
these protocols into a standard communication scheme. This
scheme is then implemented in an interface architecture that
is general enough to accomodate the requirements of any
target interface. The terminologyclient is used in this paper
to indicate a component that is sending data andresource
indicates a component that is receiving data.

2. Overview

The algorithms presented here are used to generate
synchronous component interfaces. The components may
operate at different frequencies and may employ
unidirectional or bidirectional busses. Bidirectional busses,
such as those employed by PCI or VME, are handled by
treating the bus as two unidirectional busses and combining
the resulting interface controllers. Multi−way interfaces that
allow multiple clients to interact with multiple resources are
synthesized by dynamically establishing a point to point link
between the client and the resource (Fig. 1).

The interface architecture is described in Section 3. From
the component model described in Section 4.1, a state
machine is synthesized to map the component’s
communication protocol into a standard protocol that other
interfaces can understand (Section 4.2). The data formats
that a client component employs are translated into formats
that the resource component can understand (Section 4.3).

ThePOLARIShardware composition tool requires the user to
supply an HDL description of the component being interfaced
to, the name(s) of the ports across which data is tranferred,
and the names of ports that the interface does not have access
to (uncontrollableports). The names of the uncontrollable
ports (e.g.reset) must be supplied so thatPOLARIS does not
manipulate these ports when creating a component interface.

3. The Interface Architecture

Unlike the hardware interface synthesis research performed
by [MaHa95], this research links hardware components
through a standard architecture rather than by attempting to
map one component interface into another. This allows
interfaces to be synthesized for a broad range of components.
In addition, it allows multiple components to be linked via
the same interface.

3.1 Architectural Blocks

The interface architecture includes a state machine for
protocol conversion, a send and receive buffer for transaction
information (which must be saved while a resource is
unavailable), and an arbiter to govern access to a resource
(Fig. 1). Although hooks are provided to allow the
implementation of an optimized arbitration algorithm, the
details of the arbitration scheme are not required for interface
synthesis.

When the state machine for protocol conversion detects that
a component is sending data, the data is placed in the receive
buffer for that interface. This data will be passed to the send
buffer for the resource interface. Correspondingly, when the
state machine detects that there is data in its send buffer, it
executes the necessary signal assignments to transfer the data
to the resource component. Sizing of these queues is
currently a manual task, but could be automated in the

Abstract

In order to automate design reuse, methods for composing
system components must be developed. The goal of this
research is to automate the process of generating interfaces
between hardware subsystems. The algorithms presented
here can be used to generate a cycle−accurate, synchronous
interface between two hardware subsystems given an HDL
model of each subsystem. These algorithms have been
implemented in thePOLARIS hardware composition tool and
have been used to generate an interface between a MIPS
microprocessor and the SRAM that comprises its secondary
cache. Interface generation for the MIPS R4000 is described.

1. Introduction

The increasing complexity of electronic systems is forcing
designers to consider, if not implement, design reuse and
intellectual property sharing. As this methodology matures, a
new breed of tools will be required to automate component
selection, subsystem scheduling, and system composition.
This paper presents a mechanism for composing hardware
blocks that communicate with different protocols, given an
HDL description of these protocols, while providing hooks
for implementing arbitration algorithms.

Interface synthesis has focused on optimizing high level
communication between subsystems given a set of
communication constraints ([ErHeBe93], [JeElOb94],
[KaLe94]). Interface modeling languages such as that
developed by [ObKuHe96] allow a designer to explore a
interface design space and generate a synthesizable
description of the interface. [GuRo94] describes a
methodology for modeling an interface with a behavioral
description suitable for high level synthesis. Other interface
synthesis research, such as that performed in [GaGl96], has
investigated specifying and scheduling communication
between hardware and software subsystems. The research
presented here focuses on generating a low−level,
synthesizable description of synchronous interfaces between
hardware components. Similarly, [ChOrBo95] describes a
mechanism for creating the glue logic between two hardware
components, but requires a functional description of
component ports. In this paper, we present thePOLARIS tool,
which converts a subsystem’s communication protocol into a
standard scheme given an HDL description of the subsystem.
An HDL model of the resulting interface is generated.

The basic purpose of an interface is to facilitate the
movement of data. Data could be addresses, commands,
values destined for a memory location, or some combination
of these descriptions. In order to allow hardware subsystems
that follow different protocols for moving data to
communicate with one another, the tool presented here maps

Automated Composition of Hardware Components
James Smith

Stanford University
Gates Building, Room 326

Stanford, California 94305−9030
redskins@aglaia.stanford.edu

Giovanni De Micheli
Stanford University

Gates Building, Room 333
Stanford, California 94305−9030

nanni@galileo.stanford.edu

Permission to make digital/hard copy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of
publication and its date appear, and notice is given that copying is by permission
of ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or fee.

DAC 98, San Francisco, California
© 1998 ACM 1-58113-049-x/98/06 $5.00

variables and conditions for each assignment to be executed.

Definition 1. A componentis described by the list of tuples
{ Ci := <νi, Χi, Αi, σi>} where Χi = {χij } are the conditions
under which the valuesΑi = {αij } are assigned to the variable
νi. For the assignment toνi, we assume there are ni possible
values {αij , j= 1,2, ... , ni} each selected by one and only one
conditionχij ε {0, 1}, and σi indicates whether the assignment
is combinational or synchronous. Thus,

νi = Σ χij *αij .

Variables that are not component ports are referred to as
internalvariables.

4.2 Protocol Conversion Algorithm

The state machine for protocol conversion is represented,
analogous to the Moore model, as a collection of state
assignments and conditions for state transitions.

Definition 2. The state machine for protocol conversionis
described by the tupleSM := <S, T > where

S := {Si} is a list of states,
T := {(τij = 1) => Si −> Sj} is a list of
conditions governing state transitions.

The algorithm for generating the state machine for protocol
conversion is completed in five steps: (1) generate a sequence
Sf of functional statesthat cause a function to be executed, (2)
generate a sequenceSx of exit statesthat cause an executing
function to be halted (S = Sf U Sx), (3) generate the conditions
{τij } that govern the state transitions, (4) combine state
sequences for multiple functions, and (5) reduce the number
of states. The name of the component’s data bus, referred to
as thetarget variable, is supplied to initiate generation of the
interface state machine. The algorithm is outlined in Fig. 3.

If the target variable is an input or bidirectional port, the
component model is searched for a use of this variable such
as:

if signalA = valueA then
signal<= target

if target = value and
signalB <= valueB then ...

manner of [AmBo91]. The default arbiter implements a
round robin arbitration scheme to select a client receive
buffer that will transfer its data into the appropriate resource
send buffer.

3.2 Communication Scheme

The standard protocol employs four control signals each for
the receive buffer and the send buffer (Fig. 2). For the each
buffer, the signals are implemented as follows: (1)Request−
input to the buffer controller that indicates data is being sent
to the interface; (2)Stall − output from the buffer controller
that indicates that the buffer is full (the state machine must
prevent other components or interfaces from sending any
more data); (3)Valid − output from the buffer controller that
indicates that valid data is in the buffer and ready to be
transferred; (4)Acknowledge− input to the buffer controller
that indicates that data has been read from the buffer (the
buffer controller will increment the read address). Resources
are scheduled in the arbiter by selectivelyAcknowledgeing
the client Valid signal. Data is transferred through four
unidirectional busses, two for sending data to and receiving
data from the arbiter, and two for sending data to and
receiving data from the external component.

4. State Machine Generation

Given a component model that describes bus functionality
(or a superset of bus functionality), conditions for transferring
data to or from that component are determined. A
sequence(s) of assignments to component ports is determined
that will cause these conditions to become true. After the
required assignments to component ports have been
determined, they are executed on the component model, so as
to resolve the values of control ports that are inputs to the
synthesized interface. Once the values of all necessary input
and output ports have been resolved, a state machine is
generated that executes the required assignments and
monitors the necessary control ports. This state machine
provides a mapping from the communication protocol for a
system component to the standard protocol that allows
inter−component communication. The collection of
operations necessary to perform a data transfer is referred to
as afunction.

4.1 Component Model

The component is abstracted as a list of assignments to

Fig. 1: High level view of a three component
implementation of the interface architecture. Fig. 2: Interface communication scheme.

Request

Data_Out Data_In

Data_In Data_Out

Interface Signals

To External Subsystem

Acknowledge

To Internal Arbiter

State

Machine CC
CC
CC
CC

CCCC
CCCC
CCCC
CCCC
CCCC

F
I
F
O

I
N

F
I
F
O

O
U
T

Stall

Valid

Valid

Acknowledge Stall RequestComponentComponent

Component

Interface

S
M

S
M

S
M

ARB

variable assignment isuncontrollable and can not be
deterministically driven to that value. For example, if a
component description contained the sequential statements:

if reset = TRUE or intSignalA = valueA then
target <= value
intSignalB <= valueB,

if intSignalB = valueB then
intSignalA <= valueA,

then intSignalA <= valueA is uncontrollable if reset is
uncontrollable.

Definition 6. An internal variable assignment (νk = αkl) is
uncontrollableif χkl ε In and

(1) χkl ε Im where m < n, or
(2) χkl is dependent on another
uncontrollable assignment.

If an uncontrollable internal variable assignment is
encountered, no nth order conditions for that assignment are
generated. The thread of states that required the assignment is
thus aborted (Fig. 3). This prevents the algorithm from
looping indefinitely on a component description such as the
one described in the previous example.

A component can not be deterministically driven to a
functional state when an uncontrollable signal is encountered.
However, the functional states can be detected by examining
component control signals (Section 4.2.3).

4.2.2 Exiting a Function

In the same way that a sequence of states is determined to
execute a function, another sequence of states is determined to
end that function. That is, when the data transfer is
completed, the interface must exit its corresponding data
transfer state.

A component exits a data transfer state when an assignment
is made that contradicts a zeroth order condition. This can be

The conditions under which the target variable (target) is
used are thezeroth order input conditions.

Definition 3. The set ofzeroth order input conditionsfor the
target variableνx is I0 := {χij } where χij or αij is dependent
on νx.

In the previous example,νx = { target} and I0 = {signalA =
valueA, signalB = valueB}

If the target variable is an output or bidirectional port, the
component model is searched for an assignment to this port
such as:

if signalA = valueA then
target<= signal

The conditions for these assignments are thezeroth order
output conditions.

Definition 4. The set ofzeroth order output conditionsfor the
target variableνx is O0 := {χxj}.

In the previous example,νx = { target} and O0 = {signalA =
valueA}.

4.2.1 Executing a Function

Assignments that satisfy zeroth order conditions must be
executed as part of the functional state sequence. That is, if
I0 = {signalA = valueA}, then state S0 must contain the
assignments {signalA <= valueA}. If signalAis a component
port, then a single assignment can be made to allow that
function to be completed. However, ifsignalA is an internal
variable of the component, then conditions must be
determined that will cause that variable assignment. For
example, if a component description contained the sequential
statements:

if externalSignalA = valueA and
internalSignal = value then

signal <= target

if externalSignalB = valueB then
internalSignal <= value

then the following state sequence is generated:

 State 1: extSignalB <= valueB
/* causes intSignal <= value in State 0 */

 State 0: extSignalA <= valueA

These conditions that must be satisfied to cause the internal
variable assignment are thenth order conditions.

Definition 5. The set ofnth order input conditionsfor the
target variableνx is In := {χkl} where, given the (n−1)th
order input conditions forνx, i.e.In−1,

there exists anχij ε In−1
such that (χkl = 1) => (χij = 1).

In the previous example,νx = { target}, I0 = {externalSignalA
= valueA and internalSignal = value} and I1 =
{ externalSignalB = valueB}. An analogous definition applies
to nth order output conditions. If conditions of all orders can
be satisfied by a sequence of assignments to component ports,
the interface state machine can deterministically drive a
component into functional states.

If an internal variable assignment requires an nth order
condition that in turn requires the same assignment, the

Fig. 3: The algorithm for state machine generation

Is the target
an input, output,
or bidirectional

port?

input/bidirectional output/bidirectional

Search component
 model for uses of

the target
(detect zeroth order

input conditions)

Search component
 model for

assignments to the
target

(detect zeroth order
output conditions)

Is
assignment

uncontrollable or
to an external

port?

Make an
assignment that
is required to

satisfy the
condition

Apply assignments
to component model
 to determine state

transition
conditions

Search component
model for

assignments to
 internal variables
(detect nth order

conditions)

Combine threads
and reduce states

Yes No

Determine exit
states from zeroth

order exit
conditions

Is the
condition
satisfied?

No

Yes

Determine functional
states

requires multiple variables (internalSignalA, internalSignalB)
to be set in tandem. This results in multiple threads of
execution being generated, which must be combined into a
single state machine.

ANDing two state sequences is a straightforward
combination of state assignments and state transition
conditions. The final states in a sequence and their
predecessors are ANDed. An example is shown in Fig. 5.

Fig. 5: The results of ANDing the two state sequences
(S0, S1) and (S2, S3, S4).

If any two ANDed states contain contradictory assignments
the threads are discarded.

In ORing two threads, only the head states are combined.
Previous states are not ORed to prevent state sequences that
contain a portion of each thread from being executed. An
example is shown in Fig 6.

Fig. 6: The results of ORing the the two state sequences
(S0, S1) and (S2, S3, S4).

Duplicated states are removed as shown in the next section.

4.2.5 State Reduction

A component will frequently share states between execution
threads. For example, a component may contain a state in
which it polls its subsystems for writes, and executes a
different sequence for each write:

if state = POLL_STATE then
case (subsystem)
subA_write:

state <= subA_WRITE_STATE
subB_write:

state <= subB_WRITE_STATE

The number of states is reduced by joining threads of
execution at points where their respective states are
congruent.

There are two sets of requirements that states can satisfy to
be considered congruent. First, two states are congruent if
they stem from congruent previous states and the conditions
for entry into both states are the same. Second, two states are
considered to be congruent if they contain the same variable
assignments and one of them is an exit state. The second
requirement allows a state machine to be reset once it has
executed a functional sequence.

Definition 8. States Si and Sj arecongruentif either
(1) for all x, there exists a y

such thatτxi = τyj and
and Sx and Sy are congruent, or

(2) assignments of Si = assignments of Sj
and Si satisfiesE0.

achieved with assignments to component ports or internal
variables. For example, if a component description contained
the statement:

if externalSignalA = valueA and
internalSignal = value then

signal <= target

then satisfying the conditionnot (externalSignalA = valueA
and internalSignal = value)must cause the data transfer state
in the interface to be exited. Such conditions are thezeroth
order exit conditions.

Definition 7. The set ofzeroth order exit conditionsfor the
target variableνx is E0 := { χkl} where, given the zeroth
order input (or output) conditions forνx, i.e.I0,

there exists anχxj ε I0,
such that (χkl = 1) => (χxj = 0).

Nth order exit conditionsare generated and satisfied in the
same manner that nth order input and output conditions are
generated and satisfied.

The exit state sequence is combined with the data transfer
state sequence to obtain a state sequence that can execute a
function and be reset.

4.2.3 Generating State Machine Conditions

After the conditions for executing and exiting a function
have been completely satisfied or found to be uncontrollable,
the required assignments are executed on the component
model. If the component drives a port to a valid value in a
cycle, then a conditional statement governing the state
transition must be added to the state corresponding to that
cycle. For example, if the component description contained
the sequential statements:

if externalSignalA = valueA and
internalSignal = value then

signal <= target

if uncontrollableSignal = valueX and
externalSignalB = valueB then

internalSignal <= value
externalSignalC <= valueC

then the conditionτ10 = {externalSignalC = valueC} must be
satisfied to allow the state transition from state S1 =
{ externalSignalB<= valueB} to state S0 = {externalSignalA
<= valueA}.

Fig. 4: Conditions governing state transitions.

Thus, if the interface state machine can not deterministically
drive a component into a particular state (in the example
above, the component state corresponding to S1), it will be
able to determine when the component has reached that state
by evaluating its status signals.

4.2.4 Combining Multiple Threads of Execution

A function’s execution may require or allow more than one
sequence to be executed in parallel. For example, the
component description,

if internalSignalA = valueA and
internalSignalB = valueB then

signal <= target

S1 S0
τ10

τ10

S0
and
S2

τ10andτ32

τ10andτ32

S1
and
S3

S4
τ43

τ43

S1
τ10

τ10

S0
or
S2

S3 τ32

τ32

S4
τ43

τ43

for SysAD) is given in Fig. 7. In addition to the HDL model,
the bus for data transferral (SysAD) and a list of
uncontrollable ports (Reset,CPUwr, CPUrd, etc.) is supplied
to the tool.

Upon determining that the target variable (SysAD) is a
bidirectional port,POLARIS first creates the state machine for
input through the target variable. The component model is
searched for the for the assignment* <= SysAD. The set of
zeroth order input conditionsI0 = {Reset = 0 and bus_state =
S_RECV and Valid_In = 1 and SysCmdi[8] = 1} is returned.
State S0 = {Reset = 0, bus_state = S_RECV, Valid_In = 1,
SysCmdi[8] = 1} is created. Sincebus_stateis an internal
variable and not uncontrollable, it is made the new target bus
and the component model is searched for the assignment
bus_state <= S_RECV.The set of first order input conditions
I1 = {Reset = 0 and bus_state = S_RECV_SPIN} is returned.
State S1 = {Reset = 0, bus_state = S_RECV_SPIN} is created,
and the component model is searched for the assignment
bus_state <= S_RECV_SPIN. The set of second order input
conditionsI2 = {Reset = 0 and bus_state = S_SEND_IDLE
and ((CPUwr and WrRdy) or (CPUrd and RdRdy)) = 0 and
ExtRqst = 1} is returned and states S2 = {Reset = 0, bus_state
= S_SEND_IDLE, WrRdy = 0, ExtRqst = 1} and S3 = {Reset
= 0, bus_state = S_SEND_IDLE, RdRdy = 0, and ExtRqst =
1} are created (note that CPUwr and CPUrd are
uncontrollable and states corresponding theirassignment are
not generated). This process continues until nth order
conditions can be completely controlled from external ports
or require uncontrollable assignments (e.g.Reset = 0,
bus_state = S_SEND_IDLE).

The zeroth order exit conditions are determined by negating
the zeroth order input conditions. The set of zeroth order exit
conditions is E0 = {ValidIn = 0 or SysCmd[8] = 0 or
bus_state != S_RECV or Reset = 1}. This exit condition
generates three exit states, two of which satisfy the first
congruency criteria ({ValidIn=0} and {SysCmd[8] = 0}).

Now that all possible complete sequences of states have
been determined, the state assignments are executed to
determine the valid values on external ports during each state.
SinceReleaseandValidOut are driven to valid values during
state S1, conditionτ10 = (Release = 0 and ValidOut = 0) must

Congruent states are combined by creating a state in
which the assignments of both states are executed. If one of
the states is an exit state, then the conditions for entrance into
the newly created state are ORed.

4.3 Datapath Translation

The state machine for protocol conversion allows two
components to communicate by translating their control
signals into the standard interface. However, components
often employ different datapaths that must be reconciled if
they are to communicate with one another. Translating
datapaths between interfaces imposes two requirements: (1)
datapath widths must be reconciled, and (2) addresses must
be extracted from a transaction so that client data can be
directed to the appropriate resource.

Datapath widths are determined from the component
description. When data is read from a client receive buffer, it
is read into a register that is the width of the resource
datapath. If the resource datapath is wider than the client
datapath, anAcknowledgeis returned to the client interface
for every word that is popped off the client receive buffer. If
the resource datapath is thinner than the client datapath, an
Acknowledgeis returned to the client interface when the
resource register is filled.

Address extraction is currently a manual task. It can be
performed using a simplified version of the structures that
([ChOrBo95], [MaHa95]) used to achieve interface synthesis.
These two employed structures called "signal sequences"
(SEQs) and "protocol flow graphs" (PFGs), respectively, to
model the bit patterns that are required to interact with a
component. In the case ofPOLARIS, a sequence of higher
level descriptions can be provided to allow the interface to
detect which cycles or bits are transmitting an address.

5. Example − Simple MIPS SysAD Interface

This example demonstrates howPOLARIS generates a state
machine that converts the communication protocol of a MIPS
processor with a simplified SysAD interface to the standard
protocol. This generated interface can communicate with a
similarly synthesized interface for another component such as
RAM, a DSP, etc. (not described here). The HDL model of
the SysAD interface (not including the bidirectional buffer

module r4600_interface (SysADi, SysADCi, SysCmdi, SysCmdPi,
 SysADo, SysADCo, SysCmdo, SysCmdPo,
 RdRdy, WrRdy, ExtRqst, Release, ValidIn, ValidOut,
 Reset, Clock, SysOe,
 CPUwr, CPUrd, CPUrsp, CPUdataI, CPUdataO, CPUack, CPUvalid, CPUaddr);

 input [63:0] SysADi;
 input [7:0] SysADCi;
 input [8:0] SysCmdi;
 input SysCmdPi;
 output [63:0] SysADo;
 output [7:0] SysADCo;
 output [8:0] SysCmdo;
 output SysCmdPo;
 input RdRdy, WrRdy;
 input ExtRqst;
 output Release;
 input ValidIn;
 output ValidOut;
 input Reset;
 input Clock;
 output SysOe;

 input CPUwr;
 input CPUrd;

 parameter S_SEND_IDLE = 4’b0000, S_SEND_ADDR = 4’b0001, S_SEND_DATA = 4’b0010,
 S_SEND_SPIN = 4’b0011, S_RECV = 4’b0100, S_RECV_SPIN = 4’b0111;

 parameter H_READ = 2’b00, H_WRITE = 2’b01, H_NULL = 2’b10;

 input CPUrsp;
 input [63:0] CPUdataI;
 output [63:0] CPUdataO;
 output CPUack;
 output CPUvalid;
 input [63:0] CPUaddr;
 reg [63:0] SysADo;
 reg [7:0] SysADCo;
 reg [8:0] SysCmdo;
 reg SysCmdPo;
 reg Release;
 reg ValidOut;
 reg SysOe;
 reg [63:0] CPUdataO;
 reg CPUack;
 reg CPUvalid;
 reg [3:0] bus_state;

 bus_state = S_SEND_IDLE;
 end else begin
 SysCmdo = 9’b110000000;
 end
 ValidOut = 1;
 CPUack = 1;
 end
 S_SEND_SPIN: begin
 SysOe = 0;
 bus_state = S_SEND_IDLE;
 end
 S_RECV: begin
 SysOe = 0;
 if (ValidIn) begin
 if (SysCmdi[8]) begin
 CPUdataO = SysADi;
 end else case (SysCmdi[6:5])
 H_NULL:
 bus_state = S_SEND_SPIN;
 endcase
 end
 end
 S_RECV_SPIN: begin
 SysOe = 0;
 bus_state = S_RECV;
 end
 endcase
 end
 end
endmodule

 always @ (posedge Clock) begin
 ValidOut = 0;
 Release = 0;
 SysOet = 1;
 CPUack = 0;
 if (Reset) begin
 bus_state = S_SEND_IDLE;
 end else begin
 case (bus_state)
 S_SEND_IDLE: begin
 if ((CPUwr && WrRdy) || (CPUrd && RdRdy)) begin
 bus_state = S_SEND_ADDR;
 end else if (ExtRqst) begin
 Release = 1;
 bus_state = S_RECV_SPIN;
 SysOe = 0;
 end
 end
 S_SEND_ADDR: begin
 if (CPUwr) begin
 SysCmdo = 9’b001000000;
 bus_state = S_SEND_DATA;
 end else if (CPUrd) begin
 SysCmdo = 9’b000000000;
 bus_state = S_SEND_IDLE;
 end
 end
 S_SEND_DATA: begin
 SysADo = CPUdataI;
 if (!CPUwr) begin
 SysCmdo = 9’b100000000;

Fig. 7: Verilog description of a simple MIPS SysAD interface (bidirectional pads for SysAD not shown).

the control of these busses is separate. Extensions for blocks
that contain multiple busses with shred control is a future
topic of research.

Future research will seek to expand the techniques presented
here to generate interfaces between software and hardware
components in a system that implements memory mapped
I/O. The communication protocol for software interfaces is
restricted by the instruction set architecture of the
microprocessor on which the software is running. Instead of
communicating with a hardware subsystem by assigning
values to and reading values from ports, the software driver
communicates by writing and reading hardware registers.
Thus, the hardware/software composition requires the
interface state machine generator described above and another
layer, similar to [BoDeLi96], that encapsulates port
assignments in microprocessor operations.

Acknowledgements

This research is sponsored by ARPA under grant DATB63−95−C0049.

References

[ErHeBe93] R. Ernst, J. Henckel, and T. Benner, "Hardware/Software
Cosynthesis for Microcontrollers",IEEE Design and Test of Computers,
p. 64−75, December 1993.

[JaElOb94] A. Jantsch, P. Ellervee, J. Oberg, A. Hemani, and H. Tenhunen,
"Hardware/Software Partitioning and Minimizing Memory Interface
Traffic", Proceedings of EuroDac, p. 226−231, 1994.

[KaLe94] A. Kalavade and E.A. Lee, "A Global Criticality/Local Phase
Driven Algorithm for the Constrained Hardware/Software Partitioning
Problem", Proceedings of the 3rd International Workshop on
Hardware/Software Codesign, p. 42−48, 1994.

[ObKuHe96] Johnny Oberg, Anshul Kumar, Ahmed Hemani,
"Grammar−based Hardware Synthesis of Data Communication
Protocols", 9th International Symposium on System Synthesis,p. 14−19,
1996.

[GuRo94] P. Gutberlet, W. Rosenstiel, "Specification of Interface
Components for Synchronous Data Paths",7th International Symposium
on System Synthesis,p. 134−139, 1994.

[GaGl96] Michael Gasteier, Manfred Glesner, "Bus−Based Communication
Synthesis on System−Level",9th International Symposium on System
Synthesis,p. 65−70, 1996.

[ChOrBo95] Pai Chou, Ross B. Ortega, Gaetano Borriello, "Interface
Co−Synthesis Techniques for Embedded Systems",Proceedings of the
IEEE/ACM International Conference on Computer−Aided Design,
pp.280−287, 1995.

[MaHa95] Jan Madsen and Bjarne Hald, "An Approach to Interface
Synthesis",8th International Symposium on System Synthesis,p. 16−21,
1995.

[AmBo91] T. Amon and G. Borriello, "Sizing Synchronization Queues: A
Case Study in Higher Level Synthesis",Proceedings of the 28th Design
Automation Conference, Jun 1991.

[BoDeLi96] I. Bolsens, H. DeMan, B. Lin, K. Van Rompaey, S.
Vercauteren, D. Verkest, "Hardware−Software Codesign of Digital
Telelcommunication Systems", Proceedings of the IEEE, p 391−418,
March 1997.

be satisfied to complete the transition S1 −> S0. Similarly,
τ21 = τ31 = (Release = 1 and ValidOut = 0) must be satisfied
to complete the transitions S2 −> S1 and S3 −> S1.

Given the assignments for each stateS and the conditionsT
for transitioning between states, the state sequences are joined
at congruent states. The three sequences generated by the
exit states all contain congruent states leading up to the
functional state. Thus, the threads are joined at each of these
states. However, the exit states that perform {ValidIn = 0}
and {ValidIn = 1, SysCmd[8] = 0, SysCmd[6:5] = H_NULL}
are mutually exclusive, thus there are multiple branches
exiting the functional state. According to the second
congruency criteria, the exit state from {ValidIn = 0} is
congruent to state S_0 and the exit state from {ValidIn = 1,
SysCmd[8] = 0, SysCmd[6:5] = H_NULL} is congruent to
state S_3. The state machine for transferring data to the
MIPS processor is given in Fig. 8.

The process above is repeated for data transferred from the
MIPS processor to the interface. The only difference being
that, initially, the functional states are determined by
searching the expression list forSysAD<= *. The output
state machine and input state machine are joined at states
S_2 and S_3 in state reduction. The physical characteristics
of the synthesized interface, not including the send and
receive buffers, are shown in Fig. 9. The speed, area and
power consumption of the bus control logic synthesized
above is not optimized in this research because this logic is
rarely a significant factor in the overall speed, area and power
consumption of the interface.

6. Conclusion

Reusing existing high level blocks is becoming a necessity
for designing complex systems. Composing blocks that are
developed by different design groups with different
communication protocols is an imperative in automating
design reuse and IP sharing. The composition architecture
presented here provides a means to compose synchronous
blocks while providing hooks for optimizing system
performance by prioritizing component communication. The
example provided illustrates its ability to generate an
interface between hardware blocks.

The techniques described above allow a designer to
automatically generate an HDL model of an interface
between two or more blocks given an HDL description of the
corresponding blocks. In implementing these techniques,
parsing of the input HDL has been completed in a front end
module that can be adapted to different coding styles or
represenatations. While overspecified input HDL
descriptions can be used to geneate an interface, incompletely
specified input blocks will yield interfaces with ambiguous
states. However, these states are detectable. Interfaces
between blocks with multiple busses can be generated when

 S_0: begin
 if (valid) begin

 ValidIn = 1;
 SysCmd[8] = 1;
 SysAD = Data_Out;
 acknowledge = 1;
 end else begin

 if (...) begin
 ValidIn = 1;
 SysCmd[8] = 1;
 SysCmd[6:5] = H_NULL;
 state = S_3;

 end else begin
 ValidIn = 0;
 SysCmd[8] = 0;
 end;

 end;
 end;

 endcase;
end;

if (Reset) begin
 state = S_0;
end else begin
 case (state)

 S_3: begin
 if (valid)

 state = S_2;
 end;

 S_2: begin
 WrRdy = 0;

 RdRdy = 0;
 ExtRqst = 1;
 if (Release && !ValidOut)
 state = S_1;
 end;

 S_1: begin
 if (!Release && !ValidOut)
 state = S_0;
 end;

Fig. 8: Resulting state machine that allows writes to the
MIPS core through the SysAD bus.

Process LSI LCB007

Gate Count 1464

Max. Operating Frequency 166 MHz

Est. Area .92 mm2

Est. Power Consumption 348mW

Fig. 9: Physical Charactersistics of the Automatically
Generated Interface to a MIPS R4000

(Does not include 256B receive and send buffers)

	CDROM Home Page
	DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

