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Abstract. We address the state assignment problem for Deterministic Synchronous
Finite State Machines, implemented by Programmable Logic Arrays and feedback
registers. Optimal state assignment aims at a minimal-area implementation. We
present an innovative strategy: logic minimization of the combinational component
of the Finite State Machine is applied before state encoding. Logic minimization is
performed on a symbolic (code independent) description of the Finite State Ma-
chine. The minimal symbolic representation defines the constraints of a new en-
coding problem, whose solutions are the state encodings that allow to implement the
PLA with at most as many product-terms as the cardinality of the minimal symbolic
representation. In this class, an optimal encoding is one of minimal length. A
heuristic algorithm is used to construct a solution of the constrained encoding prob-
lem. The algorithm has been coded in computer program KISS, and tested on dif-
ferent examples of Finite State Machines. Experimental results are reported.
1. INTRODUCTION

Sequential circuits play a major role in the control part of digital systems. Digital
computers are very complex examples of sequential systems and involve a combina-
tion of sequential functions. A sequential function can be represented by several
models [HOPC79]. The synchronous deterministic finite state machine represen-
tation is used in the sequel and is referred to as a finite state machine (FSM) for the
sake of simplicity.

Hardware implementations of finite state machines consist of two major com-
ponents: a combinational circuit and a memory. The memory stores a representation
of the state of the machine at any given time and the combinational circuit generates
the machine primary outputs as a function of the machine state and/or the machine
primary inputs. We use clocked Delay (D) registers to store the state information.

The implementation of sequential functions in VLSI system design has to satisfy
two major requirements:

i) regular and structured design that can be supported by computer-aided

tools;

ii) size and performance of the silicon implementation.
A Programmable Logic Array (PLA) implementation of the FSM combinational
component can satisfy both requirements. Since FSM memory components, as well
as PLAs, can be designed by means of regular structures, the entire FSM imple-
mentation can be regular and structured. This allows the automation of FSM-based
sequential-circuit design. Moreover several techniques, like logic minimization and
topological compaction, aliow the design of area-effective PLA implementations.
Therefore PLA-based FSM design can be optimized with regard to silicon area re-
quirement and subsequently to switching-time performance.

The computer-aided synthesis of a sequential circuit as a PLA-based finite state
machines can be partitioned in several tasks [DEMI83g]. We address here the ap-
timal state assignment problem . The state assignment problem has been the object
of extensive theoretical research. A survey of the major results is reported in
[DEMI83g]. Despite of all these efforts, to the best of our knowledge, no
computer-aided design tool for designing FSMs is in use today for a time-effective
encoding of control logic. :

2. SYMBOLIC COVER AND SYMBOLIC MINIMIZATION

We assume that the reader is familiar with the basic concepts and definitions of :

switching theory. We refer the reader to [HILL81], [BRAY84b}, and [HART66] for
details.

The state t,or state ding problem consists of choosing a Boolean
representation of the internal states of the machine. State encoding affects sub-
stantially the complexity of the FSM combinational component [HART66]. In par-
ticular, the PLA size depends heavily on the state assignment. Therefore the
optimum state assignment problem for PLA-based finite state machines can be
stated as follows:

Find a state assignment corresponding to a PLA impl of area
This task is formidable and some simplifying assumptions are needed. As a first
step, topological compaction techniques to reduce the PLA area, such as folding
[DEMI83c] and partitioning [DEMI83d] are not considered. Under this assumption,
the PLA area is proportional to the product of the number of rows (product-terms)
times the number of columns (PLA I/0). Both row and column cardinality depend
on state encoding. The (minimum) number of rows is the cardinality of the (mini-
mum) cover of the FSM combinational component according to a given assignment.
The code-length (i.e. the number of bits used to represent the states) is related to
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the number of PLA columns and in particular to the number of PLA input and out-
put columns corresponding to the present and next states. Therefore the PLA area
has a complex functional dependence on state assignment. For this reason two
simpler optimal state assignment problems are defined:
i) Find the assignment of minimum code length among the assignments that
minimize the number of rows of the PLA.
ii) Find the assignment that minimizes the number of rows of the PLA
among the assignments of given code length.
The optimum solution to the state assignment problem which minimizes the PLA
area can be seen as a trade-off between the solutions to problem i) and ii). Note that
the above problems are still computationally difficult and to date no method (other
than exhaustive search) is known that solves them exactly. Therefore heuristic
strategies are used to approximate their solution.

A method that attempts a solution to problem i) is presented in the sequel, as
an intermediate step toward the solution of the complete problem. Problem i) is
referred to as the optimal state assignment problem throughout this paper. Note
that most of the previous state assignment techniques attempted to solve problem ii)
with minimum code length (i.e. the logarithm of the number of states). The rele-
vance of problem ii) was related to minimizing the number of storage elements in
discrete component implementations of finite state machines. Today, optimizing the
total usage of silicon area (related only weakly to the number of storage elements)
is the major goal in integrated circuit implementations of PLA-based finite state
machines.

The state encoding technique reported in the sequel is based on an innovative
strategy: instead of trying to estimate the possible simplification of the FSM com-
binational component after a state assighment is chosen, logic minimization is ap-
plied before state assignment. For this reason, logic minimization is performed on
a symbolic (code independent) representation of the combinational component of
the FSM: the symholic cover . The concept of symbolic cover is a generalization of
the logic cover representation of combinational-logic functions. Symbolic covers
were introduced by the authors in previous papers [DEMI83f] [DEMI84b]
[DEMI844d] to specify a combinational function by means of binary and symbolic
strings. In particular, states are represented by mnemonic strings, while primary in-
puts and outputs are represented by binary strings. (Note that primary inputs and/or
outputs could be represented by mnemonic strings as well.)

Minimizing a symbolic cover is equivalent to finding a representation of the
combinational component of the FSM with the minimum number of symbolic
implicants. Symbolic minimization is achieved here by minimizing a multiple-
valued-input logic function [SU72] [HONG74], where each symbolic string repres-
enting a present-state corresponds to a different logic value and each symbolic string
representing a next-state corresponds to a different output function. Note that in the
present approach we do not represent next-states by different logic values, because
the minimization of a multiple-valued-output function depends on the output repre-
sentation (i.e. the mapping between next-states and the values) and therefore is no
longer code independent. As a consequence, the FSM combinational component is
optimized with regard to the encoding of present-states only.

Finding a minimum multiple-valued cover is a computationally expensive prob-
lem. Heuristic multiple-valued logic minimizers, such as ESPRESSO-II [BRAY8&4a}
[BRAY84b] and MINI [HONG74] can be used to compute a minimal {local mini-
mum) cover. (Program MINI and ESPRESSO-II are used in general for binary-
valued logic minimization; however they support multiple-valued minimization as
well.) Experimental results have shown that ESPRESSO-II yields minimal covers
that are quite close to the minimum (symbolic) cover, for problems for which the
minimum (symbolic) cover can be determined. We refer the reader to [DEMI84b]
and [DEMI84d] for detailed examples and further properties of symbolic minimiza-
tion. Note that binary-valued logic minimizers, such as PRESTO [BROWS81], POP,
MINI and ESPRESSO-II, can be also used to minimize multiple-valued-input func-
tions, by specifying an appropriate "don’t care" set [BRAY84b] [DEMI83g].

Symbolic (multiple-valued) minimization groups together the states that are
mapped by some input (or input combination) into the same next-state and assert
the same output. We call state group each proper state subset having this property.
Given a state assignment and a state group, the corresponding group face (or simply
face) is the minimal dimension subspace containing the encodings of the states as-
signed to that group (or equivalently the bit-wise disjunction of the encodings as-
signed to the states in that group).

The goal of the state assignment technique presented here is to group together
the state encodings in binary-valued logical implicants in the same way states are
grouped in the minimal symbolic (multiple-valued) cover. In particular, a state en-



coding is sought, such that each symbolic implicant can be coded by one binary-
valued implicant. For this assignment, there exists a binary-valued cover of the FSM
combinational component having as many implicants as the minimal symbolic cover.
An encoding, such that each group face contains the encodings of the states included
in the corresponding group and no other state encoding, satisfies the above require-
ment. In fact, each encoded implicant represents exactly the state-transitions related
to the corresponding symbolic implicant. For this reason, a constrained encoding
problem is considered:

Given a set of groups, find an encoding such that each group face does not inter-

sect the code assigned to any state not d in the corresponding group.

In view of the previous considerations, any solution to the constrained encoding
problem is a state assignment such that the coded Boolean cover has the same
cardinality as the minimal symbolic cover. We proved in [DEMI84b] that there al-
ways exist solutions to this problem. An optimal state assignment is a minimal
code-length solution to the constrained encoding problem. The geometric interpre-
tation of the optimal encoding problem is:

Find the minimal di fon Boolean space in which each group face is a subspace

which does not intersect the encoding assigned fo any state not contained in the

corresponding group .

3 AN ALGORITHM FOR OPTIMAL STATE ASSIGNMENT

Optimal constrained encoding is a complex problem of combinatorial optimiza-
tion. To date, it is not known whether an optimal solution can be computed by a
non-enumerative procedure. A heuristic algorithm is presented here, that constructs
a solution to the constrained encoding problem. Experimental results show that the
length of the encoding generated by the algorithm is reasonably short, and often
equal to the minimum length solution when this is known.

We introduce first some definitions. Let #, be the number of states to encode,
n the number of groups and n, the code length. The constraint matrix A is a matrix:
A € {0,1}xn representing n, state groups. State j belongs to group / if @; = 1. Note
that the constraint matrix corresponds to the present-state field of a minimal
multiple-valued cover of the FSM combinational component, when positional-cube
notation is used [SU72] [DEMI84b]. A row of the constraint matrix is said to be
prime if it does not represent the intersection of two or more groups. The prime
rows of a constraint matrix 4, denoted by Ap, have the foliowing property: any en-
coding, that is a solution to the constrained encoding problem specified by A4, is a
solution to the original problem specified by 4 [DEMI84b).

The encoding matrix S is a matrix § € {0,1}™* ™ whose rows are the encodings.
Our problem is to determine the encoding matrix §, given a constraint matrix 4.
An encoding matrix S is said to satisfy the constraint relation for a given 4 if Sisa
solution to the constrained encoding problem specified by 4.

The encoding algorithm constructs an encoding matrix S row by row and column
by column by an iterative procedure. At each step a larger set of states is considered
and an encoding matrix § is computed that satisfies the constraint relation for the
corresponding columns of 4. For each state that is being considered, a new row, g,
is appended to § . The encoding matrix S is initialized to a 1-column matrix, and
columns are appended to S (i.e. the code-length n, is increased) only when needed
to satisfy the constraint relation. The input to the algorithm is the constraint matrix
A. The output is the state code matrix S having n, columns. The selected state (or
state subset) to be encoded at the current iteration of the algorithm is denoted by
&. The set of encoded and selected states is denoted by €. The algorithm is de-
scribed in Pidgin C.

ENCODING ALGORITHM
= ¢;
&=¢;
A = compress(4);
do {
& = state-select;
=8V,
A’ = columns of 4 corresponding to &
do §
€ = candidates(S,4');
o = code-select(¥);
if(c = ¢)S = adjoin(S)
}
while(o = ¢);
=[5}
}

while(& is a proper subset of the state set)

Procedure compress(4) returns the prime rows of 4, i.e. returns the minimal
number of rows specifying completely the encoding problem.

Procedure state-select sorts the states according to a heuristic strategy, and re-
turns the current state (or state subset) & to be encoded. The constraint matrix 4’
represents a permutation of the columns of 4 corresponding to the encoded and se-
lected states in the given order.

Procedure candidates(S,4") returns the set of encodings that can be assigned to
Fof the sam ngth of those represented by S. In particular:
€ = {csuch thatﬁ[‘g satisfies the constraint relation for 4'}. Note that € may be
empty.
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Procedure code~select(%) returns an element of € according to a heuvristic cri-
terion. If € is empty, then code-select (¢) returns ¢, and the dimension of the code
space, ny, has to be increased. Else, the rationale of the choice of a code ¢ is the
following. The group faces corresponding to & depend on ¢. Let u(c) be the number
of vertices covered by at least one face. Then u(c)/2"™ represents the "utilization''
of the Boolean space of current size m,. The higher the utilization of the Boolean
space is, the higher the probability is that € is empty at the next iteration of the al-
gorithm and that n, has to be increased. Since encodings are selected so that the final
code length is as short as possible, o is chosen as: ¢ = arg min u{c) .

Procedure adjoin(S) is invoked when the candidate set is empty, and the code
space dimension has to be increased. Let 7= {0}"*}, i.e. Tis a column of "0"s.
Let S be the subset of the columns of § different from T and ¢ be the number of
columns of S equal to T. Let R = A", where A! is the subset of rows of 4 having
a non-zero entry in columns of A corresponding to & and the superscript T denotes
the transpose operator.

adjoin(§)

ifC 1< |2 yreturn({ S| TD);

else §
R’ = set of the columns of R not already adjoined to S;
r = column of R’ with minimal 1-count;
return([S | r]);

b

The rationale of procedure adjoin(S) is the following. The code space dimension
is increased by adding to § columns of T and R. Columns are added one at a time,
because it is desirable to find an encoding o while adding the fewest columns to S,
i.e. by the minimum increase of the code space dimension. We proved in [DEMI84b]
that the candidate set € is not empty after a finite number of iterations through
adjoin(8). Procedure adjoin(.S) appends columns to § in a particular sequence be-
cause of the following reasons. When adjoin(.S) appends 7 to S, the size of the faces
not related to state (states) & is not increased. Moreover a state code ¢ is found
after one iteration through procedure adjoin(S), under some restrictive assumptions
[DEMI84b]. Adjoining to S the columns of R one at a time corresponds to reshaping
the faces related to &, i.e. the faces corresponding to the rows in A having a non-zero
entry in a column corresponding to &#. Reshaping each one of this faces consists of
adding one dimension to the state code space: the new coordinate of the state codes
on that face is set to "'1"', while is set to "0" for the remaining state codes, Reshaping
is performed considering one face at a time, and by considering first the faces in-
volving fewest states. Since, in general, states are related to many faces, reshaping a
face leads to a size increase of some other face. Therefore this heuristic strategy tries
to minimally increase the face sizes.

State ordering is critical to obtain an encoding with a minimal number of bits.
Procedure state-select returns the current state (or state subset) to be encoded. In
principle, all the states could be selected at the first iteration, and a simultaneous
encoding of the state set could be attempted in increasingly larger Boolean spaces.
In this case an optimum solution would be constructed by an exhaustive search.
However, the computational complexity of an exhaustive encoding makes it unat-
tractive even for medium-sized FSMs. On the other hand, s:..cs can be encoded one
at the time, with a considerable saving of computing time at the expense of a possible
increase in code-length. An intermediate approach takes advantage of the structure
of the constraint matrix.

Several strategies for state encoding have been explored, but two have shown
to be practical for finite state machine encoding. The first requires the encoding of
an appropriate state subset, called dominating set [DEMI84b], at the first iteration
of the algorithm. A dominating set has the following property: if an encoding for
a dominating set satisfies the constraint refation for the appropriate columns of the
constraint matrix, then remaining states can be encoded one at a time by increasing
at most by one the code length n, at each iteration of the algorithm [DEMI84b].
An optimum cucoding is computed for the dominating set. Since in general a domi-
nating set is much smaller than the state set, such a computation can be done in
reasonable time. Thereafter states are encoded one at a time. The criterion for state
ordering is the following: the uncoded state belonging to the largest number of prime
groups (highest column count in A4, ) is selected first. The strategy tries not to in-
crease the state space dimension. The uncoded state with highest column count in
Ap is the one whose encoding must be covered by the intersection of the largest
number of faces. Therefore the fewer states have been encoded, the higher is the
likelihood of finding such an encoding without increasing n,. For this reason, the
uncoded state with highest column count in 4p is the "local most critical state to
code" and is encoded first. We proved in [DEMI84b] that this strategy guarantees
that an encoding satisfying the constraint relation for a given A4 has n, < n,.

The second state ordering strategy is useful when the computational burden of
encoding a dominating set is too high. This is obviously dependent on the finite state
machine and the computation environment. According to this strategy, states are
encoded one at-a time. The first state that is selected is the one with highest column
count in 4,. Then states are ordered as follows. Let A(&) be the subset of the col-
umns of A4, corresponding to those states belonging to some group including an en-
coded state. The state corresponding to the column with the highest count in A(&)
is selected first. The rationale for this choice is similar to the previous strategy, but
we restrict our attention to the states "related" to the encoded ones. No theoretical
upper bound on the length of the encoding can be stated when this selection strategy
is followed. However experimental results have shown only slightly longer encodings
than those obtained with the previous strategy.



4. KISS

KISS is a computer program for state assignment of finite state machines. The
FSM description is given as input to the program in the form of a symbolic cover.
Primary inputs can be described by symbolic strings and coded as well as the internal
states. KISS generates an output file containing a minimal Boolean cover of the FSM
combinational component. Information about state encoding is provided on request
by the user. The KISS output file can be processed by a topological compaction
program, such as PLEASURE [DEMI83¢] or SMILE [DEMI83d], and eventually
by a silicon assembler which generates the mask layout of a PLA with clocked
feedback registers [DEMI84a] according to a given technology.

KISS performs the following tasks. First a symbolic cover is read and a 1-hot
code representation of the FSM combinational component is written to a temporary
file. The "don’t care set" related to the 1-hot representation is generated and ap-
pended to the temporary file. Second a two-level binary-valued logic minimizer is
invoked to minimize the cover; i.e. to perform the equivalent operation of multiple-
valued-input logic minimization [BRAY84b]. Any two-level logic minimizer can be
linked to KISS. However note that the logic minimizer performs a key role to obtain
a good encoding. A partially minimized symbolic cover corresponds to a partial in-
formation about state groups and eventually to an encoding close to a binary enu-
meration of the states. KISS has been tested in connection with minimizers POP,
MINI and ESPRESSO-II. Experimental results have shown that ESPRESSO-II
outperforms the other logic minimizers and enables KISS to obtain encodings leading
to the minimal-area PLA implementing the FSM combinational component
[DEMI84b]. For this reasons ESPRESSO-II has been linked to KISS. The mini-
mized representation defines the constraints of the encoding (i.e. the state groups)
and the encoding algorithm constructs a state code matrix. Eventually the encoded
states and state groups are replaced into the minimal symbolic cover and the encoded
cover is minimized again to take advantage of the possible merging of the output
parts.

There are two versions of program KISS. The former is coded in RATFOR (that
is preprocessed into FORTRAN-77) and consists of about 2000 lines of code. The
latter is coded in APL and consists of twenty APL functions.

KISS has been tested on a set of industrial finite state machines. Some results,
obtained by the RATFOR version of KISS, are reported in Table 1 along with the
execution times in seconds on a VAX-UNIX ! computer. Table 2 compares the as-
signments generated by KISS to those obtained using a previous approach
[DEMIS83f}, 1-hot coding and a random assignment of minimal length. Note that the
number of bits used by KISS, i.e. m,, is slightly higher than the minimum number of
bits required by any assignment. Table 3 compares the area estimates of the segment
of the PLA depending on the state representation.

An entire control-unit of a microprocessor has been encoded by the APL version
of KISS. The FSM had 93 states, 18 primary inputs and 14 primary outputs. The
symbolic cover was specified by 3178 symbolic implicants. The state set was en-
coded by 12 bits and a minimal Boolean cover with 660 product-terms was derived.
However preliminary experiments have shown that a further reduction of the
Boolean cover (30%) can be achieved by exploiting the encoding of the next-states.
For this reason, techniques for symbolic minimization and next-state encoding are
under investigation and will be added to KISS in the near future.

5. CONCLUDING REMARKS

We have presented a new technique for state assignment of Finite State Ma-
chines, based on symbolic minimization of the FSM combinational component and
on a related constrained encoding problem. Symbolic minimization is achieved by
multiple-valued-input minimization, that yields a minimal sum-of-product represen-
tation of the next-state transition functions, independently of the state assignment.
Multiple-valued-input minimization is achieved using state-of-the-art logic
minimizers and specifies the constraints of an encoding problem. The state assign-
ment is a solution to the constrained encoding problem and is constructed by a

heuristic algorithm. Program KISS, which implements our strategy, gives results
which are superior to previous methods for automatic state assignment.
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