
Automatic for GeneralizedMapping
Fundamental-Mode

Giovanni De MicheliPolly Siegel David Dill

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

St anford University

Stanford CA 94305

1 Introduction

Asynchronous design styles have been increasing in popularity as device sizes shrink and concur-
rency is exploited to increase system perfonnance. However, asynchronous designs are difficult to

implement correctly because the presence of hazards, which are of no consequence to synchronous
systems, can cause improper circuit operation. Many asynchronous design styles, together with

accompanying automated synthesis algorithms, address the issues of design complexity and correct-

ness. Typically, these synthesis systems [1, 2, 3] take a high-level description of an asynchronous

system and produce a logic-level description of the resultant design that is hazard-free for tran-

sitions of interest. The designer then must manually translate this logic-level description into a

technology-specific implementation. At this stage, the designer must be careful not to introduce
new hazards into the design. The size of designs is limited in part by the inability to safely (and

reliably) map the technology-independent description into an implementation.
Automatic technology mapping techniques have been employed over the past decade for syn-

chronous design styles [4, 5, 6]. These algorithms allow translation of a technology-independent

logic description into a library-specific (technology-dependent) implementation. However, these

techniques by themselves are not suitable for asynchronous design styles because they do not take

hazards into account.

In this paper we look at the problem of technology mapping for asynchronous designs. In

particular, we concentrate on the generalized fundamental-mode asynchronous design style [1], since

we can easily separate the combinational portions of the design from the storage elements, as with

synchronous design styles. First, we present some background information on fundamental-mode

operation, Boolean operations and hazards. In section 3, we examine each step of algorithmic

technology mapping for its influence on the hazard behavior of the modified network. We then

present modifications to an existing synchronous technology mapper, CERES, to adapt it to work

for generalized fundamental-mode designs. In section 4, we present efficient algorithms for hazard

analysis that are used by the modified technology mapper during the mapping process. Section

5 presents the results obtained by applying the technology mapper to some benchmark circuits.
Finally, section 6 presents conclusions and future work.

2 Definitions

Before delving into the technology mapping problem, it is important to describe the general design

style that we are addressing. This section also reviews some terminology related to Boolean algebra
and hazards.

2.1 Design Style

Most readers are familiar with single-input change fundamental-mode design styles [7]. In these

design styles the input must remain stable until the outputs and feedback variables have settled in

response to an input change. Because the operation of the machines is asynchronous, single-input

change hazards in the combinational logic can cause incorrect circuit behavior and are dIus to be
avoided.

Several popular asynchronous design styles extend the single-input change fundamental-mode
assumption [7] to allow multiple-input change bursts in a particular state. The synthesis methods

[1, 2] that incorporate this burst-mode-or generalized fundamental-mode-design style produce

logic under the assumption that a burst of input changes can occur in any order and that the
outputs and feedback variables of the combinational portion will settle before the next set of input

changes are applied. As in the case of single-input change fundamental-mode operation, no hazards

can be tolerated during the input bursts. However, in this design style both single-input change

hazards and multi-input change hazards must be considered.
Figure I shows a simple burst-mode specification, along with the architecture to which it will

be mapped by an automatic synthesis method [1]. The output of the automatic synthesis method
is a set of technology-independent combinational logic equations along with a set of latches which

implement the state machine. The job of the technology mapper is then to implement the combi-
national portions of this design using, for example, parts from a library of standard cells, in such

a way that no hazards are introduced during the mapping process.

This paper addresses the problem of technology mapping for dIe burst-mode fundamental-mode

design style. Because single-input change fundamental-mode is a subset of generalized fundamental-

mode, dIe single-input change case is automatically handled if we take care of dIe more complicated

2.

\

~
c+/x-

/W~ ,
c

Figure 1: Burst-mode state description and corresponding high-level block diagram.

burst-mode design style.

2.2 Terminology

Although we assume the reader has a basic familiarity with Boolean tenninology, for clarity this
section defmes some terms that appear frequently in the paper. For more detail, please see [8, 1].

A literal is an instance of a Boolean variable or its complement. For example, if a is a Boolean
variable, in the equation y = ab + a', each occurrence of a is a literal (i.e., a and a').

An implicant is a product of literals within a sum-of-products (SOP) expression. The term

cube, which refers to the mapping of Boolean variables onto an n-cube, is used interchangeably

with implicant.

A prime implicant is an implicant that is not contained by any other implicant of the function.

A minterm is a product of literals that contains all input variables of the function.

A function expressed by a two-level sum-of-products equation can be directly mapped into a

two-level gate implementation of AND gates feeding into an OR gate, where the inputs to the AND

gates have a one-to-one correspondence with the variables in the product terms. We will use SOP

expressions and their two-level gate implementations interchangeably throughout the paper.

2.3 Hazards

A hazard, in the most general sense, is an unwanted output glitch in response to a change in

some input or inputs. The presence of hazards may cause the design to operate incorrectly. The
initial design may or may not be hazard-free, depending upon the manual or automated synthesis

3

1->0->1
~.

.) t-w'XZ+WXY
a0111J -> (1111»

b) f = v'x' + y'z + v'y + Xl

Qa] = (00>1], (P] = (0111])
c) f: w'x' + y'z + w'y + xz

((11=0100, [11)=[0001))

Figure 2: Example of various types of hazards.

procedure used to create it; it is possible that the initial network contains hazards that are never
exercised during the circuit's operation. As a result, for most designs it is enough to insure that

procedures that manipulate the design do not introduce new hazards.
For the technology mapping problem, we are interested in the hazards present in the combina-

tional portion of both the mapped and unmapped network. For the generalized fundamental-mode

design style that we consider in this paper, both single-input change and multi-input change logic

hazards are of interest.

There are two basic classes of combinational hazards: function and logic hazards. Function haz-
ards are a property of the logic function and can only be eliminated through appropriate placement

of delay elements, whereas logic hazards are purely a property of the implementation. If a network
has a function hazard for a given transition, then it cannot also have a logic hazard for that same

transition. Within the class of logic hazards, there are single-input change (s.i.c.) hazards and

multi-input change (m.i.c.) hazards. Finally, each class of hazards (function and logic) includes
both static and dynamic hazards. Given that a transition is being made between two points 0 and
.B in the input space {O, l}n, static hazards apply to transitions where /(0) = f(P), and dynamic

hazards apply to cases where fraY ;i f(p).

Static logic hazards occur whenever a transition is not properly covered by a single gate; that

4

is, whenever the implementation does not contain a single gate that maintains the output value
throughout the input transition. In Figure 23., the transition from w'xyz to wxyz in the Boolean

space is not covered by a single gate in the implementation. It is thus possible, through some set

of gate delays, for both AND gates to be off momentarily, and for the output to make a transition

through 0 before settling at its final value, resulting in a static I-hazard. This problem can be

eliminated if an additional AND gate with inputs xyz is added to hold the output high during that

transition.
Figure 2b illustrates a multi-input change static logic hazard. During the transition from point

a to point {J, there is no single gate that holds the output 'high during the transition. So if gates
w'x' and y'z are sufficiently fast and the gates w'y and xz are sufficiently slow, then the output

can momentarily take on a 0 value during the transition, resulting in a static hazard. For two-level

sum-of-products expressions, it is necessary and sufficient that all prime imp Ii cants be included

to ensure that there are no multi-input change static logic hazards for any transitions [9]. For
multi-level expressions, the conditions are more complex and are discussed in [10].

DynaD1ic hazards are applicable to both single-input change and multi-input change situations.
A dynamic hazard occurs when, during an expected 0 -+- 1 (1 -+- 0) transition of the output, a

0 -+ 1 -+ 0 -+ 1 (1 -+ 0 -+ 1 -+ 0) transition occurs. For single-input change conditions, this

corresponds to a situation where a literal and its complement fan out to several paths. For multi-

input change conditions, a dynamic hazard can occur when a single gate is turned on momentarily

during the transition. For example, in Figure 2c a transition between points 'Y and a can result in
gate xz turning on and off before gate y'z turns on, creating a dynamic hazard. Section 4 discusses
dynamic hazards and their detection in more detail.

For the generalized fundamental-mode asynchronous design style, it is important to consider all

logic hazards, and thus we must make sure that new logic hazards are not introduced during the

technology mapping operation.

Asynchronous Fundamental-Mode3 Technology Mapping for

Designs

This section describes fue approach taken by many recent synchronous algorithmic-based technol-

ogy mapping programs. In it, we examine each step of the synchronous technology mapper for

its effects on the hazard behavior of fue transformed network. We then propose modifications to
the synchronous technology mapper to allow correct mapping of asynchronous fundamental-mode

networks.

The technology mapping step takes as input a technology-independent description of the logic

to be implemented. The input to the mapping step typically comes from a logic optimization

tool such as MIS [1 1] in the synchronous case, or an asynchronous logic optimizer [12] in the

asynchronous case. Thus, the technology mapping step is primarily concerned with mapping the

logic to a technology-specific library in an optimal way, and not with the logic optimization process

itself.
To adapt a synchronous technology mapper to the generalized fundamental-mode asynchronous

design style, each step in the technology mapping process must be examined and modified to ensure

that the step does not introduce new hazards into the network.

3.1 Hazard Analysis of the Technology Mapping Algorithms

The approach to technology mapping taken by heuristic algorithmic technology mappers, such as
DAGON, MIS, and CERES, divides the problem into iliree major steps: decomposition, partitioning,
and matching/covering. First, the initial network, which is represented as a directed acyclic graph

(DAG), is decomposed into a multi-level network composed of simple gates (e.g., 2-input AND/OR

gates or 2-input NAND/NOR gates), whose corresponding representative functions are called base

functions. Next, the circuit is partitioned into sets of single-output cones of logic, where a cone
of logic represents a subnetwork of a partition of the network obtained by cutting the network at

points of multi-fanout. The mapper then treats each cone independently. All possible matches to

library elements are then found for subnetworks widlin each logic cone. Finally, an optimal set of

matching library elements is selected from the set of matches to realize the network.
Thus, the basic procedure is as follows:

procedure tmap(network. library)

decomposed-network = tech-decomp(network);

cones = partition(decomposed-network);

foreach output in cones {

find_best-cover(output, library);

}

Throughout this paper, we use procedure tmap and synchronous mapping procedure interchange-

Decomposition

The decomposition step transforms the network into an equivalent network composed of two-input,

one-output base gates. This process can be performed by recursively applying DeMorgan's theorem

and the associative law to the network. Both operations have been shown to be hazard-preserving
for all logic hazards [13). Thus, the modified network composed of two-input, one-output gates has

identical hazard behavior to that of the original network.

6

Note that within MIS's technology mapper, some simplification is also done during the decom-

position step. This can introduce some static I-hazards if redundant cubes are eliminated by the

simplification algorithm. Therefore, we defme a procedure, async_t8ch_decomp, that decomposes

a circuit using only the associative and DeMorgan'8 laws. This procedure must be used by the

asynchronous technology mapper during the decomposition step.

3.1.2 Partitioning

The partitioning step breaks the decomposed network at points of multiple fanout into single-output

cones of logic. This heuristic simplification is required to convert a multi-output logic network into
a collection of single-output cones of logic, so that simpler algorithms can be employed to find the

best cover for the network [4, 6]. Given that we start with a hazard-free network and preserve

this behavior (within the partitions) in the covering step, the partitioning step does not alter the

hazard behavior of the network.

3.1.3 Matching and Covering

The matching and covering steps involve identifying equivalence between a subnetwork and a library
element, and replacing that subnetwork with the equivalent library element. This step must not

introduce any new hazards into the design.

Different algorithms are used during the matching and covering step. Keutzer [4] and Rudell

[5] use tree pattern matching techniques for matching elements within the libr~ to portions of
the circuit. MIS generates a complete set of patterns consisting of different decompositions of

two-input, one-output gates for each library element. Standard pattern matching techniques are
used to compare the library element with a portion of the network to be mapped As long as the

subnetworks represented by the patterns do not have hazards, these techniques work to preserve the

hazard behavior of the circuit, provided that the initial circuit decomposition is hazard-preserving

and that the library elements do not have hazards. However, if a hazardous library element is

selected, then d1e hazard behavior of the subcircuit must be examined before the match is accepted.

Some mappers, such as CERES, use Boolean techniques to detect equivalent networks. These
techniques decouple d1e structure of d1e subnetwork from d1e matching process, which means we

cannot reason about the transformations of one subnetwork into d1e od1er. However, we can build
on theorems presented by Unger in [13] to show that if we replace a portion of the circuit with

an equivalent circuit with similar hazard behavior, d1e resulting circuit is still hazard-free for the

transitions of interest.

Figure 3 shows a simple case in which the hazard behavior of the design must be taken into
account to get a correct hazard-preserving cover. With Boolean matching, structural information

is not taken into account during the mapping process. In this case, the better match from a

.,

original network (static logic hazard-free)

mapped network (static: I-hazard)

Figure 3: Different structures for the same function can result in different hazard behaviors.

synchronous point of view yields a cover that has more hazards than the original network.

Theorem 3.1 Given a sum-ol-products circuit that has a given hazard behavior, and library ele-

ments that consist 01 AND's, OR's, NAND's, NOR's, and [NV's, if we map this circuit with the

synchronous mapping procedure to a (possibly multilevel) circuit implemented with the given library
elements, the resulting mapped network will have the same hazard behavior as the original network.

Proof: The decomposition process makes use of DeMorgan's law and the associative laws to
transform the initial SOP expression into a multilevel circuit composed of two-input one-output

gates. These operations are hazard-preserving, as shown by Unger, so the resulting decomposed

network has the same hazard behavior as the original expression. Since replacing any portion of the

circuit with a single AND, OR, NAND or NOR gate is equivalent to applying the associative law

and/or DeMorgan's law, these operations are also hazard-preserving. Additionally, mapping of the

INV to a portion of the circuit cannot introduce new hazards. The covering process simply selects

the best set of these mappings that covers the entire network, which is equivalent to successively

replacing individual portions of the network with a library element, which we have just shown to

be hazard-preserving. Therefore, the resulting mapped network has the same hazard behavior as
the original network. 0

We can extend this result to include other classes of library elements as well. However, the

operations cannot be extended quite so simply when Boolean matching is used. In particular,
with Boolean matching we have a problem with static I-hazards: if a redundant cube is required to

eliminate static hazards in the original design, then the matching must not eliminate that redundant

cube. Additionally, we may have problems with m.i.c. dynamic hazards.

8

We must first restate Lemma 4.5 from Unger (13], before we can solve the problem of how to

handle more general hazardous elements during the matching step.

Lemma 4.5 (Unger)
A transformation of a circuit C that consists of applying a hazard-preserving transformation to

a subcircuit of C is itself hazard-preserving.

This leads to the following key theorem:

Theorem 3.2 Given a multilevel network with a given hazard behavior, replacement of a subdrcuit
C by an equivalent subdrcuit C' that contains a subset of the hazards present in C will not introduce

new hazards into the network.

Proof: If C* has identical logic hazard behavior to C, then for any set of inputs that might

cause a hazard in C, the same inputs will cause a hazard in C* and will have the same effect on the

overall network. Quite clearly then, if there is a hazard that is present in C and missing from C',

and if the signal transition(s) that excited the hazard in C resulted in a hazard that was visible at
the outputs of the network, then replacement of C by C* will eliminate the hazard in the network,

since C. does not have the original hazard Therefore, the resulting network has a subset of the

hazards present in the original network, and thus the replacement does not introduce any new

hazards. 0

Even though transforming a network according to theorem 3.2 may eliminate some hazards in
the mapped network that were present in the unmapped network, but this will not adversely affect

the operation of the network.

The following corollary is a direct result of the theorem.

Corollary 3.1 Given a logic-hazard-free combinational network, replacement of a subnetwork by

a logic-hazard-free equivalent subnetwork will result in a logic-hazard-free network.

3.2 Modified Technology Mapping Procedure for Generalized Fundamental-
Mode Asynchronous Designs

Given the theorems in the previous section, if we start with a set of hazard-free library elements, the

covering step and the resulting cover do not introduce new hazards. However, if we have hazardous

library elements, we need to make sure that the hazards they contain are a subset of the hazards

in the portion of the network that is being matched.

As the starting point for the technology mapping procedure, let us assume that the initial design
has no hazards for the transitions of interest. The problem of technology mapping, then, is to map

the set of logic equations representing the design to an implementation composed of elements from

a specific library, such that the implementation is hazard-free for the transitions of interest.
We can modify our synchronous technology mapping procedure to work for asynchronous

fundamental-mode designs (both single- and multi-input change) as follows:

9

procedure async-tmap{network. library) {

a ugment-li brary-wi th-hazard-inf o(li brary);

decomposed-network = async_tech..decomp(network);

cones = partition(decomposed-network);

foreach output in cones {

find-best-async-cover(output, library);

The covering routine for async_tmap has modifications in the matching routine as follows:

/* library element has hazards * /

asyncmatchingroutine(subckt, library) {
bestmatch = nil;

if (matching-elements = find-matches(library, subckt)) {
forea.ch match in matching-elements {

if (has..baza.rds(match)) {
if (hazards(match) ~ hazards(subckt))

a.ccept-match (matching_elements, match);
else

reject-match(matching_elements, ma tch);

}
else /* library element is hazard-free * /

accept-ma.tch(ma.tching-elements, match);

best-match = compute-bestmatch(matching-elements);

return best-match;

3.2.1 Representing the Structure of Library Elements

The functionality of each library element is expressed in Boolean factored form (BFF). We use
the BFF expression as an accurate and convenient representation for both the functionality and

structure of the particular library element. This BFF expression is then analyzed for logic hazards

when the library is read into the mapper, and the logic hazard behavior of each library element is

added as an annotation to the library element for later use during the matching phase.

For example, the BFF expression for the library element in Figure 4a indicates that the library

element is implemented as a .- of two cubes, resulting in a dynamic logic hazard when inputs w
and x change with y = 1. However, if this element were implemented as shown in Figure 4b, then

there would be no dynamic hazard for that input burst
Note that other representations are possible as long as they adequately express both the struc-

ture and the functionality of the library element. Boolean factored form is simply a convenient

10

~1
o..>t

~ ~~~~:=:;;rl~::~- . 1
1,

II) t.w(x+,)

~

Figure 4: Different structures for the same function can result in different hazard behaviors.

notation which meets these requirements for CMOS circuits. This implies that the structure of each
library element must be accurately abstracted from the transistor-level description of the library

element, and represented as its equivalent Boolean factored form in the library description.

3.2.2 Modification to the Matching Algorithm

We must now modify the matching algorithm to take the logic hazard information into account. If
a hazardous library element is selected as a match for a particular subnetwork, then the subnetwork

of interest must be examined to see if the same logic hazards exist. We are not, however, interested

in the function hazard behavior of either the library element or the subnetwork, since a function

hazard is purely a property of the function itself and thus is independent of implementation.

The procedure for doing the comparison is much easier than the initial hazard analysis of each

library element because we already know which transitions are of interest. For each logic hazard in

the library element, we must look at the subnetwork to see if the same logic hazard exists. As soon

as we find a hazardous transition in the library element that is not in the subnetwork we can stop,

because that library element cannot safely be used At this point the library element is eliminated

from consideration as a match for this subnetwork.

We examined some typical commercial standard cell and gate array libraries to see how many

elements contained logic hazards. For the standard cell libraries, only the multiplexers, which

represented a small fraction of the library, contained hazards. So, for those libraries, most matching
elements are logic-hazard-free and the normal synchronous algorithms can be used with negligible

overhead.

Table I shows the (logic) hazardous elements that are present in several libraries. The LSI and

CMOS3 libraries are commercial CMOS ASIC libraries [14J. The GDT library is a CMOS standard-

11

cell library that was produced specifically for a particular chip, and includes many complex AOI

.gates. For these libraries, the only h"brary elements with logic hazards were multiplexers. Examining

a subset of the Actel Act! library, we foWtd many hazards, primarily in the AOI and OAI gates.
(Many of these elements had several instances with different drive capability, for brevity, only one

is shown.)

Library HazardoUf

El~~uts

Total

Elements

%

Hazardous

LSI9K
CMOS3
GDT
Actcl

12 86

30

72

.-~ 4

14%

3%

00/0

290/0

Muxes

Muxes
None

AOI's,OAI'8~
Muxes

0

4

Table I Libraries and their hazardous elements

The remaining problems we must solve, then, are how to efficiently characterize the hazard

behavior of the library elements, and how to easily determine whether the subcircuit has the same

hazards. The next section addresses these problems.

4 Hazard Analysis Algorithms

This section describes the hazard analysis algorithms used by the modified technology mapping
procedure to characterize both the hazard behavior of the library elements during initialization

and the hazard behavior of the subnetwork during the matching and covering process. These

analysis algorithms can also be extended to hazard-removal algorithms.
Unless otherwise noted, we present the algorithms for mi.c. logic hazards, because these algo-

rithms will also identify the si.c. hazards.

Static Logic Hazard Analysis of Combinational Logic4.1

4.1.1 Static Logic I-Hazard Analysis

From Theorem 4.3 of Unger [13], we know that a multi-level expression can be transformed into a

sum-of-products expression in a static hazard-preserving manner using the associative, distributive

and DeMorgan laws. Therefore, without loss of generality, we will assume that this has been done

and we will work with the two-level SOP form of the expression for static I-hazard analysis.
For a given function, any missing prime implicants uniquely identify the static logic I-hazards

present in the circuit. Since our goal is not to generate all prime implicants of the function, but to

identify the static logic I-hazards, we must come up with an efficient procedure that doesn't involve

12

prime implicant generation. If all cubes in the network are prime, we can simply identify the cube

adjacencies that are not covered. If we encounter a cube that is not prime, we then expand the
cube into a prime and add it to the list of cubes to be checked by the adjacency checking algorithm,

after having flagged the hazard.

The algorithm works as follows:

look at those first . /

static-1..analysis(multilevelExpr) {
SOPexpr = xformTwolevel(multiIeveIExpr);

foreach cube in SOPexpr {
/* Any uncovered non-primes represent hazards . .
if (not prlme(cube)) {

if (prlme(cube) not in SOPexpr) {

addToHazards(primeCube, static 1 Hazards);

}
primeCube = replace-with-prime(cube, SOPexpr);

J

/* Generate an cube adjacencies * /
foreach cubel, cube2 in SOPexpr {

if (numAdjVars(cubel,cube2) == 1) {

genera.teAdjCubes(cubel,cube2,cubeAdjacencies);

/* If the adjacency isn't covered, we have a hazard * /
foreach cube in cubeAdjacencies {

if (not cubeContainedInExpr(cube, SOPexpr» {

addToHazards(cube, staticlHazards)j

}
return staticlHazuds;

If we only want to test for s1.c. static logic I-hazards, the problem is simpler-we need only

check that each cube adjacency is covered by some cube in the expression.

Implementation

The data structure we use to represent the logic equation and its cubes is similar to the meta-

product structure used in [15]. Two bit-vectors (USED and PHASE) are used to represent each

cube, with each bit position in the bit-vector corresponding to a unique variable. For a given cube,
if a bit is set in the USED vector, then its corresponding variable appears in the cube. Similarly, for

the same cube, for each variable that appears in the vprtnr, the corresponding bit in the PHASE

13

f= w'n + wxy

USED[w'xz) =1101
PHASE(w'xz)=Ol11

USED[wxy) 4 1 1 0
PHA.~EI"XY) -1111

CONn.1 CTS{ W'u, wxy 1=([1101)&[1110])&«OI11)XOR(1111D
:([1100»&« 1 000 D
=[1000]

USED[adj8Cency I=(USED(w'xz)IUSED[wry »&-CONn.1 CTS[W'u, wry]
=([1101)1[1110))&[0111)
=([0111))

PHASE[adjacency I=<PHASE(w'xz)IPHASE(wry))&-CONRI CTS[w'xz, wry)
:([1111)&[0111]
:([0111))

adjacency = xyz

Figure 5 Detection of static I-hazards.

vector is set if the variable appears in its uncomplemented form in the cube. If the corresponding

bit is not set, then the variable appears in its complemented phase. Figure 5 illustrates the mapping

of a function to this data structure.

The complexity of generating the list of cube adjacencies is O(n2) in the number of cubes in

the expression. For every pair of cubes in the equation, the cube adjacency is generated by simple
bit operations. Obviously, only a small subset of the cube pairs will be found to be adjacent.

Two cubes are adjacent if and only if a single bit is set in the expression:

CONFUCfS - (CUBE1USED&CUBE2USED)&(CUBE1PH1SE $ CUBE2PHASE)

We can decompose this expression to gain some insight. For two cubes to be adjacent, they

must share exactly one variable that differs in its phase in the two cubes. So the first part of the

expression indicates that variables are present in both cubes. If the two cubes share no variables,

then they're not adjacent, so there cannot be a static hazard as a result of those two cubes. The

resulting bit vector, then, represents the variable(s) that the two cubes have in common. The

second part of the expression represents the variables that differ in phase in the two cubes. The
CONFLICTS bit vector will thus have a bit set for each variable that is present in both cubes,

but differs in phase between the two. If there is more than one variable that is present in both in
differing phases, then the two cubes are not adjacent If there is only a single bit set in the vector,

then the two cubes are adjacent Figure 5 illustrates the fonnation of the CONFLICTS vector from

the cubes of a function.

Once two cubes have been found to be adjacent, the adjacency is easily generated by generating
the OR of the two cubes while masking out the literal that expresses the adjacency. This is done

for both the USED and PHASE vectors, as can be seen in the figure.

1.4

a) Static O-Hazard
(OOlO)->{OllO]

Figure 6: Static O-hazards and s.i.c. dynamic hazards (from McCluskey,p. 91).

The result of the cube adjacency generation routine is a list of adjacent cubes. Typically, the
list of adjacent cubes is much smaller than the n(n - 1)/2 cube pairs.

4.1.2 Static Logic O-Hazard Analysis

Static O-hazards are present when both a product term in the sum-of-products form of an expression

contains a vacuous term (i.e. a term that contains a variable and its complement, such as zz'y, and
thus contributes nothing to the expression in the steady-state), and the circuit can be sensitized

to view that term at its outputs. For example, in Figure 6a., a static O-hazard is present when
w = 0, y = 1, z = 0, and x is changing.

The detection of static O-hazards simply requires that the different paths through the circuit be
distinguished so as to mark vacuous terms in the SOP form of the expression. These vacuous terms
typically represent the reconvergence of a variable and its complement in a multilevel network,
which can lead to hazards caused by different delays through the different paths. The detection
procedure is a subset of the detection procedure for single-input change dynamic hazards, which is
described in the next section.

4.2 Dynamic Logic Hazard Analysis of Combinational Logic

To properly analyze the dynamic logic hazard-behavior of a given multilevel network, it is necessary

to uniquely identify the individual paths each signal takes. Past work has used ternary simulation

to identify dynamic hazards for specific transitions [9]. However, we are interested in characterizing
the dynamic logic hazard behavior of an entire subnetwork or expression, rather than the dynanlic

logic hazard behavior of a specific input burst. Applying ternary simulation to a network to

characterize its dynamic hazard behavior is exponential in the number of input variables, and is

thus impractical in the general case. Therefore, we have formulated more efficient hazard analysis
techniques for use during the technology mapping process, because hazard analysis is performed

frequently during the course of operation.

The remaining subsections focus on the dynamic hazard analysis techniques, starting with

the more complicated multi-input change dynamic logic hazard detection procedure, and then
describing a simpler procedure for single-input change dynamic logic hazard detection.

Multi-Input Change Dynamic Logic Hazard Analysis of Two-Level Networks

In order to analyze the dynamic logic hazard behavior of a network, we will need to begin with a

few definitions.

Definition 4.1 Let a,{3 E {a, l}n be points in the input space such that fraY = 0, and f ({3) = 1.

Then, a dynamic hazard exists if during an input burst which results in a transition between a and
{3 the output goes through a 0 -+ 1 -+ 0 transition before settling at 1.

We must further refme this definition to distinguish between dynamic function hazards and

dynamic logic hazards. Dynamic function hazards are purely a property of the function itself and

thus are independent of implementation. We do not need to take dynamic function hazards into

account, since, for any acceptable match, both the subcircuit to be mapped and any matching

library element have the same function hazards. However, because dynamic logic hazards are a
property of the implementation, we must characterize them for all library elements, and for any

subnetwork that is matched by a hazardous library element to compare the hazard behaviors.

Definition 4.2 A transition space, T[o, fJ], is the smallest Boolean subspace that contains ° and
fJ, where f(a) = 0 and f(fJ) = 1. (This is described as a transition sub cube in [16], and is also

equivalent to the supercube(0, fJ) [1 7lJ.

Example 4.2.1 In Figure 7, the transition space T[a,{3] is shown in the non-shaded areas of the

Karnaugh maps. Within that transition space, the input variables may change in any order, thus
tracing a path between a and {3. For example, variables can change in the order W f -+ Y T -+ X T

tracing path 1 as shown. Or, the variables could change in the order Y T -+ X f -+ W f, depending

upon the delays in the network. The rust path exercises no hazards, whereas the second path

exercises a dynamic logic hazard. A third path, represented by the transitions X f -+ W f -+ Y T

excites a dynamic function hazard. Note that this transition space is not function hazard-free, a

property which will later be important for our dynamic logic hazard detection algorithm. Q

16

"YZ

w+->y+->x+

path 1
Y+->x+->w+

path 2
x+->w+->y+

palh3

f=w'xz+w'xy+xyz

Figure 7: Hazards in transition spaces.

Given these definitions, we can present the necessary conditions for existence of a dynamic logic

hazard in a two-level SOP circuit (these were also presented in [16, 18, 9]):

Theorem 4.1 Given a two-level sum-of-products representation for a circuit, an implementation

of a function f has a dynamic logic hazard for a given transition a -+ {3, where a, {3 E (0, l}n, if
and only if

1. There is no function hazard over the transition space T[a, {3] (where fta) - 0, ftP) = 1).

2 There exists a cube c E f that intersects T[Q, /3] but does not contain .B

Before proving this theorem, let us look at a simple example that illustrates the conditions.

Example 4.2.2 Looking at the transition space T[.8, 1] in the Karnaugh map in Figure 8, we
can see that if the order of the transitions is X t -+ Z ! -+ Y t, then the output will make a
0 -+ 1 -+ 0 -+ 1 transition independent of the implementation of the function, and that therefore a

function hazard exists for that transition. The existence of a dynamic function hazard within that

f=w'xz+w'XY+XYZ

Figure 8: Dynamic hazards within a transition space.

17

transition space implies that some combination of gate delays can cause that fimction hazard to be

exercised during the input burst, independently of the implementation.

Condition 2 can be seen by examining the transition space T[a, 7] in the figure. If the inputs
change in the order X i -+ Z 1, then there can be some set of gate delays such that cubes w'xx

and xyz turn on and off before cube w'xy turns on, thus yielding a hazardous transition on the
output of 0 -+ 1 -+ 0 -+ 1. (This particular hazard can only be eliminated by implementing the

function with a single gate.) Note that if we pick the transition space T[fJ, 6], then by Condition
2, a dynamic logic hazard does not exist, since there is no cube which intersects T[fJ, 6] that does

not also intersect «5. More intuitively, the first gate which turns on during the transition will hold

the output high while the rest of the gates are settling. 0

Proof of Theorem ./.1: Condition 1 follows from the definition of a dynamic logic hazard

Condition 2: => If a dynamic logic hazard exists, then the output must make a transition from
0 -+ 1 -+ 0 -+ 1 during the transition between a and fJ. For this to happen, at least one cube must

make the transition from 0 -+ 1 -+ 0, and another cube must make the transition from 0 -+ 1.
Since the first cube has value 0 at the endpoint (fJ), it clearly cannot intersect fJ. And since that

same cube makes a transition to 1 during the change, it must intersect T[a, fJ]. Therefore condition

2 is satisfied.

-<= If there is a cube that intersects d1e transition space but does not intersect fJ, then there exists
a path starting at fJ and ending somewhere at the border of the subspace where the intersecting
cube makes a 1 -+ 0 -+ 1 transition. This implies that a 1 -+ 0 -+ 1 -+ 0 transition will occur

during the transition between a and fJ. This transition will be visible at the output of the circuit

if other gates are sufficiently slow. Therefore a dynamic logic hazard exists. . I
Let T denote the set of transition spaces for a given function f. Let T min ~ T denote the set

of minimal function hazard-free transition spaces for f, where a minimal transition space is one

that is not properly contained by any other transition space for some a, fJ E {O, I} n. We claim that

we can detect dynamic hazards by focusing only on the minimal function hazard-free transition

spaces, represented by the set T min. The following is an outline of the basic steps:~

1. FOfDl the set of minimal function hazard-free transition spaces, T min

2. For each transition space T min[a, {:J] E or min, find the cubes in f that intersect the transition

space.

3. If any T miRra, {J] E T min intersects a cube c E f that does not also intersect the transition

space at {3, then a dynamic logic hazard exists for the transition defined by that transition

space.

Having observed that any dynamic logic hazard that results from a static logic I-hazard is fully
characterized by the static logic I-hazard, we can just look for those dynamic logic hazards that
are a result of intersecting cubes. The example below illustrates this condition.

18

r = w'xz + wxy

Figure 9: Mi.c. hazard dJat is the result of a static I-hazard.

Example 4.2.3 In Figure 9, there is a multi-input change dynamic hazard when traversing from
point a to point 'Y via point {J. In that case, the gate corresponding to cube wxy can turn on and
off before the output is eventually held high by the gate corresponding to cube w'zz. However,
this dynamic logic hazard is fully characterized by the static logic I-hazard which exists in the

transition between wxyx and w'zyz. 0

So, instead of trying to restrict the search space to transition spaces that are function ha.za.rd-
free, we can start with each cube intersection and fonn the minimal function hazard-free transition
space that contains it, which will give us the dynamic hazards (if any) for that cube intersection.

This leads to the following, more efficient procedure:

procedure ftndMicDynHaz21evel(/) {
hazards. 0;

1 . { irredundant cube intersections of / };
for all c E 1 { /* complement one variable at a time in c * /

Jc . (cubes adjacent to cl;

Oc = li.8c s I;
b all d e Jc { /* Look at each cube adjacent to the cube intersection. * /

if (((d) .. 0) /* If the value of the function at this point is 0, * /
oc = oc U J, /* then the cube belongs to the set Oc, * /

else

/. otherwise it belongs to the let .Bc. *'Pc-PcUl
}/. hazards are defined by aU possible pairs of minterms from (Xc and Pc . /

h.zard. . huards U{1'[i, 111 i,; e (Xc x Pc);

)

The procedure thus finds the remaining dynamic logic hazards that are necessary for complete

characterization of the logic hazard behavior of the subnetwork, as illustrated in the following

19

f=w'xz+w'xy+xyz

Figure 10: Dlustration of procedure f indHicDynHaz21evel.

example.

Example 4.2.4 In Figure 1O, the only irredundant cube intersection is c = w'xyx. Taking the

complement of each care variable in this cube we get the set Jc = {wxyz, w'x'yz, w'x y'z, w'xyz'}.

Examining the value of f at each of these locations, we can see that we have one minterm in (Xc

(w'x'yz), and three minterms in fJc (w'xy'z,wxyz, and w'xyz'). The minimal function hazard-free
transition spaces are then as shown by the shaded areas. Inspection reveals that each of these

transition spaces has a dynamic logic hazard. 0

We now must show that the set of dynamic logic hazards resulting from this procedure represents

all possible dynamic logic hazards that are not the result of a static logic I-hazard, and that the

transition spaces generated by the procedure are function hazard-free. (Note that this second

part is not as crucial, because although extra work would be required in the matching step if the

procedure produced transition spaces with function hazards, the results would still be correct, since

equivalent functions have the same function hazards.)

Theorem 4.2 Procedure f indMicDynHaz21evel finds all possible m.i.c. dynamic logic hazards
which are not the result of a static I-hazard for the function f.

Proof: Two different cubes must intersect the transition space for a m.i.c. dynamic logic
hazard to exist (Theorem 4.1). There are two ways that two cubes can intersect a transition space

and not introduce function hazards: two cubes can be adjacent, or they can intersect. In the

case where the cubes are adjacent, either the adjacency represents a static logic hazard, which has

already been characterized by other algorithms, or the adjacency is covered by another cube that
intersects both cubes, in which case they are characterized by the procedure. If two cubes overlap,

then the procedure will select them, so we will not miss a possible dynamic logic hazard. Picking

20

minterms adjacent to the intersection ensures that we will satisfy condition 2 of Theorem 4.I-that

is, the point fJ will not intersect the cube intersection. Picking points beyond the adjacencies of
the cube intersections as possible candidates for a or fJ may result in selection of a Boolean space

that contains function hazards. More importantly, these spaces contain any transition space, and

thus any dynamic hazards, which would be identified by our procedure. (J

Multi-Input Change Dynamic Logic Hazard Analysis or Multi-Level Networks

In many cases the library elements and the subnetworks we select during the matching process will

be multilevel. (See Figure 4 for an example in which this is a problem.) In this case, we can use

the two-level procedure as a filtering process to narrow down the sets of transitions we need to
examine for dynamic logic hazards in the multi-level expression, leading to the procedure below:

procedure findMicDynHazMultiLevel:

I. Transform the network into a two-level SOP expression by applying static hazard-preserving

transformations.

Perfonn algorithm f indHicDynHaz21evel on the expression generated by step 1.

3. Examine the original multi-level network for dynamic logic hazards on those transitions pro-

duced by step 2. Throwaway any hazards that aren't found in the multi-level network.

For step 3, we can label the paths as we do for single-input change dynamic hazards and use
the transformed two-level expression together with the information we have on the potentially haz-

ardous transitions to identify the real dynamic hazards. We can then eliminate from consideration

any hazards that are found to be false hazards. Alternatively, ternary simulation can be used on

the specific transitions to eliminate any false hazards.

Single-Input Change Dynamic Logic Hazard Analysis

In the previous subsection we ignored any dynamic logic hazards which are the result of vacuous

tenDS in the two-level expression, as illustrated in Figure 6. We must now address this case.

Given a multi-level network, the network can be transformed into a sum-of-products expression

suitable for dynamic hazard analysis by first relabeling the variables so that each distinct path
the variable takes is identified, and then transforming the expression into an SOP form through

hazard-preserving operations. A single-input change dynamic hazard will be present whenever a
variable appears within a product term in both its complemented and uncomplemented fonDS,
and the remaining variables in that product term remain constant, while another product term

containing that variable changes from 0 to 1. 13]

21

Figure 6b shows that there is a dynamic hazard when w = 0, x = 1, a = 1 and .\' is changing. The
transformed expression is f = WZ21h+W~Z+~Z21h+~~Z+Z~Z21h+Z~~Z. With w = 0, x = Z = 1

the expression reduces to f = ~ .\'2 + y~ 1I~. With 11 changing, the first term in the reduced expression

will make a 0 - 1 - 0 transition, while the second term will make a monotonic change, which can

result in a dynamic hazard.
The algorithm for detecting the presence of the hazard is straightforward. It involves trans-

forming the literals in the expression to keep track of different paths for each literal, transforming

the new expression to a two-level SOP form, and then statically analyzing the expression with

simple bit operations to see if any of the necessary conditions apply. Once a variable is identified
as a candidate for exciting a dynamic hazard, the rest of the expression can easily be examined to

determine whether the dynamic hazard exists. As a by-product of the transformation into two-level

SOP form, static O-hazards are automatically identified by identifying those p-terms that contain
pairs of complementary literals.

5 Results

The hazard analysis routines described in the previous section were incorporated into the CERES

technology mapping program, and the modifications to the matching algorithms were implemented

as described in Section 3.
The technology library is analyzed and annotated with hazard information only when the library

is initially read in. Hazards in the subnetwork to be mapped are analyzed only when a hazardous

library element is selected as a potential match.

Table 2 compares the run times of the library initialization for both d1e synchronous mapper and

the asynchronous mapper, where d1e asynchronous mapper must also analyze the library elements

for hazards during initialization. The mappers were run on three ASIC libraries and one custom

library. The hazard analysis routines did not add appreciable run-time overhead for most libraries.

The GDT library took longer to analyze mainly because of the complexity of its library elements.

Table 2: Hazard analysis run times for various libraries.

seconds. All benchmarks were run on a DEC 5000.
All times are user times reported in

In addition to some standard benchmark circuits, two real asynchronous controllers were mapped

with the asynchronous mapper, and their results compare favorably against hand-mapped imple-

22

mentations (where available), as can be seen in Table 3. An asynchronous implementation of a SCSI
controller was synthesized using the locally-clocked synthesis method [19] and then mapped with

the asynchronous mapper. Since the logic equations were never mapped by hand, the hand-mapped
entry is empty. The ABCS design is a part of the control logic for an asynchronous infrared commu-

nications chip currently under development at Stanford in collaboration with Hewlett-Packard. It
was mapped from logic equations synthesized with the 3D synthesis method [2]. The automatically

mapped version is less than 13% smaller than the hand-mapped version, where in the table, each
transistor in the pull down network of a cell is assigned an area cost of 1. (The hand-mapped results

do not include the cost for buffers which is included in the automatically mapped results.)

Design I Library IHow Mapped Time

(sec)

cost

(area~

LSISCSI

28.1168-
312
--
272

ABCS GDT
28.1

hand-mapped

async tmap

hand-mapped

async tmap

Table 3: A comparison of automatically-mapped and hand-mapped designs in terms of area (depth
of 5). Benchmarks were run on a DEC 5000.

Run times of both the synchronous and asynchronous mapping procedures are shown in Table

4 for mapping the two designs to four different libraries. The asynchronous mapper took from

50%-60% longer than the synchronous mapper in most cases. The overhead is very dependent

upon the number of hazardous elements present in the library.

Table 4: Comparison between the nm-times of the synchronous and asynchronous mappers (depth

of 5).

Table 5 shows mapping results and mapping runtimes for some asynchronous benchmark circuits
for two libraries. The hazard analysis of each library typically took a only fraction of a second.

The area costs are relative to the particular library and will not compare between libraries.

23

Design Library
CMOS3 LSI9K

p:~CPU ~elav Area CPU Area

chu-ad-opt

dme-fut-opt

dme-fast

dme-opt

dme

oscsi-ctrl

pe-IeDd-ifc

vanbek-opt

dean-ctrl

6s 24ns

II.Sns

Ilns

22.4ns

152

232

3.7.

3.88

2.lns

1.7ns

9

8s

6s

7.

13

136 3.78 1.7DS 9

10184 3.9s 2ns

1.9n8

1.3ns

6e 17.8ns

96.5ns

47.2ns

19.5ns

126ns

168

3552

864

144

3.18

16.1.

5.38

3.1.

10

10.61

2.38

172

403.5ns

2.6ns 9.68

33.68 11320 43.58 IO.3ns

7.2ns

565

20.7. 95ns

74.7ns

6888

3288

27.98

13.38

SCSl

aba

330

98 6.8ns 168

Table 5: Mapping results for the asynchronous mapper run on various examples (depth of 5).

Benchmarks were run on a DEC 5000/240.

6 Conclusions and Future Work

Technology mapping algorithms for synchronous designs can be adapted to work for generalized
fundamental-mode asynchronous designs by detecting the hazards in the library elements and using
this information to ensure that no new hazards are introduced during the mapping process. The

resulting mapped network will then have no new hazards. We proved that in characterizing the
hazard behavior of the mapped and unmapped network, only logic hazards need to be taken into

account. Based on that infonnation we have created efficient algorithms for hazard detection and

incorporated these algorithms into an existing technology mapper to produce an asynchronous

technology mapper that works well for generalized fundamental-mode asynchronous designs. A
crucial part of the algorithm assumes that the library is properly characterized, and that its hazard

behavior is properly expressed through the structure of a Boolean factored form.
We are currently analyzing in more detail the transistor level hazard-behavior of library cells. In

particular, we are developing a model for the representation and hazard analysis of pass-transistor
networks, such as those employed in MUX-based FPGAs such as the Actel Act2, which do not

exhibit the same hazard behavior as complementary CMOS networks. We are also exploring the
use of hazard don't care information during technology mapping as a means to improve the quality

of the mapped circuit.

A more difficult problem is to produce a technology mapper for speed-independent asynchronous

circuits. Because the notion of hazards at the logic and implementation levels is different and not

24

as well characterized, we do not expect the synchronous technology mapping procedures to adapt
as well to speed-independent design styles. We are currently working on algorithms to address this

problem.

7 Acknowledgments

The authors would like to thank to Steve Nowick for many useful discussions related to asynchronous

system design and hazards. Frederic Mailhot wrote the original CERES technology mapper, and was
very helpful while it was being adapted for asynchronous design. Ken Yun wrote the 3D synthesis
system which was used to generate many of the example circuits.

This work was supported by the Semiconductor Research Coxporation, Contract no. 92-DJ-205.
and a trust grant from the Center for Integrated Systems. Stanford University.

References

S. M. Nowick and D. L. Dill, "Synthesis of asynchronous state machines using a local clock,"
in ICCD, Proceedings of the International Conference on Computer Design, IEEE Computer

Society Press, 1991.

K. Yun and D. Dill, "Automatic synthesis of 3D asynchronous finite-state machines," in [C-

CAD, Proceedings of the International Conference on Computer-Aided Design, pp. 576-580,
Nov. 1992.

[3] W. S. Coates, A. L. Davis, and K. S. Stevens, .. Automatic synthesis of fast compact self-timed

control circuits," in IFIP Workshop on Asynchronous Circuits, (Manchester, UK), 1993.

[4] K. Keutzer, "DAGON: Technology binding and local optimization by DAG matching," in 2,1th

Design Automation Conference, pp. 341-347, IEEE/ACM, 1987.

[5] R. Rudell, Logic Synthesis for VLSI Design. PhD thesis, U. C. Berkeley, Apr. 1989. Memo-
randum UCB/ERL M89/49.

[6] F. Mailhot and G. De Micheli, "Algorithms for technology mapping based on binary decision

diagrams and on boolean operations," IEEE Transactions on CADI/CAS, in press.

[7] E. J. McCluskey, Logic Design Principles With Emphasis on Testable Semicustom Circuits.

Prentice-Hall, 1986.

R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. Sangiovanni-Vincent&, Logic Mini-
mization Algorithms for VLSI Synthesis. Kluwer Academic, 1984.

25

[9] E. B. Eichelberger, "Hazard detection in combinational and sequential switching circuits,"
IBM Journal, Mar. 1965.

[10] J. Bredeson, "Synthesis of multiple input change hazard-free combinational switching circuits

without feedback," International Journal of Electronics, vol. 39, no. 6, pp. 615-624, Dec. 1975.

[11] R K. Brayton, R Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang, "rvflS: A multiple-level

logic optimization system," IEEE Transactions on CADI/CAS, vol. 6, no. 6, pp. 1062-1081,
Nov. 1987.

12] S. M. Nowick and D. L. Dill, "Exact two-level minimi7.ation of hazard-free logic with multiple-

input changes ," in ICCAD, Proceedings of the International Conference on Computer-Aided

Design, pp. 626-630, 1992.

[13] S. H. Unger, Asynchronous Sequential Switching Circuits. New York: Wiley-lnterscience, 1969.

[14] D. V. Heinbuch, CMOS3 Cell Library. Addison-Wesley, 1987.

[15] O. Coudert and J. Madre, "Implicit and incremental computation of primes and essential
primes of Boolean functions," in DA r:'. Proceedings of the Design Automation Conference,

pp. 36-39, June 1992.

[16] J. Beister, "A unified approach to combinational hazards," IEEE Transactions on Computers,

vol. 23, no. 6, pp. 566-575, June 1974.

[17] R. Rudell and A. Sangiovanni- Vincentelli, "Multiple-valued minimization for PLA optimiza-

tion," IEEE Transactions on CA D/ICAS, vol. 6, no. 5, pp. 727-750, Sept. 1987.

18] J. Bredeson and P. Hulina, "Elimination of static and dynamic hazards for multiple input

changes in combinational swit ching circuits ," Infonnation and Control, vol. 20, no. 2, pp. 114-

124, Mar. 1972.

[19] S. M. Nowick, K. YWl, and D. L. Dill, "Practical asynchronous controller design," in ICCD,

Proceedings of the International Conference on Computer Design, IEEE Computer Society
Press, 1992.

26

