Automated Composition of Hardware Components

James Smith Giovanni De Micheli
Stanford University Stanford University
Gates Building, Room 326 Gates Building, Room 333
Stanford, California 94305-9030 Stanford, California 94305-9030
redskins@aglaia.stanford.edu nanni@galileo.stanford.edu
Abstract these protocols into a standard communication scheme. This

) . scheme is then implemented in an interface architecture that
In order to automate deS|gn reuse, methods for compaosings genera| enough to accomodate the requirements of any
system components must be developed. The goal of thigirget interface. The terminologyientis used in this paper

research is to automate the process of generating interfaceso “indicate a component that is sending data szsburce
between hardware subsystems. The algorithms presenteghdicates a component that is receiving data.

here can be used to generate a cycle—accurate, synchronous

interface between two hardware subsystems given an HDL2. Overview

model of each subsystem. These algorithms have been)

implemented in theoLARIs hardware composition tool and The algorithms presented here are used to generate
have been used to generate an interface between a MIPSYynchronous component interfaces. The components may
microprocessor and the SRAM that comprises its secondanpperate —at different frequencies and may employ

cache. Interface generation for the MIPS R4000 is described_unidirectiona| or bidirectional busses. Bidirectional busses,
such as those employed by PCI or VME, are handled by

1. Introduction treating the bus as two unidirectional busses and combining
))))) . the resulting interface controllers. Multi-way interfaces that
The increasing complexity of electronic systems is forcing allow multiple clients to interact with multiple resources are
designers to consider, if not implement, design reuse andynthesized by dynamically establishing a point to point link
intellectual property sharing. As this methodology matures, apetween the client and the resource (Fig. 1).
new breed of tools will be required to automate component

selection, subsystem scheduling, and system composition. The interface architecture is described in Section 3. From
This paper presents a mechanism for composing hardwaréhe component model described in Section 4.1, a state
blocks that communicate with different protocols, given an machine is synthesized to map the component's
HDL description of these protocols, while providing hooks communication protocol into a standard protocol that other
for implementing arbitration algorithms. interfaces can understand (Section 4.2). The data formats

that a client component employs are translated into formats

Interface synthesis has focused on optimizing high levelthat the resource component can understand (Section 4.3).
communication between subsystems given a set of

communication constraints ([ErHeBe93], [JeEIOb94], ThePoLARIShardware composition tool requires the user to
[KaLe94]). Interface modeling languages such as thatsupply an HDL description of the component being interfaced
developed by [ObKuHe96] allow a designer to explore ato, the name(s) of the ports across which data is tranferred,
interface design space and generate a synthesizabland the names of ports that the interface does not have access
description of the interface. [GuR094] describes ato (uncontrollableports). The names of the uncontrollable
methodology for modeling an interface with a behavioral ports (e.g.rese} must be supplied so th&oLARIS does not
description suitable for high level synthesis. Other interfacemanipulate these ports when creating a component interface.
synthesis research, such as that performed in [GaGI96], has ,

investigated specifying and scheduling communication3. The Interface Architecture

between hardware and software subsystems. The researchUn”ke the hardware interface synthesis research performed

presented here focuses on generating a low-level,) ;
synthesizable description of synchronous interfaces betweeﬁjy [MaHa9s], this research links hardware components

hardware components. Similarly, [ChOrBo95] describes athrough a standard architecture rather than by attempting to

mechanism for creating the glue logic between two hardwargN@P_One component interface into another. This allows
components, but requires a functional description of Interfaces to be synthesized for a broad range of components.

component ports. In this paper, we presentrbearistool, {E addition,tit ?IIows multiple components to be linked via
which converts a subsystem’s communication protocol into a'''€ Same Interface.
standard scheme given an HDL description of the subsystems 1 architectural Blocks

An HDL model of the resulting interface is generated.

The interface architecture includes a state machine for

movement of data. Data could be addresses command rotocol conversion, a send and receive buffer for transaction
v . u J formation (which must be saved while a resource is

values destined for a memory location, or some combination, oy ajlable), and an arbiter to govern access to a resource
of these descriptions. In order to allow hardware subsystems(,:ig. 1). Although hooks are provided to allow the

that foII_owt dif{ﬁrent prottﬁcolfh ftor | movingt ddﬁta 0 implementation of an optimized arbitration algorithm, the
communicate with one another, the tool presented Neré Mapgetajls of the arbitration scheme are not required for interface

The basic purpose of an interface is to facilitate the

Permission to make digital/hard copy of al or part of this work for persona or SyntheSiS'

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercidl advantage, the copyright nofice, the title of When the state machine for protocol conversion detects that

publication and its date appear, and notice is given that copying is by permission

of ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute a Component |.S Sendlng dat'a, the data IS placed in the receive

tolists, requires prior specific permisdonandior fee. buffer for that interface. This data will be passed to the send
DAC 98, San Francisco, California buffer for the resource interface. Correspondingly, when the

© 1998 ACM 1-58113049-/98/06 $5.00 state machine detects that there is data in its send buffer, it

executes the necessary signal assignments to transfer the data
to the resource component. Sizing of these queues is
currently a manual task, but could be automated in the

To Internal Arbiter

Component Component Acknowledge Valid Stall Request Data_In Data_Out
) 'I: .:.
S S Valid L
M M 4— o]
T T
—» o
U
Interface State Acknowledg T
| Machine L
Request IF
M —> F
-« N
|
VA Stall > N

Component VA *

Interface Signals Data_Out Data_In

To External Subsystem

Fig. 1: High level view of a three component
implementation of the interface architecture. Fig. 2: Interface communication scheme.

manner of [AmB091]. The default arbiter implements a variables and conditions for each assignment to be executed.

round robin arbitration scheme to select a client receive_ i)

buffer that will transfer its data into the appropriate resource Definition 1. A components described by the list of tuples

send buffer. {Cj = <vj, X, Aj, 0>} where X; = {xjj} are the conditions

under which the valued; = {ajj} are assigned to the variable

vj. For the assignment t@, we assume there are possible
The standard protocol employs four control signals each forvalues @i, j= 1,2, ..., i} each selected by one and only one

the receive buffer and the send buffer (Fig. 2). For the eachOﬂdlthUXi'{,S {0, 1}, and g; indicates whether the assignment

buffer, the signals are implemented as follows: REquest- IS combinational or synchronous. Thus,

input to the buffer controller that indicates data is being sent vi=2 Xij ™ ij -

to the interface; (2Btall — output from the buffer controller .

that indicates that the buffer is full (the state machine mustVariables that are not component ports are referred to as

prevent other components or interfaces from sending anynternalvariables.

more data); (3Valid — output from the buffer controller that | . lqorith

indicates that valid data is in the buffer and ready to be -2 Protocol Conversion Algorithm

transferred; (4Acknowledge- input to the buffer controller The state machine for protocol conversion is represented

that indicates that data has been read from the buffer (th ; '

buffer controller will increment the read address). Resourceggglggr?]uesméoarfgiow&ggisr?grdgtgt: ;aﬁsgioolrl]esctlon of state

are scheduled in the arbiter by selectivéigknowledgmg '

the clientValid signal. Data is transferred through four Definition 2. The state machine for protocol conversios

unidirectional busses, two for sending data to and receivingjescriped by the tupl&M := <S, T > where

data from the arbiter, and two for sending data to and S:={S) isali,st of states

receiving data from the external component. T .

T:={(1j=1)=>§—>S}is alist of

4. State Machine Generation conditions governing state transitions.

3.2 Communication Scheme

Given a component model that describes bus functionalityThe algorithm for generating the state machine for protocol
(or a superset of bus functionality), conditions for transferring conversion is completed in five steps: (1) generate a sequence

data to or from that component are determined. Ag;offunctional stateshat cause a function to be executed, (2)

sequence(s) of assignments to component ports is determine . .
that will cause these conditions to become true. After thedenerate a sequendg of exit statesthat cause an executing

required assignments to component ports have beefunction to be haltedY = Sfu Sy), (3) generate the conditions
determined, they are executed on the component model, so dgjj} that govern the state transitions, (4) combine state
to resolve the values of control ports that are inputs to thesequences for multiple functions, and (5) reduce the number
synthesized interface. Once the values of all necessary inpuef states. The name of the component’s data bus, referred to
and output ports have been resolved, a state machine igs thetargetvariable, is supplied to initiate generation of the
generated that executes the required assignments andterface state machine. The algorithm is outlined in Fig. 3.
monitors the necessary control ports. This state machine . . : L

provides a mapping from the communication protocol for a _If the target variable is an input or bidirectional port, the
system component to the standard protocol that allowscomponent model is searched for a use of this variable such

inter-component communication. The collection of &S:
gg%rfﬁtrllggznnecessary to perform a data transfer is referred to if signalA = valueA then

signal<=target

4.1 Component Model if target = value and

The component is abstracted as a list of assignments to signalB <= valueB then ...

Is the target
an input, output,
or bidirectional
port?

input/bidirectional output/bidirectional

The conditions under which the target variabtarge? is
used are theeroth order input conditions

Definition 3. The set ofzeroth order input conditionfr the

target variablevy is lg := {Xij} where x;; or aj; is dependent Search component Search component

onvy. mo?heé ft(;rr;estes of assignments to the
(detectzeroth order (detec;[;re%g:h order

In the previous exampleyy = {targe§ and lg = {signalA = input conditiong output condition$

valueA signalB = valueB

| Determine functional K
states Make an

assignment that

is required to 47

satisfy the
condition

If the target variable is an output or bidirectional port, th:é
component model is searched for an assignment to this port
such as: -

if signalA = valueA then
target<=signal

Search component|
No model for
_» assignments to
internal variables
(detectnth order
conditiong

The conditions for these assignments are tleeoth order :
output conditions.

Is the
condition
satisfied?

assignment
uncontrollableor
to an external
port?

Definition 4. The set ofzeroth order output conditiorfer the
target variables, is Op := { xxj}- v A

In the previous exampley, = {target and Og = {signalA = Apply assignment

Determine exit
vaIueA}. states fromzeroth _>t° component model_> Combine threads

p to determine state
order exit transition and reduce states

4.2.1 Executing a Function conditions conditions

Assignments that satisfy zeroth order conditions must be
executed as part of the functional state sequence. That is, if

lop = {signalA = valueA, then state § must contain the variable assignment isuncontrollable and can not be
assignmentsdignalA <= valueA. If signalAis a component deterministically driven to that value. For example, if a
port, then a single assignment can be made to allow thatomponent description contained the sequential statements:
function to be completed. However,sfgnalAis an internal . L

variable of the component, then conditions must be if reset=TRUE orintSignalA = valueA then

Fig. 3: The algorithm for state machine generation

determined that will cause that variable assignment. For target <= value
example, if a component description contained the sequential intSignalB <= valueB,
statements:

if intSignalB = valueB then

if externalSignalA = valueA and intSignalA <= valueA,
internalSignal = value then

signal <= target then intSignalA <= valueA is uncontrollable if reset is

uncontrollable.

if externalSignalB = valueB then

internalSignal <= value Definition 6. An internal variable assignmenv(= ay) is

uncontrollableif X, € I, and
then the following state sequence is generated: (1) Xxi € lyywhere m < n, or

(2) Xk is dependent on another

State 1. extSignalB<= valueB uncontrollable assignment.

[* causedntSignal<= valuein State 0 */

) . _ If an uncontrollable internal variable assignment is
State 0: extSignalA<= valueA encountered, no nth order conditions for that assignment are

These conditions that must be satisfied to cause the imemﬂenerated. The thread of states that required the assignment is

variable assignment are théh order conditions us aborted (Fig. 3). This prevents the algorithm from
looping indefinitely on a component description such as the

Definition 5. The set ofnth order input conditiondor the ~ one described in the previous example.

target variablevy is I := {x} where, given the (n-1)th A component can not be deterministically driven to a

order input conditions fovy, i.e. In-1, functional state when an uncontrollable signal is encountered.
there exists ap;; € Ih-1 However, the functional states can be detected by examining
such thatXy = 1) => (x;j = 1). component control signals (Section 4.2.3).

In the previous example, = {target, lp = {externalSignalA 4.2.2 Exiting a Function

= valueA ~and internaISignaI = valdeand I = In the same way that a sequence of states is determined to
{externalSignalB = valueB An analogous definition applies execute a function, another sequence of states is determined to
to nth order output conditionslf conditions of all orders can end that function. That is, when the data transfer is
be satisfied by a sequence of assignments to component portgompleted, the interface must exit its corresponding data
the interface state machine can deterministically drive argnsfer state.
component into functional states.

A component exits a data transfer state when an assignment

If an internal variable assignment requires an nth orderis made that contradicts a zeroth order condition. This can be
condition that in turn requires the same assignment, the

achieved with assignments to component ports or internakequires multiple variablesnternalSignalA internalSignalB
variables. For example, if a component description containedo be set in tandem. This results in multiple threads of
the statement: execution being generated, which must be combined into a

. . single state machine.
if externalSignalA = valueA and

internalSignal = value then ANDing two state sequences is a straightforward
signal <= target combination of state assignments and state transition
conditions. The final states in a sequence and their

then satisfying the conditionot (externalSignalA = valueA predecessors are ANDed. An example is shown in Fig. 5.
and internalSignal = valuejnust cause the data transfer state

in the interface to be exited. Such conditions are zbeoth
order exit conditions

— ‘ Ti0andta;
()T
Definition 7. The set ofzeroth order exit conditionfor the @ ta3 N

target variablevy is Eq := {X«} where, given the zeroth Tipandtsy

order input (or output) conditions fax, i.e. Ig,
there exists agy; € lp, Fig. 5: The results of ANDing the two state sequences
such thatXy = 1) => (xx = 0). (So, &) and (9, S,).

Nth order exit conditionsare generated and satisfied in the |f any two ANDed states contain contradictory assignments
same manner that nth order input and output conditions ardhe threads are discarded.

generated and satisfied. In ORing two threads, only the head states are combined.

state sequence to obtain a state sequence that can execut®@tain a portion of each thread from being executed. An
function and be reset. example is shown in Fig 6.

4.2.3 Generating State Machine Conditions

T10
" . ” . T
After the conditions for executing and exiting a function @*

have been completely satisfied or found to be uncontrollable,

the required assignments are executed on the component ‘ e =
model. If the component drives a port to a valid value in a ® s 32 >
cycle, then a conditional statement governing the state

transition must be added to the state corresponding to that

cycle. For example, if the component description contained Fig. 6: The results of ORing the the two state sequences

32

the sequential statements: (So: S) and (9, S, &)-
if externalSignalA = valueA and Duplicated states are removed as shown in the next section.
internalSignal = value then .
signal <= target 4.2.5 State Reduction
if uncontrollableSignal = valueX and A component will frequently share states between execution
externalSignalB = valueB then threads. For example, a component may contain a state in
internalSignal <= value which it polls its subsystems for writes, and executes a
externalSignalC <= valueC different sequence for each write:
then the conditiort;o = {externalSignalC = valuePmust be if state = POLL_STATE then
satisfied to allow the state transition from statg S case (subsystem)
{externalSignalB<= valueB} to state g = {externalSignalA SubA_write:
<= valueA}. state <= subA_WRITE_STATE
subB_write:
T10 state <= subB_WRITE_STATE
T10
S @ The number of states is reduced by joining threads of
execution at points where their respective states are

Fig. 4: Conditions governing state transitions. congruent

There are two sets of requirements that states can satisfy to
be considered congruent. First, two states are congruent if
they stem from congruent previous states and the conditions
far entry into both states are the same. Second, two states are
considered to be congruent if they contain the same variable
assignments and one of them is an exit state. The second
4.2.4 Combining Multiple Threads of Execution requirement allows a state machine to be reset once it has

executed a functional sequence.

A function’s execution may require or allow more than one o o
sequence to be executed in parallel. For example, thede€finition 8. States Sand $arecongruentf either

Thus, if the interface state machine can not deterministically,
drive a component into a particular state (in the example
above, the component state corresponding £p i will be
able to determine when the component has reached that sta
by evaluating its status signals.

component description, (1) for all x, there exists ay
such thatry; = 1y; and
if internalSignalA = valueA and and & and § afe congruent, or
internalSignalB = valueB then (2) assignments ofi$ assignments of;S

signal <= target and S satisfiesE.

always @ (posedge Clock) begin

module r4600_interface (SysADi, SysADCi, SysCmdi, SysCmdPi, Validout = 0; bus_state = S_SEND_IDLE;

SysADo, SysADCo, SysCmdo, SysCmdPo, . Release = 0; end else begin

RdRdy, WrRdy, ExtRgst, Release, ValidIn, ValidOut, SysOet = 1; SysCmdo = 9'b110000000;

Reset, Clock, SysOe, CPUack = 0; end

CPUwr, CPUrd, CPUrsp, CPUdatal, CPUdataO, CPUack, CPUvalid, CPUaddr); if (Reset) begin ValidOut = 1;
) i) bus_state = S_SEND_IDLE; CPUack = 1;
input [63:0] SysADi; input CPUrsp; end else begin end)
input [7:0] SysADCi; input [63:0] CPUdatal; case (bus_state) S_SEND_SPIN: begin
input [8:0] SysCmdi; output [63:0] CPUdataO; S_SEND_IDLE: begin SysOe = 0;
input SysCmdPi; output CPUack; it ((CPUwr && WrRdy) |l (CPUrd && RdRdy)) begin bus_state = S_SEND_IDLE;
output [63:0] SysADo; output CPUvalid; bus state =S SEND ADDR: end
output [7:0] SysADCo; input [63:0] CPUaddr; end else if (ExtRgst) begin S_RECV: begin
output [8:0] SysCmdo; reg [63:0] SysADo; Release = 1: SysOe = 0;
output SysCmdPo; reg [7:0] SysADCo; bus state =S RECV SPIN: if (Validin) begin
input RdRdy, WrRdy; reg [8:0] SysCmdo; SysOe=0; - ' if (SysCmdi[8]) begin
input ExtRgst; reg SysCmdPo; end ' CPUdataO = SysADi;
output Release; reg Release; end end else case (SysCmdi[6:5])
input Validin; reg Validout; S_SEND_ADDR: begin H_NULL:
output ValidOut; reg SysOe; it (CPUer) begin bus_state = S_SEND_SPIN;
input Reset; reg [63:0] CPUdataO; SysCmdo = 9'b001000000; endcase
input Clock; reg CPUack; bus_state = S_SEND_DATA; end
output SysOe; reg CPUvalid; end else if (CPUrd) begin ' end
input CPUwWr; reg [3:0] bus_state; SysCmdo = 9'b000000000; S_RECV_SPIN: begin
input CPUrd; bus_state = S_SEND_IDLE; SysOe = 0;

end bus_state = S_RECV;

parameter S_SEND_IDLE = 4b0000, S_SEND_ADDR = 4'b0001, S_SEND_DATA = 40010, end end

S_SEND_SPIN = 4'b0011, S_RECV = 4'b0100, S_RECV_SPIN = 4h0111; S_SEND_DATA: begin endcase

SysADo = CPUdatal; end
parameter H_READ = 2'b00, H_WRITE = 2'b01, H_NULL = 2'b10; if ({CPUwr) begin end
SysCmdo = 9'5100000000; endmodule

Fig. 7: Verilog description of a simple MIPS SysAD interface (bidirectional pads for SysAD not shown).

Congruent states are combined by creating a state irfor SysAD) is given in Fig. 7. In addition to the HDL model,
which the assignments of both states are executed. If one othe bus for data transferral SYysAD and a list of
the states is an exit state, then the conditions for entrance intancontrollable ports (ReseEPUwr, CPUrd, etd. is supplied
the newly created state are ORed. to the tool.

4.3 Datapath Translation Upon determining that the target variabl8y§AD is a
)) bidirectional port,POLARISfirst creates the state machine for
The state machine for protocol conversion allows two input through the target variable. The component model is
components to communicate by translating their controlsearched for the for the assignmént= SysAD. The set of
signals into the standard interface. However, components,eroth order input conditiorly) = {Resé = 0 and bus_state =
often employ different datapaths that must be reconciled ifS RECV and Validni = 1 and SysCmdi[8] = }is returned
&hey arﬁ tg communicafte with one another. Translatin(g fate § = {Reset = 0, bus_state = S_RECV, Valid_In = 1
atapaths between interfaces imposes two requirements: e I ! — Qi - o P '
: " ysCmdi[8] = 1 is created. Sincébus_statds an internal
datapath widths must be reconciled, and (2) addresses musk,japie and not uncontrollable, it is made the new target bus

be extracted from a transaction so that client data can bgq e component model is searched for the assignment
directed to the appropriate resource. bus_state <= S_RECVThe set of first order input conditions

Datapath widths are determined from the componentl{ = {Resé= 0 and bus_state = S_RECV_SRIN returned.
description. When data is read from a client receive buffer, it State $ = {Reset = 0, bus_state = S_RECV_SPi\created,
is read into a register that is the width of the resourceand the component model is searched for the assignment
datapath. If the resource datapath is wider than the clienbus_state <= S_RECV_SPINThe set of second order input
datapath, arAcknowledgés returned to the client interface conditionsly = {Resé = 0 and bus_state = S_SEND_IDLE
for every word that is popped off the client receive buffer. If anq (CPUWr and WrRdy) or (CPUrd and RdR} 0 and
the resource datapath is thinner than the client datapath, agyirqgst = } is returned and states,S {Reset = 0, bus_state
Acknowledgeis returned to the client interface when the —'s SEND |IDLEWrRdy = 0, ExtRgst = Land Sg,':{R_eset
resource register is filled. = 0, bus_sfate = S_SEND_IDLRdRdy = 0, and ExtRgst =

R 1} are created (note that CPUwr and CPUrd are
Address extraction is currently a manual task. It can be ; : :
performed using a simplified ve¥sion of the structures tha,[uncontrollable and states corresponding theirassignment are

: - .~ nhot generated). This process continues until nth order
(T[ﬁehsoerBtﬁ’v%S]ér[n“f)?g,ae%ﬂ%#j&%rtgsagﬁgg 'P;%r;aaclesse%ndgﬁigs‘conditions can be completely controlled from external ports
(SEQs) and "protocol flow graphs" (PFGs), respectively, to BL Sres?gt'ée_ gngoErHBII?BIEzE assignments (egeset = 0,
model the bit patterns that are required to interact with a~ - T - -

component. In the case GOLARIS, a sequence of higher — The zeroth order exit conditions are determined by negating

level descriptions can be provided to allow the interface t0the zeroth order input conditions. The set of zeroth order exit
detect which cycles or bits are transmitting an address. conditions isEg = {Validin = 0 or SysCmd[$ = O or

5. Example — Simple MIPS SysAD Interface bus_state != S _RECV or Reset 3.1 This exit condition
generates three exit states, two of which satisfy the first

This example demonstrates h®W@LARIS generates a state congruency criteria {alidin=0} and {SysCmd[8] = ().

machine that converts the communication protocol of a MIPS)

processor with a simplified SysAD interface to the standard ~ Now that all possible complete sequences of states have

protocol. This generated intérface can communicate with ab€en determined, the state assignments are executed to

similarly synthesized interface for another component such aglétermine the valid values on external ports during each state.

RAM, a DSP, etc. (not described here). The HDL model of SinceReleaseandValidOutare driven to valid values during

the SysAD interface (not including the bidirectional buffer State §, conditiont;o = (Releag = 0 and ValidOut =) must

if (Reset) begin 1
state 2 3.0 S_0: begin Process LSI LCBOO
end else begin Tifyalid) begin
case (state) Validin = 1;
S 5 beui SysCmd[8] = 1; Gate Count 1464
_3: begin SysAD = Data_Oult;
Ns?zlal?g os 2 acknowledge= 1; .
onc: = endelse begn Max. Operating Frequency 166 MHz
S_2: begin \S@gdclrr]]wg[é] =1
WrRdy = 0; SysCmd[6:5] = H_NULL; Est. Area .92 m®
RdRdy = 0; state = S_3;
ExtRgst = 1; _ end else begin :
if (Release && !ValidOut) Validin = 0; Est. Power Consumptlon 348mw
_state = S_1 SysCmd[8] = 0;
end; end;
S_1: begil end:

end;

it <;$§§ng && \Validout Fig. 9: Physical Charactersistics of the Automatically
end; - enodcase; Generated Interface to a MIPS R4000
' (Does not include 256B receive and send buffers)
Fig. 8: Resulting state machine that allows writes to the . .
MIPS core through the SysAD bus. the control of these busses is separate. Extensions for blocks
that contain multiple busses with shred control is a future

be satisfied to complete the transition S &. Similarly, topic of research.

T21 = T31 = (Releas = 1 and ValidOut =) must be satisfied Fyture research will seek to expand the techniques presented
to complete the transition$S> S, and § —> S, here to generate interfaces between software and hardware
. . . components in a system that implements memory mapped
Given the assignments for each statand the conditions)5 "The communication protocol for software interfaces is
for transitioning between states, the state sequences are joinedstricted by the instruction set architecture of the
at congruent states. The three sequences generated by th§croprocessor on which the software is running. Instead of
exit states all contain congruent states leading up to th&ommunicating with a hardware subsystem by assigning
fL,:”tCt'O”"’l‘_" state. T?#s, th.? tfgrttaad?harte JOIPer‘gh?l{t d?aCh g}f thes@alues to and reading values from ports, the software driver
states. However, he exit states that perio n= communicates by writing and reading hardware registers.
and {validin = 1, SysCmd[8] = 0, SysCmd[6:5] = H_NUULL Thys the hardware/software composition requires the
are mutually exclusive, thus there are multiple branchesinierface state machine generator described above and another
exiting the functional state. According to the second layer, similar to [BoDeLi96], that encapsulates port

congruent to state S_0 and the exit state frovial{din = 1, ¢ P P

SysCmd[8] = 0, SysCmd[6:5] = H_NULLis congruent to Acknowledgements
state S_3. The state machine for transferring data to the .
MIPS processor is given in Fig. 8. This research is sponsored by ARPA under grant DATB63-95-C0049.

The process above is repeated for data transferred from thEeferences
MIPS processor to the m.terface' The only dlfferen_ce belng[ErHeBe93] R. Ernst, J. Henckel, and T. Benner, "Hardware/Software
that, initially, the functional states are determined by " cCosynthesis for Microcontrollers'|EEE Design and Test of Computers
searching the expression list f@ysAD<= *. The output p. 64-75, December 1993.
state machine and input state machine are joined at stateg
: ; ; ot ~WJAEIOb94] A. Jantsch, P. Ellervee, J. Oberg, A. Hemani, and H. Tenhunen,
S_2and S_3 n State. reduction. Th.e physlcal characteristic "Hardware/Software Partitioning and Minimizing Memory Interface
of the synthesized interface, not including the send and Trafiic’, Proceedings of EuroDag. 226-231, 1994.
receive buffers, are shown in Fig. 9. The speed, area and
power Consumption of the bus control |Ogic Synthesized [KaLe94] A. Kalavade and E.A. Lee, "A Global Criticality/Local Phase
; s ; ; ; g Driven Algorithm for the Constrained Hardware/Software Partitioning
above is not optimized in this research because this logic is b - -
P . Problem”, Proceedings of the 3rd International Workshop on
rarely a significant factor in the overall speed, area and power Hardware/Software cgdesigp, 42-48, 1994. P

consumption of the interface.
[ObKuHe96] Johnny Oberg, Anshul Kumar, Ahmed Hemani,
6. Conclusion "Grammar-based Hardware Synthesis of Data Communication
Protocols”, 9th International Symposium on System Synthesi$4-19,
Reusing existing high level blocks is becoming a necessity 1996.
for designing complex systems. Composing blocks that argcuro94] P. Gutberlet, W. Rosenstiel, "Specification of Interface
developed by different design groups with different Components for Synchronous Data Pati7sh, International Symposium
communication protocols is an imperative in automating ~ on System Synthesis,134-139, 1994.
design reuse and IP.Shanng' The composition a'rCh'tecu‘lrefGaGl96] Michael Gasteier, Manfred Glesner, "Bus-Based Communication
presented here proyldes a means to compose synchronous Synthesis on System-Level"9th International Symposium on System
blocks while providing hooks for optimizing system Synthesisp. 65-70, 1996.
performance by prioritizing component communication. The _ . .
: ; ; o [ChOrBo95] Pai Chou, Ross B. Ortega, Gaetano Borriello, "Interface
_example prowded illustrates its ab'“ty to generate an Co-Synthesis Techniques for Embedded Systemsiceedings of the
interface between hardware blocks. IEEE/ACM International Conference on Computer-Aided Design
) _) pp.280-287, 1995.
The techniques described above allow a designer to

automatically generate an HDL model of an interface [MaHa95] Jan Madsen and Bjarme Hald, "An Approach to Interface
between two or more blocks given an HDL description of the ~ $3oa'esis",8th Intemational Symposium on System Synthesi6-21,
corresponding blocks. In implementing these techniques, '

parsing of the input HDL has been completed in a front end[AmBo91] T. Amon and G. Borriello, "Sizing Synchronization Queues: A
module that can be adapted to different coding styles or Case Study in Higher Level Synthesi®toceedings of the 28th Design
represenatations. While overspecified input ~HDL Automation Conferencdun 1991.

descriptions can be used to geneate an interface, incompletelgopeLios] 1. Bolsens, H. DeMan, B. Lin, K. Van Rompaey, S.
specified input blocks will yield interfaces with ambiguous = Vercauteren, D. Verkest, "Hardware-Software Codesign of Digital
states. However, these states are detectable. Interfaces Telelcommunication Systems", Proceedings of the IEEE, p 391-418,
between blocks with multiple busses can be generated when March 1997.

	CDROM Home Page
	DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

