Lookup Table Power Macro-models for
Behavioral Library Components *

M. Barocci L. Benini A. Bogliolo B. Riccé G. De Micheli !

DEIS - University of Bologna t CSL - Stanford University
Bologna, ITALY 40136 Stanford, CA 94305

Abstract

In this work we study the problem of estimating the power dissipation of the atomic components
(macros) used to implement basic operations in behavioral synthesis. We first precisely define the
key requisites for behavioral power macro-models and we briefly evaluate the suitability of several
approaches proposed in the past. We then focus on a specific macro-modeling methodology that
appears to be best suited for usage in a behavioral synthesis tool [8]. We analyze its limitations
and we propose several original improvements. Finally, we evaluate the impact of the proposed
improvements on macro-model accuracy and fleribility.

1 Introduction

High-level synthesis [1] (also known as behavioral synthesis) is gaining acceptance in the design
community. High-level optimization has been based on two cost metrics, namely area and speed.
In the last few years, however, power dissipation has emerged as a third key cost metric. As a
consequence, several research efforts have focused on the development of behavioral synthesis for
low power (refer to [2) for an extensive survey). Average power is the cost metric targeted by these
tools. In the following, we will use the word “power” as a shorthand for average power.

Behavioral-level specifications are usually provided using hardware description languages (HDLs).
HDL descriptions are parsed and translated in an abstract graph-based representation called control-
data flow graph (CDFG). Several flavors of CDFGs have been proposed in the past (1, 2]. Such
representations share two common features: (i) functional dependencies are represented by arcs; (ii)
operations are represented by nodes. Mapping operations to hardware resources (resource allocation
and binding) and deciding when to execute the operations (scheduling) are the main tasks performed
during behavioral synthesis.

Allocation, binding and scheduling algorithms target the minimization of a cost metric, possibly
subject to constraints on other metrics. In order to manage the complexity of the optimization
process, behavioral synthesis adopts an abstract view of the hardware implementation. The output
of the behavioral synthesis process is a structural netlist of atomic building block called behavioral
macros. This netlist becomes the input for lower-level synthesis tools (register-transfer level and logic
level). Behavioral macros are characterized by an abstract description of input-output functionality
and by cost models. They are usually collected in a library.

In this work we study the problem of formulating power cost models for behavioral macros (called
behavioral power macro-models for brevity) which is a fundamental step in the implementation
of high-level synthesis algorithms for low power. We first precisely define the key requisites for

This work is supported by a grant from Mentor Graphics Corporation (CoDesign Consortium)

174

behavioral power macro-models and we briefly evaluate the suitability of several power macro-
modcling approaches proposed in the past. We then focus on a specific macro-modeling methodology
that appears to be best suited for usage in a behavioral synthesis tool, namely, the look-up-table
model proposed in [8]. We propose a set of original improvements for enhancing the accuracy and
applicability of the basic method. We also describe a few different paradigms, spanning the tradeoff
between accuracy and computational cost, for employing lookup-table models during behavioral
synthesis. Finally, we present extensive experimental evidence that demostrates the practical interest
of lookup table-based macro-models, and the accuracy enhancements obtained with our original
techniques.

2 Power Macro-Models

Several power macro-modeling methodologies have been proposed in the recent past. The ma-
jority of these approaches targets specifically register-transfer level power estimation. In this frame-
work, the main purpose of RTL macro-models is to provide accurate power estimates (with accuracy
comparable to gate-level power simulation) for large designs with approximatively the same effi-
ciency as functional RTL simulation (which is notoriously much faster than gate-level simulation).
On the contrary, the main purpose of power macro-models in behavioral synthesis is to provide a
fast estimate of power costs for comparing design alternatives.

The fundamental requisites for power macro-models for behavioral synthesis are evaluation effi-
ciency and flezibility. The first requirement is dictated by the need of performing numerous power
estimates while the synthesis tool is evaluating design alternatives. The second requirement is im-
posed by the fact that the same macro can be instantiated in completely different designs or operated
under widely varying conditions. Furthermore, the power macro-model should be flexible enough
to provide power estimates even when the environment of a macro is not completely characterized
(for instance timing of input signals is unknown, fanout is only approximatively known, etc.). We
focus our review on characterization-based models, i.e., models whose construction and/or tuning
is based on accurate power estimates obtained by simulating/measuring the power consumed by an
implementation of the macro. For these models power dissipation Pow is a function of some envi-
ronmental information I (for instance, input switching activity): Pow = F(I). Characterization is
used for finding which form of functional dependency F gives an accurate estimate of Pow.

The simplest macro-model is the constant power factor [3]: Pow = Const. This model has been
used in several behavioral synthesis tools for low power [2]. Its main limitation is that it does not
account for the strong dependency of power dissipation from input patterns, hence it can be highly
inaccurate.

The power macro-models proposed by Landman et al. [4] improve upon the constant power factor
by taking into account input signal statistics. Although this approach is suitable for behavioral power
estimation, it has two major limitations. First, the power model for each macro must be provided
by the designer (or the developer or the macro library). Second, the method relies on assumptions
on the type of input signals that are valid for a class of signal-processing systems, hence it is not
fully general in scope.

Regression-based macro-models [5, 6], have been proposed to overcome the above mentioned
limitations. Such models do not rely on any assumption on the type of input signals and can be
constructed in a fully-automated fashion. Unfortunately, they are not very robust for variations of
input statistics.

The robustness issue is addressed by table-based models {7, 8]. These methods construct a
lookup table addressed by some compacted form of information on the unit environment (e.g.,
input-output switching activity and probability). They retain the desirable properties of being
automatically extracted and general. Moreover, they are robust because a lookup table can represent
any function with a desired accuracy, provided that the table can be made arbitrarily large. Model
evaluation reduces to a simple table-lookup, flexibility and generality are satisfactory, hence table-
based methods seems to be ideal candidates for implementing power macro-models for behavioral

175

synthesis. A fundamental issue in these methods is the selection of what type of environmental
information should be considered relevant and used to address the lookup table.

When behavioral synthesis is the target, the model proposed in (8] is preferable to the model
of [2). The second model requires detailed information on input timing and probability distribution
to address the lookup table. During behavioral synthesis much of this data may not be available,
hence the table constructed in [2] is excessively complex.

The 3-D table model [8] postulates the following functional model for power:

Pw:‘r(Pinspin)Dwt) (1)
where P;, is the average input probability P, = 1/N;, Zf;; Prob(ini(t) = 1), D;, is the average
input transition probability Di, = 1/N;, Z.N=i' Prob(in;(t) # ini(t*)) and D,y is the average
output transition probability Doyt = 1/Nou: Zﬁf{“ Prob(out;(t) # out;(t*)). Function F is a
generic function that depends only on the macro being modeled. The basic intuition of this method
is to approximate function F with a lookup table with three indexes (i.e., a three-dimensional table),
one for each controlling variable. Notice that P;,, Din and D,y always lie within the interval (0, 1}.

The 3-D table for a macro is constructed as follows. First, n equi-spaced values are selected
for P,, and D;, within the interval [0,1]. Then the bound D;,/2 < 1 ~ 2|Pi;, — 0.5| is used to
eliminate unacceptable values of D;, [8]. For each couple (P;,, Din), m sets of input probabilities
pi = Prob(in;(t) = 1) and transition probabilities d; = Prob(in;(t) # in;(t*)) are generated. Each
set contains Nj, input probabilities and N;, transition probabilities, one for each input. For a
given set, the constraint on the values of input probabilities and transition probabilities is that their
average is respectively equal to P;, and D;,. For each set of input probabilities and transition
probabilities, k input patterns are generated. The unit is simulated with the k input patterns.
Average power dissipation Pow and average output transition probability D,,; are computed. At
the end of the simulation, the cell with coordinates (Pin, Din, Dout) Of the lookup table is filled with
Pow.

The process is repeated until the table has been filled. Table construction requires approxima-
tively k * m * n2/2 simulations. The size of the table is approximatively m * n?/2. In the next
section, we will introduce several enhancement to the 3-D table model for improving its accuracy
and we discuss how it can be used during behavioral optimization.

3 Improving the 3-D Table Model

We propose two types of extensions to the basic 3-D table macro-model introduced in [8], namely
extensions of the characterization procedure (i.e., table construction) and extensions of the evalua-
tion procedure (i.e. table lookup).

3.1 Table construction

*

In the basic procedure illustrated in Section 2, a table entry with indexes Fj,, Dj,, D;,, cor-
responds to a set of input probabilities p; with average P;;, and a set of transition probabilities
d; with average Dj, for which the average output transition activity is D;,,. The table entry is
computed by averaging the power dissipation over k input vectors with the above mentioned p; and
d;. To construct the table: (i) we need to generate patterns k with the required distribution using
a random number generator, (ii) we need to keep track of D,,; and (iii) we need to compute the
average power.

The first task is not straightforward. Even though patterns for each input are generated with

probability p; and transition probability d;, statistical fluctuations in the generation of the streams

of zeros and ones may lead to actual values p} and d} that are slightly different from the desired
ones. This in turn may lead to P, and D!, different from the desired ones. If the error on F;, or

176

D,,, is larger than half the distance between two successive samples (1/n), we may actually generate
a power value that should be placed in a lookup table location adjacent to the one we are targeting.

Unfortunately we have no control on the number of inputs, and forcing large values of k may lead
to very long characterization times. Thus, we developed an adaptive strategy for the generation
of the patterns that reduces the errors |p; — p| and |d; — d|.. The pattern generation algorithm
checks, after generating a new pattern, if the values p., d. for the patterns generated so far match
the desired p; and d;. It then biases the generation of new patterns trying to reduce the difference
to zero. The bias is obtained by temporarily increasing (or decreasing) the value of p; and d; used
for random pattern generation. We call this procedure probability centering. -

A second problem with 3-D table construction is the lack of direct control on D,ye. During
characterization, we generate input patterns and simulate the macro with an accurate gate-level
(switch level) simulator. Observing the output of the unit, we can extract Dyut. Clearly, Doyt
depends not only on the input patterns, but also on the macro’s functionality, on which we have no
control. Hence, the m values of D,y obtained for a couple (Pin, Din) are in general not uniformly
distributed.

In the basic 3-D lookup table structure described in subsection 2, the values of D,y for which a
power sample should be extracted are decided a priori. The lack of control on D,y may prevent the
uniform filling of all table locations, and cause waste of memory and decreased accuracy (because
the measured D,,; would be approximated with the nearest Doy sampling point in the table). To
address this shortcoming we organize the 3-D lookup table as a matrix of ordered lists. A matrix
element is a list of m couples (Dout, Pow) ordered for increasing Dout- The matrix element is
uniquely identified by a Pin and a Din. The value of Pow is the average power (measured over
k simulations) of the macro when input average probability and average transition probability are
P;p and Djna, and when the average measured output activity is Dow:. The advantage of this data
structure is that it preserves the complete information on the values of Dous, because their values
are not decided a priori. Both the (Djn, Pin) error control technique and the list-based organization
for (Dout, Pow) can be seen as “centering” procedures whose purpose is to guarantee that the Pow
value associated with a triple (Pin, Din, Dout) is the correct one.

3.2 Table lookup

Once the 3-D table has been constructed it can be used to estimate the power consumed by a
macro. The basic power estimation procedure described in {8] is a simple table lookup. Assume

*

that the units is instantiated in a circuit, and the values of P},, D}, and D;,, have been computed.
Power consumption is estimated simply by fetching from the table the value of Pow corresponding

to the measured P;,, D}, and D;,,. Unfortunately the table stores only a finite number of Pow

values, corresponding to a finite number of triples (Pin, Din, Dout). If the triple (P2, Dip, D3y is
not one for which a Pow sample has been taken, we need to resort to some interpolation procedure.
In 8] this problem is only mentioned, but no solution is provided.

We propose a two-step interpolation procedure based on our new table organization. First, the

nearest neighbors to the couple (Pj,,D;,) are found. In the most common case, there are four

neighbors (corner cases with three or two neighbors are possible but will not be discussed here for
the sake of conciseness): (Pi,D%)), (P4,D%), (P4, D},) and (P; DY)). For each neighbor, the

in) ~in iny~in n?
(Dout, Pow) list is explored. The two nearest neighbors Dg,,, D?,, to D;,, are found, and a power

value is computed by linear interpolation between Pow?®, Pow®:

— Pow°D?

Pow® — Pow® _, Pow®D? out
— @
out

POIUu, = WDOUt + D(;ut

out out out

in this way, we obtain four power values, one for each (P;n, Dirn) neighbor: Pow),, Pow?, Pow?, and
Pow?. The final estimated power value is obtained by bilinear interpolation [9). The interpolation
scheme is correct by construction on the boundaries. The complexity of power evaluation is O(log m)
if the couples (Dout, Pow) are ordered in Doy, thus, power evaluation is extremely fast.

177

Probability centering and interpolation try to improve the accuracy of the basic 3-D Table model.
However, it is possible to take a more radical approach, and change the data structure employed in
model construction. In principle, table lookup tries to select the best estimate for power dissipation
on the assumption that patterns with similar P;,, D;» and D, produce similar power dissipation.
Thus, when performing table lookup we want to find the nearest neighbor of a given measured
(Pins Din» Dgy,) among the (Pin, Din, Dout) samples stored in the table. This can be performed by
simply storing the samples in a list, and by scanning the list, looking for the sample that is closest
to the measured triple. Efficient data structures known as k-d trees [10] can be exploited to perform
nearest-neighbor search with expected complexity O(log(n?m)). We implemented a k-d tree-based
method for efficient sample storage an lookup, and we compared its accuracy with the traditional
lookup-table-based methods described above.

3.3 Using 3-D Tables during behavioral synthesis

In the previous section we have assumed the existence of a mechanism for computing the values
of Pin, Din and Doy that are required for performing table lookup and obtaining a power estimate.
Obtaining these values for an instance of a macro during simulation of an RTL architecture is a
straightforward task: the inputs and outputs of the macro are monitored and the probabilities
and transition probabilities are computed at the end of the simulation. However, RTL simulation
may be unacceptably expensive during architectural exploration. Algorithms for fast computation
of Pin, Din and Doy that do not require complete simulation are out of the scope of this paper
(refer to [11, 12] for more information). In this subsection we simply describe how to perform
power estimation with lookup table macro-models with varying amount of incomplete boundary
information.

e No boundary information. If neither Pi, nor D;, nor D, are available, a rough power
estimate can be computed by averaging over all Pow values in the table. Alternatively, we
can use a worst-case estimate by selecting the largest Pow value.

e Only P, is available. In this case, D;, can be computed, assuming no temporal correlation,
by the formula D;, = 2P;n(1 — Pi). The value of Pow is computed with the interpolation
algorithm described in the previous section with the only difference that the values Pow},,
t =1,...,4 are computed by averaging over all values of Pow in the lists of the four neighbors
of (-Pina Din)-

e Both P;, and D;, are available. Interpolation is used with the same modification as in the
previous case.

Concluding this section, we stress the flexibility of the lookup table model, that can be fruitfully
exploited in several ways. It can provide meaningful first-cut estimates when used within optimiza-
tion loops where efficiency is key. It can also be used for more accurate and detailed power analyses,
which usually take place towards the end of the optimization process, when a small number of
promising alternative implementations is carefully analyzed.

4 Experimental Results

We assessed the accuracy of the lookup-table models presented in Section 3 by performing ex-
tensive experimentation on a large set of benchmark circuits. The benchmarks belong to the macro
library provided with Monet, a behavioral synthesis tool developed by Mentor Graphics Corp. The
behavioral library consists of several tens of macros, specified in VHDL, that perform typical data-
processing tasks (such as addition, multiplication, division, comparison, etc.). The bit-width of the
macros is parameterized (i.e., it can be specified at instantiation time). It is also possible to specify
the encoding of input data (sign-magnitude of two’s complement).

To generate the implementation of the macros required for characterization, we exploited the
generate_1ib script provided in the Monet distribution. The script is currently used to charac-

178

Test sequence |

| i P e - 5 Do
Y _|n.-u-m.|.-.- P [- S Cig
T _'| miepaiated e [= Clmasi Chst

PN wunpaipies P D - Cingt st
|
| Pimrens gt - P i Coonat e

Figure 1. Comparison between the relative errors made by all the proposed methods on a set of 30
benchmark circuits. (a) Test case 1. (b) Test case 3.

terize the units for timing and area, and can be easily extended to perform characterization for
power. generate_1lib automatically instantiates several implementations for each unit (with sev-
eral bit-widths and input encodings), synthesizes them using a user-specified logic synthesis tool
such as Synopsys’s Design Compiler, and finally runs the required characterization tasks to obtain
information on the cost metrics of interest.

We randomly selected 30 macros instantiated by generate_1ib and we constructed power macro-
models for them. A pipelined unit was also chosen and included in the benchmark set, in order to
assess the suitability of our model to deal with sequential macros. Logic synthesis was performed
by Design Compiler. We used an accurate in-house gate-level power simulator [13] to obtain power
dissipation data for characterization and validation.

We compared the accuracy of seven alternative implementations of the lookup table method.
The first six use a lookup-table structure, wile the last one is based on k-d trees. The first method,
Closest Pin Din - Single Dout, is the simplest one. The table has only 2 dimensions (P;, and
D;n) and the Pow value is obtained by discretizing the given (P},,D},) to the nearest point in
the lookup table grid. The second method, Interpolated Pin Din - Single Dout, is still based
on a 2-D lookup table, but computes Pow by interpolating the values on the grid points around
the measured (P}, D},). The third method, Interpolated Pin Din - Closest Dout, uses a full-
blown 3-D table (with multiple Pow values, one for each D,y,, for each Pi,, D;, pair). First, the
Py, Dy, points on the grid which are surrounding the measured (P, D},) are found. For each of
them, the power value Pow associated to the closest grid point on the D,,,; axis is taken. The final
power estimate is obtained by interpolating the Pow values. The fourth method, Interpolated
Pin Din Dout, uses 3-dimensional interpolation between the grid points surrounding the measured
(Piy D3y D3yyp). The fifth and sixth methods use a list of D,y values for each (Pip, D;iy) sample
to reduce the discretization error on Dy, and use the same interpolation strategies as the third
and fourth method, respectively. Finally, the seventh method, Nearest neighbor - Pin Din Dout
list is a k-d-tree based nearest-neighbor search procedure.

We constructed a lookup table with 10 P;, samples, 10 D;, samples and 5 D, sample, for a
total of 10 x 10 x 5 = 500 data points. To obtain the Pow value in each point, we averaged the
results of 50 simulations. Thus, 500 x 50 = 25,000 patterns were simulated for characterizing each
macro. Our simulator has a speed of approximatively 3,000 patterns per second per gate (on a Sun
UltraSPARC), thus, characterization of a 500-gate macro requires a little more than a hour. The
accuracy of the table-based model was tested against 4 different test cases. For the first test, we

specified 0.5 signal and transition probability for each input. In the second test, input transition
probability was 0.2 for all inputs, while input probability was 0.7. In the third test, we randomly

179

Average errors

Average errors
N
20 Nearest acighihor — Pin i Dot tist
— 13
b - ‘ °
i | - °© o °
- _ s
sist g 81 8, T oE_
= i 2 w 2 5
= 8y =i ! ¥ 8 8 ® 10 o° e -
£ S B! B, 03 s ; | ® <}
E 51 ool & H = & | =
o v c 1 vl < a 8‘ o, °
4 g1 O £! 5 v £ E <]
Z o, c | o £ c e o o °
= e, &, £ & e e N -g (=] 0© °
Swl 31 Fl 31 3 £ L2 £ 3 oo
LR L O O T Zsfoe oo,
S ' &, § - 2 % ! ° o
£y 2! 2 g g e °)
Ed6 o ¢ g g °
=0 =0 EN0Y
! o
o
5!
10 20 2 3 4 3
a) b) Benchmark Test soquence

Figure 2. (a) Comparison of average percentage error for macro-models. (b) Average percentage error for
the nearest neighbor macro-model.

divided the inputs in two sets: for the first set signal and transition probabilities were 0.7 and 0.2,
respectively. For the second set they were 0.2 and 0.2. The last test was similar to the second, but
the values of signal and transition probabilities for the two sets were swapped.

For each test sequence, we generated 20 sets of 50 patterns, we computed (P},, D},, D5,,;), we sim-
ulated the patterns and obtained the power dissipation P,;m, for each set. The values (Py,, D},, D3,,)
were used for table lookup and estimates P.,, were obtained. The error on each estimate was com-
puted as € = |Pest — Puim|/Psim, while the error for the entire test sequence was computed by
averaging over the 20 values of ¢, one for each set of 50 patterns.

The plots in Figure 1 summarize the relative performance of the various methods on the bench-
marks for two different test cases (the first and the third). Each benchmark is associated with a
column. The columns are divided in 7 blocks, one for each method. The height of a block is pro-
portional to the error. Figure 1 shows that: (i) the accuracy depends on both benchmark and test
case (the largest errors for different test cases are not for the same benchmark, and the errors on
a given test case depend on the benchmark); (ii) the methods behave quite consistently, i.e., either
they all perform well or they all perform poorly.

A global comparison among the macro-modeling methods proposed in this paper is shown in
Figure 2.a. For each method, the average error (averaged on all test sequences and on all bench-
marks) is shown together with its standard deviation. The average errors are respectively 8.47%,
8.01%, 7.7%, 7.68%, 7.06% and 6.84%. Standard deviations tend to slightly decrease for decreasing
errors. These results lead to the following conclusions. First, using multiple Do, values (i.e., using
3-D tables as opposed to 2-D tables) improves model accuracy. Second, interpolation is marginally
useful, when applied to discretized Doy, but improves accuracy when applied to Doy lists. Finally,
the noise introduced by discretization on the lookup table grid deteriorates accuracy. The best
results were obtained by the nearest neighbor method that does not impose any discretization on
the sample points. Furthermore, notice that interpolation does not fully compensate for the loss of
accuracy due to discretization: the nearest neighbor method does not use any form of interpolation,
but it is still superior to all other methods.

Figure 2.b provides a more detailed analysis of the accuracy of the nearest neighbor model.
The left part of the figure shows, for each benchmark, the percentage error of the seventh method
averaged over the four test cases. Errors are quite small, all below 13%. The right part of the figure
shows the average error for each test sequence obtained by averaging on all benchmarks. Again,
notice that errors are small, although they show a strong dependence on test sequence.

In a second set of experiments we studied the dependence of accuracy on several characteristics of

the power macro-model. We selected the best method that uses a lookup table (i.e., Interpolated

180

Dependence on Pin/Din samples Dependence on Dout samples
%0 15
—— Discrete table - add_rpi1_1_8_8
80! \\ Nearest naighbor - add_rpl1_1_8_8
0
g 60 | £ 0
pe e
£ S0
§* 5
b4
>
a0 3
>4
n - @ 5
20| neighbor
~ =~ - Discrete table - cmp_pl_0_1_1_1_8.8
10 === Nearest neighbor - cmp_pl_0_1_1_1.8_8
0 0
2 3 4 5 6 7 8 9 10N
a) b) Number of Dol samples

Figure 3. (a) Accuracy vs. number of Pin, Din samples. (b) Accuracy vs. number of Doy samples.

Pin Din Dout - Dout list) and the nearest neighbor method. We also selected two benchmarks,
namely a comparator and an adder. The error values were obtained by averaging over the four test
cases.

In Figure 3.a we show the dependence of model accuracy on number of P;, and D;, samples.
Clearly, when the number of samples is smaller than 4, accuracy is severely degraded because the
lookup table becomes too sparse. On the other hand, it is not convenient to arbitrarily increase the
number of samples: accuracy does not improve much, while characterization time increases linearly
with the number of samples taken on any axis. The dependence of accuracy on the number of
P,.: samples (Figure 3.b) has a “noisy” behavior. Even though increasing the number of samples
does help, the curves are not monotone. This is due to the fact that D,,; values are not directly
controllable and for some circuits (such as comparators) they tend to be quite insensitive to changes
in input probability distribution.

Figure 4.a illustrates the dependence of relative error on the number of simulations performed to
compute the Pow value for each triple (Pin, Din, Dout)- The plots show a non monotonic dependence
of accuracy on number of simulations. To understand this experimental fact, remember that to
compute errors we compared model estimates with average power values taken over 50 patterns.
Error is low when the number of simulations used to find Pow values is close to 50, then increases
when it becomes larger than 50, but not large enough to achieve statistical convergence. Finally it
decreases again when the number becomes large enough to obtain statistical convergence on Pow.
This result indicates that using large number of simulations to compute Pow values is the safest
choice (of course, there is a tradeoff with characterization time).

Dependence on window size (i.e, the number of vectors that have been averaged to obtain
(Pg,, D}, D5yy) triples and their corresponding Psim values to be compared with the estimates
provided by the macro-models) is studied in Figure 4.b. We can infer from the plot that using small
window sizes leads to better accuracy. This result is quite intuitive. Small window sizes allow us to
take many measured values (P%,, D},,, D3,;) and to obtain many estimates of Pow. Averaging over
several estimates tends to improve the final accuracy level.

5 Conclusion

In this paper we have analyzed a simple lookup table-based power macro-modeling approach
for providing power estimates during high-level synthesis. Extensive experimental analysis was
performed to validate the model. From the experimental results we can conclude that: (i) the
lookup-table model is robust and general; (ii) it can be applied to a wide class of macros, including

181

Dependence on sample size Dependence on window size

20 (— 13 —]
iT ——— Discrete \able - add_rpl1_1_8_8 =T

R Neares! neighbor - add_ml1_1_8_8 Pidthaininihdbii e e
{1

R

Discrete table - add_mi1_1_8_8
i — Nearest neighbor - add_mi1_1_8_8

Relative error (%)
S

i = = - Discrete table - cmp_rpl_0_1_1_1_8_8

o ’I = Noarest neighbor - emp_rpl 0_1_1_1_8_8
>

= /

o

o

0 —
0 200 400 600 800 1000 200 400 600 00 1000

a) Sample size b)

Figure 4. (a) Relative error vs. sample size. (b) Relative error vs. window size.

pipelined ones; (iii) it is easy to extract automatically and (iv) power characterization can be easily
performed together with area and timing characterization.

A few interesting questions remain open. First, it could be interesting to test the applicability
of the method to sequential macros with feedback. We conjecture that the presence of internal
state and feedback could significantly degrade the accuracy of the method, but the results obtained
on pipelined, feedback-free sequential macros are very encouraging. Second, although the accuracy
on average power estimates is good (well below 10% for all methods studied), the technique can
be inaccurate when input patterns are highly biased (for instance when they are deterministically
selected).

References

(1] G. De Micheli. Synthesis and optimization of digital circuits. McGraw-Hill, 1994.
[2] A. Raghunathan, N. Jha and S. Dey, High-level Power Analysis and Optimization. Kluwer, 1997.

(3] S. Powell and P. Chau, “Estimating power dissipation of VLSI signal processing chips: the PFA tech-
nique,” in VLSI Signal Processing IV, pp. 250-259, 1990.

[4] P. Landman and J. Rabaey, “Architectural power analysis, the Dual Bit Type method,” IEEE Trans-
actions on VLSI Systems, vol. 3, no. 2, pp. 173-187, 1995.

(5] L. Benini, A. Bogliolo, M. Favalli and G. De Micheli, “Regression models for behavioral power estima-
tion,” Power and Timing Modeling, Optimization and Simulation, pp. 179-187, Sept. 1996.

[6)] Q. Qiu, Q. Wu, M. Pedram, and C.-S. Ding, “Cycle-Accurate Macro-Models for RT-Level Power
Analysis,” in Int.l Symposium on Low Power Electronics and Design, pp. 125-130, 1997.

(7] A. Raghunathan, S. Dey and N. Jha, “Register-Transfer Level Estimation Techniques for Switching
Activity and Power Consumption,” in Proc. of International Conf. on Computer-Aided Design, pp. 158-
165, 1996.

(8] S. Gupta and F. Najm, “Power macromodeling for high level power estimation,” in Design Automation
Conf., pp. 365-370, 1997.

[9) W. Press, Numerical Recipes in C, 2nd ed. University Press, 1992.

[10] R. Sproull, “Refinements to nearest-neighbor searching in k-dimensional trees,” Algorithmica, no. 6,
1991.

[11) S. Ramprasad, S. Shanbhag and N. Hajj, “Analytical estimation of transition activity for DSP archi-
tectures,” in Int.l Symposium on Circuits and Systems, pp. 1512-15, vol. 3, 1997.

[12] K. Khouri, G. Lakshminarayana and N. Jha, “IMPACT: A High-Level Synthesis System for Low Power
Control-Flow Intensive Circuits,” in Design and Test in Europe Conf., pp. 848-854, 1998.

{13] A. Bogliolo, L. Benini, G. De Micheli and B. Riccé, “Gate-level power and current simulation of CMOS
integrated circuits,” IEEE Transactions on VLSI Systems vol. 5, no. 4, pp. 473—488, Dec. 1997.

