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Register-transfer level (RTL) power estimation is a key feature for synthesis-based design
flows. The main challenge in establishing a sound RTL power estimation methodology is the
construction of accurate, yet efficient, models of the power dissipation of functional macros.
Such models should be automatically built, and should produce reliable average power
estimates.

In this paper we propose a general methodology for building and tuning RTL power models.
We address both hard macros (presynthesized functional blocks) and soft macros (functional
units for which only a synthesizable HDL description is provided). We exploit linear regression
and its nonparametric extensions to express the dependency of power dissipation on input and
output activity. Bottom-up off-line characterization of regression-based power macromodels is
discussed in detail. Moreover, we introduce a low overhead on-line characterization method for
enhancing the accuracy of off-line characterization.

Categories and Subject Descriptors: B.5.2 [Register-Transfer-Level Implementation]:
Design Aids; B.6.3 [Logic Design]: Design Aids

General Terms: Design, Simulation, Verification
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1. INTRODUCTION

Managing the rapidly increasing complexity of VLSI and ULSI design is
probably the most severe challenge for today’s digital designers. As technol-
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ogy improves to the point where it is now possible to pack millions of gates
on a single chip, it becomes almost impossible to design every single
functional component in a system at a low level of abstraction. The only
practical way to cope with complexity is to design at high level of abstrac-
tion. Hardware description languages (HDLs) are a key component of the
paradigm shift because they allow us to specify the behavior of a digital
system in a compact and abstract fashion. However, state-of-the-art de-
signs have HDL descriptions of sizes exceeding 100,000 lines, and it is
rapidly becoming unthinkable to develop every design from scratch in the
time imposed by market requirements.

Design reuse is key for rapid and correct development. This observation
is well understood and fruitfully exploited by the software engineering
community, where entire libraries of optimized and well-debugged routines
are available to the software engineer. Hardware design would greatly
benefit from the availability of a similar feature: productivity would im-
prove and debugging time would be much reduced. Recognizing this need,
and the consequent business opportunities, both EDA and hardware com-
panies are focusing on the concept of intellectual property (IP) components,
i.e., reusable functional blocks that can be instantiated within larger
designs. The success of the business model based on IP components
depends critically upon the availability of a well-defined mechanism for
specifying how they can be embedded in a system and what levels of
performance are to be expected.

The recent virtual socket interface (VSI) initiative [VSI Alliance 1997] is
aimed at providing standards for the interface layer between IP providers
and IP users. Similarly to software library routines, the functional inter-
face of IP components must be formally specified, together with a detailed
description of the component’s behavior. Unlike software, however, detailed
information about the cost of instantiating an IP component in hardware
must be provided as well. Cost is related to three fundamental metrics:
speed, power, and area. When instantiating an IP component, a designer
must be able to estimate its delay, power consumption, and area.

We assume a design flow where a system is specified as an interconnec-
tion of digital components whose behavior is described at the register-
transfer level (RTL). Specification and functional verification of RTL de-
signs is much faster than design and verification at the gate level. On the
other hand, a functionally correct RTL implementation gives the designer a
higher degree of confidence because it matches the behavior of the final
implementation at the cycle boundaries. Unfortunately, functional verifica-
tion is not sufficient to validate a design. Accurate estimates of cost metrics
are equally important. Ideally, a designer would like to obtain data on
speed, power dissipation, and area while running functional verification,
with minimal computational overhead. In this work we address the prob-
lem of enabling fast and accurate power simulation at the RT level.

RTL designs are usually described hierarchically. The main challenge in
estimating the power dissipation of a hierarchical design is the construc-
tion of accurate black-box power models for the leaves of the hierarchy, for
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Fig. 1. Schematic representation of a design described at the register-transfer level. The
design is described hierarchically. Leaf components are combinational macros and registers.

which only functional descriptions are available at the RT level. We restrict
our scope to structural RTL representations whose leaf components are
combinational logic blocks (hereafter called macros) and state-holding
elements (registers), as shown in Figure 1. We do not target generic
sequential macros with an unobservable internal state such as the one
represented by the shaded area in Figure 1, which are inherently more
abstract. Such sequential macros can sometimes be further decomposed in
combinational logic blocks and registers. In other cases, however, complex
sequential macros are directly described as black-box RTL primitives. Our
modeling approach is not applicable in these cases because it is based on
the assumption that there is a correlation between input-output activity
and internal power dissipation. For generic sequential primitives this
assumption does not hold.

Combinational macros and registers can be either IP components, which
are externally provided, or application-specific blocks of HDL code, which
are directly provided by the designer.! Similar to the VSI specification [VSI
Alliance 1997], we distinguish two classes of macros: hard and soft.? Hard
macros are components for which the full gate-level implementation is
available, though it is not instantiated at the RT level for efficiency (for
example, consider a multiplier: its functional specification consists of a few
lines of HDL, while its gate-level description contains hundreds of gates).
In contrast, soft macros are synthesizable HDL specifications of hardware
blocks. The gate-level implementation of a soft macro is not available, and
is usually synthesized on the fly whenever the RTL description is compiled
to a gate-level netlist.

The term intellectual property is often used to denote very large (possibly sequential)
components, such as microprocessor cores. We deal with IP components at a finer level of
granularity, namely registers and combinational functional units.

2The VSI specification introduces a third class: firm macros, conceptually a hybrid between
hard and soft macros. For our purposes, firm macros can be seen as hard.
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We propose a power macromodeling approach for RTL designs with the
following salient features:

® Power models for the atomic RTL components (i.e., macros and registers)
are automatically constructed.

® The models can be statically precharacterized once and for all, or they
can be tuned automatically during the design process.

From the designer’s viewpoint, the application of our technique makes it
possible to obtain accurate average power estimates during functional RTL
simulation at the price of a modest increase in simulation time. The only
additional care required is that the simulation patterns provided by the
designer match typical (or expected) usage traces for the target system.
This is an obvious consequence of the fact that power dissipation is strongly
input-dependent, and performing simulation of unlikely or impossible
conditions will produce nonrepresentative estimates of the average power
consumption.

Our approach is based on linear and nonparametric regression models
that exploit the high correlation between power consumption and input-
output switching activities. We first propose an off-line characterization
procedure that is performed only once to compute power models for all
combinational macros and registers in a given RTL library. off-line charac-
terization can be augmented (or replaced) by an on-line, adaptive charac-
terization procedure that either improves the accuracy of precharacterized
macromodels (i.e., performs tuning) or builds the models from scratch on
the fly. On-line characterization requires the availability of a multilevel
simulation engine that supports gate-level as well as RTL simulation. An
interesting feature of regression-based macromodels is that they enable
direct (static) evaluation of the average power consumption, given signal
and transition probabilities at the macros’ boundaries.

Incidentally, we target only average power estimates. Evaluating instan-
taneous and peak power consumption is a different task, and is not
addressed here. Nevertheless, the regression models we propose are all
pattern-dependent in nature, in that they provide pattern-by-pattern power
information during RTL simulation. As shown later, pattern dependence is
a key feature that grants accuracy and flexibility to the average power
estimates. Experimental evidence shows that accuracy is satisfactory (the
error on average power estimates is less than 10% compared to accurate
real-delay gate-level simulations) and the RTL simulation slowdown is very
small.

The paper is organized as follows. In Section 2, the task of RTL power
modeling is formally defined and related work on the topic is reviewed. The
basic theory of models based on linear and non-linear regressions is
presented in Section 3. In the same section, we describe an algorithm for
obtaining average power estimates by providing only input and output
average switching activities. Automatic model tuning during simulation
(i.e., on-line) is addressed in Section 4. An adaptive characterization
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strategy based on the least mean square (LMS) algorithm that greatly
improves the model accuracy with small computational overhead is pro-
posed. We also describe an implementation based on Verilog XL of the
adaptive strategy. Experimental results are presented and evaluated in
Section 5, while Section 6 concludes the work.

2. RTL POWER MODELING

As outlined in the previous section, our purpose is to provide an accurate
and efficient power modeling methodology for combinational (hard and soft)
macros and registers. Consider a macro with n inputs x = [x4, ..., x,]”
and m outputs y = [y1, ...¥n]”. 3 Assume that the circuit is stable at time
t' and ¢/ (t/ > t'), and that an input transition from x’ to x/ occurs in the
time interval T' = [¢!, ¢/]. We call input transition vector the concatenation
of two successive input patterns [x'7, x’7]7 (hereafter denoted (x’, x/) for
simplicity) and by e(x!, x) we denote the supply energy drawn by the unit
in the time interval 7.* The power modeling task consists of finding a
simple but accurate black-box model of e(x’, x') using boundary informa-
tion only (i.e., the knowledge of the inputs and outputs of the unit at time #'
and t/). We call a function e(x/, x/) that associates any input transition
with the corresponding energy consumption provided by gate-level (or
switch-level) power simulation of the implementation of the unit a golden
model. Unfortunately, for real-size circuits, e(x’, x’) is nothing but an ideal
reference, impossible to construct and to be kept in memory.

2.1 Related Work

Two main classes of models have been proposed in the past: pattern-
independent and pattern-dependent models. The distinctive characteristic
of the first class is that the average power dissipation is estimated in one
single model evaluation, and the input information required to perform
evaluation ranges from none to a compact representation of input-output
signal probabilities and switching activities. Pattern-independent models
include the constant power model [Powell and Chau 1990], the dual bit type
model [Landman and Rabaey 1995], and the 3d table model [Gupta and
Najm 1997]. The constant model is highly inaccurate because it does not
account for input statistics. All other approaches take into account input
statistics by assuming the dependency of power dissipation on average
input transition activity and/or probability. However, they still belong to
the pattern-independent class because they cannot be used for pattern-by-
pattern power estimation during simulation. The main limitation of the
dual-bit type method is that it requires direct human intervention for

3Vectors are hereafter denoted by boldface letters, apex 9 denotes the matrix transpose.
“Power consumption corresponding to transition vector (x’, x/) is defined as e(x’, x')/T. In
the following we assume 7 = 1, thus e and p have the same value and can be used
interchangeably.
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Fig. 2. Scatter plot of the difference between the energy dissipation associated with different
input transitions, as a function of the Hamming distance, between the corresponding transi-
tion vectors. Data refers to an 8-bit carry-lookahead adder..

model construction. The 3d table method is completely automated and quite
accurate.

Pattern-dependent models attempt to directly approximate the golden
model. In other words, they provide a function that associates power
dissipation with transition vectors. In order for a model to be practical, the
computation of the function value, given a transition vector, must be fast
(orders of magnitude faster than gate-level simulation). Pattern-dependent
models are represented by the clustering approach proposed by Mehta et al.
[1996] and by the regression-based power macromodeling approach by
Hsieh et al. [1996].

Clustering relies on the assumption that closely related input transition
vectors have similar power dissipations. In our experience, for many
circuits, the assumption is not valid. Consider, for instance, the effect of the
carry-in signal on the power consumption of a full adder. Two transition
vectors that differ only for the value taken by the carry-in bit at time ¢/ give
rise to completely different power consumptions, even if their Hamming
distance is 1. This is shown in the scatter plot of Figure 2 for an 8-bit
carry-lookahead adder. Points in the graph represent the difference be-
tween the energy consumption associated with different input transitions
as a function of the Hamming distance between the corresponding transi-
tion vectors. The correlation between the two quantities is weak. In
particular, the leftmost points in the graph show that the difference
between the energy consumption associated with similar input transitions
may be of the same order as the average energy drawn by the circuit.
Although the authors obtained an average error within 10%—15% on the
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same sample used for characterization, they do not discuss the accuracy’s
dependence on the input statistics. Finally, the model proposed in Mehta et
al. [1996] is strongly pattern-dependent: for each input pattern, a table
lookup has to be performed to obtain the power estimate.

The regression-based approach proposed in Hsieh [1996] is related to
ours, and has been independently (and concurrently) developed. The au-
thors postulate the existence of power macromodels for the primitive
components in an RTL design and propose two techniques for accurately
estimating the average power consumption during RTL simulation with
small overhead, compared to baseline functional simulation. The first
technique, called sampler macromodeling, reduces the runtime overhead by
reducing the number of times the macromodels are evaluated. The second
technique, called adaptive macromodeling, exploits a multilevel simulation
engine for enhancing the accuracy of the macromodels at the expense of a
relatively small runtime overhead. In this work, we first consider the issue
of creating the macromodels whose existence is postulated by Hsieh [1996],
then we propose a model-tuning technique to improve the runtime accuracy
of the models similar to adaptive macromodeling. The differences between
the two techniques will be discussed later in more detail.

Both pattern-dependent and pattern-independent models discussed
above rely on characterization. Model characterization is a process that
improves the accuracy of a power model by exploiting accurate simulations
of the gate-level (or switch-level) implementation of the unit to be modeled,
repeated for a significant set of input transitions (i.e., a sample). Charac-
terization-based approaches are not applicable when a low-level implemen-
tation (the golden model) is not available. Characterization-free informa-
tion-theoretical models have been developed as well [Marculescu 1996;
Nemani and Najm 1996; Lioy 1997]. Such models are based on the
input-output functionality of the macro only, and cannot be used to distin-
guish among alternative implementations of the same functionality. Al-
though information-theoretical models may be used in the early phases of
design exploration, they are quite inaccurate.

2.2 Average Power Estimation

The final goal of our technique is to provide an accurate estimate for a
complex RTL design. The designer starts with an RTL specification (in an
HDL such as Verilog or VHDL), a library of RTL macros, a technology
library of elementary gates (such as NAND, NOR, etc.) and a set of
patterns. The RTL specification is a hierarchical structure whose atomic
components (i.e., the leaves of the hierarchy) are combinational macros and
registers that belong to the RTL library. Such components can be provided
either by IP vendors, from previous in-house designs, or be specifically
designed for the application at hand.

The library of RTL components is precharacterized and initial power
macromodels are obtained for each component (the structure of such
macromodels is described in the following sections). For hard macros, the
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Fig. 3. (a) Static power estimation; (b) dynamic power estimation; (c) dynamic power
estimation with in-situ tuning.

gate-level (or transistor-level) implementation serves as golden model for
macromodel characterization. For soft macros, an implementation in the
target technology library is first synthesized then used as golden model for
characterization.

Our power estimation tool can provide three types of average power
estimates. We describe them in order of increasing accuracy.

® Static power estimation (Figure 3(a)). For each atomic component, signal
probabilities and switching activity values for its inputs and outputs are
collected. This can be done by running RTL functional simulation and
counting the number of times signals have a constant value or a
transition (as suggested in Landman and Rabaey [1995]). Power is
computed in a postprocessing step. For each atomic component, its
macromodel is evaluated only once, providing signal probabilities and
transition activities as inputs. It returns an estimate of the average
power of the atomic component. The average power estimates of all
components are summed to obtain the total average power.

® Dynamic power estimation (Figure 3(b)). Power in a complex design is
obtained by simply running an RTL simulation: the macromodel is
re-evaluated for each transition at the input-outputs of an atomic compo-
nent. It returns an instantaneous power estimate. The instantaneous
power estimates of each component are summed together during simula-
tion to obtain the total power. Finally, the average power is obtained by
computing the ratio between total power and the duration of the simula-
tion.
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® Dynamic power estimation with in-situ tuning (Figure 3(c)). For this
simulation mode, a multilevel (RTL and gate-level or transistor-level)
simulation engine is required. RTL simulation is run. The macromodels
of some (or all) of the atomic components in the design are tuned during
RTL simulation by running gate-level (or transistor-level) accurate
power simulation for the input patterns provided by the RTL simulator.
Tuning improves accuracy of the macromodels but increases simulation
time, hence it should complete as soon as possible. Once the macromodels
are tuned, gate-level simulation is stopped and only RTL simulation
continues. The final estimate of the average power is obtained as for
dynamic power estimation.

Clearly, static power estimation is the fastest. Its overhead over purely
functional RTL simulation reduces to computing signal probabilities and
transition activities. Accuracy losses are mainly caused by (i) inaccuracies
of the macromodels; (ii) loss of information on actual input pattern distri-
bution (signal probabilities and transition activities are a “lossy” descrip-
tion of the input pattern distribution). Dynamic power estimation elimi-
nates the second source of inaccuracy, but requires the evaluation of power
macromodels for each component and each pattern. Hence, it decreases the
speed of RTL simulation. Finally, in-situ tuning reduces the first source of
inaccuracy, but further decreases simulation speed because gate-level
simulation is required to tune the macromodels. Notice that the runtime
overhead of the three techniques could be reduced by applying the sampler
macromodeling technique presented in Hsieh [1996].

In the next sections we focus on the details of power macromodels,
characterization, and tuning. Regarding the choice of the macromodels, our
primary requirements are (i) generality and suitability for automatic
construction; (ii) efficient automatic characterization; and (iii) good accu-
racy. We focus on linear regression models, which are attractive for several
reasons: (i) they are simple to store and evaluate; (ii) they are completely
general; (iii) they do not require any human knowledge to be constructed
and characterized; (iv) they have well-known statistical properties; and (v)
they are suitable for both dynamic and static evaluation. Moreover, they
can be tuned easily by means of efficient adaptive algorithms [Widrow and
Stearns 1985]. Linear regression models (and their non-linear extensions)
are presented in the next section, while on-line tuning is addressed in
Section 4.

3. LINEAR REGRESSION MODELS

In general, the dependence of e on x' and x’ is not linear. Using a linear
function to approximate the behavior of e(x!, x') may lead to more severe
approximations than those provided by clustering [Mehta et al. 1996]. In
both cases, however, the main source of error is use of meaningless
independent variables. Although any transition vector (x/, x) is associated
with a unique value of e, the dependence of ¢ on a single input variable (say
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x,) is almost unpredictable and heavily sensitive to the value taken by
other variables.

More significant independent variables to approximate the pattern-
dependence of e are suggested by the physical understanding of the main
power consuming phenomena for the reference logic family. Referring to
static CMOS logics, we observe that (i) in a combinational circuit some
input has to switch in order to dissipate power; and (ii) the presence of
switching outputs always corresponds to some internal activity. Based on
these observations in Benini et al. [1996], we propose to represent e as a
linear function of input/output switching activities. Symbolically:

e=cytca;+ ... +c,a,+c1@ui1 F oo F Crom@nim (1)
where ¢ = [cq, €1, ..., Chim]’ is the vector of fitting coefficients to be
determined during characterization and a = [ay, a1, ..., @,+m]’ is the

vector of independent variables.® Each variable is a Boolean flag taking a
value of 1 if and only if there is a transition on the corresponding signal:
a, = le D xfl" cees @ = xiz ©® xl:u Api1 = yLI @yg? sy Qpim = yin @yfm

Notice that several transition vectors (x', x/) are associated with the
same configuration of a (i.e., , with the same approximated value of e).
Thus, in principle, the linear model can be viewed as a clustering technique
that associates a unique energy value with a cluster of input transitions.
However, using activity flags as independent variables gives rise to a more
significant partition than that based on the Hamming distance between
transition vectors [Mehta et al. 1996]. This is a key advantage that
ultimately affects accuracy. Moreover, using output transition flags as
additional independent variables actually reduces the cluster size, further
improving accuracy. The correlation between I/O switching activity (ex-
pressed as the total number of input and output signals switching during
the same transition) and power consumption is shown in Figure 4(a) for an
8-bit carry-lookahead adder. Notice that the proposed regression model
provides a deeper insight than the model used in Figure 4(a), in that it
accounts for the activity of single inputs and outputs.

To determine the coefficients of Eq. (1) we need a sample of input-output
activity vectors [a'®, a'¥, ..., a®)]” and corresponding reference values of
the energy [e®, eV, ..., e®]7. The sample of data collected during the
characterization phase can be represented by a pair (A, e). If s is the
sample size, A is an s X (n + m + 1) Boolean matrix containing the
values taken by the independent variables during characterization (its £th

row is a®7 = [1, a\®, o, ..., al¥) 1), while e is a vector of size s contain-

5The choice of independent variables depends on the target technology and logic family. For
instance, the power consumption of precharged CMOS circuits is mainly correlated to the
initial values of the input signals x’. Though we implicitly refer to static CMOS realizations,
the modeling approach we propose can be extended to different technologies and logic families
once a meaningful set of independent variables (a) is chosen.
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ing the corresponding values of the dependent variable (the £th element is
e™) obtained from accurate gate-level power simulation.

Given a sample (A, e), coefficients ¢ are the unknowns of the following
system of linear equations:

e = Ac. (2)

Due to the statistic nature of the characterization process, the sample size
must be significantly larger than the number of parameters to be charac-
terized. Hence, matrix A has many more rows than columns and the linear
system is over-defined. The vector ¢ giving the minimum mean square
error among all possible linear estimators of e can be obtained from Eq. (2)
using well-known least squares fitting techniques [Bowerman and
O’Connell 1990]. An important property of the least squares linear model is
that it always produces an estimate of e with the same average value as the
average value of e in the sample used for fitting. Hence, it is guaranteed to
perform at least as well as an average-value constant approximation.

Moreover, the least squares solution is robust in presence of the noise
made by the dependence of e on parameters that do not take part in the
model (such as the initial input values). If the dependent variable can be
seen as the superposition of a deterministic variable (function of the
independent variables) and a random noise with Gaussian distribution, it
can be shown that the least squares fit maximizes the probability that, for
a given value of the independent variables, the dependent noisy variable
has the value predicted by the least squares solution [Bowerman and
O’Connell 1990]. We checked the Gaussian hypothesis by plotting the
distribution of energy consumption obtained for all input transitions corre-
sponding to the same configurations of a. An example probability distribu-
tion for the same adder mentioned above is shown in Figure 4(b): the
bell-shaped curve closely resembles a Gaussian distribution. Extensive
tests performed on different benchmarks for different values of a provided
similar results.

The experimental evidence we collected suggests that linear models are
accurate for a large class of macros. In practice, as long as linear models
are characterized by means of least squares fitting on a significant sample
of reference data, their power estimates are as accurate as a linear
approximation of a non-linear function can be. Custom-designed macromod-
els can be more accurate than linear ones, but they are not always
available. Linear macromodels represent a generic default solution with
well-known and desirable statistical properties.

However, if the golden model is strongly non-linear, a linear approxima-
tion may produce unacceptably large errors. To improve the accuracy of
linear models, in Benini et al. [1996] we proposed an advanced regression
technique closely related to nonparametric statistical models, known as
regression trees [Breiman et al. 1993]. We called our procedure tree regres-
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Fig. 4. Statistical analysis of the power consumption of an 8-bit carry-lookahead adder. (a)
Correlation between the cycle-by-cycle energy and the I/O activity, expressed as the total
number of switching input/output signals; (b) bell-shaped distribution of the energy consump-
tion due to different input transitions with the same activity vector (namely, a =
(0011001100011011,00101001)).

ston because it recursively builds a tree structure with linear regression
equations on the leaves.

3.1 Tree Regression

The inputs of large logic units can often be grouped into two classes: control
inputs and data inputs. Control inputs have a very strong influence on the
behavior of the units because they select either among different modes of
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Fig. 5. (a) Least squares linear approximation of a non-linear function of two Boolean
variables; (b) exact fit of the same function using two linear equations of variable a;. The
value of a, is used to switch between the two models.

operation (as in ALUs) or among different input-output paths (as in
multiplexers). On the other hand, while high activity on data inputs
usually correlates well with high power dissipation, such behavior is not
observed for control inputs. Following this observation, control inputs can
be used to select among different regression equations. Given a control
variable and a sample, we split the sample in two subsets, one for each
value of the control variable. We then compute two new linear regression
models on the two subsamples.

The advantage of this procedure is intuitively clear. If the behavior of the
logic unit changes radically for different values of the control variable, a
single regression model will attempt to find a linear fit between two widely
spaced clusters of data. As a result, the fitting will not be satisfactory for
either of the two clusters. If we split the data and we separately fit the two
clusters, much better results are obtained. The effectiveness of model
splitting is illustrated in Figure 5 for a two variable function.

In principle, model splitting also addresses nonlinearities. A function e of
Boolean variables a;, as,..., @, is non-linear if and only if it cannot be
decomposed in a sum of terms, where each term depends on a single
variable. In other words, e is nonlinear if and only if there exists an
independent variable (a;) that affects its dependence on some other vari-
ables. In this case, a; plays the role of a control variable. Accuracy can then
be improved by using two different regression models for the two values of a;.

Though we observed that I/O signal values are not significant indepen-
dent variables for regression, they can be natural decision variables for
model splitting. The different operational modes of a functional unit are
usually associated with different configurations of a few control bits.
Hence, both signal transition flags (a) and static signal values (x' and x/)
are candidate variables for splitting. Intuitively, input signal values will be
used to select among the different power models, possibly associated with
the different operational modes of the same unit, while I/O transition flags
(which are the same variables used for regression) will possibly be used as
decision variables to address nonlinearities.
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Fig. 6. A generic regression tree of depth 2.

This reasoning can be extended to multiple control variables in a recur-
sive fashion. Once we have split the data in two clusters, we can split
further if other control variables can be found in the partial models. The
structure generated by the recursive splitting is called a regression tree (see
Figure 6). The internal nodes of the tree are labeled with the control
variables on which we split the model. The leaves correspond to regression
equations with n + m — d independent variables, where d is the number
of transition flags already used as control variables along the path leading
to each leaf. Consider the regression tree of Figure 6. The initial value of
the ith I/O signal is the first control variable. For x! = 1, the model is
further split on the value of the jth transition flag, while for x! = 0, the
second-level splitting variable is a,. At each leaf, a regression equation is
used to represent the dependence of e on those transition flags that have
not yet been fixed along the descending path. For instance, variable a; does
not appear on the rightmost equation, since its value is always 1 when the
equation is used.

The number of leaves is exponential in the depth of the tree. Conse-
quently, the splitting procedure must be limited to a small number of
control variables, both to keep the model small and to guarantee the
statistical significance of linear regressions. In the limiting situation where
all independent variables are used for splitting, the leaves of the tree
become constants. This never happens in practice, since both the memory
requirements for storing the complete tree and the sample size to grant
statistical significance would be excessive.

3.1.1 Splitting Criterion. Since our goal is a black-box modeling proce-
dure, we need an automatic splitting criterion based on boundary informa-
tion. For this purpose we use a statistical approach that can be outlined as
follows: (i) the global regression model is computed; (ii) for each candidate
variable v; (hereafter, v denotes the vector of candidate control variables,
composed of both I/O signal values and activities), the proportion of
variance o7 of the dependent variable e due to v; is computed [Bowerman
and O’Connell 1990]; (iii) the variable with the largest o is chosen for
splitting. The rationale behind this procedure is quite simple. The variance
o? is high if a change in the value of v, is associated to a wide variation of
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e (on average). In other words, if the independent variable v; selects
between two radically different behaviors of the unit, the variance of e due
to v; will be significant.

The advantage of using a statistical method to select the splitting
variables is twofold. No human knowledge is required to steer the charac-
terization process, and the method may also be applied to units with no
evident control signals in order to isolate behaviors with good linearity
characteristics. The automatic splitting process makes our regression non-
parametric. In nonparametric regression, different functional relationships
are approximated with regression models for which not only the fitting
parameters but also the structure of the model itself may change. The
regression tree retains the soundness of linear regression, joined with the
flexibility of nonparametric methods.

The last issue is the choice of the terminating conditions. If the number
of samples is sufficient and the distribution of the samples is uniform, the
user simply specifies the depth value and the procedure automatically
builds a complete regression tree. This is not always the case. Some of the
independent variables are outputs of the module, and the user has no
control on their distribution. Moreover, the input vectors may not be
distributed uniformly. As a consequence, some of the branches may find
singular or statistically nonsignificant least-square matrices. In this case,
the least-square equation of the level immediately above in the tree is used,
with the independent variable used for the last splitting stuck at the value
corresponding to the branch of the tree.

Notice that, in some cases, splitting may not produce any benefit even if
the residual sample size guarantees statistical significance. This happens,
in particular, if the behavior of e is almost linear on the entire sample and
there are no evident control variables. Since we do not want to split when
splitting is not necessary, we take a user-specified threshold value of o} as
additional stopping criterion.

The pseudocode of the tree regression procedure is shown in Figure 7.
The procedure returns the pointer to the top node of the regression tree.
The parameters are the extended sample matrix V containing the values of
all candidate variables (matrix A of independent regression variables is a
submatrix of V); the sample vector e, containing the measured values of
power dissipation; the regression vector computed in the upper level of the
recursion (initialized to NULL when the procedure is first called); the
current level of recursion (initialized to 0); the required depth of the tree
and the threshold value of ¢? (defined by the user). Observe the two base
cases for the recursion: least-square matrix too small (or singular) and leaf
reached. If no stopping criteria are satisfied, the procedure find max
variance  selects the candidate variable v with the maximum o?. Proce-
dure split  selects the rows of V with fixed value v = 0 or v = 1 and the
corresponding elements in e.
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tree RegTree(V, e, cup, level, depth, threshold) {
A = extract_transitions(V); /* Extract the matrix of indep. vars. */
if ( insufficient_sample(A,e) ) { /* Base case: singular matrix */

Node—1leaf = cup;

return(Node) ;
} else {
¢ = compute least square(A,e);
}
if ( (level == depth) || (max_variance(V,e) < threshold) ) {
Node—leaf = c; /* Base case: leaf reached */
} else { /* Recursion: split on the var. with max. e-variance */
v = findmax_variance(V, e);

Node—splitvar = v;

(Vthcn’ethcn) = split(V, e, v=1);

Res = RegTIee(Vthen, €thens C» level+l, depth, threshold);
Node—then = Res;

(Velse’eelse) = split(V, e, v=10);

Res = RegTree(Velse, €olges C» level+l, depth, threshold);
Node—else = Res;

}

return(Node) ;

Fig. 7. Pseudocode of the tree regression algorithm.

We have described the advantages of our method for the case of units
with control inputs. In the discussion of the results, we will see that the
regression tree is useful in general. The choice of the splitting variables is
exclusively based on statistical criteria, thus even units with no evident
control signals may benefit from our technique, which dynamically devel-
ops a model by trying to isolate behaviors with good linearity characteris-
tics.

3.2 Static Power Analysis

Both linear models and regression trees can be easily incorporated in any
RTL simulator to provide pattern-by-pattern power estimates. At each
clock cycle, the power consumption of the functional units is obtained from
the switching activity at their I/O signals (directly available during simu-
lation). The complexity of power evaluation is linear in the size of the model
(i.e., in the number of I/O signals of each unit).

Even if power evaluation does not impair the efficiency of RTL simula-
tion, numerous simulations are required to obtain significant estimates of
the average power. Moreover, power estimation has to be repeated each
time the designer decides to explore a different design choice by replacing
one or more macros with functionally equivalent ones. As a consequence,
pattern-dependent power simulation is not practical for exploring the
design space. Faster (and usually less accurate) static analysis techniques
are often preferred: the entire design is simulated once and for all to collect
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statistical information about switching activity at signals connecting func-
tional units; signal statistics are then used to estimate power consumption.

In this section we show how the regression models we propose can be
used to perform static power analysis at the RT level, without loosing
accuracy with respect to dynamic simulations, based on the same models.
Consider the linear model of Eq. (1) applied to a n-input, m-output macro.
To estimate the power consumption of an instance of the macro used in the
context of a larger design, we simulate the design for a large number of
input patterns (say, N), we evaluate Eq. (1) at each clock cycle and compute
the average of the N values we obtain. In symbols:

1 N
_ k
eavg - Nze( )
k=1

N

— k k
- NE(CO + cla(l) + ..+ Cn+magllm
k=1

(3)

where apex (k) is used to denote the kth clock cycle. For the sake of

simplicity, we use €[] to denote the average operator applied to the
sample:

eag = €[co + c1a1 + ... + Crim@piml (4)
By linearity, Eq. (4) can be rewritten as
eue = Co t crélar] + ... + Crin€layinml
=cot+ e+ oo F CrimToim (5)

where the 7’s are the transition probabilities at the inputs and outputs of
the unit.

Equation (5) actually provides an abstract model for static power analy-
sis. Transition probabilities at the interconnections between the functional
units can be computed once and for all and then used to evaluate the power
consumption of each element. If different macros are available to imple-
ment each functional unit, different solutions can be compared without
resimulating the circuit.

Notice that Eqgs. (3) and (5) represent exactly the same model. There is no
loss of accuracy in using the static approach instead of the dynamic one. If
the same set of N test patterns is used both to perform pattern-dependent
power simulation and to compute transition probabilities, the two equa-
tions return exactly the same value. In both cases, accuracy depends on the
modeling assumptions discussed in Section 3.1 and on the number of test
vectors applied (V).
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Fig. 8. A one-level regression tree used to express the dependence of e from two independent
variables a; and a,. The initial value of signal x, is also used as an additional control variable.

Similar considerations can be applied to regression trees, but in this case
some accuracy may be lost when using the static power estimation model.
The loss of accuracy is due to the inherent non-linearity of the regression
tree. This statement can be clarified through an example.

Example 1. Consider the simple regression tree in Figure 8. The aver-
age power estimate provided by the model is

€avg *E(x’gk)(co + cfal’ + csay’) + (1 — 2M)(cq + claf” + c3as”))  (6)

By applying the same transformations used in Eq. (5), we re-express e,,, in
terms of signal probabilities (s) and transition probabilities (7):

g = SP(CE + 3 + ) + (L= sk + chrl + ) (D)

In this case, however, a further assumption is required to state the
equivalence of the two expressions. In fact, Eq. (6) is not linear, therefore
the static power estimate does not imply loss of accuracy with respect to the
dynamic power estimate if and only if the splitting variable x} is statisti-
cally independent from the regression variables. In general, the following
relation holds for any pair of statistically independent variables v, and v;:

%[Uivj] = %[vl]%[vj] = pl])J

where p is used to represent the probability of a generic Boolean variable
(either a signal value or a transition flag) being 1. In our example, the
independence of splitting variable x}, guarantees the term by term equiva-
lence of Eqgs. (6) and (7). If the independence does not hold, accuracy may be
impaired by the static evaluation of Eq. (7).

The pseudocode of an algorithm for the static evaluation of a regression
tree is shown in Figure 9. The initial inputs are a pointer to the root of the
tree and the array % of input/output signal and transition probabilities.
Power consumption is recursively computed at each node during a depth-
first traversal of the tree. There are two main cases: at a leaf node the
value taken by the corresponding linear equation is returned (Eq. (5)),
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float EvalRegTree(Node, P) {

if ( Node—splitvar == NULL ) { /* Base case: leaf node */
¢ = EvalLinEq(Node—leaf, P);

} else { /* Recursion: internal node */
€then = EvalRegTree(Node—then, P);
€5 = EvalRegTree(Node—else, P);
v; = Node—splitvar;
€ = piethen + (1 = pi)ectse;

}

return (e);

}

Fig. 9. Pseudocode of the algorithm for the static evaluation of a regression tree.

while at a nonleaf node the return value is the weighted sum of those of the
two branches (the weight being the probability p; of the splitting variable
vi).

4. ON-LINE TUNING

Power models based on linear (and nonparametric) regressions can be
statically precharacterized for all combinational macros and registers in
the library. However, we have seen that the characterization procedure
optimally fits the macromodel to a characterization sample that may not be
representative of the actual patterns fed to the macro instances in the
design. If this is the case, the accuracy of the macromodel prediction
decreases. In this section we propose a two-step solution to this problem,
which consists of using an adaptive characterization algorithm (namely,
the least mean square algorithm, LMS [Widrow and Stearns 1985]) and a
concurrent simulation paradigm. The key idea is tuning the macromodel by
performing adaptive characterization during RTL simulation.

When tuning the macromodel, accurate gate-level simulation of the
macro is run concurrently with RTL simulation. Concurrent simulation
proceeds until the tuning process converges. Once the macromodel has
reached convergence, the gate-level description of the corresponding unit
does not need to be simulated any longer. We then keep simulating only its
RTL description with the just characterized back-annotated power model.
Tuning can be concurrently performed for several units. Simulation pro-
gressively speeds up as more models reach convergence.

The main effect of model tuning is a sizable improvement in accuracy,
since characterization is run in situ (i.e., within the functional simulation
of the complete design). In this way, significant input patterns are auto-
matically generated for the units, thus automatically taking into account
the actual spatio-temporal correlations and nonuniformities in pattern
distribution. This is a fundamental point: in general, the LMS algorithm
converges to different models for different instances of the same macro.
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Each model is the best linear fit to the power dissipation of the instance,
given the input patterns that are actually provided by the environment.

4.1 The LMS Algorithm

LMS is a gradient-based technique that iteratively modifies the coefficients
of Eq. (1) and adaptively tries to minimize the mean square error produced
by the model, until it reaches convergence in a neighborhood of the
theoretical minimum error solution (i.e., , the least squares solution). An
accurate description of LMS is beyond the scope of this work (see Widrow
and Stearns [1985] for an exhaustive treatment). We simply outline the
algorithm and the reasons for its usefulness in our case.

The iterative formula used for updating the coefficient vector is the
following:

et = M 12y eba® (8)

where % is the iteration step, ¢* is the current assignment of the fitting
coefficients, u is a fixed constant (to be discussed later), a® is the
input-output activity vector (i.e., the £th row of A) and € = e® — e*) ig
the difference between the energy actually dissipated corresponding to the
kth transition and the energy estimated by the model for the same
transition. Intuitively, at each iteration, the algorithm tries to modify the
coefficients in order to reduce the error made by the model.

The initial value (e¢”) of the coefficient vector does not change the
asymptotic properties of convergence. However, convergence will take
fewer iterations if ¢'” is close to the optimum value. This property can be
exploited to speed-up the recharacterization process when a macromodel
has been precharacterized and just needs to be slightly tuned.

The convergence of the LMS algorithm is controlled by parameter w. It
can be shown that for convergence the following condition must hold:

1
0<K< IR] ®
where ¢r[R] is the trace of the correlation matrix R [Widrow and Stearns
1985]. Element r;; of R represents the correlation between the ith and the
Jth independent variables (i.e., , r; = ¢[a;a;]). Since in our case the
independent variables may take value 0 or 1 only, the elements of R cannot
be greater than 1. An upper bound for the trace of R is then

trlR]=n+m + 1. (10)

Even if convergence can be ensured easily, a more subtle tradeoff is
involved in the choice of w. If the convergence of the iteration is too fast,
the accuracy of the final solution can be compromised. A measure of the
accuracy of the solution is defined in Widrow and Stearns [1985]: the
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misadjustment M. LMS tries to find the optimum ¢ by minimizing the
mean square error (MSE) of the linear model. However, due to the non-
linearity of the dependent variable, the minimum MSE (minMSE) is
always greater than 0. Hence, error €* is usually nonzero and Eq. (8)
keeps changing the assignment of ¢ in a neighborhood of the optimum. The
misadjustment is an adimensional measure of the distance between the
current solution and the best one: M = (MSE — minMSE) /| minMSE.
It can be shown that the average value of M at the end of the adaptive
process is estimated by the following formula [Widrow and Stearns 1985]:

M = w-tr[R] (11)

Since R cannot be controlled, the only way to reduce the misadjustment
is to reduce p. On the other hand, w is directly proportional to the speed of
convergence: it can be shown that the convergence to the minimum MSE is
exponential with a time constant 7T';,5r (expressed in the number of itera-
tions) given by Widrow and Stearns [1985]:

1
T = — 12
MSE 4pn, (12)

where A, is the smallest eigenvalue of matrix R. It is apparent that the
choice of w is paramount for obtaining a satisfying regression model with
LMS. In our implementation, u is chosen as one tenth of the (worst-case)
maximum value allowed; the user can, however, override this choice by
either specifying p or specifying the maximum number of patterns for
which the characterization must be run. In the second case, a warning is
given if the value of u appears to be larger than the upper bound of Eq. (9).

The advantages of LMS over the least squares solution are numerous.
First, the computational requirements are mild: the iteration formula has
complexity linear in the number of inputs and outputs. Second, no addi-
tional storage of past data is required. Third, the characterization process
can be performed on the fly, while the simulation is running, and several
units’ instances can be characterized at the same time. Finally, the LMS
solution retains the desirable properties of robustness and statistical
significance of the least squares solution.

4.2 Impact on Accuracy

A key advantage of the tuning process is that adaptive characterization is
performed in the same conditions in which the model will be used. This
improves the model accuracy, since it reduces the effect of approximations
due to the modeling assumptions of (i) linear dependence on the switching
activities and (ii) negligible dependence on other parameters.

The effect of the linear approximation is depicted in Figure 10(a).
Suppose e is a nonlinear function of Boolean variables a; and a,. It is not
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Fig. 10. Effects of modeling assumptions on the accuracy of the estimate. (a) Linear
approximation of a non-linear function; (b) single-variable estimator of a two-variable func-
tion. The inherent inaccuracy due to the modeling assumptions can be minimized by using
significant samples for characterization.

possible to find a linear function of a; and a, taking the same values of e
for all assignments of the independent variables. The linear estimator
found by least squares fitting (ef,,) actually distributes the inherent inaccu-
racy among the four points of the input space as well as possible. The
accuracy of ef, for a given input assignment (e.g., (0,1)) cannot be improved
without impairing its accuracy in some other position. However, if there is
an input configuration (e.g., (1,0)) that never occurs, then we do not care
about the corresponding value of e. Hence, we can try to find a better
estimator of e in the remaining points by sacrificing the accuracy of e,,, in
the don’t care point. In the trivial case of Figure 10(a), the simplified fitting
problem has an exact solution represented by e’,,.

When modeling power consumption, don’t care conditions can be found
due to the embedding of the unit in the design.

Example 2. Consider Addl in Figure 11: an 8-bit adder is used to
perform 6-bit additions. The two most significant bits of the input words
are always 0. As a consequence, the set of possible assignments of the
input/output activities is reduced by a factor of 2*. The subsequent don’t
care conditions can be used to improve the accuracy of the linear estimator.
For a carry-lookahead implementation of Add1, the root mean square error
of the power estimate reduces from 23% to 19% if don’t care conditions are
exploited.

A second kind of modeling error is introduced by neglecting some of the
parameters that affect the dependent variable. Assume, for instance, that

we want to approximate function e(a;, a,) of Figure 10(a) using a linear
function of a5 only. For each value of ay, e may assume two different values
depending on the value of a; that does not take part in the model (see
Figure 10(b)). If a; is neglected, the value of e at a given a, is a random
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Fig. 11. Example design.

variable e(- , ay) taking values e(0, ay) and e(1, a,). The value e(a,) that
we try to fit is the mean of this random variable.

Even if a linear estimator can be found that exactly matches e(a;) (ef,,
for function e of Figure 10(b)), there is a residual modeling error due to the
effect of a;. The mean square error made by neglecting a; is the variance of
e(+, ay) for a fixed value of a,. In general, since the variation of e for a
given configuration of the independent variables depends on the variation
of (some of) the parameters that do not take part in the model, there is a
relation between the variance of e and the distribution of the neglected
variables. The smaller the set of possible values of the neglected parame-
ters, the smaller the variance of e.

Referring to the example in Figure 10(b), if we know that the input
configuration (a;, ay) = (1, 0) never occurs, the mean value of e(-, 0)
reduces to e(0, 0) and its variance to 0. As a consequence, there is no error
in using e®,,(a,) for a; = 0 as a model of e.

In our case, there are two sets of neglected parameters that may have a
sizable impact on power consumption: the initial states of the input signals
x' and their arrival times t. For a given activity vector a, the energy
consumed by a unit is to be considered as a random variable e(a, -, -) with
distribution dependent on the number of configurations that the neglected

parameters (x' and t) may assume, corresponding to the same activity
vector.

Example 3. Consider an 8-bit carry-lookahead adder. Figure 4(b) repre-
sents the distribution of e for a given value of a and for a null vector of
arrival times (corresponding to aligned input transitions). If the adder is
used to implement Add1 in Figure 11, four input signals are stuck at O,
thus reducing the set of possible input patterns, and ultimately affecting
the distribution of e. In particular, the standard deviation of e (i.e., the
inherent modeling error) changes from 9.6% to 7.8%.

The input arrival times are even more critical: they are analog quantities
and their relative values (i.e., input skews) play a sizable role in power
consumption.
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Example 4. Referring to Figure 11, assume that signals A, B, and C are
perfectly aligned in time. Due to the propagation delay of Add1, there is a
skew T between the transitions of C and D at the inputs of Add2. In
particular, since 7' is larger than the propagation delay through a single
gate, the misalignment between C and D causes disjoint power consuming
phenomena within Add2. This ultimately results in a larger overall power
dissipation.

Since the vector t of input arrival times may take an infinite number of
configurations (and there are no general pruning criteria), off-line power
characterizations are usually based on the simplifying hypothesis of
aligned input transitions. Unfortunately, this assumption is often violated
in practice, causing crude underestimates of power consumption.

On the other hand, if the power model is adaptively characterized on its
real context, the effect of input misalignments is implicitly modeled, since
the actual arrival times are used during characterization. Notice that, to do
this, timing information is to be propagated during RTL and gate-level
simulations. In our implementation, we use average propagation delays for
RTL modules and an accurate pattern-dependent delay model for signal
propagation through gate-level units [Bogliolo et al. 1996]. This is dis-
cussed in the next section.

Example 5. Consider Add2 in Figure 11 and assume we have a linear
power estimator characterized off-line under the 0-skew assumption. If we
use the model to estimate the power consumption of Add2 during cycle-
accurate RTL simulation, we obtain a 54% underestimation of the average
power consumption, due to the neglected effect of input misalignments. On
the other hand, if an event-driven simulation paradigm is adopted, the
power model of Add2 is evaluated twice in each clock cycle (corresponding
to the subsequent transitions of input vectors C and D), leading to a 23%
overestimation of the average power consumption. Consider, in contrast, a
linear model adaptively characterized in situ. No simplifying timing as-
sumptions are made during characterization: the actual timing information
is available at the unit’s boundaries and a real delay model is used for
signal propagation at the gate level. The LMS automatically adjusts the
model’s parameters in order to fit the power consumption of the unit under
a real delay model. Even if the model is evaluated in the context of a
cycle-accurate RTL simulation, it provides power estimates with a 2%
average error from gate-level simulation (the pattern-by-pattern mean-
square error is 17%). Event-driven simulation is no longer required to
improve the accuracy of the RTL power estimate.

In summary, adaptive characterization allows us to find the best linear
estimator for the power consumption of a unit in the context in which it
operates. This means that model coefficients are automatically set in order
to realize the best fit of the dependent variable corresponding to those
configurations of the independent variables that really occur in practice.
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Example 6. For the design in Figure 11, we obtained completely differ-
ent estimators for Add1 and Add2, leading to an overall root mean square
error of 18% on pattern dependent power estimates. To check the consis-
tency of this result we tried to use the model obtained forAdd2 (Add1) for
both units. The overall mean-square error became 35% (25%).

Similar conclusions are drawn in Hsieh [1996] regarding adaptive power
macromodeling. Interestingly, the methodology proposed in Hsieh [1996]
differs from ours in two ways: first, a statistical criterion is used to decide
how many patterns are needed for tuning the macromodel; second, the
model is not tuned by adjusting its coefficients, but a regression equation is
obtained to correlate its prediction with actual power measurements. For
further details, see Hsieh [1996].

4.3 Implementation Issues

The adaptive power model bridges the gap between fast RTL simulations
and accurate gate-level power estimates, but it requires a simulation
engine supporting both levels of abstraction. Moreover, a straightforward
push-button interface to the synthesis environments is necessary to allow
iterative design improvements. To meet these requirements, we imple-
mented the procedures for RTL power characterization and estimation as
additional features of PPP [Bogliolo et al. 1996], a unified synthesis and
simulation tool based on Verilog-HDL.

The basic simulation engine of PPP is Verilog-XL, which parses the
hierarchical description of the network and performs event-driven logic
simulation. Routines for gate and RT level power characterization/evalua-
tion have been implemented in C and integrated into the logic simulator
using the Programming Language Interface (PLI) of Verilog-XL. The gate-
level power model used in PPP is presented in Bogliolo et al. [1995]. It
allows accurate and efficient power estimations with accuracy within 5%
from HSPICE, even for local single-pattern estimates. The adaptive char-
acterization procedure of the power model is described next.

We refer to the simple situation in Figure 11, in which two instances of
the same soft macro (namely, an 8-bit adder) are to be synthesized in the
context of a larger design. We choose a carry-lookahead trial implementa-
tion for the adders and run the adaptive modeling procedure to build the
power consumption model for the two units. In the Verilog description, each
unit is represented by a module containing both the gate-level implementa-
tion of the carry-lookahead and a task calling the LMS routine.

During characterization, the gate-level implementation of the two units
is accurately simulated in the context of an RTL simulation of the entire
design. In this way, typical input vectors (with actual timing) are automat-
ically generated for Add1 and Add2 as a typical test sequence is applied at
the primary inputs of the design.

Suppose that the circuit is to be used at a frequency of 50MHz. The
characterization phase then consists of applying a sequence of input
patterns with a 20ns time period. According to Eq. (8), the kth training step
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(i.e., the kth sample) for the model of a unit is based on its switching
activity a®) at time £ - 20ns and on its energy consumption e® in the time
period [k - 20ns, (k + 1) - 20ns]. Both a® and e'®) are available at the end
of the time period, when all transient phenomena are extinguished: the
value of e'®) is provided by the gate-level simulation of the implementation,
while a® is obtained as the exclusive OR between the current and previous
values of the I/O vectors.

During characterization, the adaptive procedure is automatically called
at the end of each time period for each unit in the design. At the first call,
a linear model is created having an independent variable for each input/
output signal and a default vector of coefficients, ¢*’. Since the initial
assignment of the fitting coefficients does not impact the final model, we
use 0 as default value for the elements of ¢'”. Nevertheless, in an iterative
design flow, the coefficients of an already characterized model can be used
as an initial guess to speed-up subsequent recharacterizations after mar-
ginal design improvements.

At subsequent calls, Eq. (8) is used to update coefficients, with a
convergence speed controlled by w = 0.1/(1 + n + m). The characteriza-
tion process terminates when the model reaches convergence. Convergence
is tested with the following procedure. First, LMS is run for at least 1 +
n + m samples (to prevent premature convergence). After the first steps, a
“moving window” average error €., is computed, representing the average
error of the macromodel over the last 1 + n + m samples. Notice that €,
is updated for every new sample. The variations of €,, are monitored.
Whenever its peak-to-peak variation over 1 + n + m successive values
falls below 10% of its average value, LMS adaptation is assumed to have
reached convergence. In case of slow convergence, we also set an upper
limit to the number of LMS iterations. This limit is set to 20 - (n + m + 1).
The final value of ¢ is stored in a file in order to be used for subsequent
power analysis or recharacterizations.

In our example situation, both units are simultaneously characterized
and their modeling processes take the same time. In general, however,
different units may require different characterization times. Whenever the
model of a unit has reached convergence, its gate-level implementation is
automatically disabled and replaced by the RTL model to speed-up simula-
tion.

Furthermore, the overall size of the units under characterization may
exceed the limiting size for gate-level simulation. This may happen either
because the overall design have been synthesized at the same time, or
because several synthesis tasks have been performed before running the
characterization step. In both cases, the set of units can be partitioned and
the characterization step repeated for each subset. In our implementation,
a control mechanism is available that automatically selects and character-
izes clusters of units without stopping simulation. This is done by switch-
ing on the fly between gate-level and RT-level representations.
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Fig. 12. Comparison of energy estimates provided by constant estimators, linear models, and
regression trees of depth 1 and 2, for some benchmark circuits: alu2 , decod , C432 and count
are taken from the MCNC benchmark suite, reg8en is an 8-bit register with enable,
mux21-11 is an 11-bit multiplexer. (a) In sample accuracy (i.e., accuracy obtained using the
same input statistics of the sample used for characterization); (b) out of a sample accuracy
(i.e., accuracy obtained using reduced input activity).

5. EXPERIMENTAL RESULTS

We performed three sets of experiments to (i) validate our regression
models on benchmark circuits; (ii) test their accuracy on a real-world
complex design; and (iii) evaluate the effectiveness of in situ model tuning.
Experimental results are discussed in detail in the following sections.

5.1 Model Validation on Benchmark Circuits

First of all, we checked the advantage of using linear and nonparametric
regression models instead of constant (pattern-independent) estimators.
For this experiment we used combinational benchmarks from the MCNC
suite [Yang et al. 1991], as well as gate-level implementations of logic and
arithmetic functions and registers. Circuits were mapped on a library of
gates with accurate power models and simulated with PPP [Bogliolo et al.
1996].
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For each circuit, a random sequence of 20(n + m + 1) test patterns
with 50% signal and transition probabilities was used to perform off-line
characterization. The average power consumption measured during the
characterization phase was taken as a constant estimator while least
squares fitting was used to perform linear regression. Moreover, the tree
regression procedure was run twice on each benchmark to characterize
regression trees of depth 1 and 2. As expected, when there are no explicit
control signals (as in most MCNC benchmarks) splitting is mainly used to
capture non-linearities and splitting variables are usually selected among
transition flags (i.e., among the independent variables of linear equations).
In contrast, when control inputs that determine the operational mode of the
unit exist, their values are automatically recognized as more significant
splitting variables. For instance, the power models of registers and multi-
plexers were automatically split on the initial values of enable and select
signals, respectively.

Accuracy was tested running concurrent gate-level and RT-level simula-
tions. Two different test sequences (of 200 vectors each) were used: the first
one with the same input statistics used for characterization to test in-
sample accuracy; the second one with a lower average input activity (of 20%
instead of 50%), to test out-of-sample accuracy. Representative experimen-
tal results are reported in Figure 12 in terms of two measures of error: the

relative root mean square error (RMSE = \,//MSE / eq.z) and the relative
error on the average estimate AVGE = le,,, — eif,fgl/eavg).

In-sample accuracy is shown in Figure 12(a). By construction, all models
give the same (correct) average estimate (AVGE is always negligible), but
the RMSE is different, and gives us a significant idea of improved quality
of pattern-dependent models. We can observe that regression trees perform
better than simple linear regressions, and their RMSE decreases when we
increase their depth.

Out-of-sample results are reported in Figure 12(b). In this case, both
error measures are significant and give us a better idea of the improved
flexibility of pattern-dependent models. While the accuracy of the constant
estimator is unacceptably degraded both in average and instantaneous
power estimates, the error made by pattern-dependent models on average
power estimates is around 15%. Unfortunately, the RMSE is quite high,
proving that the models cannot be used to provide accurate instantaneous
power estimates.

Although it is clear that linear regression outperforms simple pattern-
independent models, the choice between regression trees and standard
linear regression is not straightforward. Regression trees are superior by
construction when usage patterns are similar to those used for character-
ization, while standard linear regression may lead to better results when
different input statistics are used. We remark that, for each benchmark
circuit, we used the same sample of power consumption data to character-
ize all power models. However, the statistical significance of the least

squares solution depends on the ratio between the sample size s and the
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Table I. Macros Instantiated in the Datapath of Figure 13

Nome n m Gates
CMPXX-11 22 1 48
CMPGT-11 24 2 45

EXPSBS 25 13 110
INC-11 12 12 51
MUX21-11 24 11 48

MUX51-11 60 11 118

number of fitting coefficients to be determined. In our experiment the ratio
was s/1 for the constant estimator s/(n + m + 1) for the linear model,
and s/(n + m + 1)2” for a regression tree of depth k. If we keep splitting
the model without increasing the size of the sample, we reduce the
statistical significance of leaf regressions, eventually impairing the quality
of the power estimates provided by the model. For benchmark circuit C432,
the reduced sample size per fitting coefficient was responsible for the
degradation of the out-of-sample estimates provided by a regression tree of
depth 2. More robust regression trees could be obtained by increasing the
sample size.

5.2 Accuracy Evaluation on a Complex Design

We tested our RTL power estimates on a complex design of practical
interest, namely, a fully-functional high-performance IEEE standard float-
ing-point adder/subtracter in double precision described in Verilog HDL.
The design consisted of four units: the mantissa datapath (53—bits wide),
the exponent datapath (11-bits wide), the rounding logic and the control
logic (to set the various rounding modes and to select floating-point sum or
subtraction). The adder was designed to perform an addition/subtraction
per clock cycle. The design was built starting from a library of hard macros.
We discuss the power estimation of the exponent computation block.

Looking at Figure 13, we observe that several inputs to the exponent
logic are controls coming from the mantissa datapath and the control logic.
Additionally, the design has several internal signal reconvergences. Obvi-
ously, the uniform white input distribution hypothesis is not the only one
that is not valid for macros in the exponent logic, but we cannot even
assume any simple distribution (such as that proposed in Landman and
Rabaey [1995]) for the numerous control inputs. Moreover, different in-
stances of the same macro have completely different I/O statistics, depend-
ing on their location within the circuit.

We precharacterized both linear regression models and 1-level regression
trees for the six building blocks of the exponent datapath (see Table I).
According to a typical characterization paradigm, macros were character-
ized off-line using uniformly distributed random patterns with no relation
with those provided during simulation. Power models were then used to
back-annotate the functional description of each macro and evaluated
during a fully-RTL simulation of the whole floating-point adder (with
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Fig. 13. High-level schematic of the exponent logic of a double-precision IEEE standard
floating-point adder.

power estimation mode activated only for the units of the exponent block).
Assuming the macros to be external IPs, their regression-based power
models could be precharacterized and supplied by the IP provider, thus
enabling the user to perform accurate power simulations without actually
knowing low-level implementation details.
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Table II. Experimental Results for 19 Units in the Design of Figure 13. GLS (gate level
simulation) denotes the reference values of power consumption for a clock period of 100ns.
Three estimates are compared: LR (liner models), RG1 (regression trees of depth 1), and SPA
(static power analysis based on the same regression tree)

Unit GLS AVGE (%)
Instance Macro (W) LR RT1 SPA
AZero CMPXX-11 368 16.5 10.9 9.5
AMax 339 9.3 5.3 6.9
BZero 372 16.3 12.2 11.0
BMax 337 9.4 4.1 3.8
EQCompare 449 5.5 3.5 4.0
ResultZerol 704 35.1 28.1 28.6
ResultZero2 686 27.9 21.9 22.0
ResultMax1 651 31.2 21.5 23.2
ResultMax2 640 25.4 20.8 21.0
GTCompare CMPGT-11 448 12.9 10.1 10.0
SubAminusB EXPSBS 1178 9.1 1.2 3.7
SubBminusA 1216 9.0 1.6 2.9
ExpAdj1 729 17.2 38.5 39.2
ExplIncl INC-11 585 16.3 16.3 16.3
ExpInc2 842 10.4 10.4 10.4
ExpFirstNormSelect MUX21-11 742 22.2 6.8 7.6
ExpDiffSel 392 18.0 44.1 43.3
ExpTopSel 546 12.7 9.8 11.4
ExpFinalSelect MUX51-11 596 23.9 17.5 18.1
Entire Data Path 11820 15.2 7.7 8.5

We used an event-driven simulation paradigm with a constant-delay
model (an average propagation delay statically associated with each macro)
for signal propagation through combinational macros. The event-driven
paradigm allowed us to account for multiple transitions caused by the
propagation of signals through paths of unequal length. As shown in
Example 5, the pure cycle-based simulation paradigm causes an unaccept-
able degradation in the quality of the power estimates. Event-driven
simulation trades off some simulation performance for increased accuracy
in estimation.

Three different power estimators were used for each of the 19 units in the
exponent logic: (i) linear regression models (LR); (ii) regression trees of
depth 1 (RT1) used in the context of an event-driven RTL simulation; and
(iii) static power analysis (SPA) based on the same regression trees. Signal
and transition probabilities for SPA were collected during the same simu-
lation run used for the dynamic evaluation of LR and RT1.

Table II reports the relative errors (AVGE) for the instances of the units
and for the complete block, with respect to accurate gate-level simulations
with real delay models. The compensation between overestimates and
underestimates for the units explains why the global average error is
smaller than the error on the single blocks. Notice also that, for some
instances of the macros, the error is large, so it would be misleading to
assume that comparisons between the estimated power consumption of
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Table III. Comparison Between Linear Power Models Characterized off-line by Least
Squares Fitting and Adaptive Models Characterized in situ for 19 Units in the Design of

Figure 13

Unit Off-Line Model Adaptive Model

Instance Macro RMSE AVGE RMSE AVGE
AZero CMPXX-11 23.8 11.3 8.1 0.2
AMax 24.8 8.9 14.6 2.4
BZero 23.1 10.2 8.2 3.1
BMax 25.0 1.1 14.7 2.3
EQCompare 21.5 11.6 15.9 5.3
ResultZerol 61.1 60.7 38.5 9.2
ResultZero2 60.8 58.4 41.0 6.1
ResultMax1 59.4 57.6 39.9 7.4
ResultMax2 63.9 55.5 37.3 7.0
GTCompare CMPGT-11 18.1 2.5 15.4 1.7
SubAminusB EXPSBS 23.2 7.1 17.9 3.6
SubBminusA 24.8 6.9 17.7 1.6
ExpAdj1 59.6 22.3 39.1 10.1
Explncl INC-11 61.9 50.8 38.7 14.3
ExplInc2 66.2 65.8 41.3 7.5
ExpFirstNormSelect MUX21-11 72.3 69.4 48.4 15.6
ExpDiffSel 35.2 14.9 33.3 14.3
ExpTopSel 44.2 43.4 22.6 10.2
ExpFinalSelect MUX51-11 79.6 77.1 39.6 7.6
Entire Data Path 42.3 34.6 22.9 6.1

different instances within the design can be made with the same degree of
confidence. The range in accuracy for estimating the power consumed by
the units is due to widely varying input statistics. Regression trees gener-
ally outperform linear regression, but sometimes they perform substan-
tially worse (namely, for ExpAdjl and ExpDiffSel). This is another proof of
the trade-off between accuracy and robustness that complicates the choice
between linear regression and regression trees.

The last column refers to the static evaluation of the regression tree
based on transition probabilities. We observe that some inaccuracy is
sometimes introduced by the correlation between the splitting variable and
(some of) the other ones. Notice that, for the two instances of macro
INC-11, there are no differences between the three power estimators. In
fact, the splitting criterion used to construct the regression tree was not
satisfied and the automatic characterization procedure returned a tradi-
tional regression model instead of a regression tree. As long as linear
models are used, static power analysis based on transition probabilities is
equivalent to dynamic evaluation performed during simulation.

Finally, we remark that the RMSE of the power estimates provided by all
models was sometimes larger than 50%, further demonstrating that regres-
sion models do not provide significant pattern-by-pattern estimates. Never-
theless, pattern dependence grants them flexibility.
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5.3 Effect of In-Situ Model Tuning

A last set of experiments was run on the design of Figure 13 to verify the
effectiveness of the adaptive characterization procedure performed in situ.
To this purpose, we entered the validation phase of the iterative design
flow of our example floating-point adder, with adaptive linear models
associated with each unit in the exponent datapath. The adaptive model of
a unit is nothing but a linear regression equation whose coefficients can be
adaptively modifyed by the LMS algorithm. We used the same initial guess
for the fitting coefficients of all instances of the same macro: namely, the
coefficients of the linear models characterized off-line. We then ran concur-
rent RTL and gate-level simulation to adjust the fitting coefficients in order
to improve the accuracy of the power models of each instance, as described
in Section 4.

Using PPP, the full floating-point adder was simulated at the RT level,
with the exception of macros in the exponent logic, for which gate-level
implementations were also simulated to provide reference values for LMS.
The primary input patterns provided to the adder were taken from those
used for testing the functional correctness of the design.

The in-situ tuning of the adaptive linear models was performed concur-
rently for all instances in the exponent datapath. The gate-level represen-
tation of each instance was simulated only until convergence of the corre-
sponding model. After convergence, the model was automatically used to
back-annotate the RTL functional description of the unit, thus progres-
sively switching back to a fully-RTL simulation with back-annotated power
models.

Only 100 iterations were required for the LMS to converge for units with
few I/O signals (such as the instances of CMPXX-11), while up to 400
training steps were required for units with more I/O signals (such as
MUX51-11). As stated in Section 4, the initial guess does not affect the
asymptotic value of the fitting coefficients. However, fewer iterations are
usually required if the initial guess is close to the optimal assignment. We
repeated the experiment using a null vector as a default initial guess for all
power models, thus using LMS to characterize the linear models from
scratch. About 800 iterations were required for all models to converge. To
evaluate performance, consider that about 50 ms per pattern were required
on a DEC5000/260 workstation to perform cycle-based simulation of the
structural RTL description of the floating-point adder with no power
information. The impact of evaluating regression models in a cycle-accurate
context was negligible (below 5%), while the concurrent RTL and gate-level
simulation of all the units in the exponent datapath took about 2s per
pattern. The overall time spent in tuning the precharacterized power
models was of about 10 minutes, while more than 20 minutes were spent to
perform on-line characterization from scratch.

After convergence, 10000 patterns were simulated at the RTL to evaluate
the quality of the adaptive regression models. Table III reports the accu-
racy of the power models of each instance, in terms of relative root mean
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Fig. 14. Relative error of the average power estimates provided by linear regression models
with different characterization and simulation paradigms. All data refer to the design of
Figure 13.

square error (RMSE) and relative error on average estimate (AVGE) with
respect to gate-level simulation. The accuracy of linear models character-
ized off-line (with uniform white inputs) is also reported for comparison.
The RTL simulation of the entire design took less than 10 minutes, while
more than 5 hours were spent to run the equivalent gate-level simulation.

The quality of the adaptive models characterized in situ is substantially
higher than that of the off-line models: the average improvement is of 35%
on RMSE and of 75% on AVGE. Notice also that error compensation is not
improving the overall accuracy of the estimates. For the entire exponent
logic, we obtained RMSE = 42.3 and AVGE = 34.6 using RTL models
characterized off-line, and RMSE = 22.9 and AVGE = 6.1 using on-line
characterization.

The off-line linear models reported here for comparison are exactly the
same as in the previous experiment. However, the average errors reported
in the fourth column of Table III are substantially worse (on average) than
those in the fourth column of Table II. What changed is the simulation
paradigm. As discussed in Example 5, off-line characterization cannot
account for misaligned input transitions. When using precharacterized
power models at the RTL, event-driven simulation is required to take
timing into account, thus avoiding crude underestimates of actual power
consumption. In contrast, if the power models are characterized in situ, the
input stimuli for gate-level power simulation are directly provided by the
environment with the actual timing. As a consequence, the reference power
information provided by gate-level simulation implicitly accounts for real
signal misalignments. If the power model for a unit is adaptively tuned in
order to fit the real-delay power consumption at the cycle boundaries,
timing information is no longer required at the RTL to obtain accurate
power estimates. Timing will implicitly be taken into account by the
adaptive models, even if they are evaluated at the RTL in a cycle-accurate
context.

To further clarify this important feature of adaptive modeling, Figure 14
shows how the accuracy of the linear models depends on the characteriza-
tion and simulation styles. If the models are characterized off-line (with
arbitrary assumptions on input statistics and timing) and then evaluated
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in an event-driven context (with constant delay models for event propaga-
tion through RTL macros), the relative error on the average power esti-
mates for the floating-point adder is about 15%. If the same models are
used in a cycle-based context, the relative error becomes larger than 34%.
In fact, cycle-accurate simulation is inherently less accurate (and more
efficient) than the event-driven one. However, the adaptive models charac-
terized on-line and evaluated in a cycle-based context outperform both
results, providing a relative error of about 6%. Event-driven simulation is
no longer required to improve accuracy, as long as input misalignments are
implicitly taken into account during characterization.

6. CONCLUSIONS

In this work we analyzed the application of linear and nonparametric
regression for the automatic construction of RTL power macromodels for
registers and combinational units. We proposed two approaches for the
automatic construction of regression-based models: namely, off-line and
on-line adaptive characterizations. During on-line characterization, power
macromodels are tuned on the fly while simulating each macro instance
within its environment (i.e., in situ). on-line characterization is based on
the LMS algorithm, which has small computational overhead and guaran-
tees asymptotic convergence to the optimum (in the least squares sense)
regression model. Experimental results for practical designs show that
on-line, in-situ characterization achieves high accuracy with reduced com-
putational overhead.
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