
220 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

Telescopic Units: A New Paradigm for
Performance Optimization of VLSI Designs

Luca Benini, Enrico Macii,Member, IEEE, Massimo Poncino,Member, IEEE, and Giovanni De Micheli,Fellow, IEEE

Abstract—This paper introduces a novel optimization paradigm
for increasing the throughput of digital systems. The basic idea
consists of transforming fixed-latency units into variable-latency
ones that run with a faster clock cycle. The transformation is
fully automatic and can be used in conjunction with traditional
design techniques to improve the overall performance of speed-
critical units. In addition, we introduce procedures for reducing
the area overhead of the modified units, and we formulate an
algorithm for automatically restructuring the controllers of the
data paths in which variable-latency units have been introduced.
Results, obtained on a large set of benchmark circuits, show an
average throughput improvement exceeding 27%, at the price of
a modest area increase (less than 8% on average).

Index Terms—Circuit optimization, design automation, high-
speed integrated circuits, logic design, synchronization.

I. INTRODUCTION

T HE ever increasing clock frequency of high-performance
systems pushes IC designers and synthesis tools to per-

form substantial efforts in minimizing the delay of combina-
tional logic blocks that constrain the cycle time. Gate-level
timing optimization is often a computationally intensive task
and sometimes it leads to a significant area and power-
consumption overhead. In addition, it may not be the most
convenient choice if some flexibility is allowed in changing
the design architecture.

In the majority of circuit and system designs,through-
put provides a more meaningful measure of performance
than clock frequency. Throughput is abstractly defined as the
amount of computation performed in a time unit. Obviously,
decreasing the clock cycle time is one way to improve the
throughput in a digital system. However, architectural opti-
mizations such as parallelism exploitation and pipelining are
much more effective in increasing throughput than bare clock
speedup [1].

A well-known throughput-enhancement technique is based
on using variable-latency units [1], [2]. For example, high-
performance hardware components for division or for the
computation of transcendental functions are well suited for

Manuscript received August 28, 1997. This work was supported in part by
NSF under Contract MIP-9313701 and by ARPA under Grant DABT63-95-
C-0049. This paper was recommended by Associate Editor F. Brglez.

L. Benini and G. De Micheli are with Stanford University, Computer
Systems Laboratory, Stanford, CA 94305 USA.

E. Macii and M. Poncino are with Politecnico di Torino, Dipartimento di
Automatica e Informatica, Torino, Italy 10129.

Publisher Item Identifier S 0278-0070(98)04630-2.

variable-latency implementation. Such units complete execu-
tion in a variable number of clock cycles, depending on the
input data they receive. The variable-latency implementation
is a natural solution for floating-point arithmetic computations
because the algorithms involved are iterative in nature and the
number of iterations is data-dependent.

The basic principle that motivates the implementation of a
variable-latency resource is that of “speeding up the common
case” [1]. A fixed-latency unit completes execution with the
latency of its longest possible computation. On the contrary,
a variable-latency unit adapts its latency to the length of the
computation it is performing. Average throughput is improved
if the probability of a long-latency computation is much
smaller than that of a short-latency one. Unfortunately, the
overhead that occurs when instantiating a variable-latency unit
is twofold. First, acompletion signalmust be provided to
inform the environment of the termination of a computation.
Second, the control logic in the environment must be able to
synchronize with a variable-latency completion. Clearly, the
overhead should be kept as small as possible.

High probability of short-latency computation and low
overhead are the two conflicting requirements for the success
of a variable-latency resource in satisfying the design goals.
Hence, hand-crafted design of variable-latency units is a
difficult task and computer-aided design tools may be of great
help.

In this work, we address the automatic synthesis of high-
throughput, variable-latency units and the estimation of the
expected performance improvements. We focus our attention
on components of synchronous circuits, which originally im-
plement arbitrary combinational functions in a single clock
cycle (i.e., with fixed latency of one unit). We transform
such units into variable-cycle implementations, which we
call telescopic units. Whereas such units have data-dependent
latency, their clock rate can be sped-up to match the “common
case,” i.e., the critical-path delay of most computations that can
still be achieved in one clock cycle. Longer computations will
be split over two (or more) cycles. The overall performance
improvement of this transformation stems from achieving a
faster clock rate for the synchronous circuit of interest.

Seen as a black box, a telescopic unit produces two outputs:
the functional output (i.e., the result of the computation)
and a handshakinghold signal which is activated when the
functional unit requires more than one clock cycle to complete
the computation. The advantage of the telescopic unit is an
increase in average throughput. The overhead consists of the

0278–0070/98$10.00 1998 IEEE

BENINI et al.: NEW PARADIGM FOR PERFORMANCE OPTIMIZATION OF VLSI DESIGNS 221

circuitry for the generation of the hold signal. Additional
circuitry is required in the external control logic in order to
observe the hold signal and synchronize the telescopic unit
with its environment.

Although telescopic units are, in principle, similar to self-
timed units [3], they operate in a fully synchronous environ-
ment. Hence, they take an integer number of clock cycles to
complete their executions. The fully synchronous operation
allows us to ignore the issues related to hazards, which make
the design of large scale self-timed circuits complex and
expensive.

We outline algorithms and heuristics for automatically syn-
thesizing telescopic units which rely on symbolic techniques
for exact timing analysis [4]. Experimental results confirm
the viability of our approach, and they clearly indicate the
applicability of the technique for throughput optimization, as
well as for area optimization under throughput constraints.

Recently, Hassoun and Ebeling have presented an approach
similar to ours, calledarchitectural retiming[5]. Their idea
is to increase the number of registers on latency-constrained
paths, thus decreasing the cycle time without increasing the
latency. This is made possible by adding anegative registerto
each newly-added register, in such a way that regular/negative
register pairs are implemented as wires. The implementation
of the negative registers is key for the applicability of the
method. Since the output of a negative register is equal to
the input value at the next clock cycle, the implementation
requires a sort of prediction. This prediction is verified one
clock cycle after its calculation: if it is correct, the system can
proceed with the next prediction; otherwise, the mispredicted
value must be flushed and the circuit must be restored to the
previous state. This implies a one-cycle latency penalty.

Another similar approach that finds application in the de-
sign of asynchronous data-path units is calledspeculative
completion[6]. This method merges the advantages of other
well-known techniques for the detection of the computation
completion for asynchronous units. The idea is that of asso-
ciating multiple, “speculative” delay models with a unit, in
such a way that the completion of an operation is detected in
parallel with the unit itself. The multiple models account for
different (e.g., worst-case verses best-case) speeds of early
completion, and each speculative delay has its ownabort
detectionlogic that signals whether the corresponding delay
model has to be aborted. Both architectural retiming and
speculative completion are hand-crafted techniques that have
not been automated. On the contrary, telescopic units are
automatically synthesized.

The remainder of this manuscript is organized as follows.
Section II provides the notation and some background in-
formation concerning delays in combinational circuits and
summarizes how exact timing analysis can be performed effi-
ciently using symbolic techniques based on algebraic decision
diagrams (ADD’s). Section III introduces the telescopic unit
architecture, and Section IV discusses in detail algorithms
and heuristics for the automatic synthesis of telescopic units.
Section V addresses the problem of designing controllers for
systems containing telescopic units. Section VI reports the
results of a large set of experiments we have carried out on

standard benchmark examples. Finally, Section VII is devoted
to conclusions.

II. BACKGROUND

A. Circuits and Delays

A combinational circuitis a feedback-free network of com-
binational logic gates, called gates for brevity. If the output of
a gate is connected to an input of a gate, then is a
fanin of and gate is a fanout of gate A controlling
value at a gate input is the value that determines the value
at the output of the gate independent of the other inputs,
while anoncontrolling valueat a gate input is the value whose
presence is not sufficient to determine the value at the output
of the gate. For example, zero is the controlling value for a
NAND gate.

Each connection is associated with two delays, rise
delay and fall delay. Thedelay functionof connection

from gate to gate is called It equals if
takes value 1 when input vector is applied to the primary
inputs of the circuit. Otherwise, If all fanin
connections of have the same values of and , we
define the delay function of as , where
is any fanin connection of If is the global function
of (function in terms of the primary inputs) andconnects
gate to gate , then

Given a gate , the arrival time is the time at
which the output of settles to its final value if input vector

is applied at time zero.
A path in a combinational circuit is a sequence of gates and

connections , where connection
connects the output of gate to the input of

gate The lengthof a path is
defined as The topological delayof a
combinational circuit is the length of its longest path. Anevent
is a transition or at a gate. Given a sequence
of events, occurring at gates
along a path, such that occurs as a result of event , the
event is said topropagatealong the path. Under a specified
delay model, a path is said to be
sensitizableif an event occurring at gate can propagate
along A false pathis a nonsensitizable path. Thecritical
path of a combinational circuit is the longest sensitizable path
under a specified delay model: its length is the delayof
the combinational circuit and it is a lower bound on the cycle
time , i.e., For the sake of simplicity, we neglect set-
up and hold times and propagation delays through registers.
These factors can be easily incorporated into our analysis and
synthesis technique.

B. Pseudo-Boolean Functions and ADD’s

In the remainder of this manuscript, we assume the reader is
familiar with the fundamental concepts of Boolean functions.
In addition, we take for granted the knowledge of symbolic

222 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

techniques for the representation and the manipulation of
such functions through binary decision diagrams (BDD’s) [7].
Therefore, in the following, we only briefly recall the basic
notions related to pseudo-Boolean functions and to the data
structures, the algebraic decision diagrams (ADD’s) [8], which
are commonly used for their representation.

A -input pseudo-Boolean function is a
mapping from a -dimensional Boolean space to a finite set
Function can be efficiently stored and manipulated through
an ADD, an extension of the BDD which allows values from
an arbitrary finite domain to be associated with the terminal
nodes (i.e., theleaves) of the diagram.

Among the existing operators for efficient ADD manip-
ulation, THRESHOLD is of particular importance for our
purposes. It takes two arguments:a generic ADD, andval
a threshold value. It sets to 0 all the leaves ofwhose value
is smaller thanval and to 1 all the leaves of whose value is
greater than or equal toval. The resulting ADD, is thus
restricted to have only 0 or 1 as terminal values; therefore, it
is a BDD.

C. ADD-Based Timing Analysis

The problem of calculating the timing response of a com-
binational circuit can be formulated as follows [4]. Given the
circuit, find the set of input vectors for which the length of
the critical path, under a specified mode of operation and a
gate delay model, is maximum. The length of the critical path
gives the overall circuit delay.

Consider a gate of the network and a primary input vector
, where is the set of all thecare input vectors of the

circuit. The arrival time at its output line is evaluated
in terms of the arrival times of its inputs and the delays of its
fanin connections Let be the connection to pin
of gate

If all fanins of have noncontrolling values

If at least one fanin of has a controlling value for input
, where is the set of all possible care input vectors

controlling

Finally, if

Differently from what happens with traditional delay analyz-
ers, the use of the ADD-based timing analysis tool has made
it possible to compute and store the length of the critical path
for each input vector.

The availability of the complete timing information regard-
ing the combinational circuit is essential for the realization of
the synthesis algorithms described in Section IV.

Example 1: Consider the combinational circuit of Fig. 1(a),
and assume, for simplicity, the connection delays for a single

(a)

(b)

(c)

Fig. 1. (a) A combinational circuit, (b) its output arrival times, and (c) the
corresponding ADD.

gate to be the same for all fanins and input vectors and to
be given as single values for each gate. By applying the
three equations above on a gate-by-gate basis, and proceeding
from the inputs to the outputs of the circuit, we can determine
the arrival time of the output node of gate for each input
vector. The table of Fig. 1(b) provides such information. It is
now possible to efficiently store the content of the table as an
ADD. Fig. 1(c) depicts the final data structure.

D. Throughput and Latency

The throughput of a unit is defined as the amount of
computation (i.e., the number of times a new output value
is produced) carried out per time unit. For instance, the
throughput of a combinational logic circuit with delay of
15 time units is The latency of a digital
system is defined as the number of clock cycles required for a
computation to complete. A fixed-latency unit with latency
clocked with period has constant throughput

For variable-latency units, we consider theaveragelatency
over a period of time The average throughput

is simply In the following sections, we use
the shorthand notation and as opposed to and
to denote average latency and throughput, respectively.

BENINI et al.: NEW PARADIGM FOR PERFORMANCE OPTIMIZATION OF VLSI DESIGNS 223

(a)

(b)

Fig. 2. (a) A combinational unit and (b) a telescopic unit.

III. T ELESCOPICUNIT ARCHITECTURE

Consider the problem of increasing the throughput of a
combinational unit, such as the one shown in Fig. 2(a). This
can be done by shortening the cycle time of the unit from its
original value to One possible way of providing
functional correctness is to extend the unit to provide an
additional output signal which is asserted for all input
patterns requiring more than time units to propagate to
the outputs of the block [see Fig. 2(b)].

We call telescopic unitthe modified unit, since it may
require cycles to complete its execution, depending
on the specific patterns appearing at its primary inputs. We
consider here the situation in which In this case,
the computation completes in time units for patterns such
that and in time units for patterns such that

The average throughput of the original unit is

(1)

For the telescopic unit, the lower the probability of the
hold signal to take on the value 1, the larger the overall
throughput improvement. In fact, its average throughput
is given by

(2)

where is the probability of the hold signal to be
one. Thus, the use of the telescopic unit is advantageous only
for some values of and , i.e., when
More specifically, we can write the following condition for
throughput improvement

(3)

Clearly, Inequality 3 is valid only for since
we have made the assumption that 1. In order to
automatically synthesize telescopic units, two problems must
be solved. First, we need to compute and synthesize the
hold function, a combinational logic function that detectsall
input patterns that propagate to the outputs with delay larger
than Second, we must modify the controller of the data-
path where the telescopic unit is instantiated. The modified
controller synchronizes the environment with the telescopic
unit by delaying subsequent computations when The
following two sections deal with these problems in detail.

IV. SYNTHESIS ALGORITHMS AND HEURISTICS

The computation of the arrival time ADD for a combina-
tional unit allows us to determine all input vectors for which
the propagation through the unit will be slower than
This information is exploited to synthesize the logic which
generates the proper values of the hold output.

Given the arrival time ADD of output , the
BDD for the function which assumes the value 1 for all
the input vectors for which the arrival time of is greater
than the desired cycle time is computed as

(4)

Since we are interested in the set of input conditions for
which at least one output of the unit has an arrival time
greater than , we have that thehold function can be
easily determined as

(5)

where is the total number of outputs.
Clearly, the key issue for making telescopic units usable

in practice concerns the way is implemented by the
hold circuit. There are three main constraints that the final
implementation of must satisfy, and thus require particu-
lar consideration during synthesis. They are listed below in
decreasing order of importance.

• The arrival time of output must be strictly smaller
than for any possible input pattern. Otherwise, the
telescopic unit cannot be guaranteed to work correctly.

• The probability of to assume the value 1 must be small
enough to guarantee an average throughput improvement,
that is, (Inequality 3).

• The area and power of the hold circuit implementing
must be kept under control.

1The extension toLmax > 2, not discussed in detail for the sake of
clarity, is conceptually straightforward, but more complex to implement. This
is because several hold signalsf1

h
; f2
h
; � � � ; fkh are required to make the unit

work correctly. Functionf jh takes on the value one for all the input patterns
that require(j+1) cycles to complete the execution. The expression forP �

can then be modified to account for values ofT� < T=2 as follows:

P � =
Prob(fkh)

(k + 1)T�
+

Prob(fk�1
h

)

kT �
+ � � �

Prob(f1h)

2T�

+
1� Prob(f1h + f2h + � � � fkh)

T�

whereProb(fj
h
) represents the probability that hold functionf j

h
= 1:

224 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

It should be observed that the ON-set of, as defined by
(5), containsall and only those input patterns that propagate
to the output with delay larger than Hence, any imple-
mentation of the hold function mustcover the ON-set of ,
but it may also include other input conditions. By enlarging
the hold conditions, a faster and smaller hold circuit may be
obtained. Functional correctness is preserved, but the average
throughput of the telescopic unit (5) may be degraded, because
the circuit will hold for some input patterns with propagation
delay smaller than Obviously, if some inputdon’t care
conditions are known, they can be profitably exploited to
enlarge without affecting the throughput of the unit.

We have exploited this observation to formulate two heuris-
tic algorithms, described in the next two sections, whose target
is to determine anenlarged hold function , such that

only marginally degrades, but the implementation of
meets the timing constraint and has a limited area. They
both start from the BDD representation of The first method
generates the hold logic following an iterative paradigm. First,
the BDD of is mapped onto a multiplexor network. Then,
such network is optimized through traditional logic synthesis
techniques. Finally, a check is made to find out if the timing
constraint is met. If this is not the case, the
ON-set of is enlarged to obtain by properly removing
some BDD nodes, and the process is repeated. The second
heuristics produces asum-of-products(SOP) description of
directly from the BDD of the initial The first heuristic
is fast and works well for many examples, while the second
is more computationally intensive and should be used when
high-quality results are desired (i.e., maximum throughput
improvement and minimum area overhead). Both methods are
described in detail in the following sections.

A. BDD-Based Heuristics

The starting point of this method is the BDD of as defined
by (5). We search for a new hold function whose
implementation satisfies the timing constraint

(6)

The procedure starts from the conservative assumption that
the hold logic will be generated by simply mapping the BDD
of onto a network of multiplexors [9], [10]. This straight-
forward implementation can be obtained from the BDD of
in time [9], where is the number of nodes in the
BDD on which variable reordering has been applied with the
purpose of reducing its size. Obviously, the network obtained
by direct BDD mapping is highly unoptimized. Therefore,
its performance can be sensibly improved by standard logic
optimization.

Under the assumption of a multiplexor-based implementa-
tion of the hold circuit, the longest path in the BDD gives us
an estimate of the critical path for the hold network. Clearly,
this is only a first order estimate, since it neglects two factors:
the output load on a multiplexor and the load on the control
inputs of the multiplexors. If the BDD is very “wide” in
the lower levels (i.e., there are many nodes marked with
variables which are at the bottom of the global order), the

speed of the multiplexor-based network could be limited by
the excessive load on the control inputs of the multiplexors.
Similarly, if a node in the BDD is shared by many subtrees,
the corresponding multiplexor has a large fan-out and its speed
decreases. However, buffering can mitigate the problem and
reduce the delay penalty in both situations. Our approach is to
focus first on the number of levels of logic in the multiplexor-
based network.

The algorithm for the constrained generation ofconsists
of two steps. First, the BDD of is traversed and levelized:
each node is marked with itslevel, that is, the length of
the longest path between the node and the root of the BDD.
Second, the constraint on the maximum number of levels is
enforced. Let be the delay of a multiplexor
with a fan-out load of and an input drive , where

and are two constants representing the expected av-
erage load on a multiplexor and the expected driving strength
on its inputs. The maximum number of levels of logic allowed
in the multiplexor network is given by

(7)

where is a scaling constant that factors the expected effect
of logic synthesis and optimization on the multiplexor network

produces conservative results).
Starting from the nodes marked with higher level, the BDD

is traversed, and all nodes for which are
replaced by the constant 1. This operation yields a function

Notice that node elimination implies the reduction
of the number of paths in the BDD longer than In
particular, elimination of a single node may cause a length
reduction for an exponential number of paths.

We call supersettingthe operator that eliminates a given
node from a BDD, since it is the dual of thesubsetting
transformation proposed by Ravi and Somenzi in [11] in the
context of reachability analysis of large finite-state machines.
We have implemented the supersetting operator using a re-
cursive procedure, described in [12], which is structured as
most of the basic BDD operators. Supersetting techniques
alternative to ours have been proposed in the recent literature.
The interested reader may refer to [13] and [10] for more
details on this subject.

One issue that still needs to be addressed concerns timing
constraint violations due to nodes with excessive fan-out or
excessively loaded input signals. Supersetting can be exploited
again to eliminate such violations. Simple heuristics for mark-
ing nodes that would generate heavily loaded multiplexors, or
for reducing the load on the inputs have been devised and
are not described here because they do not add much to the
understanding of the algorithms. In addition, these heuristics
have a very marginal impact on the quality of the results,
since the modification of the BDD’s for reducing their depth
almost always yields implementations that satisfy the timing
constraint

Fig. 3 outlines the pseudocode of the BDD-based algorithm
for the synthesis and optimization of

ProcedureBdd2Logic takes, as inputs, the original func-
tion , the desired cycle time , and the area bound

BENINI et al.: NEW PARADIGM FOR PERFORMANCE OPTIMIZATION OF VLSI DESIGNS 225

Fig. 3. TheBdd2Logic algorithm.

for the hold circuit, and it returns the hold circuit
implementing an which satisfies the required constraints.

The size (i.e., the number of nodes) of the BDD foris first
reduced through variable reordering, and the corresponding
BDD is synthesized as a multiplexer-based logic network and
subsequently optimized and mapped. The arrival time ADD

for the hold logic is computed. If both the timing and
the area constraints are met by the implementationof ,
such implementation is returned. Otherwise, a modification of

is required, following the supersetting paradigm presented
earlier in this section.

After computing , the BDD for is levelized and
supersetting is first used to reduce the depth of the BDD and
eventually to eliminate nodes possibly responsible for timing
violations due to excessive load. At this point, the whole
sequence of operations starts over.

Notice that procedureBdd2Logic is guaranteed to ter-
minate because supersetting eliminates at least one node in
the BDD at each iteration. In all the cases we examined,
one iteration was sufficient to find an implementation of
that satisfied the timing constraint In the worst case,
the procedure terminates in a number of iterations which is
proportional to the size of the BDD of

B. SOP-Based Heuristics

The main advantage of the BDD-based heuristics for the
generation of the hold circuit lies in its well-controlled com-
plexity. If the timing analysis tool can compute the hold
function , all steps for the generation of require linear
time in the size of its BDD. The major limitation of the
BDD-based approach is that the hold circuit is a multiplexor
network obtained from the BDD. Since speed is the primary
requirement for the hold circuit, we may need to apply
logic optimization to obtain a fast implementation. Most
speed-up algorithms perform some form offlattening of the
initial specification in order to resynthesize a faster network.
Flattening transforms the initial specification into a two-
level sum-of-products form. Unfortunately, when flattening a
multiplexer network, the number of products in the flattened
implementation may be exponentially larger than the number
of multiplexers in the initial specification.

Fig. 4. General multilevel implementation of a SOP.

This implies an inherent difficulty in obtaining a fast imple-
mentation of the hold circuit, since our BDD-based algorithm
produces a small multiplexer network that might be actually
very hard to speed-up by logic optimization. In this section,
we propose a heuristics for the synthesis of the hold cir-
cuit that, starting from the BDD of , it first produces a
sum-of-products description of and then resorts to logic
optimization to obtain a fast and compact gate-level netlist.
In other words, we directly generate a flattened version of
from the BDD, without generating the multiplexor network.

Since the hold function is subject to the constraint that
the delay of its final implementation must be shorter than

, the SOP generation procedure is delay-driven. Assume
that a Boolean function with inputs has been specified as
a SOP, using just the AND, OR, and NOT operators, and
that it contains product terms. The largest cube (i.e.,
product term) has specified literals, where
If we neglect for simplicity the effect of the input loads
(i.e., we assume infinite input driving strengths), it is easy to
realize that the function can be implemented by a multilevel
network having the structure shown in Fig. 4. The delay of
such network is given by

(8)

The first term in the expression accounts for the delay
through the balanced tree of two-input OR operators needed
to implement the logic sum of cubes. The second term
accounts for the delay through the balanced tree of two-
input AND operators needed to implement the cube with the
maximum number of specified literals. The last term accounts
for the delay of a NOT operator (needed to complement the
input variables, if they appear in negative phase in the cubes).
Constants represent the delay through the AND,
OR, and NOT gates with unit load.

We cannot guarantee logarithmic delay for, since it is
well known that there exist functions which can be represented
only with an exponential number of cubes in SOP form.
Fortunately, the hold circuit can implement any function

Consequently, we do not generate a cover for the
hold function, but rather for itscomplement We enumerate
cubes of and we include them in a partial cover. When the
enumeration is stopped (by a stopping criterion discussed later)
the procedure returns a partial cover of If we
implement the partial cover and we complement its value, we

226 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

Fig. 5. TheBdd2Cover algorithm.

obtain an implementation of , thereby achieving our
original objective. The pseudocode for the cover generation
algorithm is shown in Fig. 5.

The procedure receives, as input parameters, the BDD
representation of , the bound on the total number of cubes

, and the bound on the maximum number of specified
literals in any considered cube The choice of the
values and is driven by the required timing
constraints. More specifically, the constraint is split into
two contributions: and
The coefficients and represent the fraction of the
total time to be spent in computing the logic products and the
fraction of the time to be spent in computing the logic sum,
respectively. Usually, because the number of
cubes is much larger than the number of literals in a cube.
From , we compute Similarly,
is used to compute

The algorithm consists of an outer loop for cube generation.
Whenever a newly generated cube is examined, it is inserted
in the selected cube list if and only if the number of specified
literals (i.e., literals appearing in the cube in either directed
or complemented form) is smaller than or equal to
Otherwise, the cube is simply dropped. The list is kept in
decreasing order: large cubes are inserted at the top of the list
(a large cube has a small number of specified literals). If the
number of cubes in the list becomes larger than , the
cube at the bottom of the list is discarded. Upon completion
of the loop, the list is returned. It contains the largest
cubes of produced during cube enumeration.

It should be observed that procedureBdd2Cover requires
the explicit enumeration of all cubes obtained from the BDD
representation. Consequently, the main shortcoming of this
simple algorithm is its worst case exponential number of
iterations. A straightforward solution is to limit the number of
iterations of theforeach loop to a user-defined upper bound.
In this case, we cannot guarantee that the list will contain the
largest cubes in the cover, but only the largest cubes generated
during the selected number of iterations.

Given the list of cubes, the final implementation of is
obtained through logic optimization. The hold circuit is then
realized by simply inserting an inverter at the output. Since we
start from a SOP specification, the optimization procedures are
more effective in finding fast implementations with small area,
than in the case of multiplexer-based network, as confirmed
by the experimental results.

C. Practical Issues

An implicit assumption made throughout the paper is that
the presence of the hold circuit does not perturb the timing
behavior of the original logic of the unit. Unfortunately, in
principle this is not true. Although the combinational logic
implementing the is never shared with the logic of the
original circuit, they are both driven by the same inputs. When
we add the hold circuit in the telescopic unit, the load on
the flip-flops at the inputs of the stage increases, and the
propagation delay increases as well. As a consequence, the
timing in the original circuit may change. In particular, paths
with propagation delay originally below may become too
slow and violate the timing requirements. If this happens, the
telescopic unit may malfunction, because the hold circuit is
not guaranteed to be active for the paths that have become too
slow due to its presence.

To tackle this problem we have devised two strategies. The
first and more conservative approach specifies an additional
load on the flip-flop outputs (i.e., the inputs of the combina-
tional logic) when performing the initial timing analysis of the
stage. This can be done by connecting an additional gate (i.e.,
a buffer) to each flip-flop output. In the final implementation
of the telescopic unit, the additional gates are the input drivers
for the hold circuit. The addition of the drivers allows us to
decouple the timing analysis of the combinational logic from
the synthesis of the hold circuit. The strategy is conservative
since it assumes that an additional driver is needed to drive
every input of the hold circuit.

A more aggressive alternative assumes that the presence
of the hold logic does not sensibly change the timing in the
original logic. More specifically, it assumes that none of the
paths in the combinational block which are not covered by
becomes slower than Function is thus synthesized and
wired to the original stage in the usual way. Timing analysis is
then performed: if some violation is detected (i.e., paths longer
than in the original logic are activated by input vectors in
the OFF-set of , the hold circuit is resynthesized using
a new, artificially reduced The decrease

equals the maximum violation that occurs in the original
circuit when the hold circuit is inserted. The process is iterated
until the addition of the hold circuit no longer originates a
violation.

Although the second alternative may seem more risky and
computationally expensive, we have empirically observed that
often the insertion of the hold circuit does not create any
violation, and the blind addition of buffers may thus be an
overkill. In our experiments, we have chosen the second
approach with good success.

V. CONTROLLER DESIGN

In all practical cases, computational units are embedded in
a larger system and must be interfaced to the environment in
a consistent and correct fashion. In this section, we show how
to incrementally modify the controller of a data-path when the
latter is transformed into a telescopic unit.

For the sake of illustration, consider the following design
scenario. The behavioral description of a system is provided by

BENINI et al.: NEW PARADIGM FOR PERFORMANCE OPTIMIZATION OF VLSI DESIGNS 227

the designer. Behavioral synthesis is performed and an initial
implementation, consisting of a controller and a data-path,
is obtained. The designer (or a high-level design exploration
tool) examines the data-path and decides which unit is to be
transformed into a telescopic unit. For instance, the slowest
unit in the data-path (which dominates the cycle time) can
be chosen. Thus, the system can potentially run with a cycle
time The introduction of a telescopic unit implies
the existence of a new signal Such signal is an input to
the controller that must be modified (i.e., resynthesized) to
take into account the variable latency of the telescopic unit.
Controller resynthesis must satisfy two key requirements:

1) it must guarantee functional correctness;
2) the complete system (i.e., controller and data-path) must

run at the new cycle time

We briefly describe a controller transformation procedure for
data-paths containing telescopic units. A complete treatment
of this topic can be found in [14]. Numerous controller
generation algorithms for behavioral synthesis have been pre-
sented in the past [15]. Most synthesis techniques generate
controller representations in terms of state tables (or equivalent
formalisms) of afinite-state machine(FSM) model of the
control unit. Other techniques [16] generate a network of
simple state machines, each controlling a task or a set of
concurrent tasks and where transitions are triggered by task
completionsignals. Since the complement of the hold signal
denotes the completion of a computation, such schemes are
easily adapted to support telescopic units. Unfortunately, the
implementations may be inefficient in terms of area utilization
and may become impractical to control data-paths with large
sets of tasks.

We consider here the modifications needed to be applied
to a state table representation of a control unit in order to
control telescopic units. Thus, this procedure is compatible
with most current behavioral synthesis methodologies. Before
describing the procedure in detail, we define two types of
controller outputs (also called control signals), namely, the
load signalsand thesteering signals. We call load signals
the FSM outputs that control the loading of new values into
the data-path registers. A load signal isactivewhen it allows
the overwriting of the old data in the register. When the load
signal is inactive, the register holds its value. Without loss
of generality, we assume that the active value is
We call steering signals the FSM outputs that control the
multiplexors in the data path. Such multiplexors implement the
steering logic: at the input of a unit they are used to select the
operands, while at the output, they select where to store the
result of a computation. In the state table of the controller, a
state is associated with each control step, and the edge leaving
the state is labeled with the values of the load and the steering
signals.

Assume that the fixed-latency unit is transformed into a
telescopic one with hold function If unit is active in
state , the controller’s state table is modified applying the
following rules.

• The unconditional transition from state to state
is now conditioned by the event The output fields

(a)

(b)

Fig. 6. (a) Fragments of fixed-latency controller and (b) transformed (vari-
able-latency) controller.

in the transition are left unchanged. In other words, if the
telescopic unit requires just one cycle to complete, the
system can move to the next control step.

• A new state is added.2 The FSM transitions from
state to state when The load signals in
the transition are all inactive, while the steering signals
have the same value as in the transition fromto
This transition is taken when the telescopic unit takes
one additional cycle to complete. If this is the case, the
registers at the inputs and outputs of the unit must not
be reloaded because the computation has not terminated.
Clearly, the steering signals must not be changed because
the input operands of the unit must be held constant.

• An unconditional transition from state to state
is added. The outputs for the transition are exactly the
same as the ones in the transition fromto The
additional transition is taken when the computation of the
telescopic unit takes two cycles. Notice that the value of

does not need to be sampled because, by construction,
the unit completes its execution in either one or two
cycles, but not more.

Example 2: Consider the controller fragment shown in
Fig. 6(a). Assume that a unit scheduled in statebecomes a
telescopic one. The transformation of the controller for state

is shown in Fig. 6(b). Output signalsld x1 and ld r1
are load signals, while outputsm1 1, m2 2, m3 1, andm4 1
are steering signals. Observe that one state has been added

2We are disregarding conditionals for the sake of simplicity. In the presence
of conditionals, a stateS can have multiple out-going edges. In this case, a
new stateSHk should be added for each out-going edgek:

228 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

Fig. 7. Timing diagram of the interaction betweenfh and the control logic.

Moreover, transitions in the transformed controller
depend on , the hold function of the telescopic unit.

In the worst case, i.e., when the telescopic unit is active in all
control steps, the number of states in the control FSM increases
by a factor of two. More in general, if multiple telescopic
units are instantiated, the increase in the number of states is
exponential in the number of telescopic units. Thus, designs
with many telescopic units should adopt a distributed control-
generation style [16], where the controller is implemented as
a network of small interacting FSM’s.

When a single telescopic unit is instantiated in the data-path,
the complexity increase in the controller is well controlled.
The number of states remains linear in the number of control
steps, and the number of input signals increases linearly with
the number of telescopic units. Hence, the increase in area of
the controller is not a serious concern (the total area is still
dominated by the data path). Unfortunately, this is not the
case for timing.

Fig. 7 shows the timing diagram for the interaction between
telescopic unit and controller. Delay is the time required
by the controller for setting stable values on the input multi-
plexors of the telescopic unit. Such delay must be taken into
account even for fixed-latency units. Delay is the time
required by to settle. Delay is the time required by
the load signals of the controller to reach the stable value
after has settled. The path with delay
is exercised when, for example, the telescopic unit is fed
with a pattern that requires two cycles immediately after a
pattern requiring a single cycle. Checking for correct timing
requires to verify that Obviously,
this condition implies tighter timing constraints for the hold
circuit:

Another important timing-related issue is the presence of
glitches on the steering signals when the controller’s FSM
transitions from a state to one of the new states.
Although the final value of the steering signals is unchanged,
a glitch during the transition may cause spurious transitions on
the telescopic unit’s inputs while the unit is still completing
its computation. Propagation of such spurious transitions may
cause an increase in the time needed for the unit’s outputs
to settle. Hence, the gate-level implementation of the steering
signals should be glitch-free for all transitions fromstates to

states. Glitch-free synthesis techniques [17] can be used
to satisfy this requirement.

VI. EXPERIMENTAL RESULTS

We have implemented proceduresBdd2Logic and
Bdd2Cover , as well as the surrounding software as an

extension of SIS [18] using CUDD [10] as the underlying
BDD/ADD package. Experiments have been run on a DEC
AXP 1000/400 with 256 MB of memory.

We present two sets of data. The first one concerns the use of
telescopic units as a pure throughput optimization technique.
The second set shows the applicability of telescopic units for
area optimization under throughput constraints.

A. Throughput Optimization

We have considered all large 100 gates) benchmarks
in the combinational multilevel suite [19] (53
examples). The circuits have been first optimized for speed
using a modified version of thescript.delay SIS script,
in which the full simplify -l , and sometimes the
red removal commands have been removed to allow the
optimization to complete on the large examples. Then, they
have been mapped for speed with either themap -n1 -
AFGor themap -m1 command onto a cell library containing
inverters, buffers, and two-input NAND and NOR gates. The
unit gate delay model has been adopted for the ADD-based
timing analysis.

1) BDD-Based Synthesis Procedure:We have run the
BDD-based synthesis procedure on the delay-optimized
circuits trying to obtain maximum-throughput telescopic units.
To accomplish this task we have specified several decreasing
values for , and we have synthesized the hold circuit until
we have found a value for which a further cycle time reduction
caused a decrease in throughput (due to the high probability
of the hold function).

For 43 examples, the use of telescopic units has produced
a substantial throughput improvement. On the other hand, in
five cases (circuitsC499, i3 , i4 , i6 , andi7), the throughput
did not increase. The reason for the failure is due to the delay
distribution in the circuits. For example, the critical path delay
of i6 is time units. If we specify and we extract

, we obtain Finally, in five cases (circuits
C1355, C2670, C3540, C6288, and i10), the ADD-based
timing analysis did not complete, due to the size of either the
BDD’s of the output functions of the unit or the arrival time
ADD’s to be constructed. Thus, our tool could not proceed to
the generation of

Table I reports the data for the 43 examples on which
throughput optimization has succeeded. Benchmarks are sorted
by increasing size. ColumnsCircuit, In, Out, Gt, , and give
the name, the number of inputs, outputs, and gates, the true
delay, and the throughput of the original circuit, respectively.
Column shows the probability of , column
gives the total number of gates of the telescopic unit, column

reports the cycle time at which the telescopic unit is
clocked to achieve the increased throughput of column, and
column tells the arrival time of the hold signal. Columns

and give the percentage of throughput improvement
and area overhead (in terms of gates) of the telescopic unit.
Finally, columnTimereports the central processing unit (CPU)
time, in seconds, required to perform the ADD-based timing
analysis, as well as the synthesis and the optimization of
for a given

BENINI et al.: NEW PARADIGM FOR PERFORMANCE OPTIMIZATION OF VLSI DESIGNS 229

TABLE I
THROUGHPUT OPTIMIZATION USING THE BDD-BASED SYNTHESIS PROCEDURE

In all cases, we have obtained a noticeable average through-
put increase (27.5% on average) with a limited area overhead
(7.7% on average). It is important to observe that the speed
optimization for the initial circuits has been pushed all the way
to the limit; therefore, the throughput increase achieved on
each example can be totally awarded to the use of telescopic
units. In some cases the optimization could have been even
more aggressive than what we implemented by choosing

2) SOP-Based Synthesis Procedure:In order to check the
effectiveness of the SOP-based heuristics, we have chosen
those circuits (out of the 43 considered before) where either
the throughput improvement was smaller than 10%, or the
area penalty was larger than 10%. A total of 16 examples has
thus been selected from Table I. The SOP-based procedure has

been run on the reference versions of such examples for heavy-
duty optimization of Table II compares, for each circuit,
the results obtained with the BDD-based and the SOP-based
synthesis procedures.

Our primary interest was the evaluation of the impact of
the SOP-based heuristics on the area of the telescopic units.
However, in order to make the comparison of the two heuris-
tics as fair as possible, we have not allowed any throughput
degradation with respect to the units obtained through the
BDD-based procedure. In addition, for each example, we have
kept to the value used for the BDD-based synthesis. This
is for better identifying the effects of the synthesis heuristics
on the implementation of the hold circuit.

The results of the comparison are in favor of the SOP-based
approach by an amount which goes beyond our expectations.

230 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

TABLE II
THROUGHPUT OPTIMIZATION USING THE SOP-BASED SYNTHESIS PROCEDURE

In fact, not only the average area overhead has decreased
from 13.4 to 10.8%, but a further average throughput increase
from 17.0 to 18.8% has been achieved as a by-product. In a
few cases, the worst-case delay of the hold circuit has also
decreased.

As expected, the computation time of the SOP-based heuris-
tics is higher than that of the BDD-based one. Even though
in most of the cases the difference in running time is negli-
gible, there are examples where the SOP-based synthesis has
required a few minutes to complete.

B. Area Optimization

For this set of experiments, the initial circuits have been op-
timized for area by iteratively applying thescript.rugged
SIS script (without thefull simplify -m nocomp)
followed by thered removal command (whenever this has
been possible), and mapped for area using themap -m0
command onto the usual cell library. Then, a 20% throughput
optimization has been targeted using two different approaches:
first, by transforming the circuits into telescopic units using
the BDD-based heuristics; second, by optimizing the circuits
for delay using SIS. Table III reports the experimental data.
(Examples are sorted as in Tables I and II). In particular,

columnsOriginal–Gt, Original–T, andOriginal–P report the
number of gates, the cycle time, and the average throughput
of the original (minimum area) circuits. ColumnsTelescopic
Unit–Gt and Telescopic Unit– give the number of gates
and the percentage of gates overhead required by the telescopic
units to produce a 20% throughput increase. ColumnsDelay
Optimized–Gt andDelay Optimized– show similar data
for the delay optimized circuits. Finally, the right-most column
indicates area wins and losses of the telescopic units
over the delay optimized examples.

Due to the difficulty of exactly controlling the throughput
increase, a 2.5% slack has been allowed. The symbol — in
a column indicates that the desired throughput improvement
could not be obtained. This situation has occurred in one case
only for the telescopic units (circuitC432) and in 19 cases
for the delay optimized circuits. It should be observed that
the telescopic units have out-performed the delay optimized
circuits, in terms of gate count, in the majority of the cases
(36 examples out of 43). Only on benchmarkC432 both
optimizations failed. On average, the area overhead due to
the use of telescopic units has been around 16.5%, while for
the delay optimized circuits it has been approximately 30.5%.
Such average is obviously computed only for the examples on
which both optimizations have succeeded.

BENINI et al.: NEW PARADIGM FOR PERFORMANCE OPTIMIZATION OF VLSI DESIGNS 231

TABLE III
AREA OPTIMIZATION UNDER THROUGHPUT CONSTRAINTS

VII. CONCLUSIONS

We have presented a technique for the automatic generation
of variable-latency, high-performance units that allow us to
increase the performance of digital systems beyond the limits
achievable by traditional logic optimization. Thanks to sym-
bolic timing analysis, we identify the conditions for which
a computation takes longer than the desired cycle time. We
then generate a signal which communicates to the environment
when the correct result is available. We also automatically
modify the controller to properly handle the variable-latency
units that are introduced in the system. Experimental results

demonstrate that the technique represents a valuable alternative
to existing throughput optimization approaches.

ACKNOWLEDGMENT

The authors wish to thank I. Bahar for helping them with the
ADD-based timing analysis code, and the anonymous DAC-97
reviewers for their useful comments on paper [12].

REFERENCES

[1] J. L. Hennessy and D. A. Patterson,Computer Architecture: A Quanti-
tative Approach. San Francisco, CA: Morgan Kaufmann, 1996.

232 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

[2] S. F. Oberman and M. J. Flynn, “Design issues in division and other
floating-point operations,”IEEE Trans. Comput., vol. 46, pp. 154–161,
Feb. 1997.

[3] M. A. Kishinevsky, Concurrent Hardware: The Theory and Practice of
Self-Timed Design. New York: Wiley, 1994.

[4] R. I. Bahar, H. Cho, G. D. Hachtel, E. Macii, and F. Somenzi, “Timing
analysis of combinational circuits using ADD’s,” presented at the
EDTC-94: IEEE Eur. Design Test Conf., pp. 625–629, Paris, France,
Feb. 1994.

[5] S. Hassoun and C. Ebeling, “Architectural retiming: Pipelining latency-
constrained circuits,” presented at theDAC-33: ACM/IEEE Design
Automation Conf., pp. 708–713, Las Vegas, NV, June 1996.

[6] S. Nowick, “Design of a low-latency asynchronous adder using specu-
lative completion,”IEE Proc. Comput. Digital Techniques, vol. 143, pp.
301–307, Sept. 1996.

[7] R. Bryant, “Graph-based algorithms for Boolean function manipulation,”
IEEE Trans. Comput., vol. C-35, pp. 79–85, Aug. 1986.

[8] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii,
A. Pardo, and F. Somenzi, “Algebraic decision diagrams and their
applications,”Formal Methods Syst. Design, vol. 10, pp. 171–206, 1997.

[9] L. Burgun, N. Dictus, A. Greiner, E. Prado Lopes, and C. Sarwary,
“Multilevel optimization of very high complexity circuits,” presented
at the EuroDAC-94: IEEE Eur. Design Automation Conf., pp. 14–19,
Grenoble, France, Sept. 1994.

[10] F. Somenzi, “CUDD: University of Colorado decision diagram package,
release 2.1.2,” Dept. ECE, Univ. Colorado, Boulder, Tech. Rep., Apr.
1997.

[11] K. Ravi and F. Somenzi, “High-density reachability analysis,” presented
at the ICCAD-95: IEEE/ACM Int. Conf. Computer-Aided Design, pp.
154–158, San Jose, CA, Nov. 1995.

[12] L. Benini, E. Macii, and M. Poncino, “Telescopic units: Increasing the
average throughput of pipelined designs by adaptive latency control,”
presented at theDAC-34: ACM/IEEE Design Automation Conf., pp.
22–27, Anaheim, CA, June 1997.

[13] T. Shiple, “Formal analysis of synchronous circuits,” Ph.D. dissertation,
Dept. Elect. Eng. Comput. Sci., Univ. California, Berkeley, 1996.

[14] L. Benini, E. Macii, and M. Poncino, “Efficient controller design for
telescopic units,” presented at theISIS-97: IEEE Int. Conf. Innovative
Syst. in Silicon, pp. 290–299, Austin, TX, Oct. 1997.

[15] G. De Micheli, Synthesis and Optimization of Digital Circuits. New
York: McGraw-Hill, 1994.

[16] D. Ku and G. De Micheli,High-Level Synthesis of ASIC’s Under Timing
and Synchronization Constraints. Norwell, MA: Kluwer, 1992.

[17] L. Lavagno and A. Sangiovanni-Vincentelli,Algorithms for Synthesis
and Testing of Asynchronous Circuits. Norwell, MA: Kluwer, 1993.

[18] E. M. Sentovich, K. J. Singh, C. W. Moon, H. Savoij, R. K. Brayton, and
A. Sangiovanni-Vincentelli, “Sequential circuits design using synthesis
and optimization,” presented at theICCD-92: IEEE Int. Conf. Comput.
Design, pp. 328–333, Cambridge, MA, Oct. 1992.

[19] S. Yang, “Logic synthesis and optimization benchmarks user guide ver-
sion 3.0,” MCNC: Microelectronics Center of North Carolina, Research
Triangle Park, NC, Tech. Rep., Jan. 1991.

Luca Benini received the B.S. degree (summa cum
laude) in electrical engineering from the University
of Bologna, Italy, in 1991, and the M.S. and Ph.D.
degrees in electrical engineering from Stanford Uni-
versity, CA, in 1994 and 1997, respectively.

Since 1997, he has been a Research Associate
in the Department of Electronics and Computer
Science at the University of Bologna and a Post-
Doctoral Fellow in the Department of Electrical
Engineering at Stanford University. He also holds
a position as a Visiting Scientist at the Hewlett-

Packard Laboratories, Palo Alto, CA. His research interests are in all aspects
of computer-aided design of digital circuits, with special emphasis on low-
power applications.

Dr. Benini has been a Member of the Technical Program Committee for
the 1998 Design and Test in Europe Conference and International Symposium
on Low Power Design.

Enrico Macii (M’92) received the Dr.Eng. degree
in electrical engineering from Politecnico di Torino,
Italy, in 1990, the Dr.Sc. degree in computer science
from Università di Torino in 1991, and the Ph.D.
degree in computer engineering from Politechnico
di Torino in 1995.

From May 1991 through August 1991, he was
Visiting Faculty at the University of California at
Los Angeles, and from September 1991 through
September 1994, he was Adjunct Faculty at the
University of Colorado at Boulder. Currently he is

an Assistant Professor of Electrical and Computer Engineering at Politecnico
de Torino. His research interests include synthesis, verification, simulation,
and testing of digital circuits and systems.

Massimo Poncino (M’97) received the Dr.Eng.
degree in electrical engineering from Politecnico
di Torino, Italy, in 1989, and the Ph.D. degree in
computer engineering from Politecnico di Torino in
1993.

From March 1993 through May 1994, he was
Visiting Faculty at the University of Colorado at
Boulder. Currently he is an Assistant Professor of
Electrical and Computer Engineering at Politecnico
di Torino. His research interests include synthe-
sis, verification, simulation, and testing of digital
circuits and systems.

Giovanni De Micheli (F’94) received the Nuclear
Engineer degree from Politecnico di Milano, Italy,
in 1979, and the M.S. and Ph.D. degrees in elec-
trical engineering and computer science from the
University of California at Berkeley in 1980 and
1983.

He is Professor of Electrical Engineering, and by
courtesy, of Computer Science at Stanford Univer-
sity, CA. Previously, he held positions at the IBM
T. J. Watson Research Center, Yorktown Heights,
NY, at the Department of Electronics of the Po-

litecnico di Milano, Italy, and at Harris Semiconductor, Melbourne, FL.
His research interests include several aspects of the computer-aided design
of integrated circuits and systems, with particular emphasis on automated
synthesis, optimization, and validation. He is the author ofSynthesis and
Optimization of Digital Circuits(New York: McGraw-Hill, 1994); coauthor of
Dynamic Power Management: Circuit Techniques and CAD Tools(Norwell,
MA: Kluwer, 1998) and ofHigh-level Synthesis of ASIC’s under Timing and
Synchronization Constraints(Norwell, MA: Kluwer, 1992); and co-editor of
Hardware/Software Co-design(Norwell, MA: Kluwer, 1995) and ofDesign
Systems for VLSI Circuits: Logic Synthesis and Silicon Compilation(The
Netherlands: Martinus Niijoff Publishers, 1986). He was also codirector of
the NATO Advanced Study Institutes on Hardware/Software Co-design, held
in Tremeezo, Italy, in 1995, and on Logic Synthesis and Silicon Compilation,
held in L’Aquila, Italy, in 1986.

Dr. De Micheli was granted a Professional Young Investigator Award in
1988. He received the 1987 IEEE TRANSACTIONS ONCOMPUTER-AIDED DESIGN

OF INTEGRATED CIRCUITS AND SYSTEMS Best Paper Award and two Best Paper
Awards at the Design Automation Conference in 1983 and 1993. He is
the Editor-in-Chief of IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF

INTEGRATED CIRCUITS AND SYSTEMS. He was the Program Chair (for Design
Tools) of the Design Automation Conference in 1996 and 1997, and he is
currently serving in the DAC Executive Committee. He was Program and
General Chair of International Conference on Computer Design (ICCD) in
1988 and 1989, respectively.

