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Abstract

Dynamic power managementcan be effective for de-
signinglow-power systems.In many systems,requests
areclusteredinto sessions. Thispaperproposesanadap-
tive algorithmthat canpredictsessionlengthsandshut
downcomponentsbetweensessionstosavepower. Com-
paredto other approaches,simulationsshow that this
algorithmcanreducepower consumptionin harddisks
with lessimpacton performanceor reliability.

1. Intr oduction

Theincreasingpopularityof portableelectronicsandthe
conceptof greencomputershave generateda needfor
low-powercomputerdesign.In a computer, a harddisk
canconsumemorethanonefifth of thetotal power [4]
[8]. Studiesshow thatharddiskswill keepconsuminga
significantportionof power in the nearfuture [7] [9].
Althoughstoppingplatespinningcanreducepowercon-
sumption,this approachhasthreeproblems:a decrease
in performancewhile waiting for the platesto spin up,
extra energy while acceleratingthe plates,and higher
failurerateswhich increasewith thenumberof spinup-
down cycles,typically tensof thousandsof cycles [5]
[13]. A desirablepower managementalgorithmshould
save energy while providing high performanceandlow
failurerates.

Disk shutdownalgorithmscanbeclassifiedinto two cat-
egories:predictiveandstochasticschemes[1]. Thefor-
mer are basedon predictionof idle periodswhile the
latter usestochasticsystemmodelsandsolve the opti-
mizationproblems.Examplesof thepredictiveschemes
include [3] and [8], while [2] and [10] usethestochas-
tic approach.Although thesemethodsareeffective in
severalapplications,they do not considertheburstyna-
tureof diskaccesses.Traces[11] show thataccessesare
clustered,or bursty, with varying time betweentwo ac-
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cessesin thesamecluster. Thus,noneof theseapproach
canaccuratelymodelrequests.

Disk shutdown algorithmscanbeimplemented(in hard-
wareor software)aspart of a dynamicpower manage-
mentmethodology[12]. Thecontributionof this paper
is two-fold: (1) it presentsa new algorithmfor power
managementin harddisksand(2) it reportstheresultof
a simulatorspecificallydesignedfor comparingdiffer-
entpower managementschemes.Thenew algorithmis
basedon the conceptof sessions, which cancopewith
thenon-stationarityof systemrequests.Ourmethodis a
heuristicthat takesinto accountnon-stationaryrequests
andharddisk reliability.

The methodwe presentin this paperdivides disk re-
questsintosessions.Requestsclosein timebelongto the
samesession;thosethatarefar from eachotherwithout
any other requestin betweenaredivided into different
sessions.Sinceinter-sessionperiodsdo not have disk
activities, they are ideal candidatesfor spinningdown
the plates.Shuttingdown a disk insidea session,how-
ever, will causeseriousperformancedegradationbecause
thespin-updelaycanbeasignificantportionof thetime
betweenrequests. We develop an adaptive algorithm
to dynamicallypredict sessionlengthsand shut down
a disk betweensessions.Comparedwith other exist-
ing approachesthroughextensivesimulations,ouralgo-
rithm shows low energy consumptionwith lessimpact
on performanceor reliability.

2. Disk Accessesand Definition of Sessions

Figure1 shows a disk accesstraceon a personalwork-
stationfor oneday [11]. This figure suggeststhat ac-
cessesareclusteredinto groups,calledsessions.A ses-
sion startswith an accessseparatedfrom the previous
oneby a longperiodof inactivity.

A threshold� is usedto separatesessions.If the time
of two consecutiveaccessesdiffersby morethan � , they
belongto two distinctsessions.A smaller� maydivide
adjacentaccessesinto two sessionswhile a largervalue
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Figure1: Disk Accesseson Thursday
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Figure2: Sessionsfor DifferentThreshold

cancombinetheminto one.Figure2 showsanexample
of sessionswith different � . In this figure,diskaccesses
areshown by arrowson thetime axis.Eachgraybarin-
dicatesthespanof onesession,from thefirst accessto �
after the lastaccess.For example,thelast two accesses
occurat t = 19 andt = 21. They areclassifiedinto the
samesessionif � is greaterthantwo. If therewereanac-
cessat the20thsecond,threeaccesseswould beclassi-
fied into thesamesession,evenwhen� equalsone.The
sessionlength,

�
, is the time betweenthe first andthe

lastaccessesin onesession.Thelengthsof thefirst two
sessionsarethreeandzerowhen � = 2. This example
shows thatL canbelargeror smallerthan � . If a power
managershutsdown a disk after it is idle for � seconds
whentheratio

�
� is rathersmall,a significantamountof

energy is wastedfor the last � seconds.Conversely, a
large

�� indicatesthat multiple sessionsare combined
into one. The intermission is the time betweenthe last
accessof theprevioussessionandthefirst accessof the
next session.For example,when � = 2 theintermissions
arethree,four, five,andthree.

0

300

600

900

1200

0 30 60 90 120 150

Threshold (sec)

A
ve

ra
g

e
 o

f 
In

te
rm

is
si

o
n

s 
(s

e
c)

Figure3: Intermissionfor Different� Values

Althoughtheone-daytraceof diskaccessesclearlyshows
theburstynature,it is too shortto deriveanappropriate

(unit: second) mean median standard
deviation

intermission 986 872 668
length 59 48 51
timebetween 1.2 � � 6.0
accessin a session

Table1: StatisticalPropertiesWhen� � � 	
valuefor � . Instead,we useda one-weektraceto com-
puteanappropriatevaluefor � . Figure3 showstheaver-
agelengthof theintermissionsfor different� . Wechose
sixty secondsfor � becauseit is the kneeof the curve.
A much larger � will combinea lot of sessionswhile
a muchsmaller � will divide onesessioninto multiple
ones.In Section4, we will show thatthis valueis effec-
tive for a nine-weektrace.Therefore,on-linederivation
of � is unnecessarydue to the adaptivitiy of our algo-
rithm. Table 1 shows the statisticswhen � is 60. As
expected,the averagesessionlength is much smaller
than the length of intermissions. This � value rarely
combinessessionswhile keepingclusteredaccessesin
onesession.Thestandarddeviation is compatibleto the
mean. This suggeststhat the individual sessionlength
varieswidely andan adaptive algorithm is requiredto
adjustsessionlengthprediction.

3. AdaptiveDisk Shutdown Algorithm

A diskmodelwith two statesis usedin ourstudy. When
thedisk is in thespinningstate,it canserve IO requests
right away. On the otherhand,whenthe disk is in the
sleepingstate,IO requestshave to wait for the plates
to spin up. A power manager(PM) changesthe disk
into the sleepingstatewhenever this transitionis bene-
ficial underthe threeconflictinggoals: low power con-
sumption,highperformance,anda low failurerate.Fig-
ures4 and 5 show our algorithm. The threeinterme-
diate statesare enclosedby dashedlines. A sleeping
disk wakes up only when a requestarrives. The PM
checksthe IO requestqueueperiodically. If the queue
is nonemptyand the disk is sleeping,the PM issuesa
spin-upcommand. If the platesare alreadyspinning,
they stay spinning. Meanwhile,the PM increases the
predictedlength of the current session. If the queue
is emptyandthe disk is sleeping,the disk staysin the
sleepingstate. The difficulty ariseswhen the queueis
emptywhile theplatesarespinning.Insteadof immedi-
ately issuinga spin-down command,the PM decreases
thepredictedsessionlengthby anadjustmentparameter.
This parametercanaffect the performanceof the algo-
rithm. If it is too large, the algorithm is too sensitive
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to the variationsin the time differencesof two consec-
utive accesses.If it is too small, thepredictedlengthis
adjustedtoo slowly andthealgorithmbecomesa fixed-
durationtimeoutscheme.The PM issuesa spin-down
commandonly when the queuehasbeenempty long
enoughcomparedto the predictedsessionlength. By
dynamicallyadjustingtheprediction,thealgorithmcan
shut down the disk earlier for a shortersessionwhile
keepingtheplatesspinningfor a longersession.

spin up

keep sleeping spin down

spin down?

keep spinning

request arrives

disk busy

disk idlesession 
is not over

session is overno request

Figure4: StateTransitionDiagram

spinning 1.5W sleeping 0.3W
spindown 1.0W spinup 2.5W

1.0sec 1.0sec
spinning switching
failure / hr failure

Table2: Disk Model

/ 
 PL/AL: predicted/actualsessionlength 
 /
/ 
 a:attenuationfactor
 /
/ 
 SE:predictedsessionendtime 
 /
/ 
 Th: threshold;inc: incrementconstant
 /
switch(state)�
casespinUp:
state= spinning;PL = a 
 PL + (1� a) 
 AL;
SE= now + PL; break;

casespinDown:
state= sleeping;break;

casesleeping:
if (a requestarrives) � state= spinUp; 
break;

case?spinDown:
if ((now � SE)&& ((now � SE)/PL) � Th1)� state= sleeping;
else � state= spinning;
break;

casespinning:
if (a requestarrives) �
if ((now � SE)&& ((now � SE)/PL � Th2))
/ 
 almostreadyto shutdown; deferSE 
 /� PL += inc1;SE+= inc2;  else �

state= ?spinDown; PL � = inc1;SE � = inc2; 
break;

4. COMPARING POWER MANAGEMENT
ALGORITHMS

Table 2 shows the disk model in our simulation. We
have developeda dynamicpower managementanalysis
tool to simulatefivecontrolalgorithms:

1. Adaptivealgorithm1: proposedin thispaper. The
initial predictionis 60secondsandtheadjustment
parameteris1.25secondsbecausesimulationsshow
thatthisvaluecanbalancethesensitivity andadap-
tivity mentionedin Section3. Thepredictionfor
thenext sessionis 0.7 previousprediction+ 0.3

actuallengthof the lastsessionin orderto ad-
just for workloadchanges.

2. Adaptive algorithm2 [3]: The minimum length
is 2 secondsandthe otherparametersarechosen
accordingto thesuggestionby theauthorsof [3]
as

3. Adaptive algorithm3 [6] : The lower boundfor
thepredictedidle timeis1secondand

.
4. Fixed-timeralgorithm:We usedtwo seconds[8],

and five minutesas commonlyseenon desktop
computers.

5. Greedyalgorithm: shut down the disk ten mil-
lisecondsafterservingeachaccess.If anotherre-
questarrivesduringthespin-updelay, thesecond
requestwill alsobeserved.

Our adaptive algorithm differs from [3] and [6] be-
causeit (1) estimatesthelengthwithin eachsession.(2)
predictslengthsinsteadof changingacceptableamounts
of idle time. (3) assumesequalprobability for longer
or shortersessionsthan the averagelength. (4) is less
sensitive to exceptionallylong idle periodscomparedto
Hwang’s algorithm. In our simulation,all algorithms
checktherequestqueueeverysecond.

Table3 shows the resultof runningdifferentshutdown
algorithmson a nine-weekdisk tracewith 385213ac-
cesseson a personalworkstation [11]. The last two
rowsarenormalized.This tablecomparesthefollowing
items.

1. consumedenergy.
2. numberof statechanges. This numberis used

for predictingthe disk lifetime. We assumeeach
up-down cycleincreasesthefailureprobabilityby

andonespinninghour increasesit by
. Thelifetime is thetimewhentheprob-

ability reachesone-half. A largenumberof state
changesreducesthelifetime andimpliesmorere-
questshave to wait for theplatesto spinup.

3. total spinningtime andaverageduration.
4. productof 1 and2. A smallernumberis betterbe-

causefewer requestsareaffecteddueto spinning-
up delaywhile energy consumptionis alsosmall.

5. efficiency, theratio of thefirst two items.A large
numberis betterbecausea higherpercentageof
energy is usedto keepplatesspinningto reduce
delay.

This table shows that four algorithms(adaptive 2, 3,
two-secondfixed and greedy)have similar resultsbe-
causeall of themaredominatedby theintra-session be-
havior. They alsosuffer from shortlifetime – lessthan
two years. The widely-usedtimer of five minutescon-
sumesmuchmore energy becausethe averagesession
length is oneminute. Although we derive the valueof

from a one-weektrace, simulationsshow that it is

Figure5: AdaptiveAlgorithm

4. Comparing Power Management
Algorithms

Table 2 shows the disk model in our simulation. We
have developeda dynamicpower managementanalysis
tool to simulatefivecontrolalgorithms:

1. Adaptivealgorithm1: proposedin thispaper. The
initial predictionis 60secondsandtheadjustment
parameteris1.25secondsbecausesimulationsshow

spinning 1.5W sleeping 0.3W
spindown 1.0W spinup 2.5W

1.0sec 1.0sec
spinning switching
failure � � � � � �

/ hr failure � � � � � �
Table2: Disk Model

thatthisvaluecanbalancethesensitivity andadap-
tivity mentionedin Section3. Thepredictionfor
thenext sessionis 0.7 � previousprediction+ 0.3
� actuallengthof the lastsessionin orderto ad-
just for workloadchanges.

2. Adaptive algorithm2 [3]: The minimum length
is 2 secondsandtheotherparametersarechosen
accordingto thesuggestionby theauthorsof [3]
as � � � � � � � � � � �  ! � " � # � $ " % � � $ � � � $ � %  

3. Adaptive algorithm3 [6] : The lower boundfor
thepredictedidle timeis1secondand � & � ' � ( ) *  !
� � $ % � " � + $ , %  .

4. Fixed-timeralgorithm:We usedtwo seconds[8],
and five minutesas commonlyseenon desktop
computers.

5. Greedyalgorithm: shut down the disk ten mil-
lisecondsafterservingeachaccess.If anotherre-
questarrivesduringthespin-updelay, thesecond
requestwill alsobeservedbeforetheshutdown.

Our adaptive algorithm differs from [3] and [6] be-
causeit (1) estimatesthelengthwithin eachsession,(2)
predictslengthsinsteadof changingacceptableamounts
of idle time, (3) assumesequalprobabilityfor longeror
shortersessionsthanthe averagelength,and(4) is less
sensitive to exceptionallylong idle periodscomparedto
Hwang’s algorithm. In our simulation,all algorithms
checktherequestqueueeverysecond.

Table3 shows theresultof runningthesealgorithmsfor
a nine-weektracewith 385,213disk accesseson a per-
sonalworkstation [11]. The last two rows arenormal-
ized.We comparethefollowing items.

1. Consumedenergy.
2. Numberof statechanges.This is usedfor predict-

ing the disk lifetime. We assumeeachup-down
cycleincreasesthefailureprobabilityby � � � � � �
andonespinninghour increasesit by � � � � � �

.
The lifetime is the time when the failure proba-
bility reachesone-half. A large numberof state
changesreducesthelifetime andimpliesmorere-
questshave to wait for theplatesto spinup.

3. Total spinningtime andaverageduration.
4. Productof 1 and2. A smallernumberis betterbe-

causefewer requestsareaffecteddueto spinning-
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adaptive1 adaptive2 adaptive3 fixed(2s) fixed(5m) greedy
E (energy, J) 2603507 1870586 1859128 1846958 4778338 1791558
ratio 1.45 1.04 1.04 1.03 2.67 1.00
S (switchcycle) 6493 21485 22352 23330 3306 33609
ratio 1.96 6.50 6.76 7.06 1.00 10.12
life time (week) 317 93.6 90.0 86.0 626 58.7
ratio 5.4003 1.5945 1.5332 1.4651 10.6644 1.0000
spinning(sec) 789852 135357 123280 129590 2613312 NA
meanspinningtime 121.6 6.3 5.5 4.7 790 NA
meansleepingtime 716.7 247.0 238.0 228.6 855 160.9
E - S 1.07 2.54 2.63 2.73 1.00 3.81
E / S (efficiency) 7.52 1.63 1.56 1.49 27.11 1.00

Table3: Comparisonof PowerManagementAlgorithms(NA: not applicable)

updelaywhile energy consumptionis alsosmall.
5. Efficiency, theratioof thefirst two items.A large

numbermeansthat a higherportion of energy is
usedto keepplatesspinningto reducedelay.

This table shows that four algorithms(adaptive 2, 3,
two-secondfixed and greedy)have similar resultsbe-
causeall of them are dominatedby the intra-session
behavior. They also suffer from short lifetimes – less
thantwo years. The widely-usedtimer of five minutes
consumesmuchmoreenergy becausethe averageses-
sionlengthis oneminute.Althoughwederive thevalue
of . from a one-weektrace,simulationsshow that it is
equally applicableto this nine-weektrace. This sug-
geststhat on-line adjustmentof . is unnecessarybe-
causethealgorithmcandynamicallyadjustfor workload
changes. Our algorithm consumes45% more energy
than the other two adaptive algorithmsbut it provides
asix-yearlifetime, generallylongenoughfor apersonal
computer. The last two rows show that our algorithm
alsoprovidesasmallESproductandafive-timeshigher
efficiency.

5. Conclusions

Wehaveproposedanalgorithmfor dynamicpowerman-
agement.This algorithmadaptively adjustsits predic-
tion of future requestsbasedon the notion of session.
Wehaveperformedextensivesimulationsoncontrolling
thepower statesof harddisksandhave shown that this
algorithmcan reduceenergy consumptionwith longer
sleepingduration,lessperformanceimpact,andreason-
ablelifetimes.
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