advance.

Table 2 summaries our grading criteria.

Table 3 (next page) shows the grades we gave

the various policies discussed here.

17March–April 2001

Policy

2.5

2

1.5

1

0.5

0

N
or

m
al

iz
ed

po
w

er
 a

nd
 p

er
fo

rm
an

ce

NS SM DDT LT ATO EA DM

Power
No. of shutdowns
Incorrect shutdowns

Figure 7. Power, number of shutdowns, and percentage of incorrect

shutdowns for each policy. The power and number of shutdowns

are normalized to the oracle policy. Shorter bars are better.

30

24

18

12

6

0

S
eq

ue
nc

e
le

ng
th

NS

LT

DDT

EA

30 60

th (s)

90

Figure 8. Lengths of the longest shutdown sequences for different

th. Smaller numbers a preferable.

Table 2. Grading criteria for policies.

Criteria A grade C grade

Power < 1.15 oracle > 1.5 oracle

No. of shutdowns < oracle > 1.5 oracle

Shutdown accuracy (percentage) > 70 < 50

Interactive performance < 10 when th = 60 > 20

Memory requirements One element Unbounded

Computation requirements One arithmetic Unbounded

Qualitative analysis
The exponential average predictive policy

has many more shutdowns. Most of them actu-

ally waste energy because the disk sleeps short-

er than Tms. However, this policy is not designed

for managing power states of hard disks. It is

designed for X-server and telnet when no

mechanic movements are involved and state

transition overhead is low. This shows the

importance of examining the assumptions and

the limitations of a policy before applying it to a

specific device.

The nonstationary stochastic policy has bet-

ter power-saving ability than the stationary pol-

icy because NS can adjust for changing

workloads; NS and SM also have high grades in

interactivity. We do not find any policy with A

grades in all columns. If a policy aggressively

saves power (such as SM), it is likely to issue

more shutdown commands and degrade per-

formance. On the other hand, a policy can be

conservative in power saving and issue fewer

shutdown commands. While performance and

accuracy improve, these policies consume

more power. Finally, the resource requirements

are also important. The nonstationary stochas-

tic policy has excellent power savings but

requires substantial amount of memory.

Improving prediction accuracy with high-
level information

All policies surveyed in this article share

these assumptions: Request generation can be

modeled by a single requester and observing

request arrival is an effective means for pre-

dicting the lengths of idle periods. A trend in

power management research is to include high-

er-level information, particularly software-based

information from compilers and operating sys-

tems.18 One study classifies requests by process-

es and obtains encouraging results.19 We think

software will play an increasingly important

role in power reduction.

THIS ARTICLE STUDIES system-level power man-

agement policies. We implemented and com-

pared different policies on a laptop computer.

Our experiments show that policy selection is a

trade-off among power saving, performance,

interactivity, and resource requirements. ■

Acknowledgment
This work is supported by the Gigascale

Silicon Research Corp. and the US National

Science Foundation under grant CCR-9901190.

References
1. R. Golding et al., “Idleness is not Sloth,” Usenix

Winter Conf., Usenix, San Diego, Calif., 1995,

pp. 201-212.

2. L. Benini et al., “A Survey of Design Techniques

for System-Level Dynamic Power Management,”

IEEE Trans. VLSI Systems, vol. 8, no. 3, June

2000.

3. C.H. Hwang and A. C. Wu, “A Predictive System

Shutdown Method for Energy Saving of Event-Dri-

ven Computation,” Proc. Int’l Conf. Computer-

Aided Design, IEEE CS Press, 1997, pp. 28-32.

4. Standard Performance Evaluation Corp., http://

www.spec.org.

5. F. Douglis et al., “Adaptive Disk Spin-Down Poli-

cies for Mobile Computers,” Computing Systems,

vol. 8, no. 4, 1995, pp. 381-413.

System-Level Power Management

18 IEEE Design & Test of Computers

Table 3. Grades for the various types of policies.

No. of Shutdown Interactive Memory Computation

Policy Power shutdowns accuracy performance requirements requirements

Nonstationary requests (NS) A A A A C B

Time-index semi-Markov models (SM) A B A A A A

Device-dependent time-out (DDT) A B A A A A

Learning tree (LT) B B B B C C

Adaptive time-out policy (ATO) B A A B B A

Exponential average (EA) B C C C B B

Discrete-time Markov processes (DM) C A C A A A

6. A. Karlin et al., “Competitive Randomized

Algorithms for Non-Uniform Problems,” Algorith-

mica, vol. 11, no. 6, June 1994, pp. 542-571.

7. D. Ramanathan and R. Gupta, “System Level On-

Line Power Management Algorithms,” Proc.

Design Automation and Test in Europe, IEEE CS

Press, Los Alamitos, Calif., 2000, pp. 606-611.

8. J. Wilkes, Predictive Power Conservation, techni-

cal report HPL-CSP-92-5, Hewlett-Packard, Palo

Alto, Calif., 1992.

9. M.B. Srivastava et al., “Predictive System

Shutdown and Other Architecture Techniques for

Energy Efficient Programmable Computation,”

IEEE Trans. VLSI Systems, vol. 4, no. 1, Mar.

1996, pp. 42-55.

10. E.-Y. Chung et al., “Dynamic Power Management

Using Adaptive Learning Tree,” Proc. Int’l Conf.

Computer-Aided Design, IEEE CS Press, 1999,

pp. 274-279.

11. L. Benini et al., “Policy Optimization for Dynamic

Power Management,” IEEE Trans. Computer-

Aided Design of Integrated Circuits and Systems,

vol. 16, no. 6, June 1999, pp. 813-833.

12. Q. Qiu and M. Pedram, “Dynamic Power Manage-

ment Based on Continuous-Time Markov Decision

Processes,” Proc. Design Automation Conf., ACM

Press, New York, 1999, , pp. 555-561.

13. T. Simunic, L. Benini, and G.D. Micheli, “Event-

Driven Power Management of Portable Systems,”

Proc. Int’l Symp. System Synthesis, IEEE CS

Press, Los Alamitos, Calif., 1999, pp. 18-23.

14. T. Simunic et al., “Dynamic Power Management

for Portable Systems,” Int’l Conf. Mobile Comput-

ing and Networking, ACM Press, New York, 2000,

pp. 11-19.

15. E.-Y. Chung et al., “Dynamic Power Management

for Non-Stationary Service Requests,” Proc.

Design Automation and Test in Europe, IEEE CS

Press, 1999, pp. 77-81.

16. Y.-H. Lu et al., “Quantitative Comparison of Power

Management Algorithms,” Proc. Design Automa-

tion and Test in Europe, IEEE CS Press, 2000,

pp. 20-26.

17. Advanced Configuration and Power Interface,

http://www.teleport.com/~acpi/

18. Workshop on Compilers and Operating Systems

for Low Power, http://www.cse.psu.edu/~kandemir/

colp.html, Oct. 2000.

19. Y.-H. Lu et al., “Operating System Directed

Power Reduction,” Proc. Int’l Symp. Low Power

Electronics and Design, ACM Press, New York,

2000, pp. 37-42.

Yung-Hsiang Lu is a PhD
candidate in the electrical
engineering department at
Stanford University. His
research interests include
low-power design, especially

system-level power management. Lu has an MS
in electrical engineering from Stanford University.
He is a student member of IEEE and ACM.

Giovanni De Micheli is
professor of electrical engi-
neering, and by courtesy, of
computer science at Stan-
ford University. His research
interests include several

aspects of design technologies for integrated
circuits and systems, with particular emphasis
on synthesis, system-level design, hardware-
software codesign and low-power design. De
Micheli has a Nuclear Engineer degree from the
Politecnico di Milano and an MS and PhD in
electrical engineering and computer science
from the University of California at Berkeley. He
is the author of Synthesis and Optimization of
Digital Circuits (McGraw-Hill, 1994) and coau-
thor and/or coeditor of four other books and over
200 technical articles. He is member of the tech-
nical advisory board of several EDA companies,
including Magma Design Automation, Coware,
and Aplus Design Technologies.

Direct questions or comments about this arti-
cle to Yung-Hsiang Lu, Room 326 Gates Bldg.,
Computer Systems Laboratory, 353 Serra Mall,
Stanford, CA 94305; luyung@stanford.edu.

19March–April 2001

