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When binding a logic network to a set of cells, a fundamental problem is recognizing whether
a cell can implement a portion of the network. Boolean matching means solving this task
using a formalism based on Boolean algebra. In its simplest form, Boolean matching can be
posed as a tautology check. We review several approaches to Boolean matching as well as to
its generalization to cases involving don’t care conditions and its restriction to specific
libraries such as those typical of anti-fuse based FPGAs. We then present a general formula-
tion of Boolean matching supporting multiple-output logic cells.

Categories and Subject Descriptors: B.6.1 [Logic Design]: Design Styles

General Terms: Design, Measurement, Performance

1. INTRODUCTION
Cell-library binding (also called technology mapping) is the task of trans-
forming a multiple-level logic representation into an interconnection of
components that are instances of cells of a given library. By means of
library binding, logic designs can be targeted to different technologies and
implementation styles, such as standard cells and gate arrays, including
field-programmable gate arrays (FPGAs).
Cell libraries contain the set of logic primitives that are available in the

desired design style. Hence the binding process must exploit the features of
such a library in the search for the best possible implementation that
optimizes performance, power consumption, and area, etc. Since different
objectives may be of interest, binding is often formulated as a constrained
optimization problem, which is computationally intractable [De Micheli
1994; Garey and Johnson 1979].
Practical approaches to library binding can be classified into two major

groups: heuristic algorithms [Detjens et al. 1987; Keutzer 1987] and rule-
based approaches [Darringer et al. 1981; Gregory et al. 1986]. In both
cases, two subproblems must be solved: matching and selection. Matching
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means being able to recognize whether a portion of a multiple-level logic
circuit can be implemented by a given cell. Selection means choosing
appropriate cells that optimize the figure of interest.
Here we consider the matching problem only. Heuristic algorithms for

network covering based on tree, graph, and Boolean matching, as well as
rule-based systems, have been described elsewhere [De Micheli 1994]. In
addition, we restrict our attention to libraries of combinational gates
because register binding is often handled by special methods, e.g., Krish-
namoorthy and Mailhot [1994]. At first we consider single-output logic
cells, but we will remove this restriction later.
Early approaches to library binding used graph-based representations of

library cells expressing multilevel decompositions into simple Boolean
functions, such as two-input NANDs [Detjens et al. 1987; Keutzer 1987].
Matching was implemented as a (sub) graph isomorphism problem, which
can be solved very efficiently when the decomposition graph is a tree.
Unfortunately, these approaches suffer from several drawbacks, the most
important is that these representations are not canonical, and thus poten-
tial matches may not be detected. Pattern-matching approaches to binding
have similar drawbacks when the cells are modeled by multiple-level
sum-of-product expressions.
Later approaches to library binding used Boolean matching techniques,

which are so named because they are based upon (canonical) Boolean
representations of the logic functions [Mailhot and De Micheli 1993]. The
kernel of Boolean matching techniques is solving a tautology problem that
is co-NP complete [Garey and Johnson 1979]. Nevertheless, since in our
case the cardinality of the support set of the Boolean functions is small (i.e.,
most cells have at most 5 or 6 inputs), tautology is solved with little
computational burden. In addition, tautology is efficiently computed when
using binary-decision diagrams (BDDs).
Boolean matching is also applicable to combinational logic verification.

Boolean matching (and its extensions) can be used to check the equivalence
of two networks, even in absence of information about correspondence of
the inputs and the possible change of polarity of some inputs and/or
outputs. Nevertheless, verification problems often involve a number of
inputs largely superior to those of a typical cell. Therefore the Boolean
matching algorithms that are applicable in practice to verification differ
from those used in library binding. In this paper we concentrate mainly on
the library binding problem.
It is the purpose of this paper to review and contrast different methods

for Boolean matching for generic and specific libraries. We also present a
new approach to Boolean matching that can handle multiple-output logic
cells.

2. BACKGROUND

We assume that the reader is familiar with the basic concepts of Boolean
algebra (see Brown [1990] and De Micheli [1994] for a review) and BDDs
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[Bryant 1986]. We concentrate here on some specific concepts needed to
understand the following material. We denote vectors and matrices in bold,
i.e., x 5 @x1, x2 . . . , xn#T. A vector whose entries are 1 is denoted by 1.
We use the symbol ;x and 'x to designate, respectively, the consensus and
the smoothing operators. Remember that the consensus operation corre-
sponds to universal quantification and it is computed as ;xf 5 fx z f9x,
while smoothing corresponds to existential quantification and is computed
as 'xf 5 fx 1 f9x. Consensus (smoothing) with respect to an array of
variables can be computed by repeated application of single-variable con-
sensus (smoothing).

2.1 Don’t Care Conditions

The input controllability don’t care set (CDC) for a Boolean function f~x!
(with support variables x) includes all input conditions that are never
produced by the environment. We can define a CDC function fCDC : X 3
$0,1% whose ON-set is the CDC-set of f.
The output observability don’t care set (ODC) for f denotes all input

patterns that represent situations when f is not observed by the environ-
ment. We define an ODC function fODC : X 3 $0,1% whose ON-set is the
ODC-set of f. The DC function fDC 5 fODC 1 fCDC can be used to express

all degrees of freedom available for the implementation f̃ of a single output
function, namely:

f z f 9DC # f̃ # f 1 fDC

2.2 Boolean Relations

When considering the minimization of multioutput Boolean functions, the
degrees of freedom provided by the environment can be expressed by a
Boolean relation [Somenzi and Brayton 1989]. Intuitively, Boolean rela-
tions are generalizations of Boolean functions, where each input pattern
may correspond to more than one output pattern. If we call X the input
space and Y the output space, a Boolean relation R can be represented by
its characteristic equation: - : X 3 Y 3 $1,0% such that -~x, y! 5 1 if
and only if y { Y is one of the possible outputs of R for the input x { X. We
clarify these definitions with an example.

Example 1. Consider the Boolean relation represented by the table on
the following page. The first row of the table means that input 00
corresponds to either output 00 or 11. Note that this condition cannot be
expressed by a don’t care symbol. The second row is similar. The character-
istic equation of the Boolean relation is - 5 x91 y91 y92 1 x91 y1 y2 1
x1 y1 y92 5 1.
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2.3 Libraries

In the sequel we will consider Boolean functions that model a portion (or
cluster) of the circuit and are called cluster functions. We denote by f a
generic cluster function. We call pattern function a combinational function
modeling a library cell, and we use g to represent a generic pattern
function. We assume for now that both cluster and pattern functions are
scalar (i.e., have a single output). This restriction is removed in Section 8.
We say that an input to a library cell is stuck-at 0 if it is connected to

ground. This is modeled by replacing with 0 the corresponding variable in
the pattern function. We define the stuck-at 1 condition in a similar way,
mutatis mutandis.
We say that two (or more) cell inputs are bridged together when they are

connected to the same input line. Finally, we say that a library is closed
under stuck-at and bridging (or closed) if for any stuck-at and/or bridging
condition the corresponding pattern function is equivalent to either the
pattern function of another cell in the library or to a Boolean constant
value (i.e., true or false). Most cell libraries are closed.

Example 2. A library comprising an inverter as well as a 4-input, a
3-input, and a 2-input NAND cell is closed under stuck-at and bridging
conditions. Indeed, by shorting two or more cell inputs, or by sticking one
(or more) cell inputs to ground or to the power supply line, we have a cell
behavior equivalent to another cell in the library or to a constant value. If
we remove the 3-input NAND gate from the library, then the library is no
longer closed.

3. BOOLEAN MATCHING

Let us consider a cluster function f~x!, with n input variables that are
entries of vector x. Let us consider also a pattern function g~y!, where the
variables in y are the m cell inputs. For the sake of simplicity, we assume
that n 5 m unless specified otherwise. We will remove this assumption in
Section 7. Note that when the cell has more inputs than the cardinality of
the support of the cluster function, i.e., m . n, then a match requires
bridging or sticking-at a constant value for some inputs. When considering
closed libraries (and most libraries are closed), there always exists a more
convenient match, i.e., a simpler cell performing this function. Conversely,
when the cell has fewer inputs than n, a match is possible only if some
variable in x is redundant. This can be detected while matching the cluster
function and considering don’t care conditions.

x1x2 y1y2

00 $00,11%
01 $00,11%
10 $10%
11 $10%
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Matching involves comparing two functions and finding an assignment of
the cluster variables to the pattern variables. For explanation, we separate
the two issues and describe first matching two functions defined over the
same set of variables. The complete Boolean matching problem is defined in
Section 3.

3.1 Input Permutation

Consider two functions, f and g, defined over the same variable set x. The
two functions are equivalent if f~x! Q g~x! is a tautology. If the functions
are expressed by reduced ordered binary decision diagrams (ROBDDs),
such a test can be done in constant time [Brace et al. 1993].
In general, we are interested in exploring the possible permutations of

input variables that yield equivalent behavior. Thus we say that f and g
are 3-equivalent if there exists a permutation operator 3 such that
f~x!Q g~3x! is a tautology.
The most simplistic approach to detect a match is to perform n! tautology

checks. (Note that n 5 m is usually small and that cells with more than 6
inputs are rare.) Mailhot and De Micheli [1993] were the first to propose a
method for Boolean matching. They detected tautology by comparing or-
dered BDDs, and renounced the canonicity of ROBDDs to save the comput-
ing time of reducing the OBDDs of the cluster functions. (Historically, their
method preceded development of efficient ROBDD manipulation tools
[Brace 1993].) To expedite 3-equivalence checks, they used filters to prune
unnecessary tautology checks (see Section 4). The method can be perfected
by associating each library element with a multirooted ROBDD represent-
ing all variable permutations.

3.2 Input and Output Polarity Assignment

It is often the case that the polarity (also called phase) of the inputs and
outputs of a combinational network can be altered, because I/Os originate
and terminate on registers or I/O pads yielding signals and their comple-
ments. Thus it is useful to search for matches with arbitrary polarity
assignments, when these reduce the cost of the objective function of
interest.
The polarity assignment problem can be explained with the help of a

formalism used to classify Boolean functions. Consider all scalar Boolean
functions over the same support set of n variables. Two functions f and g
belong to the same 131 class, and are said to be 131-equivalent if there
is a permutation operator 3 and complementation operators 1 i, 1o, such
that f~x! Q 1o g~31 ix! is a tautology [Hurst et al. 1985]. The complemen-
tation operators specify the possible negation of some of their arguments.
Similarly, two functions f and g are said to be 1-equivalent (or polarity-
related or phase-related) if there exist a complementation operator N such
that f~x! Q g~1 ix! is a tautology. 31-equivalence is defined in a similar
way.
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Boolean matching is often defined in terms of 1, or 31, or
131-equivalence. In principle, 1, 31, and 131-equivalence can be
reduced to 2n, 2nn! and 2n11n! tautology checks. In practice, filters can be
used to drastically reduce the number of tries, and early approaches to
Boolean matching relied heavily on filtering [Mailhot and De Micheli 1993].
Moreover, canonical forms can be used to check for equivalence in constant
time.

3.3 Variable Assignment and Boolean Matching

In practice, a cluster function is defined over some network variables x and
a pattern function is defined over some other variables y. A matching
requires an assignment of cluster variables to pattern variables, represent-
ing the connections between the cluster and the cell. We denote a generic
assignment by the characteristic equation !~x, y! 5 1 of a variable
mapping function that maps the variables x into y.

Example 3. Consider an assignment that maps each entry in x into the
corresponding entry of y. Then the characteristic equation is x Q y 5 1.
Equivalently, we can express !~x, y! in scalar form as P i51

n ~xi Q yi!51.
With input permutation, the characteristic equation can be expressed as
!~x, y! 5 y Q Px 5 1, where P is a permutation matrix. With input
permutation and complementation, then y Q PN Q x 5 1, where N is a
diagonal Boolean matrix.

The pattern function g under the variable assignment represented by !
is [Savoj et al. 1992]:

g!~x! 5 'y!~x, y!g~y! (1)

Example 4. Consider a two-dimensional input space, where
x 5 @x1,x2#T and y 5 @y1, y2#T. The 131 transformation that maps x1
to y92 and x2 to y1 has the following characteristic equation
A~x1, x2, y1, y2! 5 ~x1Q y2!~x2 Q y1!5 x1x2 y1 y92 1 x1x92 y91 y921
x91x2 y1 y21 x91x92 y91 y2 5 1. Consider pattern function g 5 y1 y2 with
the previous assignment. The pattern function under the variable assign-
ment is 'y1, y2!g 5 'y1, y2~x1 Q y2!~x2 Q y1!y1 y2 5 x2x91 (Figure 1).

Let us consider 31-equivalence as being the straightforward extension
to 131-equivalence. A condition for matching is that f~x! Q g!~x! is a
tautology, or equivalently: f~x! Q 'y!~x, y!g~y! 5 1 for any value of x.
Therefore, there is a Boolean matching if and only if the following formula
evaluates to true.

;x~f~x! Q 'y~!~x, y!g~y!!! (2)
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4. BOOLEAN MATCHING ALGORITHMS

As outlined in the previous section, finding the correct input permutation
and polarity assignment that matches a cluster function with a pattern
function may require a large number of tautology tests. Numerous ap-
proaches have been proposed to eliminate or reduce the need for iterative
tautology checks.

4.1 Canonical Forms

Burch and Long [1992] introduced a canonical form for representing
functions modulo input-polarity assignments. This allows us to check for
1-equivalence in constant time. This form can be used to check for
31-equivalence (and 131-equivalence) by testing under all input permu-
tations and output complementation in a straightforward way.
The canonical form for 1-equivalence relies on a ROBDD representation

and can be seen as an operator (i.e., a Boolean function) whose argument is
a Boolean function. Burch and Long named it #1 and defined it as follows.
For all scalar Boolean functions f and g, f is 1-equivalent to #1 ( f ).
Moreover, if f is 1-equivalent to g, then C1~ f ! 5 C1~g!.
Given a function f, its canonical form #1 ( f ) can be constructed in

polynomial time by performing a recursive expansion about its support
variables. The structure of the algorithm for forming #1 is similar to the
ITE algorithm [Brace et al. 1993; De Micheli 1994]. A description is
reported in Burch and Long [1992].
Let us consider matching using the #1 operator. The Boolean functions

representing a library can be put in the canonical form #1 as a preprocess-
ing step, done once and for all for each library. These canonical forms can
be stored in a hash table. For each cluster function f of interest, its
canonical form #1 ( f ) must then be computed and checked against the
library hash table. This check can be done in constant time.
Canonical forms for representing functions modulo input permutation

can be defined in a similar way. For reasons of computational speed, Burch
and Long [1992] proposed the use of semi-canonical forms for representing
permutations. With these forms, which are not unique, 3-equivalence can

Fig. 1. Input assignment in matching.
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be tested as follows. For each pattern cell in the library, the (small) set of
all its semi-canonical forms is generated and stored once and for all in a
hash table. The cluster function is matched by constructing one of its
semi-canonical forms and checking for its presence in the library’s hash
table.
Extensions to cope with 31-equivalence are straightforward: have the

library hash table store the permutation’s semi-canonical forms in polarity
canonical form. Finally, checking for 131-equivalence is usually done by
also checking for 31-equivalence of the complement of f.

4.2 Boolean Signatures

A signature of a Boolean function is a compact representation that charac-
terizes some of the properties of the function itself. Each Boolean function
has a unique signature. On the other hand, a signature may be related to
two or more functions. This problem, called aliasing, distinguishes signa-
tures from canonical forms.
A necessary condition for a Boolean match is that the corresponding

signatures are equal. When signatures are compact, comparing them is an
efficient method to determine when two functions do not match, and
therefore to reduce the search space for a match. Because of aliasing errors,
signatures do not represent sufficient conditions to infer matching. Thus,
they are inherently less powerful than canonical forms. Signatures have
been used before the introduction of canonical forms, and subsequently in
the cases where canonical forms are expensive to compute or their size is
too large [Mohnke and Malik 1993].
Signatures can be based on some properties of the representation of a

Boolean function, such as symmetries, unateness, size of cofactors, etc.
Some signatures are based on Boolean spectra, and are also reviewed in
Section 4.
Mailhot and De Micheli [1993] used signatures to reduce the number of

tautology checks needed to determine both 3-equivalence and
131-equivalence. The signatures that he introduced are based on the
following facts:

(1) Any variable assignment must associate a unate (binate) variable in
the cluster function with a unate (binate) variable in the pattern
function.

(2) Variables or groups of variables that are interchangeable in the cluster
function must be interchangeable in the pattern function.

The first condition implies that the cluster and pattern functions must
have the same number of unate (binate) variables to have a match. If we
denote by b the number of binate variables, then b is a signature of the
function. Obviously, the number of unate variables ~n 2 b! is a signa-
ture. Moreover, at most b! z ~n 2 b!! variable permutations need to be
considered in the search for a match in the worst case.
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Example 5. Consider the following pattern function from a library:
g 5 s1s2a 1 s1s92b 1 s91s3c 1 s91s93d with n 5 7 variables.
Function g has 4 unate variables and 3 binate variables. Consider a cluster
function f with n 5 7 variables. First, a necessary condition for f to
match g is to also have 4 unate variables and 3 binate variables. If this is
the case, only 3!4! 5 144 variable orders and corresponding OBDDs need
to be considered in the worst case. (A match can be detected before all 144
variable orders are considered.) This number must be compared to the
overall number of permutations, 7! 5 5040, which is much larger.

The second condition allows us to exploit symmetry properties to simplify
the search for a match [Mailhot and De Micheli 1993; Morrison et al. 1989].
Consider the support set of a function f~x!. A symmetry set is a set of
variables that are pairwise interchangeable without affecting the logic
functionality. A symmetry class is an ensemble of symmetry sets with the
same cardinality. We denote a symmetry class by Ci when its elements
have cardinality i, i 5 1,2, . . . , n. Obviously, classes can be void. The
symmetry classes of the pattern functions can be computed beforehand, and
they provide a signature for the patterns themselves. Indeed, a necessary
condition for matching is to have symmetry classes of the same cardinality
for each i 5 1,2, . . . , n.

Example 6. Consider the function f 5 x1x2x3 1 x4x5 1 x6x7.
The support variables of f~x! can be partitioned into three symmetry sets:
$x1x2x3%, $x4x5%, $x6x7%. There are two non-void symmetry classes, namely:
C2 5 $$x4, x5%, $x6, x7%% and C3 5 $$x1, x2, x3%%. Thus a signature is
@0,2,1,0,0,0,0#. Consider now library cells g1 5 y1 1 y2y3 1 y4y5
1 y6y7 and g2 5 ~ y91 1 y92!~ y3 1 y4!~ y5 1 y6 1 y7!. The signa-
tures of the cells are, respectively, @1,3,0,0,0,0,0# and @0,2,1,0,0,0,0#.
The signatures of f and g2 are equal, and indeed g2 is 131-equivalent to
f. Notice however that in general signature matching is only a necessary
condition for Boolean matching.

Other signatures can be obtained by considering the satisfy count of a
function, which is the number of its minterms. The satisfy count for f is
denoted by |f|. The satisfy count can be computed quickly when using
ROBDD representations [Bryant 1986]. The satisfy count is an invariant
for input permutation and complementation. Thus, it can be used as a
signature for determining 3-equivalence and 31-equivalence. Note that
output complementation changes the satisfy count of a n-input function f
from |f| to 2n 2 |f|.
Mohnke and Malik [1993] suggested considering the satisfy counts of the

cofactors of a function with respect to its variables for determining
3-equivalence and 31-equivalence. Let us consider 3-equivalence first.
The signature is a vector whose entries are the satisfy counts of the
cofactors with respect to the uncomplemented variables. Again, such counts
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can be computed quickly when using ROBDD representations [Bryant
1986]. Then, a necessary condition for 3-equivalence for two functions f
and g is that each element of the signature for f has one corresponding and
equal element in the signature for g. This can be easily tested by sorting
the entries and comparing the sorted signatures. Aliasing may occur when
the satisfying count for two or more cofactors are the same. Mohnke and
Malik [1993] considered breakup signatures in these cases, which are based
on the distance of minterms from an arbitrary point of the Boolean space.
Details are reported in Mohnke and Malik [1993].
When considering the 1-equivalence problems, the satisfy counts of the

cofactors of f with respect to both complemented and uncomplemented
variables must be considered. These integer pairs can be arranged in a
matrix (with as many rows as the input variables) representing the
signature. A necessary condition for 1-equivalence of two functions f and
g is that each row of the signature for f has the same elements (possibly
permuted) as the corresponding row for g. Aliasing occurs when a row has
identical elements. To overcome this problem, other signatures can be
considered that are based on satisfy counts of cofactors with respect to two
variables. They are called component signatures [Mohnke and Malik 1993].
Eventually, when considering the 31-equivalence problems, cofactor sig-
natures can still be used in a straightforward way, but the use of breakup
and component signatures is limited.
A similar approach has been independently proposed by Lai et al. [1992],

who introduced a general method for evaluating the quality of signatures,
called effect/cost ratio. The effect of a signature is the reciprocal of its
aliasing probability, while the cost depends on the algorithm used for its
computation. (For ROBDD-based algorithms, the cost is usually a low-order
polynomial function in the number of nodes.) Clearly, signatures with high
effect/cost ratio should be used. Since exact computation of the effect of a
signature is sometimes difficult, it can be approximated by the number of
different values that the signature may take.
Wang et al. [1996] considered the equivalence signatures defined over a

bipartition p 5 $xl, xr% of the support variables of f. The Boolean space
spanned by the xl variables can be divided into equivalent classes, so that
f~xl

a, xr! 5 f~xl
b, xr! for any pair $xl

a, xl
b% in the same class. The number

k of such classes is called communication complexity of function f w.r.t. p.
Then, given a function f and a variable bipartition p, the equivalence
signature is the set of k pairs, each defined by (i) the satisfy count of an
equivalence class and (ii) the cofactor of f w.r.t. the equivalence classes
(i.e., the result of partially evaluating f for xl corresponding to the class). It
was shown by Wang et al. [1996] that equivalence signatures are a
generalization of other signatures, and more powerful in screening candi-
dates for matching because different bipartitions p 5 $xl, xr% (with xr of
increasing size) can be tried. Moreover, equivalence signatures can be
computed efficiently from ROBDD representations with variable orders
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consistent with the bipartition. This method has applications in verification
other than library binding because it can handle functions with more
variables (e.g., 10–100) than other methods.
Schlichtmann et al. [1992] proposed the use of different signatures,

including single-fault propagation signatures. These signatures associate
with each variable of a function a triple, counting the patterns that
sensitize a fault (that can be propagated to the output on a path with even
or odd parity) and those patterns that inhibit the fault sensitization. Cheng
et al. [1993] used signatures based on partner patterns and cofactor
statistics, which can be reconduced to single-fault propagation signatures
by scaling and modifying the format.
Finally, Tsai et al. [1994] have proposed a new set of signatures, which

have been proved to be effective when checking for 31-equivalence. Such
signatures are based on the generalized Reed-Muller form (GRM form) of
Boolean functions. GRM forms are useful because they can reveal complex
symmetries of input variables and are efficiently constructed with proce-
dures similar to those used for BDDs.

4.3 Spectral Methods

There are several spectral representations of Boolean functions [Hurst et
al. 1985]. We consider here the Hadamard transform because it can be
efficiently implemented. Consider an n-input Boolean function f. Let z be a
Boolean vector of length 2n whose ith entry is f~bool~i!!, i 5 1,2, . . . ,
2n, being bool~!, a function returning the binary encoding of an integer.
One can view z as the truth table of f. We then recode the Boolean
constants so that they take values $1, 21%. Namely, we define
y 5 1 2 2 z z.
The spectrum s of a function f is a vector with 2n elements, calculated

as: s 5 Tn z y, where the Hadamard matrix Tk of size k is defined
recursively as follows:

T 0 [ 1

Tk [ F Tk21 Tk21

Tk21 2 Tk21 G
Since Tn is symmetric and has orthogonal columns, its inverse is 1 / 2n

z Tn. Thus a function can be recovered from its spectrum s by computing:
y 5 1 / 2n z Tn z s and z 5 1 / 2 z ~1 2 y!.
Each entry in the spectrum gives some global information about the

Boolean function. For example, the first entry is s0 5 2n 2 2|f|, and is
called 0 th-order coefficient. The following n entries are named first order
coefficients and show the correlation of f with its input variables. The
remaining coefficients show the correlation of f with the exclusive or of
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some input variables. In particular, jth-order coefficients show the correla-
tion of f with the exclusive or of j input variables.

Example 7. Consider f~x1, x2, x3! 5 x1x2 1 x93 (n 5 3). Its
Hadamard spectrum is @s0, s1, s2, s12, s3, s13, s23, s123#T 5 @22,2,
2,26, 22, 22, 22,0#T. The 0 th order coefficient is s0 5 232
2*5 5 22. (In this case |f| 5 5). The first order coefficient is s1
5 5 2 3 5 2. Notice that s1 is equal to the number of agreements
between f and x1 minus the number of disagreements. A second-order
coefficient is s12 5 3 2 5 5 22, representing the number of
agreements between f and x1 Q x2 minus the number of disagreements.
The third-order coefficient s123 5 0 measures the number of agreements
between f and x1 Q x2 Q x3 minus the number of disagreements.

A spectrum uniquely identifies a function. Unfortunately, using spectra
for equivalence checking is not convenient, due to the exponential size of
the spectra themselves.
Some operators applied to Boolean functions have specific local effects on

the elements of its spectrum vector. In particular, complementing a func-
tion corresponds to changing a sign to its spectrum. Input complementation
corresponds to changing the sign of the spectral coefficients related to the
complemented variables, and input permutation corresponds to permuting
spectral entries of the same order. Moreover, substituting the input and/or
output of a function with a linear combination (i.e., exclusive or) of some
inputs corresponds to swapping spectral elements of different orders. By
using these transformations we can group Boolean functions into disjoint
translationally equivalent classes [Edwards 1975] that are classes (of
functions) closed under these transformations, called here -131, because
extension of the 131 concept.
As a result of the aforementioned properties, -131-equivalence can be

checked by comparing spectra after the signs have been removed and their
elements sorted. Whereas -131-equivalence is important for the classifi-
cation of Boolean functions, it is less relevant for matching. Indeed,
replacing a cluster with a -131-equivalent cell may require the use of
additional EXOR cells, thus increasing the cost of a match.
Boolean spectra can be of practical use to matching in two ways. First,

they can be used for matching by noticing that two functions are
131-equivalent if the corresponding spectra are equal modulo complemen-
tation and permutation of the coefficients within the same order. Yang and
De Micheli [1991] proposed a Boolean matching algorithm where comple-
mentations and constrained permutations of the elements of a spectrum
are attempted to make it equal to another one. Permutations are restricted
to be swaps of coefficients of the same order. If and only if this process is
successful are the corresponding functions 131-equivalent. While the
algorithm is generally efficient in ruling out unfeasible matching early, its
worst-case performance is exponential.
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Second, Boolean spectra can be used as signatures. (Fragments of spectra
can also be used: for example, the 0 th-order coefficient is equivalent to the
satisfy count.) When considering 3, 31, or 131-equivalent matching,
aliasing may arise because the spectrum of a cluster function f may match
the spectrum of a pattern function g, making f and g just
-131-equivalent but not 131 equivalent. Nevertheless mismatches in
Boolean spectra (or in portions thereof) may be used to rule out equivalence
of the corresponding Boolean functions. Clarke et al. [1993] proposed
BDD-based methods for the computation of the spectrum. The main advan-
tage of this approach lies in the high average efficiency of BDD-based
manipulation, although the worst-case computational complexity is still
exponential. Moreover, this group [Clarke et al. 1993] applied spectral
filters to speed-up matching, and gave experimental evidence on the high
effect/cost ratio of such filters.

5. BOOLEAN MATCHING WITH DON’T CARE CONDITIONS

Multiple-level logic networks often have several don’t care conditions that
are induced by the interconnection of the network itself. Some of these
don’t care conditions are due to the structuring of the network prior to
library binding, while others are due to the binding process itself. When
considering don’t care conditions associated with a cluster function, multi-
ple matching cells can be found. It is therefore convenient to use don’t care
conditions in the search for the most desirable matching cell.
Here we consider both controllability and observability don’t care condi-

tions associated with the cluster function f and represented jointly as fDC.
We refer the reader to De Micheli [1994] for the computation of fDC. We say

that a pattern function g matches a cluster function f if g matches f̃ where

f z f9DC # f̃ # f 1 fDC.

5.1 Compatibility Graph

Matching can be defined in terms of 3, 13, or 131-equivalence. The first
algorithm for detecting 131-equivalence using don’t care conditions was
proposed by Mailhot and De Micheli [1993]. His approach was limited to
functions with four or fewer support variables (n # 4). Mailhot made use
of a matching compatibility graph, which is a directed graph whose vertex
set is in one-to-one correspondence with the 131-equivalent classes of
functions. There are 222 such classes for functions of four variables, but
616126 classes for functions of five variables (this explains the limitation to
four variables).
Each vertex of the graph is labeled by a representative function of the

class. Two vertices are joined by an edge if the corresponding representa-
tive functions differ in one minterm. Thus a path between two vertices can
be associated with a set of minterms, or equivalently with a Boolean
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function measuring the difference between the representative functions.
We call such a function an error function.
The vertices are annotated by library elements and their costs when the

pattern functions are in the corresponding 131 class. Given a cluster
function f, an 131-equivalence check can map the cluster function to a
vertex v{V. Such a vertex always exists because all 131 classes are
represented by the graph. On the other hand, the vertex may correspond or
not to a library element. In either case, matching consists of finding the
vertex u{V associated with the least-cost cell that is compatible with the
cluster function. The compatibility test reduces to checking whether the
error function associated with the path from v to u is included in the don’t
care function fDC, which represents the tolerance on the error. In Mailhot’s
algorithm, the annotated matching compatibility graph and the paths are
computed once for all for any given library and then stored. Thus matching
don’t care conditions only requires an additional inclusion test. Even
though most libraries have few cells with more than four inputs, the
drawback of this approach is that it does not scale with n due to the size of
the graph.

Example 8. Consider the matching compatibility graph of Figure 2,
where the darker cubes denote vertices corresponding to a hypothetical
library. Let the cluster function be f 5 xy 1 xz and the don’t care be

Fig. 2. Matching compatibility graph for 3-variable Boolean space.
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fDC 5 x9z9. The vertex matched to f is v5 and corresponds to a library
element. The representative function assigned to v5, i.e., a9c 1 bc, is in
the same 131 class as f. (Assign a9 to y, b to z, and c to x.) The vertices
reachable from v5 are $v9, v10, v6% because the corresponding paths have
minterm sets included in the don’t care set. Indeed, the errors of using v9,
v10, and v6, instead of v5, are a9b9c9, ab9c9, and b9c9, respectively, which are
all included in f!DC 5 b9c9 with the variable assignment mentioned
above. (Note that the error between v5 and v6 is b9c9 because we comple-
ment the representative function of v6 and rotate the cube around the a
axis.) Only vertex v9 is annotated with a library element. It corresponds to
the multiplexer gate because the representative function a9b9 1 bc is in
the same 131 class as ab 1 b9c.

5.2 A Formula for Boolean Matching with Don’t Care Conditions

Savoj et. al [1992] presented a Boolean condition for matching don’t care
conditions. Consider a cluster function f~x! and don’t care set fDC~x! and
pattern function g~y!. An expression for determining a matching with don’t
care conditions can be derived by extending expression (2) as follows:

;x~ fDC~x! 1 f ~x! Q 'y~!~x, y!g~ y!!! (3)

which can be rewritten as:

;x~'y~!~x, y!fDC~x! 1 f ~x! Q ~ g~y!!!! (4)

Formula (3) has an immediate meaning: for all the values of the input
variables x either the pattern function g with input assignment ! must be
equal to f, or fDC is true. Formula (4) is easily derived from (3).

Example 9. Consider the cluster function f 5 x1 Q x2 with fDC 5
x91x2, and pattern function g 5 y1 1 y2. A variable assignment that
assigns x91 to y1 and x2 to y2 yields a match. We verify this with Formula
(4). The input assignment function is !~x, y! 5 ~ y1 Q x1!~ y2 Q x2!.
Formula (4) is therefore ;x~'y~~ y1 Q x1!~ y2 Q x2!~x91x2 1 ~x1 Q x2!
Q ~ y1 1 y2!!!!. Computing the smoothing, we obtain ;x~x91x2 1x1x2
1 x91x92 1 x1x92!, which is a tautology; thus (4) is satisfied (Figure 9).

The main problem in using Formulas (3) and (4) is finding the variable
assignment. Savoj et. al [1992] proposed an algorithm based upon a search
for a variable assignment that satisfies Condition (4). To expedite the
search, Savoj introduced a class of filters that are valid even for incom-
pletely specified functions. The filters are based on the satisfy count of the
function and its cofactors. For example, if |f z f9DC| . |g|, obviously no
matching is possible. The interested reader is referred to Savoj et al. [1992]
for details.
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5.3 Boolean Unification

Boolean unification is the process of finding a solution of a Boolean
equation [Brown 1990]. A method for finding Boolean matching with don’t
care conditions based on Boolean unification was proposed by Chen [1993].
A matching is searched for by solving a Boolean equation in which the
unknowns are the variable matching functions representing input assign-
ments. Note that these functions have been represented implicitly up to
now by the characteristic equation !~x, y! 5 1. Given f~x!, fDC~x!, and
g~y!, we first enforce the matching condition:

f ~x! Q g~y! 1 fDC~x! 5 1 (5)

which must hold for every x.
The unknowns in this equation are y 5 f~x, r!, where r is an array of

arbitrary functions on x. Solving for the unknowns yields the variable
matching, if one exists. The solution method [Chen 1993] uses a recursive
algorithm reminiscent of the binary branching procedure for Shannon
expansion.
If we restrict ourselves to checking for 31-equivalence, we must limit

the generality of the solutions: We allow only functions of the form y 5
PN Q x for some permutation matrix P and diagonal complementation
Boolean matrix N. Unfortunately, this constraint is not enforced by
Equation (5). Similar considerations apply to 3-, 1-, and
131-equivalence checking. In order to guarantee that solutions are in the
desired form, a branch-and-bound algorithm has been proposed [Chen
1993] that may degenerate in the worst case to exhaustive enumeration of
input permutations and polarity assignments. Although Boolean unifica-
tion is a general and interesting framework for the description of matching
problems, the Boolean unification algorithm [Chen 1993] does not repre-
sent a significant improvement upon enumerative procedures enhanced by
efficient filters.

5.4 Matching Using Multivalued Functions

One recent approach to Boolean matching with don’t care [Wang and
Hwang 1995] exploits multivalued functions. A multivalued function is a

Fig. 3. Input assignment in matching with don’t care conditions.
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mapping from a n-dimensional space to the Boolean space. The input
variables can assume a finite number of values ranging from 1 to n. In
symbols, a multivalued function F is F : Nn 3 B, where N5 $1,2, . . . ,
n% and B 5 $1,0%. The key idea is to represent admissible input
assignments with literals of a multivalued function, and consequently, sets
of admissible input assignments with multivalued cubes.

Example 10. The cluster function is f~x1, x2, x3! and the pattern func-
tion is g~ y1, y2, y3!. For simplicity, we consider only input permutations.
Assume that admissible input assignments are ~x1, y2!, ~x2, y1!, ~x2, y2!,
~x3, y1!, and ~x3, y3!. This set of admissible input assignments can be
represented by the multivalued cube x1

$2%x2
$1, 2%x3

$1, 3%.

The cubes of the multivalued function representing possible input assign-
ments are generated iteratively, starting from sum of products representa-
tion of the pattern function g, the cluster function f, and its don’t care
function fDC. For simplicity, in the following description we consider input
permutations only. The procedure has three steps.
First, the functions representing the off-set and on-set of f are obtained:

fOFF 5 f9 z f9DC and fON 5 f z f9DC and cast in sum of product form. Then
the pattern functions are complemented and stored in sum of product form.
We consider a cluster function f as matching with one cell represented by
g and g9.
Second, for each cube p of fON and for each cube q of g9, a multivalued

function MvCube~ p, q! is obtained. MvCube~ p, q! expresses the con-
straint that the only acceptable variable assignments are those that make
the two cubes disjoint. This is true if at least one of the variables appearing
in p with one polarity is associated with one of the variables appearing in
q with opposite polarity. The same procedure is repeated for each cube of
fOFF and each cube of g. The intersection of all expressions
MvCube~ p, q! so generated represents implicitly the set of all possible
input assignments that yield a match.
As a last step, feasible input assignments are extracted from the multi-

valued representation by solving a matching problem on a bipartite graph.
For details, refer to Brown [1990].

Example 11. Assume that a cube in fON is p 5 x1x92 and a cube in g9 is
q 5 y91 y2 y3. The multivalued function extracted by p and q is
MvCube~ p, q! 5 x1

$1% 1 x2
$2, 3%. The function expresses the constraint

that, in order for the two cubes to be disjoint, x1 can be associated with
y1, or x2 can be associated with either y2 or y3.

The computational complexity of the procedure is of the order of the
product of the cardinalities of the sum of products under consideration.
This is usually not a serious limitation in library binding because most
functions (that may match the usual cells) have a manageable sum of
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product representation, and very effective tools exist for two-level logic
minimization [Brayton 1984]. Moreover, for most libraries, the sum of cube
representations of the pattern functions are usually very small and seldom
larger than ten cubes. On the other hand, when this method is used for
verification, the larger number of inputs can lead to situations where the
size of the sum of product forms are too large for the method to be practical.
Another factor affecting the computational complexity is that the intersec-
tion of the functions MvCube~ p, q! is a product of sums form, which may
require an exponential number of products to be computed. Wang and
Hwang [1995] proposed a heuristic that orders the selection of cubes trying
to keep the size of the intersection as small as possible. Extensions of the
algorithm to deal with 131 matching with don’t cares are straightforward
and do not sensibly change the overall complexity.

6. BOOLEAN MATCHING FOR FPGAS

Library binding for field programmable gate arrays is often based on some
specific techniques, which depend on the architecture of the programmable
modules. In particular, binding of look-up tables [Trimberger 1993] and
array-based [Wong 1989] FPGA libraries do not require matching as
defined in this paper. For example, binding of look-up table FPGAs is often
reduced to a decomposition in k-input bounded functions, where k depends
on the technology, and is usually 4 or 5 [Cong and Ding 1992; Cong and
Ding 1996]. On the other hand, Boolean matching is important for antifuse-
based FPGAs [Goetting et al. 1995; Green et al. 1993]. An antifuse-based
FPGA consists of an array of programmable logic modules, each implement-
ing a logic function that can be personalized by shorting inputs either to a
voltage rail or together by programming the anti-fuses. The uncommitted
module is modeled by a combinational module function. We concentrate
here on FPGAs with single-output modules [Goetting et al. 1995; Green et
al. 1993].
The library of anti-fuse based FPGAs is represented by all logic functions

that can be implemented by personalizing the logic module. Note that such
a library is closed by definition. As far as library binding is concerned, two
strategies can be used: deriving the entire library and using the Boolean
matching techniques described above, or representing the library implicitly
by the module function. The first approach is used when some personaliza-
tions are discarded because of some electrical and physical design consider-
ations. We consider the second approach in this section.

Example 12. Let us consider the FPGAs marketed by Actel Inc. (see
Figure 4). In the Act1 series, the module implements the function: m1 5
~s0 1 s1!~s2a 1 s92b! 1 s90s91~s3c 1 s93d!, while in the Act2 and
Act3 series it implements the function: m2 5 ~s0 1 s1!~s2s3a 1
~s2s3!9b! 1 s90s91~s2s3c 1 ~s2s3!9d!. In both cases, the module is a
function of n 5 8 inputs. As an example of programming, by setting
s05 s1 5 1, function m1 implements the multiplexer s2a 1 s92b.
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This is achieved by providing a path from inputs s0 and s1 to the power rail
through an anti-fuse. There are about 700 functions that can be derived by
programming either module.

For the sake of simplicity, we consider only personalizations by input
stuck-ats, i.e., we exclude bridging. Then the module function can imple-
ment any cluster function that matches any of its cofactors. ROBDD
representations can be very useful in visualizing and solving this matching
problem. Indeed, given an order of the variables of the module function and
a corresponding ROBDD representation, its cofactors with respect to the
first k variables in the order are represented by subgraphs of the ROBDD.
These subgraphs are rooted at those vertices reachable from the root of the
module ROBDD along k edges corresponding to the variables with respect
to which the cofactors have been taken, or equivalently to those variables
that are stuck-at a fixed value by the personalization (Figure 13).
When considering 3-equivalence, all variable orders of the module func-

tion and the corresponding ROBDDs must be taken into account to consider
all possible personalizations. This can be done by constructing a multi-
rooted ROBDD that captures the library corresponding to the module
function. In practice, ROBDDs are stored in canonical tables and the
aforementioned operations on graphs can be performed very efficiently by
checking table entries [Yang et al. 1997]. Moreover, 31-equivalence can be
detected efficiently by using the canonical forms described in Section 3.
Extensions to cope with personalization by bridging have also been pro-
posed [Ercolani and De Micheli 1991; Yang et al. 1997]. Another method for
matching with stuck-at and bridging connections is mentioned in Section 7.

Example 13. Consider the module function m 5 s1~s2a 1 s92b! 1
s91~s3c 1 s93d! and cluster function f 5 xy 1 x9z, shown in Figure 13,
(a) and (d), respectively. Figure 13(b) shows the ROBDD of m for variable
order ~s1, s2, a, b, c, s3, d! and Figure 13(c) shows the ROBDD of f for
variable order ~x, y, z!. Since the ROBDD of f is isomorphic to the

Fig. 4. Act1 and Act2 / 3 modules.
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subgraph of the ROBDD of m rooted in the vertex labeled s2 (which is the
right child of s1), the module function can implement f by sticking s1 at 1.
Note that other cluster functions that can be implemented by the module
function may have ROBDDs that are not isomorphic to any subgraph of the
ROBDD of Figure 13(b). This is due to the fact that a specific variable order
has been chosen to construct this ROBDD.

It is important to note that the method just described is applicable to any
FPGA library, as long as the module function can be modeled by a
single-output logic function and the personalization is performed by stick-
ing-at or bridging cell inputs. Other approaches to Boolean matching
[Fortas et al. 1995; Murgai et al. 1992] are specific to some FPGA modules
and exploit the peculiarities of such modules.

7. A NEW VIEWPOINT ON BOOLEAN MATCHING

As presented in the previous sections, searching for a Boolean match
involves some kind of enumeration of the possible variable assignments.
The efficacy of some methods is based on clever techniques to reduce the
number of alternative solutions that must be tested. The most advanced
approaches, namely, those based on canonical forms and multivalued
functions, transform the matching problem into checking the satisfiability
of a Boolean formula.
In this section we propose a novel approach that is more general in

applicability and retains the desirable characteristic of solving the match-

Fig. 5. (a) Programmable module; (b) module ROBDD; (c) cluster ROBDD; (d) representation of
the cluster function.
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ing problem by a simple satisfiability check. Our matching procedure is
completely described in an abstract fashion by Boolean formulas and
equations. We describe our approach in a stepwise fashion, starting from
the simplest application, namely, matching a completely specified cluster
function with a library cell.
We generalize the matching problem in two directions: (i) the cluster

function is not required to have the same number of inputs as the pattern
function (i.e., n is not necessarily equal to m); and (ii) the variable
assignment is not required to be a permutation with possible polarity
change (e.g., two or more inputs may be bridged together).
A physical interpretation of the matching setup is given by providing

each cell input with a polarity control bit (i.e., an exclusive OR gate) and
with a multiplexer. The polarity and multiplexer controls are independent
for each input and are binary encoded. Namely, the first log2n variables
control which of the external n inputs is multiplexed on the input of g. The
last control variable controls the polarity of the selected external input. An
example is given in Figure 6.

Example 14. Consider box M1 in Figure 6, performing controlled
complementation and multiplexing. If the control variables are c0 5 0
and c1 5 0, the input x1 is connected with y1. When c0 5 0 and c1
5 1, x2 is connected with y1. When c0 5 1 and c1 5 0, x3 is connected
with y1. The last configuration of control variables (c0 5 1, c1 5 1) is
unused, and can be assumed to be equivalent to any one of the others. For
instance, we assume that when c0 5 1 and c1 5 1, x3 is again connected
with y1. The last control variable, c2, defines the polarity of the connection.

Fig. 6. Transformation of the pattern function g into G for matching with cluster function f.
The first two control variables of each multiplexer are for permutation control and the last one
is for polarity control.
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If the polarity control variable c2 is 1, the connection with y1 will be
inverted, thus either x91, or x92, or x93 will be seen on y1.

From our construction it is clear that the number of control variables
needed is Nc 5 m~log

2
n 1 1!. The key observation is that the control

variables c can be selected in such a way that all 31-equivalent functions
of g can be generated. (The inversion of the output can be obtained with one
more control variables for output polarity. We restrict our attention to
31 for the sake of simplicity.)
In general, the class of functions generated by assignments to c is larger

than the class representative of all input permutations and polarity
changes. It includes the cases where two or more of the inputs of g are
bridged and connected to the same cluster input with arbitrary polarity.
We call the set of functions a cell can implement with this connection
extended-31 (%31) class. The generalization to %131 is straightforward.
From an algebraic viewpoint, the enhanced cell is modeled by a new

Boolean function G~c, x!. We define an %31-equivalence relation over the
set S of all the Boolean functions with n inputs: %31-equivalence parti-
tions S into equivalence classes. The set of equivalence classes defined by
an equivalence relation is called quotient set. We call G~c, x! a quotient
function because it implicitly represents an equivalence class (i.e., an
element of the quotient set). Indeed, all possible assignments of the c
variables individuate all possible functions of x that belong to the same
class as the original pattern function g.
Boolean matching is easily formulated using the quotient function G~c,

x!. We introduce a Boolean formula that has at least one satisfying
assignment if and only if the quotient function G~c, x! (corresponding to
the pattern function g) is %31-equivalent to f. The formula can be
explained intuitivley by observing that there is an %31 matching if and
only if there exists an assignment c* to the control variables c of G~c, x!

such that G~c*, x! is equal to f~x! for all possible values of x. In other
words, the variable assignment represented implicitly by !~x, y! can be
cast in explicit form using G~c, x!, and G~c, x! can replace g!~x! in
Equation (1). Therefore, the Boolean matching condition is represented by

M~c! 5 ;x@G~c, x! Q f ~x!# (6)

The application of the universal quantifier produces a function of the
control variable c. We call it a matching function, M~c!. Recall that our
procedure finds all possible matchings given f~x! and g~y!, not just a
particular one. A minterm of M corresponds to a single %31 transforma-
tion for which g matches f. The ON-set of M represents all matching
%31 transformations.
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Example 15. Let the pattern function be g 5 x9y and the cluster
function be f 5 wz9. Figure 7 models G~a, b, c, d, w, z! 5 ~c Q ~za
1 wa9!!9~d Q ~zb 1 wb9!!, where a, c and b, d are the control variables.
We equate f to G:

f Q G 5 ~wz9! Q ~~c Q ~za 1 wa9!!9~d Q ~zb 1 wb9!!!

We then take the consensus of the resulting expression with respect to
w and z (the order does not matter), to get M~a, b, c, d! 5 ab9c9d9 1
a9bcd. The two minterms of M~a, b, c, d! describe the two possible vari-
able assignments. Minterm ab9c9d9 corresponds to assigning z to x and w
to y without any polarity change. Minterm a9bcd corresponds to assigning
z to y and w to x while changing both polarities. The correctness and
completeness of the solution set represented by M can be verified by
inspection.
From an implementation standpoint, the matching algorithm operates as

follows. First, the quotient functions are constructed from the pattern
functions and stored as ROBDDs. Next, given the ROBDD of f, the ROBDD
of G~c, x! Q f~x! is constructed. The last step is the computation of the
consensus over all variables in x that yields M~c!. Observe that, thanks to
the binary encoding of the control variables, the size of c is O~mlog

2
n!.

This is an important property because for efficiency we want to keep the
number of variables in the ROBDD representation of G as small as
possible.
When the cluster function is completely specified, traditional matching

procedures enhanced with filters appear to be more efficient than using the
quotient function since the tautology check is fast and the number of checks
is reduced to one (or few) in most practical cases [Schlichtmann et al. 1993].
However, our approach is applicable to much more general Boolean match-
ing problems, where traditional techniques cannot be applied. We now
extend the basic matching procedure to progressively more general match-
ing problems.

Fig. 7. Pattern function f and quotient function G of Example 3.
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The first and most straightforward extension is Boolean matching with
don’t care conditions. Given a cluster function f~x! with don’t cares repre-
sented by fDC~x!, there exists a match if there is a satisfying assignment to
the following formula:

M~c! 5 ;x@G~c, x! Q f ~x! 1 fDC~x!# (7)

The result of the consensus is again the matching function M~c!, repre-
senting all possible assignments of the control variables that satisfy the
matching condition. Observing the formula, two points are of interest.
First, when fDC 5 0, Equation (7) degenerates to Equation (6). Second,
finding a match with or without don’t care conditions is done by computing
a simple Boolean formula, and the computational burden is the same.
Moreover, our procedure can be applied to pattern and cluster functions
with different numbers of inputs. We can find a match even when the
minimum cost library element g compatible with f has fewer or more inputs
than f. Thus, the application of this matching procedure to binding anti-
fuse based FPGA libraries is straightforward. Only the programmable
module function needs to be represented, being the entire library modeled
by the corresponding quotient function. Indeed, the formulation already
takes bridging into account. Stuck-at constant values can be modeled by
adding two additional inputs to the multiplexers, each one corresponding to
a Boolean constant value.
We now describe a further extension of the matching formulation, which

allows us to combine matching and cell selection in a single step. This
extension is important because the generalized formula denotes all cells
and corresponding variable assignments that match a cluster. Given their
costs in some metric, the locally-best replacement for the cluster can be
chosen in a single step. This contrasts traditional methods requiring an
iterative inspection of all (matching) cells.
Combined matching and cell selection is captured by an extended quo-

tient function, representing the entire library, as shown by the following
example.

Example 16. The extended quotient function is shown pictorially for a
simple 3-cell library in Figure 8. In addition to input multiplexing and
complementation, the cell outputs are also multiplexed and (possibly)
complemented. Multiplexer Mout has three control variables: c9 and c10
are used to select which library cell is connected to the outpts, c11 selects
the polarity of the connection.

The extended quotient function L~c, x! has log
2
Nlib 1 1 additional

control variables for cell selection, where Nlib is the number of cells in the
library. When M~c! is computed using Equation (6) or (7), one minterm of
M~c! not only identifies an input permutation and polarity assignment, but
it also specifies which library cell the input assignment matches.
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Since library cells have in general different numbers of inputs, to
construct the quotient function for a library, we need as many input-control
multiplexers as the maximum number of inputs of any cell in the library
mmax. Hence, the number of control variables needed for the construction of
the quotient function is log

2
~Nlib! 1 1 1 mmax log

2
~n! 1 mmax.

Example 17. Consider a simple library containing three cells g1, g2, and
g3. The quotient function for matching and cell selection is shown in Figure
8. The output multiplexer function is represented by block Mout with three
control variables, c9, c10, and c11. If c9 5 0 and c10 5 0, cell g1 is
selected. Cells g2 and g3 are selected with c9 5 1, c10 5 0, and c95
1, c10 5 1, respectively. Control variable c11 selects the polarity of the
connection: inverting if c11 5 1, and noninverting otherwise. In the
construction of L~c, x!, we need three input multiplexers because mmax

5 3. Gate g3 has only two inputs, hence it is connected to only two input
multiplexers. Consider a configuration of control variables c* 5
@0,0,0,1,0,0,1,1,0,0,0,0#. Configuration c* corresponds to selecting cell
g1 (with no output inversion) with input x1 connected to its first (topmost,
in Figure 8) input, x2 is connected to its second input and x3 is connected to
its third input. No input is inverted.

8. GENERALIZED MATCHING

We now remove the restriction on dealing with single-output clusters and
cells. We extend our approach to cope with concurrently matching the
multiple outputs of a cluster, and call it generalized matching. No exact
solution has been proposed so far in the literature for this problem.

Fig. 8. Quotient function for cell selection and matching.
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Generalized matching can achieve two practical goals. First, concurrent
matching can yield a binding with a lower cost, as compared to matching
each cluster output independently. Second, we can attempt to match
multiple-output cells to multiple-output clusters.
We address concurrent matching first. Consider the Boolean network

shown in Figure 9. We have a multioutput cluster function f~i! embedded
in a larger Boolean network. If we were to use a traditional matching
algorithm, we would match the cluster outputs (i.e., the components of f )
one at a time (possibly considering don’t care conditions). Note that
generalized matching is not equivalent to a sequence of single-output
matching with don’t cares. There are solutions that can be found only if we
concurrently match the multiple-output cluster function to two or more
pattern functions. Thus, generalized matching may lead to an overall
lower-cost binding.
Generalized matching requires finding a group of single-output pattern

functions that satisfy a constraint expressed as a Boolean relation. In the
following, we adopt a formalism similar to that used by Watanabe et al.
[1996] in their work on multioutput Boolean minimization. Indeed, our
approach can be seen as an extension of similar ideas to the realm of
library binding. We call x and z the arrays of Boolean variables at the
inputs and the outputs of the network that embeds the cluster function f.
The functionality of such a network is represented by the Boolean function
h~x!. The inputs of the cluster function can be seen as a function p~x! of
the inputs x. The function q~o, x! describes the behavior of the outputs z
when the outputs of the cluster functions are seen as additional primary
inputs.
From h, p, and q we obtain three characteristic functions H, P, and Q,

defined as follows:

Fig. 9. A multioutput cluster function embedded in its environment.
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H~x, z! 5 P
j

hj~x! Q zj (8)

P~x, i! 5 P
j

pj~x! Q ij (9)

Q~o, x, z! 5 P
j

qj~o, x! Q zj (10)

The characteristic functions fully describe the environment around the
multioutput function f. In particular, they enable the computation of a
Boolean relation representing the complete set of compatible functions of
f, i.e., functions that can implement f without changing the input-output
behavior of h. Watanabe et al. showed that the characteristic function ^ of
the Boolean relation can be obtained by the following formula [Watanabe et
al. 1996]:

^~i, o! 5 ;x, z@~P~x, i! z Q~o, x, z!! f H~z, x!#

In words, ^ represents the set of values of i and o such that if Q is true
and P is true, then H is true for all possible values of x and z. Formula (1)
allows us to find all functions f that, when composed with p and q, produce
exactly function h. There are generally many functions with this property.
These functions are represented by a Boolean relation, and ^ is the
characteristic function of such a relation.

Example 18. Consider the Boolean network shown in Figure 10. The
dashed rectangle encloses the multioutput cluster function f 5 @f1, f2#T,
f1 5 ~i1i2!9, f2 5 i2 1 i3. Function h has a single output h1 5
x5~x41 x92 1 x93!~x91 1 x2x3!. Function q has three inputs and one
output: q1 5 x5o1o2. Function p 5 @ p1, p2, p3#

T has four inputs and

Fig. 10. A two-output cluster function embedded in a Boolean network.
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three outputs: p1 5 x1, p2 5 ~x2x3!9 and p3 5 x4. Applying Equation
(1), we obtain the Boolean relation representing all degrees of freedom in
the implementation of f. For ease of understanding, it is in tabular form
(see above). The characteristic function of the Boolean relation is ^~i1, i2,
i3, o1, o2! 5 ~o91 1 o92!~i1i2 1 i92i93! 1 o1o2~i91i2 1 i92i3!.

Once ^ has been computed by Formula (1), we can derive the generalized
matching equation. Assume that the multioutput cluster function f has no

outputs. We call +k the characteristic functions of no quotient functions,
one for each output of the multioutput cluster function f. Namely, +k~ck,
i, ok! [ L~ck, i! Q ok, k 5 1,2, . . . , no. Generalized matching is de-
scribed by the following formula:

M~c! 5 ;i'o~^~i, o! z P
k51

no

+k~ci, i, ok!! (12)

To understand the formula, observe that the conjunction between ^ and
all +k, k 5 1,2, . . . , no, followed by existential quantification of the
output variables, is equivalent to the condition that for any output vector
o* 5 @o1

*, o2
*, . . . , ono

* #T, the quotient functions associated with each
component assume a consistent value: L1 [ o1

*, L2 [ o2
*, . . . , Lno [ ono

* .
The universal quantifier on the inputs i enforces the condition for all
possible input values.
Notice that the quotient functions L~ck, i! have distinct control vari-

ables. In other words, the complete vector of control variables c on the
left-hand side of Equation (1) is the concatenation of the control variables
of all no quotient functions: c 5 @c1, c2, . . . , cno #

T. The ON-set of M~c!
includes all configurations of control variables representing the ways in
which the library cells can be connected so as to obtain a final implemen-
tation of f contained in relation ^.

Example 19. Consider the two-output, three-inputs cluster function f
introduced in Example 18, and the three-cell library of Example 17 with
the corresponding quotient function L~c, i!. To perform generalized match-
ing, we need to instantiate two quotient functions L1~i1, i2, i3, c0, . . . ,

i1i2i3 o1o2

000 $10,01,00%
001 $11%
010 $11%
011 $11%
100 $10,01,00%
101 $11%
110 $10,01,00%
111 $10,01,00%
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c10, c11! and L2~i1, i2, i3, c12, . . . , c23!. Notice that L1 and L2 have differ-
ent supports, but are otherwise identical. The characteristic functions of
the quotient functions are +1~i1, i2, i3, o1, c0, . . . , c11! 5 L1 Q o1 and
+2~i1, i2, i3, o2, c12, . . . , c23! 5 L2 Q o2. The generalized matching
equation

M~c0, . . . , c21! 5 ;i1, i2, i3'o1, o2~^~i1, i2, i3, o1, o2! z +1~i1, i2, i3, o1, c0, . . . , c11!

z +2~i1, i2, i3, o2, c12, . . . , c23!!
where ^~i1, i2, i3, o1, o2! is the characteristic function of the Boolean
relation for f computed in Example 18. A minterm c* of M uniquely
identifies two library cells and an input assignment for all their inputs.

Generalized matching is performed by directly implementing Equation
(1) using standard BDD operators. The number of control variables in
Equation (1) increases with no. More precisely, the number of control
variables is Nc 5 no~~log

2
Nlib! 1 1 1 mmax log

2
~n! 1 mmax!,

where Nlib is the number of cells in the library, n is the number of inputs of
f, and mmax is the maximum number of inputs of a library cell. The term
multiplied by no is the number of control variables contributed by each
quotient function. The first logarithmic contribution accounts for the con-
trol variables for cell selection, the constant “1” is for output polarity
assignment, the log-linear contribution is for input permutation, and the
linear contribution is for input polarity assignment.

Example 20. Referring to the multioutput target function introduced
in the previous example, ^ has two output (no 5 2) and three inputs
(n5 3). Assume that the library has 75 cells (Nlib 5 75) and that
the cell with the largest support in the library has 5 inputs
(mmax 5 5). The computation of the matching function M for
Boolean relation ^ requires Nc 5 2 ~log

2
75 1 1 1 5log

2
3 1 5! 5

2 ~7 1 1 1 1015! 5 46 control variables.

From a practical standpoint, the complexity of generalized matching
increases rapidly with the number of outputs of f. The number of control
variables can be drastically reduced if symmetry is considered for input
assignments and filters are applied to reduce the number of candidate
library cells in the construction of the quotient function. In this overview,
we do not focus on implementation details and efficiency issues. The
enhanced power of generalized matching will be clarified through an
example.

Example 21. Assume that we have a simple library with 4 cells: two-
input XOR (Cost 5 2), two-input AND (Cost 5 2), inverter NOT
(Cost 5 1), and two-input AND1 (logic function g 5 in91in2, Cost5
3). An implicit cell is the “WIRE”(cost zero). We want to optimize the
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mapped network of Figure 11 (a). Notice that the binding cannot be
improved with Boolean methods using don’t cares because the external
don’t care set is empty and the XOR on the output does not introduce any
ODC on its fan-ins. We apply generalized matching to the multioutput
cluster function consisting of the first XOR and the AND (enclosed in the
dashed box f ). The number of control variables needed is Nc 5
2~log

2
41 1 1 2log

2
3 1 2! 5 18. Applying generalized matching

and examining the cost of the solutions (i.e., the ON-set of M~c!), we find
that WIRE on output 1 and AND1 on output 2 is a correct replacement. The
final solution is shown in Figure 11(b). The reader can verify its correctness
by inspection. The optimized network has a lower cost and is fan-out-free.
Notice that this replacement could not have been found with traditional
matching, even with don’t cares, unless resorting to technology-indepen-
dent optimizations.

We consider next the application of generalized matching to binding
multiple-output cells, which are common in many semicustom libraries
(e.g., full adders, decoders). Multiple-output cells implement multiple-
output pattern functions over the same set of inputs. As a result, the
variable assignment used in matching must be the same for all components
of the pattern function. This constraint has a beneficial effect in reducing
the number of control variables. Namely: Nc 5 no~log

2
NlibOut 1

1!1 mmax log
2
n 1 mmax. The first term accounts for the no output

multiplexer functions (with output polarity assignment). NlibOut is the total
number of outputs of all multioutput library cells. The second and third
terms account for the input permutations and polarity assignments.

Example 22. Consider a multioutput cell implementing a single-bit full
adder. The cell has three inputs: a, b, and cin and two outputs sum and
cout. The quotient function for the full adder is shown as a block diagram in

Fig. 11. An example of the effectiveness of generalized matching.
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Figure 12 (a). Notice that there is one multiplexer for each input variable
and one for each output (NlibOut 5 2). The control variables are not shown
for the sake of readability. On the other hand, if we were to consider the
two single-output pattern functions representing the full adder, we would
need two quotient functions (one for each output we want to match) with
disjoint control variables. This is shown in Figure 12 (b). Clearly, general-
ized matching of multioutput cluster function using multioutput cells
involves a much smaller number of control variables.

It is a well-known fact that multioutput cells can be beneficial for area,
power, and performance [Bolchini et al. 1995]. Unfortunately, multioutput
cells have seldom been used in synthesis-based design flows because
commercial tools do not exploit them effectively. Generalized matching may
obviate this deficiency because it detects the use of multiple-output cells
whenever they can be used. Moreover, it is more effective than ad hoc
techniques that merge cells matched by traditional algorithms because it
takes into account the degrees of freedom for multioutput optimization.

9. SUMMARY

We have reviewed several techniques for Boolean matching that are
applicable to library binding and, in some cases, to combinational logic
verification.

Fig. 12. (a) Generalized matching of a multioutput cell (b) Generalized matching of multiple
single-output cells.
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We have considered models for matching of increasing complexity. Bool-
ean matching involves both equivalence check and finding an assignment of
cluster to pattern variables. Such an assignment may require variable
permutation, variable complementation, or may be so general as to allow
for combining pattern variables together (input bridging) and/or sticking
them to constant values.
Boolean matching is based on exact equivalence-checking techniques that

find a match whenever possible. These techniques can be extended to take
advantage of the degrees of freedom introduced by don’t care conditions, as
well as those induced by the Boolean relation that models concurrent
matching. Both extensions may increase the number of candidate cells
matching a given cluster, and thus improve the quality of the resulting
mapped network.
Boolean matching is usually implemented by means of operators on BDD

representations of the cluster and pattern functions. We have shown how
an entire library can be stored in a BDD form and how a matching formula
can yield all pattern functions matching a cluster (if any) and the corre-
sponding input assignments.
Finally, we have introduced the concept of generalized matching. With

generalized matching, a multiple-output cluster can be matched to two (or
more) pattern functions concurrently. We have expressed generalized
matching by a Boolean formula that can be implemented by BDDs. In
particular, generalized matching can be used to match multiple-output
cells.
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