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ABSTRACT

 

With the advances in Computer Aided Design (CAD) technology, the design of digital

circuits is becoming more and more as the development of software. Hardware is modeled

using Hardware Description Languages (HDLs) very much as software is described using

programming languages. Synthesis tools are used like compilers to map these HDL mod-

els into hardware. However, modern systems, which consist of mixed software/hardware

modules, are often initially modeled using programming languages instead of HDLs. Spe-

cifically, C/C++-based languages with hardware support are used to quickly verify the

functionality and estimate the performances at the system level. 

One of the greatest challenges in C/C++-based design methodology is to efficiently

map C/C++ models into hardware. Many of the networking and multimedia applications

implemented in hardware or mixed hardware/software systems are making use of complex

data structures stored in one or multiple memories. As a result, many of the C/C++ fea-
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tures that were originally designed for software applications are now making their way

into hardware. Such features include dynamic memory allocation and pointers used to

manage data. 

In this thesis, I present a solution for efficiently mapping arbitrary C code with point-

ers and 

 

malloc

 

/

 

free

 

 into hardware. In hardware, a pointer is not only the address of data

in memory, but it may also reference data mapped to registers, ports or wires. Pointer anal-

ysis is used to find the set of locations each pointer may reference in a program at compile

time. The values of the pointers are then encoded, and branching statements are used to

dynamically access data referenced by pointers. Dynamic memory allocation and deallo-

cation are supported by instantiating hardware memory allocators tailored to an applica-

tion and a memory architecture. Several optimizations may also be performed. A heuristic

algorithm is presented to efficiently encode the values of the pointers. Compiler tech-

niques may also be used to reduce storage before loads and stores. 

An implementation using the 

 

SUIF

 

 compiler framework is presented, followed by some

examples of implementations taken from multimedia and networking applications. 
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CHAPTER 1. INTRODUCTION

 

In the last decades, the complexity of digital systems implemented on silicon has

grown at the rate of 2x every 16 months according to Moore’s law. Within 5 years, inte-

grated circuits (IC) will include as many as 190 million transistors [82]. However, the pro-

ductivity of designers does not improve at the same rate. Studies have shown that

designers or programmers write in average 10 lines of code per day. In order to bridge this

productivity gap, Computer Aided Design (CAD) tools and methodologies have been

developed to facilitate the task of designing systems on silicon. CAD tools enable more

efficient system modeling by abstracting some of the implementation details that can be

automatically derived from the specification. 

The most dramatic achievements are for the design of digital circuits. Since the seven-

ties, the placement and the connections of standard logic cells from a netlist onto silicon

have been automated in 

 

physical design

 

 (i.e. Place & Route) 

 

tools

 

. The eighties have seen

the development of 

 

logic synthesis

 

 and the release of tools that automatically generate a

netlist from a cycle-accurate behavioral model expressed using 

 

Hardware Description

Languages

 

 (HDLs). Examples of HDLs include Verilog HDL [44] and VHDL [48]. In the

Definition 1.0. 

(1.0)

Example 1.0.
Figure 1.0

Proposition 1.0. 
Table 1.0: 
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last decade 

 

high-level synthesis

 

 (HLS) 

 

tools

 

 (aka 

 

behavioral

 

 or 

 

architectural

 

 

 

synthesis

tools

 

) have been developed to automate the mapping of sequential behavioral descriptions

into cycle-accurate representations. Such tools perform both scheduling of operations

(arithmetic and logic operations as well as a memory and register accesses) and resource

binding [14].

 

1.1 Motivations

 

Different languages have been used as input to high-level synthesis. HDLs are the

most commonly used. However, designers often write system-level models using pro-

gramming languages, such as C or C++, to estimate the system performances and verify

the functional correctness of the design. C and C++ offer many advantages. The first moti-

vation for using programming languages, as opposed to HDLs at the system level, is the

growing amount of software running on any system. Many of today’s chips incorporate

processor cores running instruction codes compiled from programming languages. More-

over, among programming languages, C and C++ have been the most widely used in the

last two decades. As a result there is a vast amount of legacy code and libraries that can be

reused to quickly model systems.

Even for hardware applications, C and C++ have been often used to accelerate the

design process. C/C++ can be efficiently compiled onto today’s architectures and thus are

used to develop fast simulation models (e.g. to model microprocessors and microcontrol-

ers). Besides, describing both the software and hardware in the same language facilitates

the integration and the verification of hardware components within a software environ-
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ment. Recent initiatives [71,79,86,89] attempt to standardize a C/C++-based language for

both hardware and software design.

As a result, today, C/C++ or C/C++-based languages can be used to model systems for

both software and hardware components. However, in order to physically map functional-

ity onto hardware, one usually needed to manually translate C/C++ code into HDLs. This

task is well-known for being both time consuming and error prone. The synthesis of hard-

ware directly from C/C++ would then accelerate the design process. A coding style and a

set of restrictions on the language are often defined to simplify the mapping of such mod-

els onto hardware.

 Some of the components originally implemented in software may be also be mapped

to specific hardware components for better performances (increased throughput or reduced

latency), power savings, and/or smaller silicon area. To facilitate such software/hardware

migration, synthesis tools would need to support all C/C++ language constructs. 

In order to help designers refine their code from a simulation model to a synthesizable

behavioral description, we are trying to efficiently synthesize the full A

 

NSI

 

 C standard

[32,48]. C was originally designed to develop the UNIX operating system. It provides con-

structs to directly access memory (through pointers) and to manage memories and I/O

using the standard C library (

 

malloc

 

, 

 

free

 

,...). These constructs are widely used in soft-

ware. Nevertheless, many of the networking and multimedia applications implemented in

hardware or mixed hardware/software systems are also using complex data structures

stored in one or multiple memory banks. As a result, many of the C/C++ features that were

originally designed for software applications are now making their way into hardware.
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The synthesis of such constructs as dynamic memory allocation, function calls, recursions,

 

goto

 

’s, type castings and pointers, turns out to be particularly challenging.

 

1.2 Design methodology

 

The general goal of this research is to automate the generation of digital circuits from

an algorithmic or behavioral description written in C. The realization of this research is a

prototyping tool which fits today’s design methodology by taking a C function as an input

and generating hardware automatically. To better understand where this research fits, it is

important at this point to review the different steps involved in the design of a system. In

the top-down approach shown on Figure 1.1, the system is first modeled at the system

level using programming languages or more application-specific descriptions (such as

Matlab, Mathematica, etc.). The models used at this level are designed to verify the func-

tionality and estimate the performances of the system. Several optimizations are usually

performed. They do not depend on whether the final implementation is hardware or soft-

ware. Algorithmic optimizations are performed, for example to reduce the number of oper-

ations in a given computation. In addition, for a given algorithm, data formats are refined,

for example from floating point to fixed point. Data structures are also refined. In particu-

lar, different implementations of queues or of hash tables could be evaluated.

At the architectural level, the system usually consists of a set of communicating pro-

cesses or threads. These processes can either be mapped to hardware or software. The

communication between the different processes is refined at this point. On the software

side, drivers are generated. On the hardware side, controllers are synthesized to implement

communication protocols. Internal and shared storages are defined for each process.
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Shared storage is used for inter-process communication whereas internal storage stores

local variables and arrays. After architectural mapping and interfaces definitions, the sys-

tem consists of a set of processes to be mapped to software or hardware. On the software

side, compilers can be used to generate assembly code to be executed on a processor. On

the hardware side, high-level synthesis may be used to generate a cycle-accurate represen-

tation of the design. 

System-level
Optimizations

Architecture
Mapping

CompilerHigh-level
Synthesis

Logic
Synthesis

Physical
Design

System Level

Architectural Level

Register-Transfer Level

Netlist Level

Layout Level

C/C++

C/C++

C/C++ C/C++

HDL

HDL

HDL

HDL

Assembly Code
Software

Polygone Representation
Transistors

Figure 1.1:  top-down design flow of a system
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High-level synthesis takes a sequential description of an algorithm and automatically

implements it as data path and control logic. The data path consists of operators, storage,

and steering logic. Operators, which can be shared, usually implement algorithmic or logic

operations (e.g. add, subtract, multiply, etc.). Storage is usually implemented as a set of

registers or memories. Steering logic represents the connection network between storage

and operators. In addition, the control logic implemented as a state-machine or as micro-

code controls the internal flow of data (i.e. multiplexer select signals, register update sig-

nals, tri-state buffer set signals, etc.). The tasks performed during high-level synthesis

consist of scheduling and resource binding according to latency, throughput and resource

constraints. Scheduling and binding correspond to the tasks of mapping operations to time

slots and operators respectively. The cycle-accurate design generated after high-level syn-

thesis can then be mapped to hardware using a traditional CAD flow consisting of logic

synthesis and physical design.

The research presented here fits as a front end to high-level synthesis tools. It can be

also seen as a back end to system-level tools performing hardware/software partitioning

and interface synthesis. The objective is to take C code instead of HDL as an input to high-

level synthesis. From a system-level perspective, the goal is to automate the transition

from a architectural description written in C to an input understandable by current high-

level synthesis tools.

More specifically, this research in on automating the synthesis of hardware from a C

code with such constructs as pointers (including pointer arithmetic and type casting), com-

plex data structures and dynamic memory allocations. These language features are not part

of any synthesizable HDL subsets. To make this research possible, the code is assumed



 

CHAPTER 1.  Introduction

 

Page 7

 

correct and fully visible (complete specification) at compile time. Existing developments

both for high-level synthesis and compilers are also leveraged 

 

1.3 Objectives and Contributions

 

The first goal for this research is to be applicable to a large subset of the C language.

As a result, the front-end and initial analysis passes used can deal with any kind of C input

without any assumption of a coding style or of a synthesizable subset. Better quality of

results may be achieved by restricting the input to a limited subset of C or a given coding

style. However, this would defeat our original goal of supporting the full ANSI C. To sup-

port all C constructs, my implementation shares the same general-purpose front end and

pointer analysis passes as advanced optimizing C compilers. The contribution here is on

applying such advanced compiler techniques to the synthesis of hardware from C.

The overall intention of this research is to support full synthesis of C. On the other

hand, to make this research possible, existing tools are leveraged when it is possible. As a

back end, commercial tools are used to perform high-level synthesis. The flip side of using

commercial tools is that they cannot be modified and their internal data structures cannot

be accessed in a research environment. In this research, HLS tools are used as black boxes.

This leads to some limitations both on the architecture generated and the synthesizable

subset. The main limitation is on function calls. First, the implementation of such feature

as recursion in general remains a fundamental problem. Tail recursion or limited recursion

could be implemented. Without recursion, one way of synthesizing functions is to inline

them. However designers often want to map functions to separate components. Today’s

commercial synthesis tools have many restrictions on functions mapped to components.
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Moreover, the synthesis of C functions mapped to components would require some inter-

action with the HLS tool. For example sharing information would be useful to efficiently

synthesize functions with parameters passed by reference. As a result, the synthesis of

functions is beyond the scope of this thesis and is left as an Appendix.

The contributions of this thesis are the following.

1) This thesis defines the necessary steps to automate the mapping of ANSI C code

into hardware. This work represents the first attempt to efficiently synthesize such

constructs as complex data structures, pointers, pointer arithmetic and type casting.

The resulting tool bridges the gap between high-level synthesis and system-level

tools.

2) A methodology for efficiently supporting dynamic memory allocation and deallo-

cation is also presented. It fits into the general methodology described in Section

1.2 and enables the implementation of recursive data structures into hardware. This

thesis also presents how C code with 

 

malloc

 

 and 

 

free

 

 may be automatically

mapped to hardware after system-level optimizations (e.g. refining data structures)

and architectural mapping (defining internal and shared storage).

3) This thesis also describes a set of techniques to optimize the resulting hardware.

- Compiler techniques are used to reduced storage before loads and stores. The

motivation for these optimizations is to reduce the number of registers neces-

sary in a design.

- Encoding algorithm is developed to reduce both the bit-width of pointers and

the size of the circuits translating pointers’ values in assignments and compari-

sons. Assignments of pointers are especially common at function calls.
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- Novel architecture of hardware memory allocator/deallocator is also intro-

duced. The idea is to encode information about the memory block allocated

inside of the pointers’ value to speed up deallocation.

The outline of the rest of this thesis is the following. In Chapter 2, related work on the

different ways of mapping C code onto different target architectures is presented. Chapter

3 is a background chapter in which compiler techniques, namely pointer analysis, and

their underlaying memory representations are reviewed in the light of hardware synthesis.

The different steps involved in the synthesis of hardware from C code are then presented

in Chapter 4. The outcome of this research, presented in Chapter 5, is the tool SpC that

automates the translation of C models with pointers, complex data structures, etc. into a

code synthesizable by commercially available HLS tools. Results are presented for differ-

ent application domains. Different optimizations can be applied for efficiently mapping C

code onto hardware. In Chapter 6, a set of compiler optimizations to reduce storage before

loads and stores are presented. Chapter 7 describes an encoding algorithm that reduces

both the bit-width of the pointer variables and the complexity of the circuits implementing

comparisons and assignments of pointers. It is important to note at this point that the opti-

mizations presented in Chapters 6 and 7 are also motivated by the synthesis of functions in

C as shown in Appendix A. Finally, Chapter 8 presents how memory allocation and deal-

location can be optimized by selecting different allocator architectures and by applying

compiler optimization techniques. Results are also presented at the end of Chapters 6, 7

and 8 to highlight the benefits of each optimization.
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CHAPTER 2. RELATED WORK

 

C/C++ are two of the most common programming languages. C and C++ are both pro-

cedural imperative languages. Their semantics relies on an implicit Von Neuman architec-

ture. In order to be executed, C/C++ programs must be compiled for a given target

architecture. C was originally designed to target a generic software architecture consisting

of a continuous memory space in which all variables are stored and a microprocessor exe-

cuting a sequence of instructions. C/C+ code is therefore sequential by definition. 

In the last decade, the implementation of compilers evolved significantly to take

advantage of new target architectures such as multi-processor systems or very large

instruction word (VLIW) machines. At the same time, the features of the language were

exploited, for example using object-oriented features in C++, to support new models of

computation to model mixed hardware-software systems and higher lever of abstractions.

These new constructs may be used to express coarse-grain parallelism, as communicating

sequential processes. However finer-grain parallelism at the operation level cannot easily

be expressed. High-level synthesis as well as compiler analysis may be used to find such

operation-level parallelism.

Definition 2.0. 

(2.0)

Example 2.0.
Figure 2.0

Proposition 2.0. 
Table 2.0: 



 

CHAPTER 2.  Related Work

 

Page 11

 

High-level synthesis (HLS) is defined as the set of transformations necessary to auto-

mate the mapping of sequential behavioral descriptions into cycle-accurate descriptions.

Current HLS tools input behavioral HDL descriptions. However, HLS tools supporting

also C/C++ or C/C++-based languages are starting to appear.

This chapter reviews first related work in the domain of high-level synthesis and mod-

eling using C/C++. A selection of recent works in advanced compilers is then presented,

followed by a presentation of current application-specific memory management methodol-

ogy targeted at mixed software/hardware applications.

 

2.1 Modeling and synthesizing hardware from C/C++

 

2.1.1 High-level synthesis

 

High-level synthesis (aka architectural or behavioral synthesis) consists of generating

a structural view of a sequential architectural-level model [14]. The sequential architec-

tural-level model typically consists of a set of parallel processes or tasks. HLS generates a

circuit (i.e., mapping to a structural view) consisting of a data path composed of hardware

resources and a control unit. The architectural-level model can be abstracted as a set of

operations and dependencies. High-level synthesis then performs the following tasks:

- identify the hardware resources (aka 

 

operators

 

) implementing each operation

-

 

schedule

 

 the execution time of the operations

- bind these scheduled operations to hardware resources (i.e. 

 

resource alloca-

tion

 

)

In doing so the synthesis tool defines a structural model consisting of a data path, as an

interconnection of hardware resources and a cycle-accurate model of a control unit that
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issues the control signals to the data path according to the schedule. Resources in the data

path represent not only the operators implementing operations in the original model, but

also storage (e.g. registers) and steering logic which connects operators, storage elements

and Input/Output (I/O) ports.

There have been numerous research projects on high-level synthesis in the past decade

[8,10,11,22,23,29,35,36]. Commercial tools are now available. They include Synopsys

Behavioral Compiler [91], Mentor Graphics Monet [85], Get2chip Volare [83] and Arexys

ArchiMate [72]. These tools take HDL (VHDL or Verilog HDL) as an input. High-level

synthesis that take C/C++ as an input can be derived from these tools. Synopsys CoCentric

SystemC compiler [92] is such an example.

 

2.1.2 Hardware description languages and C/C++

 

C/C++ are software programming languages and have little support for describing

hardware efficiently. To model hardware in C/C++, we need the following language fea-

tures present in HDL but not present in C/C++.

-

 

Concurrency

 

: hardware is inherently parallel, while C/C++ programs are

inherently sequential. The notion of processes (aka 

 

always

 

 blocks in Verilog

HDL), which encapsulates programs that execute concurrently, is introduced.

A system is described as a network of processes.

-

 

Signals

 

: hardware processes need to use signals (akin to wires or buffered

channels) to communicate with one another.

-

 

Reactivity

 

: hardware systems are in continuous interaction with their environ-

ment, i.e. they are reactive. The notion of reactivity is essential to describing
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hardware systems at all levels of abstraction.

-

 

Data abstraction

 

: C/C++ supports data abstractions that are useful for soft-

ware programming. However, for hardware, one needs arbitrary precision

signed and unsigned integers, bit vectors and fixed point types.

With such a set of features added, C/C++ can efficiently model hardware/software sys-

tems [58]. C/C++ contains many features which are not present in synthesizable subsets of

HDLs.

Different subsets of C/C++ and C-like HDLs have been defined and used for synthesis.

I mention first those developed in the eighties. H

 

ARDWARE

 

C [36] is a language with a C-

like syntax and a cycle-based semantics. It models hardware components at the architec-

tural level using C constructs. H

 

ARDWARE

 

C can be fully synthesized. However, it makes

both restrictions and additions to ANSI C. Constructs are added to define bit-widths, mod-

ules and ports. The language includes a quite extended subset of the C constructs includ-

ing unbounded loops and some form of function calls. Pointers, recursion and dynamic

memory allocation are however not supported. C

 

ONES

 

 [61] from AT&T Bell Laboratories

is an automated synthesis system that takes behavioral models written in a C-based lan-

guage [6] and produces gate-level implementations. Here, the C model describes circuit

behavior during each clock cycle of sequential logic. This subset is very restricted and

contains neither unbounded loops nor pointers. C

 

ONES

 

 and H

 

ARDWARE

 

C are two exam-

ples of C-based HDL found in the literature. However, many other flavors of C-based lan-

guages have also been developed and used internally in the industry.

In the recent past, a few projects have been looking at means of using C/C++ as an

input to current design flows [15]. Constructs are added to model coarse-grain parallelism,



 

CHAPTER 2.  Related Work

 

Page 14

 

communication and data-types. These constructs can be defined as new syntactic con-

structs, hence creating a new language. They can also be implemented as part of a C++

class library [75,81,86]. Even though restrictions on the language apply for synthesis, soft-

ware/hardware systems can then be modeled directly using C++. Simulation is performed

by running the executable generated after compiling the models. Standard debugging envi-

ronments can then be used to check the functionality of the system.

For reactivity, S

 

YSTEM

 

C [39,86] (formerly known as S

 

CENIC

 

 [40] from Synopsys) sup-

ports a mixed synchronous and asynchronous approach implemented as a C++ class

library. The Esterel C language (ECL) [37] from Cadence is synchronous as it is based on

both C and E

 

STEREL

 

. Other extensions include H

 

ANDEL

 

-C [78] and B

 

ACH

 

C [30] originally

based on O

 

CCAM

 

, S

 

PEC

 

C [89] loosely based on S

 

PEC

 

C

 

HART

 

, O

 

CAPI

 

 from IMEC [81] and

C

 

YN

 

L

 

IB

 

 from CynApps [75]. The main initiatives to standardize such extensions are the

Open SystemC Initiative [86], the Accelera Working Group [71] (formerly, OVI/VI), the

SpecC Technology Open Consortium [89], and the recent DATC++ technical subcommit-

tee of the IEEE Computer Society Design Automation Technical Committee (DATC) [79].

 

2.1.3 Hardware synthesis from C/C++

 

In order to map functionality to hardware, a synthesizable-C/C++ subset is usually

defined. We can distinguish two approaches. The first method consists of translating a sub-

set of C into HDL (Verilog or VHDL) that will eventually be synthesized using today’s

synthesis tools. The second approach consists of using C/C++ directly as an input to high-

level synthesis.
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In order to facilitate the mapping of C models into hardware, several tools exist that

automatically translate C-based descriptions into HDL either at the behavioral level or the

register transfer level (RTL) level. In the original B

 

ACH

 

C compiler, a limited subset of C

can be translated into VHDL at the behavioral level. C

 

O

 

W

 

ARE

 

 [74], OCAPI [54,81], C

 

YN-

 

A

 

PPS

 

 [75] and others [76,94] automated the translation from a refined RTL model to HDL.

These subsets do not include pointers. 

Two commercial tools, C-Level Design System Compiler (formerly Compilogic

C2HDL) [73] and Frontier Design AR|T B

 

UILDER

 

 [77], also provide tools for translating

C models into Verilog or VHDL. Limited scheduling and resource-sharing techniques can

be applied to generate RTL synthesizable code. Pointers are one of the limitations for

AR|T B

 

UILDER

 

. Pointers are only supported to pass parameters by reference or to scan

arrays (pointer arithmetic). These types of pointers can usually be removed using standard

compiler techniques (propagation and function inlining) and by adding ports for proce-

dures. System Compiler on the other hand, supports all of the ANSI C constructs exclud-

ing libraries. However, pointers are implemented in a software-like approach. In the

general case, they are considered as addresses to data stored in memories, which requires

the allocation of memories, to store the various variables, and addressing units. In hard-

ware, designers may want to optimize locality by mapping data to multiple memories, reg-

isters or even wires (e.g. output of functional units) in the physical implementation.

Kim and Choi [34] as well as the author of this thesis [55,56,57,59] were the first to

report on the synthesis of hardware C models with pointers. Kim and Choi’s implementa-

tion is limited to a rather small subset of C. Pointers that may point to multiple locations
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are not supported and such constructs as type casting and complex data structures are not

considered. 

Another approach is to use C/C++ directly as an input to architectural synthesis tools.

This approach has been chosen by Synopsys with C

 

O

 

C

 

ENTRIC

 

 S

 

YSTEM

 

C C

 

OMPILER

 

[25,92] and by NEC with C

 

YBER

 

 [63,64]. As we have seen in Section 2.1.1, high-level

synthesis enables the mapping of sequential functional descriptions onto hardware. Syn-

thesis from C/C++ description can leverage some of this previous work but also requires

the development of some extensions for efficiently supporting the different constructs of

C/C++. Some of the current work on function calls as well as synthesis of structures in

VHDL is also relevant. More research is however required for supporting C/C++ con-

structs such as pointers, dynamic memory allocation, and object oriented features. 

Finally, we should also mention some of the areas in which C/C++ model mix hard-

ware-software and other specific architectures. For hardware-software codesign, the

C

 

O

 

W

 

ARE

 

 N2C system [74] as well as its precursor [5] use C/C++ as a language base for

system specification. Additional constructs have been introduced to define concurrent pro-

cessing blocks and communication. This description is used to synthesize the interfaces

between the blocks. C

 

OSYMA

 

 [20] uses C

 

*

 

, another superset of C with processes and tim-

ing constructs. During hardware synthesis, functions are inlined and pointers are only

treated as memory references.

For synthesis of reconfigurable systems based on field programmable gate array

(FPGA), several projects have been using C/C++. For PAM-B

 

LOX

 

 [43], a bottom-up

methodology is presented in which a library of components is defined and used as C++

objects to build systems for the Pamette architecture. A similar design environment has
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also been developed based on C for S

 

PLASH

 

 [26]. For mixed software and reprogrammable

FPGA architectures, the G

 

ARP

 

 compiler [7] as well as the N

 

IMBLE

 

 compiler [38] automat-

ically generate retargetable co-processors to speed up loops. Pointers are treated as refer-

ences to the main memory. This approach is relevant for implementing memory-mapped I/

O. However, it can be a limitation to parallelize data transfers inside of a data path. Finally,

Babb et al. [2] present a compiler for a variation of the RAW parallel architecture in which

one or multiple processing units can be replaced by specialized hardware blocks. The

problem of pointers is addressed in order to map data to different memory tiles. Pointers to

multiple memory locations are however a limitation as these locations are mapped to a

unique memory and therefore cannot be accessed in parallel in a data path.

To summarize the previous work on the synthesis of hardware from C, pointers and

dynamic memory allocations are two of the main outstanding issues for the synthesis of

hardware from C. In order to guarantee a good quality of results, the current practice is to

support only a limited subset of the language with severe restrictions on pointers. Other-

wise, a software-like approach is taken, in which the data accessed by pointers are stored

in memory. In a sense, the problem of mapping C code onto hardware can be compared

with compiling C code onto distributed systems or systems in which parallelism is explicit

(e.g. VLIW processor). The approach presented in this thesis is based on the use of

advanced compiler-analysis techniques to efficiently map such C constructs as dynamic

memory allocation and pointers onto hardware.
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2.2 Software compilation of C and C++ onto parallel architectures

 

C and C++ are two of the most commonly used programming languages today. Many

compilers exist for many different architectures. Most of the recent compilers not only try

to map the different statements of the code into assembly instructions, but they also try to

optimize the code for a given instruction set architecture (ISA). For distributed architec-

tures, parallel compilers are trying to partition programs into multiple threads running in

parallel. However, some of the C constructs such as pointers, arbitrary control flow opera-

tions (

 

goto, longjmp, etc.) make these optimizations difficult. In software, pointers rep-

resent addresses in memory. They are often used to pass parameters by reference, access

array elements, address dynamically allocated memory and managing the memory. By

definition, pointers may reference multiple data. Such case happens when referencing the

different elements of a data structure or of an array. It may also happen inside of a function

for pointers corresponding to parameters passed by reference or, more generally, when the

value of the pointer at one point in the code varies according to the current context or the

previous flow of operations.

Many of the optimizations done in today’s compilers as well as in many high-level

synthesis tools are based on data-flow analysis [1,45]. The purpose of data-flow analysis is

to provide information on how a code segment manipulates its data. Examples of applica-

tions include register allocation (based on reaching-definition and live-variable analysis),

constant folding, common-subexpression elimination, loop optimization, dead-code elimi-

nation, etc. The optimizations presented in Chapter 6 are also applications of data-flow

analysis. To solve a given data-flow problem, the effect of each programming language

structure is modeled by transfer functions. The result of such transfer functions depends
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on the data accesses at each statement in the program. To model the effect of statements

involving pointers, it is important to know what data may be accessed by the pointer

(points-to information).

In order to parallelize programs onto distributed architectures, the independent sets of

data which can be processed in parallel have to be extracted [41]. The problem here is to

find statements in the program that may read or write the same locations (aliasing prob-

lem). For this purpose, the aliasing information has to be determined between pointers.

The points-to information and the aliasing information are equivalent and can be deter-

mined by recent analysis techniques called pointer-analysis or alias-analysis. Different

pointer-analysis techniques [50,60,66,67] exist. For hardware synthesis, we also need to

know which variables are accessed at each statement. Therefore, pointer analysis can be

used for the behavioral synthesis of C models.

2.3 Application-specific memory management methodology

For decades, memory management has been one of the major development areas both

for software and computer architecture. In software, at the user level, memory manage-

ment is typically performed by the operating system.

 In hardware, memory bandwidth is often a bottleneck in applications such as network-

ing, signal processing, graphics and encryption. Memory architecture exploration and effi-

cient memory management technology are key to the design of new high-performance

systems. Memory generators commercially available today [88] enable fast integration of

memories in a system. Scheduling of memory accesses has also been integrated into most

commercial HLS tools. Most of the refinement and compilation steps developed for soft-
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ware applications can also be used for hardware. Nevertheless, a software methodology

usually assumes a fixed memory architecture, which may be general purpose or applica-

tion specific like in a DSP or ASIP. In hardware, at the behavioral level, designers would

typically explore different memory architectures in order to trade-off area and power for a

given timing constraint.

A methodology for the design of custom memory systems has been described by Catt-

hoor et al. [9]. It is defined for two sets of applications, networking and signal processing,

and supports a limited subset of C/C++. The basic concepts presented in Catthoor’s work

can be generalized to support a larger subset of the C syntax for an extended set of applica-

tions. Two main steps can be distinguished in the methodology: we describe briefly here

the transformations performed first at the system level, and then at the architectural level.

At the system level, the functionality of the algorithm is verified. Data formats are

refined. For example, after quantization, the format of data can be refined from floating-

point to fixed-point [31]. Data structures can also be refined for example to reduce the

number of indirect memory references. Examples of such transformations for networking

applications have been studied by Wuytack et al. [69].

At the architectural level, after partitioning, the system typically consists of multiple

communicating processes to be mapped to hardware or software [25,58,74]. Memory seg-

ments are defined for internal storage and/or shared memory. These memory segments can

then be mapped to one or multiple memories during synthesis. Some of the storage area

(e.g. internal variables, etc.) can be statically allocated during synthesis or compilation.

However, to support dynamic storage allocation (e.g. for recursive data structures), alloca-

tion and deallocation primitives implemented in software or hardware shall be defined.
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In software, memory allocation and deallocation are implemented as primitives that

are part of the operating system (OS). These primitives can be called in a C program using

the functions defined in the standard library (e.g. malloc, free, etc.). Many schemes

have been developed for OS to manage memory. An extensive survey by Wilson et al. [65]

presents many of the techniques used for memory allocation and deallocation in software.

Memory management can also be implemented in hardware. For memory allocation

and deallocation, instead of the system calls to the OS, requests are sent through signals to

an allocator block (aka. virtual memory manager [70]) implemented in hardware. Its

interface is shown on Figure 2.1. Internally, the allocator stores a list of the free blocks in

memory as well as a list of the allocated blocks. To allocate memory, the size of the block

to be allocated (malloc_size) is sent. The allocator then searches in its free list a big

enough block and returns the address of the beginning of this block (malloc_address).

Two techniques are often used: first fit where the first acceptable free block is returned or

best fit where the block of minimal size is returned. To free previously allocated memory,

the address of the block to be deallocated (free_address) is sent to the allocator. The allo-

cator then searches inside of the allocated list the block and adds it back to the free list.

Adjacent free blocks can then be merged. An optimized architecture to speed up memory

allocation in hardware is presented by Chang et al [12]. The implementation itself of the

malloc

free

malloc_size
malloc_address

free_address

Figure 2.1: Interface of the allocator block implementing malloc and free 
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allocator may also vary according to the application and the data structures. A number of

these application specific implementations are presented by Wuytack et al.[70]. 

Once an architecture is decided, hardware can be implemented using synthesis tools

and compilers can be used for software.

As far as memory management is concerned, scheduling of memory accesses, register/

memory allocation and address generation can be integrated into synthesis tools and com-

pilers. In current commercial synthesis tools, each array is manually mapped to register

files or memories of different types. For scheduling, the characteristics of the memories

(number of ports, read/write latency, etc.) are defined as part of a components library.

Recent research works have been looking at techniques to automatically perform memory

assignment, address generation and optimized scheduling according to the memory type.

The latest developments of these techniques have been presented by Catthoor et al. [9] and

Panda et al. [47].
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CHAPTER 3. BACKGROUND

In software, a C program is targeted to a virtual architecture consisting of one memory

space in which all data are stored. The semantics of pointers is the address of an element in

memory space. Even though register declaration may allow programmers to specify

the variables to place in registers, the assignment of variables to registers is generally done

by the compiler. The notions of caches and memory pages are transparent to programmers.

In hardware, at the behavioral level, designers want to have control on where data are

stored and want to optimize the locality of the storage. Typically, a chip design contains

multiple memory banks, register files, registers and wires. To efficiently map C code onto

hardware, the storage space must be first partitioned into distinct memory blocks. The task

of the synthesis tool is then to find an efficient physical implementation (memory, register,

wire or ports) for these memory blocks. Some of these blocks may also represent pointers.

Pointers may be used to reference any variable no matter where its information is available

(i.e. no matter what its physical implementation is). Pointers are then considered as refer-

ences: references to memory elements, registers, wires or ports. In particular, pointers can

be used to allocate, read, write and deallocate data. In this thesis we call the action of read-

Definition 3.0. 

(3.0)

Example 3.0.
Figure 3.0

Proposition 3.0. 
Table 3.0: 



CHAPTER 3.  Background Page 24

ing data using a pointer a load. Subsequently, a store is the action of writing data using a

pointer. Allocation and deallocation are performed through the standard library functions

malloc and free.

The synthesis of hardware from C consists first of partitioning the memory space.

Each partition is then mapped to a scalar variable (i.e. wire or register in the final imple-

mentation) or an array (i.e. memory or register file). The synthesis of pointers consists of

generating the appropriate circuit for allocating, accessing and deallocating data. For this

purpose, we change the addresses into numbers (i.e. encode pointers’ values) and replace

loads and stores by some assignments directly accessing the data the pointer may refer-

ence (i.e. resolve pointers). Functions malloc and free are subsequently changed as

memory allocation can be distributed onto multiple memories.

Example 3.1. Consider the following code segment.

int *p, n;
int t[256];
struct { int a; int b; } in;

  ...
  if (...)
  p=&in.a;

else
p=&in.b;

...
t[n] = *p;
*p = t[n+1];

  ...

 In the final implementation, we want to store array t[] in a memory and integer n,

pointer p, and the two structure fields in.a, in.b in separate registers accessible in

parallel. Moreover, pointer p may point to either in.a or in.b. If we associate the value

0 with in.a and 1 with in.b, we can remove the pointer. First, for the addresses (&), the
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assignments p=&in.a and p=&in.b can respectively be replaced by p_tag=0 and

p_tag=1 where p_tag represents the encoded value of the pointer. Second, the

dereferences (*) in loads and stores can be removed as follows.

 The load (t[n]=*p) can be replaced by:

if(p_tag==0)
t[n]=in.a; /* case p==&in.a */

else 
t[n]=in.b; /* case p==&in.b */

 The store (*p=t[n+1]) can be replaced by:

if(p_tag==0) 
in.a=t[n+1]; /* case p==&in.a */

else 
in.b=t[n+1];  /* case p==&in.b */

Example 3.2. Let us consider an application, where a hardware block receives objects of

different sizes and processes them. In the final implementation, after partitioning the

memory space, some of the intermediate data are stored in registers or memories. In this

example, some of the objects received are copied into a register (reg). Some other are

only used within this block and are stored in a private memory (local_RAM). Finally

some, larger, may also be accessed by other blocks and are stored in a shared memory

(shared_RAM).

int reg;
int *p;
struct { object_type type; int data; int data2; } object;
...
if(object.type == REG)

p = &reg;
if(object.type == INTERNAL)

// allocate memory in local_RAM
p = malloc(4);

else
// allocate memory in shared_RAM
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p = malloc(8);
...
// store in reg, local_RAM or shared_RAM
*p = object.data;
...
if(object.type != REG)

// free storage in local_RAM or in shared_RAM
free(p);

 In order to implement the store (*p=object.data), the tool has to schedule a write

operation into the register reg, the memory local_RAM or the memory shared_RAM.

It also needs to instantiate the correct circuit (steering logic) to access these locations. For

this purpose, we need to know at compile time the set of locations the pointer p may point

to (points-to set).

 To implement free(p), assuming that the memories local_RAM and shared_RAM

are each managed by a specific allocator, the tool also needs to schedule a deallocation

operation on one allocator or the other. The points-to information for the pointer p is also

necessary.

As we can see in Examples 3.1 and 3.2, in order to efficiently map C code into hard-

ware, we first need to partition the memory space into blocks that may be mapped to mem-

ories, registers or wires in the final implementation. In our implementation, memory space

is represented as a set of location sets, described in Section 3.1.

Subsequently, to synthesize loads, stores and free operations into hardware, we need

to know at compile time the set of locations the pointers may reference (points-to informa-

tion). Such information is also widely used in compilers. In order to parallelize programs

onto distributed architectures, the independent sets of data, which can be processed in par-

allel, have to be extracted. The problem there is to find statements in the program that may

read or write the same locations (aliasing problem). For this purpose, the aliasing informa-
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tion has to be determined between pointers. The points-to information and the aliasing

information are equivalent and can be determined by recent analysis techniques called

pointer analysis or alias analysis described in Section 3.2.

3.1 Memory space representation

The simplest memory representation consists of a single address space in which all

data are stored. This trivial representation however prevents from optimizing the locality

and parallelizing the code. On the other hand, the most accurate representation, which

would distinguish each element of arrays or of recursive data structures, is not practical.

As a result, most analysis techniques combine elements within a single data structure.

Some techniques combine elements based on their allocation contexts [66,67] or on limit-

ing the length of access paths to some fixed constant (k-limiting). Shape analysis [17,24]

gives the most accurate representation as they may distinguish trees from DAGs, linear

lists from cyclic lists and so on. However its implementation to support large C programs

remains challenging.

In order to find both an accurate and a practical representation for hardware synthesis,

we use the notion of location sets introduced by Wilson and Lam [66,67]. Locations sets

support any of the data structures available in C including arrays, structures, arrays of

structures and structures containing arrays. This representation is also relatively simple as

it combines the different elements of an array or of recursive data structures. It can there-

fore be used for large C programs.

Let B be the set of memory blocks corresponding to the different variable declarations.

A location set  represents the set of locations with offsetsl loc f s, ,〈 〉 B IN × ZZ ×∈=
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 in a particular block of memory loc. That is f is an offset within a block

and s is the stride. If the stride is zero, the location set contains a single element. Other-

wise, it is assumed to be an unbounded set of locations. Table 3.1 shows the location sets

for various expressions.

For simple data structures (arrays, structures, array of structures), offsets are used to

identify the different fields of structures whereas strides are used to record array-element

sizes. Figure 3.1 gives an example of representation for an array of structures. The repre-

sentation does not distinguish the different elements within the array but it distinguishes

the different instantiations of scalar variables and structures. This makes sense since all

elements of an array are usually alike.

Nested arrays and structures, type casting and pointer arithmetic make things more

complicated, leading to some additional inaccuracies. Example 3.3 shows how references

to array nested in structures are represented approximately. The array bound information

Type Expression Location Set

int a a

struct {int F;} r r.F

int a[]; a[i]

struct {int F;} r[]; r[i].F

struct {int F[10];} r; r.F[i]

Table 3.1: Location set examples (f=offset of field F), (s=stride or array element size)

f i.s i ZZ ∈+{ }

a 0 0, ,〈 〉

r f 0, ,〈 〉

a 0 s, ,〈 〉

r f s, ,〈 〉

r f mods s, ,〈 〉

offset stride stride stride

Figure 3.1: Representation of struct{int a; int b;} r[]; the offset and 
stride correspond to the locations r[i].b where i is integer.

r[0].a r[0].b r[1].a r[1].b r[2].a r[2].b r[3].a
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in the declared type cannot be used because the C language does not provide array-bounds

checking. A reference to an array nested in a structure could access other fields of the

structure by using out-of-bound array indices.

Example 3.3. Consider the array r.F[] nested in a structure r:

struct {
char a;
char b; 
int F[8];} r;

 References to one of the array elements (e.g. r.F[2]) are represented approximately by

the locations set  which regroups all of the elements of the array as

well as r.a.

Dynamically-allocated memory locations (aka. heap-allocated objects) are represented

by a specific location set. As far as accuracy, it would not be practical to distinguish every

element of a recursive data structure. Therefore, the goal of this representation is to distin-

guish complete data structures. The different elements of a recursive data structure would

typically be combined into one location set. For example, we want to distinguish one list

from another but we do not want to distinguish the different elements of a list. Heuristics

are used to distinguish dynamically allocated data. Storage allocated in the same context is

assumed to be part of the same equivalence class. Within one function, storage allocated

by a given malloc in the code is represented by a unique location set. When malloc is

called within a function, a different location set is created for each call chain (context).

These heuristics have been proven to work well as long as the program uses the standard

memory allocation routines [66].

r 0 sizeof(int), ,〈 〉
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Example 3.4. In the code segment shown in Example 3.2, the memory space can be

represented by the following set of location sets: <p,0,0>, <reg,0,0>, <object,0,0>

for object.type,  <object,4,0> for object.data,  <object,8,0> for

object.data2, <malloc1,0,0> for the storage allocated by the first malloc call

(malloc(4)), and <malloc2,0,0> for the storage allocated by the second malloc call

(malloc(8)).

3.2 Pointer analysis

Pointer analysis is a compiler pass to identify at compile time the potential values of

the pointers in the program. This information is used to determine the set of locations the

pointer may point to. With the memory representation of Section 3.1, this set of locations

is actually a set of location sets. For synthesis, in the case of loads and stores, we want to

synthesize the logic to access or modify the location referenced by the pointer. For this

purpose, the points-to information must be both safe and accurate: safe because we have

to consider all locations the pointer may reference and accurate because the smaller the

points-to set is, the less logic we have to generate. We can distinguish two main types of

analyses (there are also flow-insensitive and context-sensitive analyses).

1) Flow- and context-insensitive: the analysis [60] does not distinguish the order in

which the statements are executed (flow-insensitivity) and the different calls of a

function (context-insensitivity). This interprocedural analysis has an almost-linear

complexity. It can be used to analyze very large programs but the points-to infor-

mation is rather inaccurate. Within a procedure, flow-insensitive analysis gives

global information (valid for all references in the code) rather than information
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specific to each reference. Similarly, in the case of function calls, context-insensi-

tive analysis propagates the information from the call site, through the called

function, and back to all call sites.

2) Flow- and context-sensitive: this analysis provides more accurate results. It dis-

tinguishes the different paths of control within the program and the different calls

of a function. One implementation [66,67] by Wilson and Lam, within the SUIF

framework, can efficiently support the full-featured ANSI C with good accuracy

for hardware synthesis. Even though the complexity of the analysis can be expo-

nential, it is not a limitation because hardware models are rather small and simple

programs.

The flow- and context-sensitive analysis is more appropriate for hardware synthesis. In

our case, the complexity of the analysis is not an issue, and the coding style for modeling

hardware leads to accurate results. 

The implementation presented in this thesis uses a flow- and context-sensitive analy-

sis. Note that context-sensitivity is useful for synthesizing both functions mapped to com-

ponents (cf. Appendix A) and for pointers to functions (cf. Section 4.2.2.2). Using the

memory representation described in the previous section, the points-to information is

defined as a set of location sets. The points-to information is then used to encode the point-

ers’ value and to generate the appropriate logic for accessing the data in each location set.

Example 3.5. In the code segment presented in Example 3.1, annotations are inserted by

the pointer analysis to specify what pointers may point to (i.e. points-to set) at loads and

stores.
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  int *p, n;
int t[256];
struct { int a; int b; } in;

  ...
  if (...)
  p=&in.a; // p -> {<in,0,0>}

else
p=&in.b; // p -> {<in,4,0>}

...
t[n] = *p; // p -> {<in,0,0>,<in,4,0>}
*p = t[n+1]; // p -> {<in,0,0>,<in,4,0>}

  ...

 In the previous code segment, the notation 

stands for “p may point to variables in.a or in.b” where in.a is represented by the

points-to set <in,0,0> and in.b is represented by the points-to set <in,4,0>.

Example 3.6. In the code segment presented in Example 3.2, annotations are inserted by

the pointer analysis to specify what pointers may point to at loads, stores and free calls. 

if(object.type == REG)
  p = &reg;       // <p,0,0> -> {<reg,0,0>}
if(object.type == INTERNAL)
  p = malloc(4);  // <p,0,0> -> {malloc1}
else
  p = malloc(8);  // <p,0,0> -> {malloc2}
...
*p = object.data; // <p,0,0> -> {<reg,0,0>,malloc1,malloc2}
...
if(object.type != REG)
  free(p);        // <p,0,0> -> {<reg,0,0>,malloc1,malloc2}

 In the previous code segment, the notation 

 stands for “p may point to variable reg or some

storage allocated by malloc1 (fisrt malloc call) or malloc2 (second malloc call).”

3.3 Definition of the subset

This section is only about the restrictions on the synthesizable subset. Limitations on

the generated architecture may also exist akin to the limitations of the behavioral synthesis

<p,0,0> -> {<in,0,0>,<in,4,0>}

<p,0,0> ->

{<reg,0,0>,malloc1,malloc2}
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tool used as a back end. In particular, the techniques presented here do not depend on the

type of memories (SRAM, DRAM, etc.). 

The pointer analyses and memory representation presented in the previous sections

support the complete ANSI C syntax. In this thesis however, a synthesizable subset is

defined. This subset includes malloc/free as well as all types of pointers and type cast-

ing. The code is assumed to be correct. Tools such as Purify [87] or LCLint [21,84] can be

used to find memory leaks and check memory reads, writes and deallocations. Besides, the

following two restrictions are defined.

The first restriction applies to systems described as a set of parallel processes: pointers

that reference data outside of the scope of a process (e.g. global variables or data internal

to some other processes) are not allowed. Their resolution would require the synthesis of

some kind of interface between the circuits realizing the processes. As presented in Sec-

tion 1.2, such interface is usually defined during system partitioning and, hence, before

synthesis. As a result, memory allocated in one process is assumed to be accessed and

deallocated only within this same process. 

The second limitation stems from the fact that most commercial synthesis tools also

have restrictions on functions. Recursion is usually not supported as its implementation in

hardware in general remains a fundamental problem. This is not a real issue in reality as

recursion is often not well suited for hardware implementation. In theory, tail recursion

could be supported as it can be transformed into a loop. Limited recursion could also be

supported by modeling a stack using the techniques presented here for dynamic memory

allocation. 
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During synthesis, functions may either be inlined or mapped to components. Apart

from recursion, there is no real restriction on functions that are inlined. On the other hand,

procedures that are mapped to components typically have restrictions both on their func-

tionality and their parameters. For example, the same function called within different con-

texts may usually not be shared. Besides, most synthesis tools do not synthesize parameter

passed by reference, because this is not supported by most HDL syntax. The synthesis of

functions in C, and therefore the resolution of pointers and malloc/free inside of func-

tions, is beyond the scope of this thesis. Appendix A gives an outline of how functions can

be synthesized.
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CHAPTER 4. SYNTHESIS OF HARDWARE
FROM C

This chapter presents the different steps involved in the synthesis of hardware from C.

First, the memory space is partitioned into a set of location sets which are physically

implemented as wires, registers, or memories. Some of these location sets represent point-

ers. Pointers are resolved by encoding the value of the pointers and creating branching

statements for loads and stores. Finally dynamic memory allocation and deallocation are

performed by custom hardware memory allocators. 

A prototype of tool implementing these techniques is presented in Chapter 5. The

implementation can be further optimized. In Chapter 6, compiler techniques are used to

optimize the storage before loads and stores. An algorithm to efficiently encode the value

of the pointers is presented in Chapter 7. Finally, in Chapter 8, a library of hardware mem-

ory allocators are defined to optimize the implementation of malloc and free.

Definition 4.0. 

(4.0)

Example 4.0.
Figure 4.0

Proposition 4.0. 
Table 4.0: 
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4.1 Memory Refinement

After analysis, the storage in the program can be represented as a set of distinct loca-

tions sets. This set of location sets represents a partitioning of the memory space. Each

location set is ultimately mapped to a wire, a register or a section of memory in the final

design as shown on Figure 4.1. The allocation of a given scalar variable to a register or a

wire as well as the mapping to memories or register files are typically the result of high-

level synthesis (HLS). In this section, we present how distinct location sets can be mapped

to a set of arrays and variables. We do not consider pointers and heap objects. The synthe-

sis of pointers and malloc/free is presented in Sections 4.2 and 4.3. In the rest of the

thesis, we use the following representation for fundamental (or basic) types: char and

unsigned char are represented as 8 bits, short and unsigned short are repre-

sented as 16 bits, and int and unsigned int are represented as 32 bits. These repre-

sentations are the most common on 32 bits architecture. Derived types such as pointers,

arrays and structures are constructed from these fundamental data types.

Figure 4.1: Memory refinement from a continuous memory space to a set of memories, 
registers and wires

memories
register

files
registers

wires/
ports

arrays variables

continuous memory
space

set of location setsset of location sets

HLS
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We can distinguish two types of location sets for statically allocated data: location sets

whose strides are null (i.e. singletons, sets of one location), and location sets with non-

zero strides (i.e. sets of multiple locations). A singleton location set may therefore be

treated as a simple scalar variable, whereas a location set with non-zero stride may be

mapped to an array. In our implementation, for each location set <loc, f, s>, we define

SPC_loc_f_s as follows. 

For a singleton location set (i.e., s null), SPC_loc_f_s is a scalar variable. In the case

of a location set representing a variable of basic type (e.g. char, short, int) the map-

ping is straightforward. For structures, their different fields can be mapped to separate sca-

lar variables (mapped to registers or wires in the final hardware) as long as they are

represented by separate singleton location sets.

For a location set with non-zero stride (i.e. s not null), SPC_loc_f_s is defined as an

array (e.g. array of integers). Such array may then typically either be mapped to a memory

or a register file manually or according to current methodology [9,47] during high-level

synthesis. For arrays of structures, the different fields of the structures can be mapped to

different memories as long as their representations do not overlap. The different fields of

the structures can then be independently accessed, leading to more flexibility and poten-

tially better performances.

Example 4.1. Consider the following structure variable.

struct {
char  c1;
char  c2;
short s;
int   i;

} csi;
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 Four location sets represent the four fields of the structure csi. On the specific target

architecture, the fields csi.c1, csi.c2, csi.s and csi.i are respectively

represented by the location sets <csi, 0, 0>, <csi, 1, 0>, <csi, 2, 0> and

<csi, 4, 0>. The layout in memory space before synthesis is represented on Figure 4.2.

 We create the following variables corresponding to each location set:

char SPC_csi_0_0;  // csi.c1
char SPC_csi_1_0;  // csi.c2
short SPC_csi_2_0; // csi.s
int SPC_csi_4_0;   // csi.i

 As a result during the mapping to hardware the assignment 

csi.c2 = 0;

 is replaced by

SPC_csi_1_0 = 0;

Out of bound array accesses, as well as copies of structures can make things more

complicated. With our memory representation, one data (e.g. an entire structure) may be

represented by the concatenation of multiple elements of location sets. In Example 4.2, a

structure is represented as two integers. In Example 4.3, an integer inside of a structure is

represented by the concatenation of two short integers.

Example 4.2. This example illustrates the implementation of a structure copy.

struct { int x; int y; } A, B;
A = B;

0x00

0x04

0x08

0x10

csi.c1 csi.c2 csi.s

csi.i

Figure 4.2: Memory layout of struct {char c1; char c2; 
short s; int i;} csi.



CHAPTER 4.  Synthesis of Hardware From C Page 39

 After translation, the following synthesizable code is generated:

int SPC_A_0_0, SPC_B_0_0; // A.x, B.x
int SPC_A_4_0, SPC_B_4_0; // A.y, B.y

// A = B;
SPC_A_0_0 = SPC_B_0_0;
SPC_A_4_0 = SPC_B_4_0;

 The structure copy is broken into two assignments corresponding to the two fields of the

structure.

Example 4.3. In the following code segment, the structure variable its contains an array

of short integers.

struct {
int i;
short ts[2];

} its;
int a, b;

its.i = a;
b = its.i;

 Because of potential out of bound array accesses (e.g. its.t[-1]), the structure

variable its is entirely represented by the location set <its , 0, 2>. The code segment is

then transformed into:

short SPC_its_0_2[4];
int SPC_a_0_0, SPC_b_0_0;

// its.i = a; 
SPC_its_0_2[0] = SPC_a_0_0 >> 16;
SPC_its_0_2[1] = SPC_a_0_0 & 0xffff;

// b = its.i;
SPC_b_0_0 = SPC_its_0_2[0] << 16 | SPC_its_0_2[1];

 Note that using a concatenation operator {...} these assignments can be written as:

{ SPC_my_str_0_2[0], SPC_my_str_0_2[1] } = SPC_a_0_0;
SPC_b_0_0 = { SPC_my_str_0_2[0], SPC_my_str_0_2[1] };
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4.2 Pointer Synthesis

In hardware, as discussed in Chapter 3, data may be physically available in registers,

memories or even wires (e.g. output of a functional block). Therefore, to efficiently map C

code into hardware, pointers may not only address data in memory, they may also refer-

ence registers, wires or ports. Pointer analysis is used to define the set of locations, as a set

of location sets, each pointer may point to. The synthesis tool generates the appropriate

circuit to dynamically access these locations according to the pointers’ value. Two types of

pointers may be defined: pointers to a single location, which can be removed, and pointers

to multiple locations.

Loads from pointers to a single location (i.e. one location set whose stride is null) are

simply replaced by assignments from the location accessed. Similarly, stores are simply

replaced by assignments to the location referenced. Loads and stores from pointers to mul-

tiple locations (i.e. many location sets with zero strides and/or one or more location set

with non-zero stride) are replaced by a set of assignments in which each location may be

dynamically accessed according to the pointer’s value. For the sake of clarity, the variable

name p is used as a generic pointer name. We have also seen in the previous section how

complex data structures can be mapped to arrays and scalar variables. Without loss of gen-

erality, pointers are considered either as scalar variables or arrays that may point to vari-

ables or arrays.

4.2.1 Encoding the value of the pointers

The addresses (i.e. pointers’ values) are encoded. The encoded value of a pointer p

consists of two fields: the tag p.tag corresponds to the location set referenced by the
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pointer and the index p.index stores the number of bytes corresponding to the offset of

the data referenced within the location set.

The tag p.tag is only used for pointers to multiple location sets. Its size (defined as

the  min imum number  o f  b i t  u sed  to  s to re  i t s  va lue )  can  be  as  smal l  a s

. The index p.index on the other hand is used

when the pointer p may point to a location set with non-zero stride (e.g. an array). Pointer

arithmetic is then supported by changing the value of the index: the value of p.index is

initialized when p gets the address of the array element. Then, the index is modified

instead of p.

For scalar pointer variables, these two fields can be implemented as separate variables

p_tag and p_index. 

Definition 4.1. For a pointer variable p, we define the variables p_tag and p_index,

where p_tag encodes the location set the pointer points to and p_index stores the offset

corresponding to the location referenced by the pointer within the location set.

In the case of an array of pointers, the tag and index fields are merged into one data

structure as shown on Figure 4.3. To support type casting, it is convenient to set the size of

this data structure to be the same as the size of a pointer before encoding (typically

32bits). The tag is stored on the left part of the code and the index on the right part of the

code to support pointer arithmetic even after type-casting.

2 size_of_points-to-set( )log

MSBMSB LSB

indextag

MSB LSB MSB LSBLSB

table_p[i-1] table_p[i] table_p[i+1]

Figure 4.3: Encoding of pointers in an array
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Example 4.4. Consider the following code segment.

int *p, *q;
int a, b, c, table[256];
...
if(...) {

p = &a;
q = &c;

} else {
p = &b;
q = &table[n];

}
...
*q = *p +1;

 In this code segment, p may point to variables a or b and q may point to c or an element

of table[]. In order to remove the pointers, we create the one-bit variables p_tag and

q_tag. Since q may point to an array element, we also create the index q_index. For

p_tag we associate the value 0 with a and 1 with b. As a result the assignment p=&a is

replaced by p_tag=0 and the assignment p=&b is replaced by p_tag=1. Similarly, for

pointer q, we associate the value 0 with c and 1 with the location set representing the

elements of table[]. The assignment q=&c is then simply replaced by q_tag=0. The

assignment q=&table[n] is replaced by two assignments q_tag=1 and

q_index=n*4.

Example 4.5. Consider the assignment of pointers (r=s), where r may point to a, b or c

and s may point to b or c. In order to remove the pointers, we create r_tag and s_tag.

For r_tag we associate the value 0 with a, 1 with b, and 2 with c. For s_tag, we

associate 0 with b and 1 with c. The following code is generated for r=s:

switch s_tag:
case 0: r_tag=1;
case 1: r_tag=2;
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 Now if for r_tag, the value 0 was associated with b and the value 1 was associated with

c, r=s would have been replaced by:

 r_tag=s_tag;

 This shows that the complexity of the circuit implementing the assignment of two pointers

is directly related to the encoding of the pointers. Implementing pointers’ comparisons

and assignments efficiently requires pointers to have the same code, or at least codes as

close as possible.

The encoding of the pointers’ value has an effect on the complexity of the design.

Example 4.5 gives two examples of encodings that produce different implementations for

the assignment of two pointers. An encoding algorithm that reduces both the bit width of

the pointers and the size of the circuits translating the values of the pointers is presented in

Chapter 7.

4.2.2 Dereferencing the pointers

Pointers may point to multiple locations. As a result, for every load and store, a circuit

has to be created to dynamically access the different locations the pointer may reference at

this point in the program. This circuit can be described as a set of branching statements in

which the locations in the points-to set are directly accessed. Dereferencing pointers cor-

responds to the task of replacing the loads and stores in the program by these branching

statements.

Several types of pointers can be distinguished. We have seen in Section 4.1 how com-

plex data structures can be represented as variables and arrays. Without loss of generality,



CHAPTER 4.  Synthesis of Hardware From C Page 44

in this section, we first consider pointers that may point to variables and array elements.

We then present two extensions for pointers to pointers and pointer to function.

4.2.2.1 Pointers to variables and arrays

We use the result of pointer analysis to remove loads and stores. With the assumptions

of Section 2.3, loads and stores can be replaced by branching statements (e.g. case, if

then else) at compile time. Pointer analysis defines the set of location sets the pointer

may reference at each load and store. When these location sets are mapped to registers or

wires (e.g. output of a functional unit), the branching statements corresponding to a load

are implemented using a multiplexer controlled by the pointer’s value. In the case of a

store, some control logic is generated to update the value of the variable the pointer points

to. This control logic can be automatically generated by an architectural synthesis tool.

References to array elements stored in memories or register files are treated similarly.

Some control logic is also created to access the location referenced in the different memo-

ries or register files.

Example 4.6. Consider the code segment in Example 4.4, *q=*p+1, where p may point to

a or b and q may point to either c or an element of table[]. To synthesize the load, we

create the temporary variable star_p which stores the value of the data the pointer p

points to (i.e. *p) at the load instruction. Similarly for the store we create the temporary

variable tmp_q that stores the new value to be assigned to the data q points to at the store

instruction. After encoding the pointers’ value (cf. Example 4.4) the loads and stores are

then replaced by the following code:

switch p_tag: {
case 0: star_p = a;  break;
case 1: star_p = b;  break;
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}
tmp_q = star_p + 1;
switch q_tag: {

case 0: c = tmp_q;             break;
case 1: table[q_index]=tmp_q;  break;

}

 The corresponding circuit generated after synthesis is presented in Figure 4.4. Note that

the load (...=*p) is implemented by a 2-input multiplexer controlled by p_tag. 

The removal of the dereferences ‘*’ in loads and stores can be done in one pass. For

each load (...=*p), we look at the points-to set of the pointer at this instruction. If the

points-to set is only one location, the load is simply replaced by an assignment from this

location. Otherwise, we create a temporary variable (star_p in Example 4.6) that stores

the value of the data the pointer points to at the load instruction. The load instruction is

then replaced by an assignment from this temporary variable. Branching statements are

inserted before the load to set the value of the temporary variable star_p according to

the values of the tag p_tag and the index p_index.

Similarly, for each store (*q=...), we also look at the points-to set of the pointer q

at this instruction. If the pointer points to only one location, the store is simply replaced by

an assignment to this location. Otherwise we create a temporary variable (tmp_q in

Example 4.6) that stores the value to be assigned to the data q points to. The store is then

a

b

p_tag

p->{a,b}
q->{table[],c}

c

Figure 4.4: Implementation of *q=*p+1, where p may point to a or b and q 
may point to c or an element of table[].

q_tag

q_index

table[]

1 +

star_p
tmp_q
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replaced by an assignment to this temporary variable and branching statements are

inserted after the store to update the values of the variables q may point to according to the

tag q_tag and index q_index.

This implementation can be generalized to pointers to pointers and pointers to func-

tions. In Section 6, we also present some optimizations to reduce the memory usage before

loads and between loads and stores when the pointer is a variable.

4.2.2.2 Generalization to other types of pointers

In general, pointers may also point to other pointers and functions. The technique pre-

sented in the previous section can be extended to these types of pointers.

Pointers to pointers

Pointers to pointers can be implemented by resolving the pointers level by level.

Example 4.7. Consider a pointer p that may point to two pointers q1, q2. Pointers q1 and

q2 may in turn both point to variables a or b. The statement (**p=**p+1;) can be

resolved as follows using a sequence of two case statements. For the sake of clarity the

pointers’ values have not been encoded. Encoding of the pointers’ value can be performed

in a second pass.

switch p {
case &q1: 

star_p = q1; break;
case &q2: 

star_p = q2; break;
}
switch star_p {

case &a:
star_star_p = a; break;

case &b:
star_star_p = b; break;

}
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tmp_star_p = star_star_p + 1;

switch p { // Note: can be removed by
case &q1: //       further analysis

star_p = q1; break; // 
case &q2: // 

star_p = q2; break; // 
} //
switch star_p {

case &a:
a = tmp_star_p; break;

case &b:
b = tmp_star_p; break;

}

A better implementation can be obtained by removing unnecessary definitions. In the

previous example the third switch statement redefining star_p is not necessary and

can be automatically removed using compiler analysis techniques.

Pointer to functions

Pointers to functions are resolved in a straightforward manner after pointer analysis. 

Example 4.8. For a pointer p that may point to functions f1(int) or f2(int),

(*p)(a) will simply be replaced by the following code segment: 

switch p {
case &f1: f1(a); break; 
case &f2: f2(a); break; 

}

 In order to map this code into hardware, functions f1 and f2 can be inlined and the

value of pointer p is encoded.

The synthesis of the functions themselves is then performed according to the synthesis

tool (e.g map to component, inline...). In this thesis, functions are inlined before synthesis.
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4.3 Synthesis of malloc and free

In order to support dynamic memory allocation and deallocation, the hardware needs

to access an allocator. In general the allocator could be implemented in software (for

mixed hardware/software implementations) or completely in hardware. For example, in a

mixed hardware/software implementation, the hardware can send an interrupt to the pro-

cessor to perform memory allocation and deallocation. In the case of an allocation, the

software, typically the operating system running on the processor, would then send the

address of the allocated block in memory to the hardware. Since this work is on the hard-

ware synthesis of C code, only a hardware implementation is presented. Nevertheless, the

techniques presented here could also be targeted to a software implementation.

In software, malloc and free are implemented as standard library functions. Simi-

larly, for hardware synthesis, we use a library of hardware components implementing

malloc and free. The idea here is to have one component, called allocator, implement-

ing both the malloc and free functions as introduced in Section 2.3. In order to effi-

ciently manage memory, multiple customized memory allocators that may allocate storage

in multiple memories in parallel shall be supported. As a result, the memory space in

which data are dynamically allocated (heap space) is partitioned into a set of memory seg-

ments (pools of blocks).

Definition 4.2. A memory segment is defined as an array of finite size in which data are

allocated by a unique allocator. This array may later on be mapped to one or more memo-

ries during high-level synthesis.

In this work, the partitioning of the memory space into different memory segments is

done by the designer. Other tools could be used to assist this task at the system level. For



CHAPTER 4.  Synthesis of Hardware From C Page 49

example, tools such as the one defined in the Matisse research project [69,70,80] could be

used in order to refine data structures and define different arrangements and architectures

of hardware memory allocators.

For each malloc in the code, the designer selects in which memory segment the stor-

age is allocated. Since the size of the dynamically allocated memory cannot be found by

static analysis, the designer also sets the size of each memory segment manually. The tool

instantiates then the hardware memory allocators corresponding to each memory segment

and synthesizes the appropriate circuit to allocate, access and deallocate data.

For each memory segment, a different allocator is instantiated. Each malloc mapped

to this memory segment is then replaced by a call to the specific allocator. The pointer that

takes the result of the malloc function is defined as follows: its tag is set according to the

corresponding memory segment and its index is set by the allocator. When multiple mal-

loc calls are mapped to a single memory segment, the corresponding allocator is shared. 

For a call free(p), the data to be deallocated may be in one memory segment or

another depending on the value of the pointer p. We generate branching statements in

which the different allocators corresponding to the different memory segments may

dynamically be called according to the pointer’s tag. The pointer’s index is then sent to the

allocator to indicate which block should be deallocated. Loads, stores and addresses are

resolved as shown in the previous section. Examples 4.9 and 4.10 illustrate how malloc

and free calls are resolved while removing pointers.

Example 4.9. Consider the following code segment.

p = malloc(1);
out = *p;
free(p);
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 If malloc is mapped to a memory segment called seg1 of size 32 bytes, we generate the

following code (assuming that the size of char is one byte):

char seg1[32]; // memory segment: seg1
p_0_0 = alloc_seg1(SPC_MALLOC,1);
out_0_0 = seg1[p_0_0|0xffff]; // seg1[p.index]
alloc_seg1(SPC_FREE,p_0_0);

 The allocator component corresponding to the function alloc_seg1 is called for both

malloc and free. It implements both the allocation and deallocation functions. 

Example 4.10. Let us now consider a more complex example where pointer p may point to

different memory segments.

if(i==0)
p = malloc(1); // malloc1

else
p = malloc(4); // malloc2

out = *p;
free(p);

 We assume malloc1 is mapped to the memory segment seg1 and malloc2 is mapped to the

memory segment seg2. Both memory segment are of size 32 bytes (set by the user). The

resulting code, after removing malloc/free is the following:

char seg1[32];
char seg2[32];
if(i==0) {

p_0_0 = alloc_seg1(SPC_MALLOC,1);
} else {

p_0_0 = alloc_seg2(SPC_MALLOC,4);
}
...
if(p_0_0>>16==0) // p.tag==0

out_0_0 = seg1[p_0_0&0xffff]; // seg1[p.index]
else

out_0_0 = seg2[p_0_0&0xffff]; // seg2[p.index]
...
if(p_0_0>>16==0) // p.tag==0

alloc_seg1(SPC_FREE,p_0_0);
else

alloc_seg2(SPC_FREE,p_0_0);
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 If each memory segment is mapped to a different RAM during synthesis, we end up with

the architecture on Figure 4.5.

4.4 Summary

The general methodology for efficiently mapping C code from a system-level descrip-

tion onto hardware and generating an application-specific memory management architec-

ture are respectively presented in Sections 1.2 and 2.3. In this chapter, the techniques for

resolving pointers, malloc/free and complex data structures within this context are pre-

sented. 

After analysis, the memory space is partitioned into a set of location sets which may

physically be map to memories, registers or wires/ports during synthesis. Pointer analysis

is used to define the set of location sets each pointer may point to. 

This points-to information is used to replace loads and stores in the code by branching

statements in which the data referenced are dynamically accessed. Values of pointers are

encoded. In this encoding, the most significant bits correspond to the tag, which encodes

the location set referenced. The remaining bits (least significant bits) correspond to the

index, representing which location within a given location set is actually referenced. 

RAM RAM

alloc_seg1

alloc_seg2

Main Module

Figure 4.5: Architecture for multiple memories and allocators

seg1 seg2
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Malloc and free calls are replaced by calls to a specific allocator function mapped

to a hardware allocator component during synthesis. For each malloc, memory alloca-

tion is performed within a memory segment defined by the designer (or by higher level

tools). Each memory segment has a fixed size and is managed by a unique allocator. Deal-

location may be apply in different memory segments. Branching statements are inserted to

dynamically free previously allocated memory within these memory segments according

to the value of the pointer.
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CHAPTER 5. IMPLEMENTATION

The different techniques presented in the previous chapter have been implemented in

the tool SpC (for Synthesis of Pointers in C) which automates the synthesis of a C architec-

tural description into hardware. The toolflow is presented here, followed by some results

for a set of applications.

5.1 Toolflow

In the methodology described in Section 1.2, the design of a system starts at the sys-

tem level, where data structures, data formats and algorithms are refined. At the architec-

tural level, the system consists of a set of communicating processes. Each of these

processes can then be mapped to software or hardware. The general tool flow is shown on

Figure 5.1. Our tool SpC inputs a C function after architectural refinement (i.e. communi-

cation and internal/shared storage are defined). This C function may contain pointers.

Definition 5.0. 

(5.0)

Example 5.0.
Figure 5.0

Proposition 5.0. 
Table 5.0: 
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The different techniques presented in Section 4 have been implemented using the

SUIF compiler environment [68,90]. The tool SpC consists of the following passes.

1) The compiler front end takes a C function and translates it into a SUIF intermedi-

ary representation (IR).

2) The points-to sets of each pointer in the code is defined by means of pointer analy-

sis. A flow and context-sensitive implementation by Wilson and Lam [66,67] is

used.

Figure 5.1: Position of SpC between high-level synthesis and architectural mapping
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3) Calls to malloc and free are replaced by calls to specific allocation functions.

4) Pointers are resolved. Loads and stores are replaced by branching statements in

which the different locations the pointer may reference are dynamically accessed.

Pointers’ values are encoded.

5) Memory space is partitioned. Each location set is mapped to an array or a scalar

variable. Accesses to the different location sets are replaced by accesses to their

corresponding arrays or scalar variables.

6) C code without pointers, struct or malloc/free is generated back from the

IR.

The previous passes represent the steps implemented inside SpC. The tool itself can be

used within two different toolflows as shown on Figure 5.2. First, SpC may be used within

a traditional C-to-HDL methodology as shown on the right part of Figure 5.2. The C code

output of SpC is very much like an HDL model. It can be automatically translated to Ver-

ilog (using syntax tree mapping from C IR to Verilog IR). The calls to specific memory

allocation functions are handled as follows. During the translation into HDL, the different

allocators corresponding to each memory segment are instantiated and the specific alloca-

tion functions are mapped to these allocator modules. The communication between each

allocator and the main module is done using hand-shakes. The resulting Verilog module

can then be synthesized using Synopsys Behavioral Compiler [91].

Another flow integrates SpC within the recent Synopsys Cocentric SystemC Compiler

environment [92]. The idea here is to take a SystemC description as an input instead of a

simple C function. In this SystemC description, the processes to be mapped to hardware
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are implemented by functions called using a call-back mechanism [86]. For functions con-

taining pointers, a pragma can be used to specify that pointers have to be removed prior to

synthesis. These functions are then exported. During this process, the i/o ports of the

enclosing SystemC module are transformed into global variables. Here, although SystemC

is based on C++, the assumption is that the function body uses only C syntax. The function

exported is then parsed within the SUIF compiler framework and pointers are removed

using SpC. The resulting C function without pointers is then reintegrated within the Sys-

Dynamic Memory Allocation 

Pointers Resolution

(functional description)

Resolution

C function

Figure 5.2: SystemC and a traditional C-to-HDL methodology using SpC
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temC environment. The initial call-back function with pointers is simply replaced by the

newly generated function without pointers which can be synthesized.

5.2 Results

We show the results for the resolution of pointers in relatively large examples. Since

there are no synthesis benchmarks written in C with pointers, the objective of this section

is to show the technical feasibility of mapping real examples of C descriptions to logic

gates. For multimedia applications, SpC was used for the implementation of a two-dimen-

sional inverse discrete cosine transform (2D IDCT) [42], an alpha blender and a video

image filter. It was also used to generate the specific-purpose and general-purpose memory

allocators, which will be described in Chapter 8. Finally as an example of networking

application, an ATM segmentation engine was also synthesized to hardware. The multime-

dia applications are described first.

In multimedia applications, it is often hard to find relevant examples involving pointers

to multiple locations and complex data structures without function calls. Pointers are often

used to scan arrays within loops using pointer arithmetic. These pointers are relatively

straightforward to remove using constant propagation and standard compiler loop optimi-

zations such as loop unrolling. Our examples contain pointers which cannot be removed

using such techniques.

The 2D IDCT is widely used in image compression standards such as JPEG, MPEG

and H263. The 2D IDCT implemented consists of two one-dimensional IDCTs (1D

IDCTs). For this purpose, we use three different memories: the input buffer (in_table),

the intermediate buffer that stores the result of the first 1D IDCT (buf_table) and the
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output buffer (out_table). These memories are accessed through pointers and pointer

arithmetic. Pointers are also used in the 1D IDCT to reference two register banks (buff1

and buff2). 

The 2D IDCT is implemented using only one call to 1D IDCT (function 1d_idct)

which is inlined before synthesis:

2d_idct() {
int i, *p_in, *p_out;

 for(i=0; i<2; i++) {
if(i==0) { // first iteration                

p_in = in_table; //    p_in  -> input buffer        
p_out = buf_table; //    p_out -> intermediate buffer 

} else { // second iteration               
p_in = buf_table; //    p_in  -> intermediate buffer 
p_out = out_table; //    p_out -> output_buffer       

}
1d_idct(p_in, p_out); // unique call to 1D IDCT

}
}

Note that, in this specific example, pointers are not only used to access memories, but

they are also used for sharing resources; in this example only one 1d_idct is synthe-

sized. Since functions are inlined in our framework, a more standard implementation of

the 2D IDCT algorithm in which the 1d_idct function is called twice would lead to two

1D IDCT blocks. Such a design would typically be larger and more difficult to efficiently

synthesize. Using pointers here provides a convenient and efficient way of performing

resource sharing.

The second example corresponds to an alpha blender. Alpha blenders are used in video

and signal processing to superimpose multiple images. Our implementation takes three

images and alpha planes of size 8x8. The alpha plane defines the degree of opacity for

each pixel in the image. The order in which the images are placed with respect to each oth-
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ers (e.g. front, middle, back) is defined by a layer number associated with each image. The

different images and alpha planes are stored in separate arrays (mapped to separate memo-

ries) in order to access them in parallel. Pointers are used to access the different arrays.

The third example is a filter used in the JPEG library of Synopsys COSSAP [93] and is

used, for example, for RGB to YCrCb transformations. The filter implements the operation

 for , where A is a  matrix, B and C

are vectors and Y and X are two  dynamically-allocated matrices.

The next example is the implementation of an ATM segmentation engine. The segmen-

tation engine receives frames to be sent from the host. These frames are segmented into 48

byte cells (payload of an ATM cell) to be transmitted on the network. The engine keeps

track of each frame in a queue. For every new frame, a new virtual connection is opened

and a new queue element is allocated. As a results, we have two sets of malloc calls: one

to allocate queue elements, the other to allocate connection status records. Finally the last

two examples correspond to the specific-purpose and general-purpose allocators to be

introduced in Chapter 8. They implement both malloc and free in hardware.

The results after synthesis are presented on Table 5.1. The first column gives the name

of the example described above. Columns 2 and 3 respectively show the number of lines

of C code and of Verilog code automatically produced. The CPU time for translating the C

code into HDL using SpC on a Sun Ultra2 is shown in Column 4. The results highlight

that SpC can deal with medium-size programs is a very short period of time. The Verilog

modules are then synthesized by Synopsys Behavior Compiler. Results after synthesis are

given. Columns 5 and 6 present the area of combinational and non-combinational (i.e. reg-

Y i[ ] clip A X i[ ] B C,+⋅( )= i 1 2 ... n, , ,{ }= 3 3×

3 n×
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ister) logic. The clock frequency shown in the last column is 100MHz except for the video

filter example.

These results show that high-performance implementations can be generated from C

programs. As an example, the implementation of the 2D-IDCT is presented in Figure 5.3.

The design consists of five multipliers and nine adders or subtracters. This 2D-IDCT was

designed to sustain the MPEG-2 bit rate with less than 400 clock cycles to perform a 2D-

IDCT on an 8x8 block. Other implementations can be found by changing the timing and

resource constraints.

Figure 5.3: architecture of the 2D IDCT
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test
C

lines
Verilog 

lines

cpu
time
(in s)

area (x1000)
frequency

(MHz)comb.
non-

comb.

idct 176 221 7.8 38 12 100

alpha blender 119 189 10.2 123 149 100

video filter 190 659 21.7 1,287 747 50

ATM se-engine 403 611 35.3 1,359 693 100

specific-purpose 
allocator

85 135 7.3 33 19 100

general-purpose 
allocator

297 353 9.9 204 80 100

Table 5.1: Result of the synthesis using target library tsmc.35u (area in library units).
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CHAPTER 6. OPTIMIZATION OF LOADS AND
STORES

In the previous two chapters, we have seen how pointers can be removed after pointer

analysis. Now, we optimize the code to reduce the amount of storage necessary before

loads (...=*p) and stores (*p=...). These optimizations are targeted at optimizing pointer

variables pointing to multiple variables, which is quite common in the context of synthe-

sizing functions, as shown in Appendix A.

In this section, the following assumptions are made in addition to the ones listed in

Section 3.3. The pointer p is a scalar variable. Its points-to set consists of a set of variables

(i.e. mapped to registers or wires in the physical implementation). The optimizations pre-

sented here are only performed when the previous assumptions hold. In Section 4.1, we

have seen that location sets representing a single location can be mapped to variables. As a

result, the optimizations presented here also apply to location sets representing a single

location.

The goal of the optimizations presented here is to reduce the number of live variables1

before loads and stores. When variables are stored in registers, the number of registers

Definition 6.0. 

(6.0)

Example 6.0.
Figure 6.0

Proposition 6.0. 
Table 6.0: 
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used in a given program corresponds to the maximum number of variables live at a clock

boundary. The direct effect of the optimizations presented here is therefore to reduce the

number of registers used in the design. Besides, synthesis tools may also take advantage of

having less live variables before loads and stores to improve performance by more effi-

ciently reusing registers.

6.1 Optimization of Loads

By definition, a load may read any variable of the points-to set. It also uses the value of

the pointer to select which variable is actually read. This implies that all variables of the

points-to set and the pointer variable are live before the load. However, only one variable

is really necessary: the variable the pointer points to.

Definition 6.1. For a pointer variable p, we define star_p as a variable whose value is

equal to the value of the data the pointer p points to at any point in the program.

A load (...=*p) is then equivalent to an assignment from star_p. The number of live

variables before a load can then be reduced by, at most, the number of variables in the

points-to set as we can see in Example 6.1.

1.A variable is live at a particular point in a program if there is a path to the exit along
which its value may be used before it is redefined (i.e. killed). It is dead if there is no
such path [1,45].
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Example 6.1. In Figure 6.1, the load (out=*p) where p may point to a, b, or c, is replaced

by an assignment from star_p. The number of live variables before the load goes from 4

{a, b, c, p} to 1 {star_p}, assuming that none of these variables are live after the load.

The issue is then to define star_p in such a way that the number of live variables is

reduced. In our implementation, each load is replaced by assignments from star_p. The

variable star_p itself is defined each time p or any variable in the points-to set is modi-

fied. Dead-code elimination [1,45] is then performed to remove all unnecessary definitions

of star_p.

However, the early definition of star_p may also increase the number of live vari-

ables. When all variables of the points-to set are live, star_p is just a copy of one of

these variables and therefore is not necessary. So, in order to minimize the number of live

variables, star_p is killed (i.e. redefined) when all variables of the points-to set are live.

An outline of the complete algorithm for the optimization of loads follows:

1) Update star_p when p, or any variable of the points-to set changes.

2) Do live variable analysis [1,45] (implemented as backward data-flow analysis).

3) Insert definition of star_p when all variables of the points-to set are live.

4) Do dead-code elimination.

out=*p

a b c

out

out=star_p

star_p

out
c

p
a
b

p

Figure 6.1: Optimization of a load
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Example 6.2. Let us take the code segment shown on Figure 6.2, before and after

optimization, where the pointer p may point to a, b, or c. 

 

We assume that none of the variables are live after the last line. During the first pass,

we replace *p by star_p, and update star_p after a=in. Then, because of

temp=a+b+c, a, b and c are live at the first wait() statement. After live variable

analysis we add the case statements which define (i.e. kill) star_p. Finally dead-code

elimination removes the first definition of star_p at the beginning of the code. The num-

ber of live variables before the load has been reduced from 5 {a,b,c,p,temp} to 2

{star_p, temp}.

This optimization can drastically decrease the number of live variables before loads.

Nevertheless, it increases the number of branching statements, which correspond to com-

binational steering logic, to control the value of star_p. Therefore, there is a trade-off

here between the number of live variables (i.e registers) and the amount of steering logic

in the hardware implementation.

/* original code */
a=in;
wait();
temp=a+b+c;
wait();
out=*p+temp;

/* code after optimization */
a=in;
// if (p_tag==0) star_p=a; // deadcode
wait();
temp=a+b+c; // a,b,c live
switch p_tag { // define star_p

case 0: star_p=a;  break;
case 1: star_p=b;  break;
case 2: star_p=c;  break;

}
wait();
out=star_p+temp;  

Figure 6.2: Example of code segment before and after optimizing load
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6.2 Optimization of Stores

In this section, we try to apply the same idea of creating temporary variables to reduce

the number of life variables before stores.

Example 6.3. Let p be a pointer that may point to a, b, or c. Consider the store *p=in

assuming that all variables of the points-to set are live after the store. As a result, we have

5 variables {p, in, a, b, c} live before the store. Now assume that, at run time, p points to

a. Since the value of a is going to be redefined by the store, it is not needed before the

store. As a result the number of live variables before the store could be reduced by 1. Note

that the same applies when p points to b or c.

As we have seen in Example 6.3, the number of live variables before a store can be

reduced by at most one. The reason is that the store needs all variables of the points-to set

(that are live after the store) except the variable p points to. For this purpose, given a

pointer p and the size of its points-to set pts_size, we define the following class of vari-

ables:

{ _starn_p, for n in {1, 2, ..., (pts_size-1)}}

(“_starn_p” stands for “not  star_p”), variables whose values are equal to the val-

ues of the variables in the points-to set p does not point to. 

Note that each _starn_p can be defined in such a way that it may only store the

value of either variables of a fixed pair as shown in Example 6.4.

Example 6.4. If p may point to a, b, or c, we create _star1_p and _star2_p and define

them as follows (note that other formulations may be used):

_star1_p=(p!=&a)?a:b;
_star2_p=(p!=&b)?b:c;
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 As a result, the store *p=in which leads to 5 live variables (cf. Example 6.3) can be

replaced by the following code segment which uses only 4 variables {p, _star1_p,

_star2_p, in}:

switch p: {
case &a:  a=in;        b=_star1_p;  c=_star2_p;  break;
case &b:  a=_star1_p;  b=in;        c=_star2_p;  break;
case &c:  a=_star1_p;  b=_star2_p;  c=in;        break;

}

To optimize the number of live-variables before stores, let us first consider an adapta-

tion of the algorithm described in Section 6.1. Indeed, one could imagine an algorithm

where the _starn_p variables are used at each store and defined when p or any variable

of the points-to set is modified. Since each of the _starn_p variables can only store the

value of one of two variables of the points-to set, they should be killed each time one of the

variables of the points-to set is live. For hardware synthesis, this creates a lot of logic to

control their value, which turns out not to be very practical.

In this thesis, a conservative approach is taken by optimizing stores only in the case of

a load followed by a store. Such a case happens after inlining functions in which the

parameters passed by reference are both read and written within the function. 

Example 6.5. Let us look at the example of (*p=*p+1) where p may point to a or b. Such

a code may be generated after inlining the function call incr(p) where incr(int *)

is defined as:

incr(int *q) { *q=*q+1; }

 The code corresponding to (*p=*p+1) after optimization using _star1_p is the

following:
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// definition of star_p and _star1_p
if(p==0) { // p==&a

star_p = a;
_star1_p = b; }

else {     // p==&b
star_p = b;
_star1_p = a; }

star_p = star_p + 1;

// assignements to a and b
if(p==0) { // p==&a

a = star_p;
b = _star1_p; }

else {     // p==&b
b = star_p;
a = _star1_p; 

  }

non optimized load and store

Figure 6.3: CDFG for *p=*p+1 with p->{a,b}
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 Figure 6.3 shows the control/data-flow graph (CDFG) before and after optimization. The

definitions of the temporary variables star_p and _star1_p have been inserted before

the load, and the variables of the points-to set are updated after the store. We can verify

that the number of live variables between the load and store has been reduced from 4

{a,b,p,star_p} to 3 {star_p,_star1_p,p}. 

For a pointer p, the algorithm for reducing the number of live variables between loads

and stores is the following:

1) List the stores dominated1 by loads from the same pointer (implemented as a for-

ward data-flow analysis [1,45]).

2) List the loads post-dominated2 by stores from the same pointer (implemented as a

backward data-flow analysis [1,45]).

3) Do live-variable analysis assuming that each store in the list generated at Step 1

kills all variables in the points-to set.

4) If, for all loads in the list generated at Step 2, none of the variables in the points-to

set are live:

- define star_p and the _starn_p variables before the loads and when p, or

any variable of the points-to set changes between loads and stores;

- use star_p and the _starn_p variables to update the values of variables in

the points-to set after the stores.

1. Instruction d dominates instruction i in a flow graph if every possible execution
path from the entry node to i includes d [45]. 

2. Instructions i post-dominates instruction d in a flow graph if every possible execu-
tion path from the d to the exit (aka sink) node includes i [45].
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Even though this optimization reduces the number of live variables before stores by at

most one, it helps reducing the number of registers. There is however a trade-off between

the number of registers used and the amount of steering logic. This optimization can be

performed while optimizing the loads.

6.3 Results

We have written several models to study the effects of the different optimizations pre-

sented in this section.

This set of results illustrates the effects of each feature of the optimizer. Table 6.1 and

Table 6.2 show the examples with the area and cumulative timing after pointer resolution

with and without optimization.

example
 C

lines

area
(combinational/non-combinational)

no optimization with optimizations

load 43
3861

(1527/2334)
3599

(2076/1523) 

load/store 48
6746

(5319/1427)
6366

(5324/1042)

Table 6.1: Area after synthesis and optimization using target library lsi_10k (in library units).

example
 C

lines
timing

no optimization with optimizations

load 43 46 ns 51 ns

load/store 48 86 ns 88 ns

Table 6.2: Timing after synthesis and optimization using target library lsi_10k (in ns).
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The first model (load) tests the optimization of loads. It contains one pointer that may

point to 3 integers stored in registers. After the definition of the pointer, we have two paths

and then a load. In one path, none of the variables of the points-to set is used. In the other

path, all variables of the points-to set become live. Without any optimization we have five

32bit registers (i.e. 2334 units of non-combinational area). After optimization the number

of registers is reduced to three (i.e. 1523 units of non-combinational area). This reduction

of the storage goes however with an increase of the combinational area and of the cumula-

tive timing caused by adding steering logic to update the value of star_p. There is a

trade-off between the number of registers and the amount of the steering logic.

In the second example (load/store), we have a pointer that may point to two inte-

ger variables stored in registers. This pointer is used as a parameter in a function call. After

inlining the function, we end up with a load followed by a store. Here the optimization

saves one register with a little increase of the amount of steering logic.

6.4 Summary

In this chapter, compiler techniques were presented to reduce the number of live vari-

ables (akin to registers in the final design) in the code. Loads are optimized by creating a

temporary variable that stores the value of the variable the pointer points to. In a way, this

is similar to prefetching. Stores are optimized by creating temporary variables that stores

the value of the variables the pointer does not point to. In Appendix A, we will see how

synthesizing functions motivates such optimizations. Results show that, in general, there is

a trade-off between storage (number of registers) and combinational logic. The optimiza-

tions reduce storage area with a possible increase in combinational logic area.
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CHAPTER 7. ENCODING OF POINTERS

In software, the pointers’ values represent addresses in memory space. These values

are used in loads and stores, they have a fixed size and can then be assigned (p=q) or com-

pared (p==q). In hardware, we want to reduce the size of the storage and the complexity

of the decoding logic in loads and stores. In Section 4.2.1, we have seen that the encoding

of a pointer consists of two fields, a tag and an index. In this section, we are trying to

encode the tag part more efficiently. Other techniques similar to the encoding of memory

addresses [4,47] could be used to encode the index part, but they are not addressed in this

thesis.

Definition 7.1. We define the size of a pointer as the bit-width of its tag.

When the size of the pointer is decreased, the number of bit registers used to store its

value is also reduced. The decoding logic for loads and stores is also simplified. We have

seen that a load can be implemented as a multiplexer controlled by the pointers’ value (tag

part). Reducing the pointers’ size simplifies also the complexity of the decoding logic for

this multiplexer. However, as we have seen in Example 4.5, when pointers are assigned or

compared, we may have to add case statements to “translate” the values of the pointers

Definition 7.0. 

(7.0)

Example 7.0.
Figure 7.0

Proposition 7.0. 
Table 7.0: 
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by means of some combinational circuit. Encoding techniques can be used to minimize the

size of these circuits. The goal is twofold: 1) encode each pointer with the minimum num-

ber of bits in order to minimize the storage as well as the decoding logic for loads and

stores; 2) minimize the logic related to assignment and comparison of pointers.

We will first present the problem of pointers’ encoding. The exact solution to this

problem leads to what I call a local encoding in which two pointers that point to the same

location set may have different encodings. Finding an exact solution is hard and thus a

heuristic is introduced in which two pointers that point to the same location set share the

same encoding. This gives a global encoding of the pointers’ value. In order to get closer

to the exact solution, corresponding to the local encoding, two optimizations are then pre-

sented called splitting and folding. These optimizations can be seen as adding “locality” to

the global encoding.

7.1 Definition of the Problem

In this section, we present the problem of encoding the value of the pointers. The first

goal is to minimize the size of the pointers. For two pointers p and q, when one pointer is

assigned to the other (p=q) or when they are compared (p==q), the corresponding tags

shall be equal (e.g., p_tag==q_tag when p and q reference the same location) or “as

close as possible” to each others. If two tags have different bit widths, one tag can be equal

to a subfield of the other. Assignments would then be performed by concatenating or

removing bits, whereas comparisons would only be executed on subfields of the two

codes. This reduces the size of the circuit that translates or compares the tags while keep-

ing the number of bits to a minimum.
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Definition 7.2. For two pointers,  and , the pointer dependence relation  is 1 if

and only if the two pointers are assigned or compared (otherwise it is 0).

Definition 7.3. The pointer-dependence graph is an undirected graph in which the nodes

are the pointers and the edges are the relations between the pointers. An edge between two

nodes is defined if one pointer is assigned to the other of if they are compared.

Example 7.1. Consider the following code segment:

int *r1, *r2, *r3, *q1, *q2;
...
if(i==0)

{ r1=&a;  r2=&b;  r3=&c; }
else

{ r1=&b;  r2=&c;  r3=&d; }

if(j==0) 
{ q1=r1;  q2=r2; }

else 
{ q1=r2;  q2=r3; }

...

 In this example, we consider the pointers {r1, r2, r3, q1, q2} and the variables {a, b,

c, d}. The pointers are defined as follows: r1 may point to the variables a or b, r2 may

point to b or c, and r3 may point to c or d. Then, q1 may take the value of r1 or r2, and

q2 may take the value of r2 or r3. Consequently, q1 may point to a, b, or c, and q2 may

point to b, c, or d. 

 This leads to the pointer-dependence graph on Figure 7.1a.

pi p j r pi p j,( )

r1 r2 r3

q1 q2

Figure 7.1: (a) Example of pointer-dependence graph and (b) definitions of the points-to sets of 
each pointer

r1 {a,b}
r2 {b,c}
r3 {c,d}
q1 {a,b,c}
q2 {b,c,d}

(b)(a)
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 Note that the example presented here is equivalent to the more realistic Example A.6 in

which functions mapped to components are shared.

The encoding problem can be stated as follows. For each pointer we represent its

points-to set as a set of symbols corresponding to the location sets the pointer may point

to. Thus, we have an ensemble of sets of symbols and the dependencies among the sets

represented by the pointer-dependence graph. The problem consists of encoding the sym-

bols in the sets. The constraints on the encoding are two: 1) the supercube1 of the codes of

the symbols in each set must have minimum size; 2) the symbols that correspond to the

same location set in two dependent sets must be encoded as close as possible. The reasons

for the first constraint are to minimize the number of bits to store and to reduce the decod-

ing logic for loads and stores. The reason for the second constraint is to reduce the size of

the combinational circuit implementing pointers’ assignments and comparisons.

Example 7.2. In Example 7.1, the pointers r1, r2, and r3 may point to two different

variables and q1, q2 may point to three different variables. As a result we want to encode

pointers r1, r2, and r3 on 1 bit and pointers q1 and q2 on 2 bits. 

 Figure 7.2a shows an example of a non-optimal encoding. The encoding technique used

here is a straightforward minimum-length encoding in which the value 0 is assigned to the

first variable in the points-to set, 1 is assigned to the second variable of the points-to set,

etc. This encoding is not optimal, some logic has to be added in the circuit to implement

the assignments q2=r3 and q1=r2 as shown on Figure 7.2a.

1.The supercube of a set of cubes is the smallest cube containing all the cubes in the set [14].
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  To find an optimal encoding, we look at the dependences between the pointers. Pointer

q1 may take the value of r1 or r2. So we want the codes of r1 and r2 to be subfields of

the code of q1. Similarly, q2 may take the value of r2 or r3. We want the codes of r2 and

r3 to be subfields of the code of q2. An optimal encoding verifying these properties is

shown on Figure 7.2b.

 For r1, value 0 is assigned to a and value 1 to b. For r2, 0 is assigned to b and 1 to c. As

a result, q1=r1 is replaced by q1_tag={0,r1_tag} and q1=r2 is replaced by

q1_tag={r2_tag,1} (where {,} is the concatenation operator).

7.2 Problem Formulation

Let us consider P pointers . For each pointer , let  be its

points-to set. The points-to set  is a set of  symbols , where

each symbol is associated with a location set. We define  the set of the encoded symbols

Figure 7.2: Example of (a) non-optimal and (b) optimal encodings; codes that are changed in the 
optimal encoding are shown in bold.

d c
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q1=r2

if(r2_tag==0)
  q1_tag=”01”;
else
  q1_tag=”10”;
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of the points-to set . The encoded values of the symbols in each set are noted

.

Definition 7.4. Two sets  and  are said to be dependent if their associated pointers

are dependent (Definition 7.2).

Our first goal is to minimize the number of bit registers as well as the size of the

decoders required to store and decode the pointers’ values. We want to minimize the

dimension of the supercube of the encoded symbols in each set. This minimum is achieved

when the sum of the dimensions of the supercubes is also minimized:

(7.1)

E x a m p l e  7 . 3 .  In  the  encod ing  presen ted  in  bo th  Figures  7 .2a  and  7 .2b ,

=1+1+1+2+2=7 is minimum.

When two pointers are assigned or compared, we also want to minimize the size of the

circuit implementing the translation of the codes. For this purpose, the distance between

encoded symbols in two dependent sets has to be minimum:

(7.2)

where  is the distance between the two encoded sets. When the pointers have the

same points-to set and the encoding has the same length n,  is defined as:

(7.3)

Πi

e1
i e2

i … eNi

i, , ,{ }

Πi Π j

min dim supercube Ei( )( )
i 1=

P

∑
 
 
 

dim supercube Ei( )( )
i 1=

P

∑

min r pi p j,( )dist Ei E j,( )
j 1=

P

∑
i 1=

P

∑
 
 
 

dist()

dist()

dist Ei E j,( ) min
perm()

H perm ek
i( ) ek

j,( )
k 1=

N

∑
 
 
 
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where N= =  is the number of symbols in the points-to sets,  is in the set

of the permutation functions of n bits, and  is the Hamming distance. Note that the

two equal points-to sets may have different encodings.

In general, the points-to sets may differ and their encoding may have different lengths.

The computation of the distance is then more complex. The exact definition of the distance

metrics in this case is presented in Appendix B. For example, the distance between two

sets whose encodings have different lengths can be computed by padding the shorter code

with 0s. Then, if the points-to sets differ, we are only interested in the distance between the

encodings of the symbols common to the two points-to sets.

Our goal is to minimize Eq. 7.1 and Eq. 7.2. There is a trade-off between the storage

area (number of registers) and the amount of logic used to translate the codes. For exam-

ple, one may optimize the size of the pointers keeping the amount of logic minimum by

minimizing first Eq. 7.2 and then Eq. 7.1. In general, we can cast the problem as follows:

(7.4)

where  is a coefficient between 0 and 1.

Since this problem is computationally hard to solve exactly, a heuristic solution is

used.

Ni N j perm()

H a b,( )

min β dim supercube Ei( )( ) 1 β–( ) r pi p j,( )dist Ei E j,( )
j 1=

P

∑
i 1=

P

∑+
i 1=

P

∑
 
 
 

β
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7.3 Simplified problem

7.3.1 Formalism for a Global Solution

In the general formulation of the problem presented in Section 7.2, different codes

may be associated with the symbols in each set. Therefore the encoding has to be found

locally, for each set. The problem can be simplified by constraining all symbols associated

with the same location set to share the same code. The encoding is then found globally for

all the symbols that correspond to the same location set in the points-to sets. The final

encoded values of the pointers is then found by picking the relevant bits (i.e. the bits that

are not identical for the different encodings of the symbols in the points-to set).

Example 7.4. Figure 7.2a gives an example of local encoding. It is a local encoding

because the different variables a, b, c and d are associated with different codes in each

points-to set. For example b is associated with 1 for r1 and 0 for r2.

 Figure 7.2b gives an example of a better global encoding. The encoding is global because

the pointers initially share the same encoding shown in Figure 7.3. No circuit is necessary

to translate the values of the pointers in assignments and comparisons. The size of each

pointer can be reduced by selecting the relevant bits for each pointer. These relevant bits

are found as follows. Pointer r2 may point to b or c. In the global encoding, value 01 is

d c

ba

r3

r2

r1

q1,q2

10

00

11

01

Figure 7.3: Global encoding and selection of the relevant bits for each pointer

a

c

00

11

b 01

d 10
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assigned to b and 11 is assigned to c. The value of the second bit in the encoding is then

constant equal to 1 for the two encoded symbols in the points-to set of r2. As a result,

pointer r2 does not need to store this bit and the size of r2 can be reduced to 1 bit.

Similarly, the size of r1 and r3 can be also be reduced to 1 bit.

For a global encoding, minimizing Eq. 7.2 is irrelevant because the distance between

the codes of the symbols that correspond to the same location set in the different points-to

sets is null (i.e.  ). The complexity of the logic to

perform assignments and, to some extent, comparisons is then minimal. However, the size

of the pointers may vary and affect the size of the decoding circuit in loads and stores. Our

goal becomes to minimize Eq. 7.1 only. 

For this simplified problem, it is convenient to consider the symbols (i.e. location sets)

i n  t he  un ion   o f  t he  po in t s - t o  s e t s .  These  symbo l s  w i l l  be  deno t ed :

. The size of the problem is reduced: instead of dealing with O(P*N)

symbols we only deal with N symbols , where N is the number of location

sets. We use now a formalism that has been used to solve other encoding problems

[13,62].

Definition 7.5. The relation matrix A is defined as the matrix in which the rows represent

the points-to sets and the columns the symbols. Entry  of A is 1 if and only if the sym-

bol  is in the set .

Example 7.5. Let’s take the case of Example 7.1 where r1 may point to the variables a or

b, r2 may point to b or c and r3 may point to c or d, etc. We can construct the following

relation matrix:

dist Ei E j,( ) 0= i j,( ) 1 2 ... P, , ,{ }2∈∀

Π

Π s1 s2 … sN, , ,{ }=

s1 s2 … sN, , ,{ }

ai j,

s j Πi
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 For example, the first row of the matrix shows that r1 may point to a or b.

We search for an encoding matrix E. Namely, each row in A corresponds to a points-to

set. For each row  of A, we want the supercubes of the rows of E corresponding to the 1s

in  to have minimum size. This corresponds to the constraint expressed in Eq. 7.1. This

problem corresponds to the input encoding problem [13,14,62] if the 0s in matrix A are

replaced by don’t cares (i.e. *). In other words, our problem is a simpler instance of the

general input encoding problem.

7.3.2 Global Encoding Algorithm

The problem of input encoding has been extensively studied [3,19,13,46,51,52,53,62].

We use an approach reminiscent of MUSTANG [46] and POW3 [3].

Definition 7.6. An affinity graph is an undirected weighted graph in which the nodes are the

symbols  and the edges are the relations between the symbols in 

represented by the relation matrix A. The weight  on the edge { , } is defined as:

(7.5)

where  is the number of pointers,  is the total number of symbols,  the number of sym-

bols in the set , and  is an element of the relation matrix. 

A

a b c d

1 1 0 0

0 1 1 0

0 0 1 1

1 1 1 0

0 1 1 1

=

r1

r2

r3

q1

q2

α

α

Π s1 s2 … sN, , ,{ }= Π

wi j, si s j

wi j, ak i, a⋅ k j, 1 Log2N Log2Nk–+( )⋅
k 1=

P
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P N Nk
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The weight  in the affinity graph increases with the number of sets that contain

both  and : when two location sets are in many points-to sets, we want their codes to

be close. This is even more important for small points-to sets. For example, if we have

 symbols in the points-to set , their codes must be next to each other to mini-

mize the dimension of the supercube of the encoded set , whereas if we have 

symbols in the points-to set , the Hamming distance between the encoding of the sym-

bols in the points-to set can be as much as . Therefore, the weight  is

the sum of the contributions of the points-to sets that contain both  and , where the

contribution of each points-to set  is .

The pointer encoding problem can be solved as an embedding of the affinity graph in

the Boolean hypercube as done in [3,27,46,51,56].

Example 7.6. The relation matrix presented in Example 7.5 (cf. Figure 7.4a) can be used to

generate the affinity graph of Figure 7.4b.

 Let’s look at  the weight on the edge {a,b}. The variables a and b are both in the

points-to sets of r1 and q1. The weight  is 3, sum of 2, contribution from r1, and 1,

contribution from q1. 

wi j,

si s j

Nk 2= Πk

Ek Nk 10=

Πk

log2 Nk( ) 4= wi j,

si s j

Πk 1 log2N log2Nk–+( )

a b

c d

4

3

3

1 1
A

a b c d

1 1 0 0

0 1 1 0

0 0 1 1

1 1 1 0

0 1 1 1

=

r1

r2

r3

q1

q2

Figure 7.4: Example of (a) relation matrix and (b) corresponding affinity graph
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 After graph-embedding, the encoding presented in Figure 7.5 can be found. The graph-

embedding will try to put the encoding of the symbols that are adjacent to the edge of

higher weight next to each other. As a result, the encoding of b is next to the encoding of c

(edge {b,c} has a weight of 4). The encodings of symbols a and b are also next to each

other and so are the encodings of c and d.

Note that the aforementioned algorithms are solving a simplified problem (global

encoding) in which all points-to sets share the same encoding. In order to better approxi-

mate the exact solution, two optimizations are presented in the next sections. In the exact

solution (local encoding), two symbols can share the same code. We use this property in

Section 7.4 in a technique called folding. One symbol can also have multiple codes. The

notion of splitting, presented in Section 7.5, is based on this property.

7.4 Encoding with folding

In the local encoding problem, two symbols can share the same the code.

Definition 7.7.  We define as folding the action of assigning the same code to two different

symbols.

Proposition 7.1. Two symbols can be folded if and only if they are not both in the same

points-to set and not in any two dependent points-to sets.

d c
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Figure 7.5: Example of optimal encoding
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The rationale for this proposition is that we want to distinguish each symbol inside a

points-to set and, in the case of a comparison, we want to distinguish the symbols in the

two dependent points-to sets.

In the relation matrix A, folding the symbols  and  is equivalent to replacing col-

umns i and j by one column k such that:

 for l in {1, 2,..., N}. (7.6)

In the affinity graph, folding is done by merging (or fusing1) the nodes corresponding

to the symbols ,  into one new node corresponding to . The weights on the edges

incident to this new node corresponding to  are then defined as:

 for l in {1, 2,..., N}. (7.7)

Graph-embedding techniques can be modified to incorporate folding. In Section 7.6,

we present a column-based encoding algorithm with folding.

Example 7.7. Let’s consider the pointer-dependence graph on Figure 7.6, where r1, r2,

and r3 point respectively to {a,b,c}, {b,c,d} and {c,d,e}. 

1.A pair of vertices a, b in a graph are said to be fused (merged or identified) if the two verti-
ces are replaced by a single vertex such that every edge that was incident on either a or b or
on both is incident on the new vertex [16].

si s j

ak l, ai l, a j l,∨=

si s j sk

sk

wk l, wi l, w j l,+=

Figure 7.6: Pointer-dependence graph and definitions of the points-to sets

r1 r2 r3

q1 q2

r1 {a,b,c}
r2 {b,c,d}
r3 {c,d,e}
q1 {a,b,c,d}
q2 {b,c,d,e}
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 The relation matrix and the associated affinity graph are represented in Figure 7.7.

 The number of variables (i.e. location sets) in each points-to set is either 3 (for r1, r2,

and r3) or 4 (for q1 and q2). Therefore, we want to code the symbols associated with the

variables on 2 bits. However, since we have 5 symbols, an encoding with less than 3 bits

cannot be found without folding.

  The symbol a is in the points-to set of r1 and q1, whereas the symbol e is in the points-

to set of r3 and q2. According to the pointer-dependence graph, these points-to sets are

not dependent. The symbols associated with a and e can be folded. After folding we end

up with the graph on Figure 7.8.
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Figure 7.7: Relation matrix and corresponding affinity graph before folding
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Figure 7.8: Relation matrix and corresponding affinity graph after folding a and e
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 This leads to an encoding that requires only two bits:

7.5 Encoding with splitting

In the local encoding problem, one symbol can also have different codes in the differ-

ent points-to sets.

Definition 7.8. We define as splitting the action of assigning two or more codes to one sym-

bol (or location set).

In Section 7.3 and 7.4, each location set was associated with a unique symbol that was

encoded. After splitting, one location set may be associated with more than one symbol:

splitting a symbol  is equivalent to creating a new symbol  which corresponds to the

same location set. The original symbol  and the newly created  are then encoded into

 and  respectively.

Proposition 7.2. A points-to set  that contains a symbol  may, after splitting , con-

tain the newly created symbol  if and only if there is no code equal to  in the encoded

set  or in any encoded set dependent of .

a 00
b 01
c 11
d 10
e 00

a,e
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b

r1,r2,r3
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Figure 7.9: Result of the encoding after folding a and e
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Example 7.8. Let’s consider the pointer-dependence graph on Figure 7.10 where r1, r2

and r3 may respectively point to {a,b}, {b,c}, and {a,c}. The relation matrix and the

corresponding affinity graph are presented in Figure 7.11. 

 We would like to encode r1, r2, and r3 with 1 bit and q with 2 bits. We also want the

codes of r1, r2, and r3 to be subfields of the code of q.

 Using the encoding technique without splitting symbols, we can find the encoding on

Figure 7.12.

 In this case r1 and r2 are encoded on 1 bit but the encoding of r3 requires 2 bits.

r1 {a,b}
r2 {b,c}
r3 {a,c}
q {a,b,c}

r1 r2 r3

q

Figure 7.10: Pointer-dependence graph and definitions of the points-to sets

Figure 7.11: Relation matrix and corresponding affinity graph before splitting
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r2q,r3a 00
b 01
c 11

Figure 7.12: Result of the encoding without splitting
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 After splitting the symbol a, we end up with the two symbols a and a’. The new encoding

problem is presented on Figure 7.13. We can find the encoding on Figure 7.14 where the

symbol a is in the points-to set of r1, r2 and q, and a’ in the points-to set of r3 and q.

 The encoding on Figure 7.14 is optimal: r1, r2, and r3 are encoded on 1 bit and the

assignments to q (q=r1, q=r2, q=r3) do not require any additional logic.

As described in Section 7.2 the symbols in each set can have different codes. There-

fore, to minimize the dimension of the supercube of the encoded symbols in a points-to set

(i.e. Eq. 7.1), we can create new symbols associated with the same location sets for this

points-to set. Note that, if we split the symbols for each points-to set, we end up with a

local encoding scheme close to the one presented in Section 7.2. The only difference is

that one symbol may have multiple encodings within the same points-to set. However, to

limit the increase in complexity, we are trying to split as few symbols as possible and only

when useful to reduce the cost function.
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Figure 7.13: Relation matrix and corresponding affinity graph after splitting symbol a
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When a symbol  is split, a new symbol  is created. For each points-to set  such

that , we decide whether the new points-to set  contains ,  or both  and

. The new set of encoded symbols  can be defined as:

 where  is either { }, { } or { , }. (7.8)

In order to minimize Eq. 7.1, for every set  that may contain  or , we want to

minimize

 (7.9)

which corresponds to

 where  is either { }, { } or 

{ , }. (7.10)

In the relation matrix A, splitting is done by adding a column  relative to . For each

row  corresponding to a points-to set  such that , the pair of entries ( , )

is set to (0,1), (1,0), or (1,1) according to Eq. 7.10. If Eq. 7.10 achieves its minimum for

the three values { , }, { }, and { }, then we select { , }. Example 7.9 illustrates

the reason of this choice.

The new affinity graph can then be recomputed from the relation matrix. Splitting as

well as folding can be incorporated in our graph-embedding algorithm as presented in

Section 7.6.

Example 7.9. In Example 7.8, for the points-to set of r3, Eq. 7.10 is minimum for E’={a’},

the dimension of the supercube of the encoded symbols in the new points-to set is minimum

equal to 1 when it contains a’ only. As a result, in the relation matrix on Figure 7.13, the
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entry  is set to 0 and  is set to 1. For the points-to set of q, Eq. 7.10 is minimum

(equal to 2) when E’ is either {a}, {a’} or {a,a’}. E’={a,a’} is then selected and the new

points-to set of q contains both a and a’. Consequently, the entries  and  are both

set to 1. Since a is in the new points-to set of r1 and a’ in the new point-to set of r3, this

allows to implement both q=r3 and q=r1 trivially. 

7.6 Encoding Algorithm

We propose a column-based approach such that the encoding matrix can be found col-

umn by column [13,14,18]. Our algorithm without folding and splitting is similar to the

one used in POW3 [3]. The pseudo code of the algorithm with folding and splitting is pre-

sented on Figure 7.15.

The algorithm encodes the pointers with n bits where . We consider

one bit of the code at a time. For a symbol  associated with the code , we consider the

bits  for k={1, 2,..., n}. At each iteration k, we construct the kth column of the encoding

matrix E by assigning bit  to all symbols for i={1, 2,..., N}. We ultimately want to dis-

tinguish all symbols. Therefore, in our algorithm, we have to make sure that at each itera-

tion k we have less than  symbols associated with the same code. For example for

k=(n-1), we cannot have more than two symbols with the same code.

Definition 7.9. There is a class violation at iteration k when more than  symbols have

the same code so far.

Note that, at iteration k, we are only considering the k first bits of the codes, since the

other ones have not been assigned yet.
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encode pointer(n) { 
/* construct matrix E one column at a time */
for k=1 to n

assign_code(k);
}

assign_code(k) {
sort edges by weight in decreasing order;

foreach edge { , } {

if(  and  not assigned) {

 =  = select_bit( , );

if(class violation) {

ok=try_fold( ); if(!ok) try_fold( ); }

} 

else if(  or  not assigned) {

=unassigned( , ); =assigned( , );

 = ;

if(class violation)

try_fold( );

}

if( != ) /*  and  already assigned or folding failed */

violated_edges->add({ , })

}
sort violated edges by weight in decreasing order;

foreach violated edge { , } {

=symbol whose sum of the weights on incident edges is higher

=the other

ok=try_split( ); if(!ok) try_split( );

}
}

bool try_split( ) {

create 

= xor(1<<k);

if(class violation)

return try_fold( );

return false;
}

bool try_fold( ) {

if( s.t. Proposition 7.1 verified and == ){

fold( , ); remove ; 

return true; 
}
return false;

}
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Figure 7.15: Graph embedding algorithm with splitting and folding
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At each iteration k,  is defined for every symbol . The assignment is done by con-

sidering the symbols on every edge end-points, starting with the edges with highest

weights. The weights at each iteration are adjusted using the following formula [3]:

(7.11)

where  is the Hamming distance between the partially assigned codes of

symbols  and .

For the symbols incident to the edges { , }, we try to assign the same value to both

 and . However, this may not be possible in two cases. First, at each iteration of k, the

number of symbols having the same code is limited to prevent class violations (cf. Defini-

tion 7.9). Moreover, if the symbols  and  are also incident to other edges whose

weights are higher than , they may already have been assigned two different values 

and . These two conditions are expressed in Proposition 7.3 below.

Definition 7.10. An edge { , } is said to be violated at iteration k, if the bits  and 

associated with the two symbols incident to the edge, have different values.

Proposition 7.3. An edge { , } is violated at iteration k if either one of the following con-

ditions applies:

• there is class violation (and therefore,  and  need to have different values),

• different values  and  have already been assigned to the two symbols.

In the case of a class violation, we try to fold one of the symbols on the edge { , }

with any of the previously assigned symbols. At this stage, two symbols are folded if Prop-

osition 7.1 holds and if they have the same partial code so far.
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If the edge { , } is still violated (i.e. ), we try to split the symbols incident to

the edge. One symbol can be split if the newly created symbol does not cause any class

violation or can be folded with another symbol. In our algorithm, for a symbol , we cre-

ate a new symbol  associated with a code  such that  for l<k and

. In case of a class violation, we try to fold this new symbol. If folding can-

not be done, the symbol  is not split.

Example 7.10. Consider the problem presented on Figure 7.16. The associated relation

matrix and affinity graph are presented on Figure 7.17 in which pointer q1 may take the

value of r1, r2, or r3 and q2 may take the value of r3, r4, or r5.

si s j ei
k e j

k≠

si

si' ei' e'i
l ei

l=

e'i
k e j

k 1⊕=

si

Figure 7.16: Pointer-dependence graph and definitions of the points-to sets
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 Since we have four symbols, we want to encode them on n=2 bits. The encoding is

computed in two iterations. After the first iteration, at most two symbols may have the

same encoding to prevent class violations.

 At iteration k=1, we first take the edge with the highest weight {b,c} and assign the value

0 to b and c. Since we want the code to be two bits long, we can have at most two symbols

with the same code after the first iteration. The value 1 is therefore assigned to a and d

and all edges beside {b,c} are violated. We then try to fold the symbols. Folding cannot be

performed. For example, for the edge {a,b}, a cannot be folded with b because both

symbols are in the points-to set of r1 and q1. Symbol a cannot be folded with c either

because both symbols are in the points-to set of r2 and q1. The violated edges are {a,b},

{a,c}, {d,c}, and {d,b}. We then try to split the symbols on these edges. Splitting cannot

be performed either. For example, when we try to split variable a, we create a new

variable a’ with code 0 and the following relation matrix is computed:

(7.12)

 We have 3 variables {a’,b,c} with the same code 0, which creates a class violation. We

then try to fold a’ with b or c. This cannot be done because a’ and b are in the points-to

sets of r1 and q1, and a’ and c are both in the points-to sets of r2 and q1. As a result

the encoding after the first iteration is 0 for b and c, and 1 for a and d.
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 At iteration k=2, we assign the value 0 to b, 1 to c, 0 to a, and 1 to d. Note that other

values could be assigned depending on the order in which edges of equal weight are taken

in the implementation. All edges are violated. Among the edges with maximum weight are

{a,c} and {b,d}. We try to split a on the edge {a,c} and create the new symbol a’. The

resulting relation matrix is 

(7.13)

 

  Variable a’ can be folded with d because Proposition 1 holds: a’ and d have the same

code at the previous iteration and are not elements of dependent points-to sets. After

folding we end up with the following relation matrix:

(7.14)
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 The variable d (which is now mapped to a symbol representing both d and a’) can also

be split and the new symbol d’ can be folded with a. The final relation matrix is then:

(7.15)

 We end up with the encoding on Figure 7.18 in which all constraints are satisfied.

7.7 Results

The encoding algorithm presented here are compared with “traditional” encoding

schemes for a set of examples. The results are presented in Table 7.1. They have been

obtained as follows. Pointers’ encoding has effect on three components of the design: the

number of registers necessary to store the pointers’ value (storage), the logic necessary to

assign and compare pointers (assignment) and the implementation of loads and stores

(load&store). Each of these components is synthesized using Synopsys Design Compiler.

We present the results for five different encoding schemes. 
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First we present the results for a global encoding (global) in which we associate the

same code with all symbols associated to the same variable in the different points-to sets.

In this case, assignments or comparisons of pointers can be performed without translating

pointers’ values. However, the number of bits used for the encoding is not minimal, which

leads to larger decoding circuits (cf. both load/store and assignment) and more registers

(cf. storage).

The second scheme (simple-alg) is the implementation of the heuristic algorithm pre-

sented in this section, without splitting and folding. The bit-width of the pointer is then

example
(P/N)

encoding storage
assign-
ment

load/store total

test1
(5/5)

global 5,512 1,231 11,631 18,374

simple-alg 3,307 793 9,768 13,868

split&fold 2,756 712 8,456 11,924

min-length 2,756 1,134 8,391 12,281

1-hot 4,685 1,474 7,354 13,513

test2
(7/4)

global 3,582 1,020 14,256 18,858

simple-alg 3,047 988 14,591 17,626

split&fold 2,480 842 12,976 16,298

min-length 2,480 1,020 13,041 16,541

1-hot 4,409 1,490 12,668 18,567

test3
(9/7)

global 7,716 2,705 30,731 41,152

simple-alg 5,236 2,203 28,479 35,918

split&fold 4,961 2,122 28,220 35,303

min-length 4,961 3,240 28,042 36,243

1-hot 8,543 5,686 25,579 39,808

Table 7.1: Area after synthesis and optimization using tsmc.35 library (in library units). For 

each example, P represents the number of pointers and N the number of variables.



CHAPTER 7.  Encoding of Pointers Page 98

shorter but can be further reduced. The results for the algorithm with folding and splitting

(split&fold) are given. The length of the codes is then close to the minimum and the size of

the combinational circuit for both assignment and load/store is reduced, which gives better

results.

Results for minimum-length encoding (min-length) are also given. In this suboptimal

encoding (similar to the non-optimal encoding used in Example 7.2), each variable in each

points-to set is simply associated with an integer (e.g., 0 for the first variable, 1 for the sec-

ond variable, etc...). The number of bits (bit-width) used to encode each tag is then mini-

mum but the size of the circuit which translates the values of the pointers is not. Finally

one-hot (1-hot) encoding gives larger codes, however the specific properties of the result-

ing codes can be used to simplify the decoding logic especially in loads and stores. 

7.8 Summary

This chapter formulates the problem of encoding the values of the pointers. A solution

based on graph embedding techniques is presented. The algorithm optimizes the storage

area and the complexity of the decoding logic in loads and stores by reducing the bit-width

of the pointers. At the same time the circuits implementing assignments and comparisons

of pointers are also optimized by reducing the distance between dependent encodings.

These optimizations enable the efficient synthesis of pointers especially for the synthesis

of functions as it will be presented in Appendix A.
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CHAPTER 8. LIBRARY OF ALLOCATORS AND
OPTIMIZATION OF MALLOC AND FREE

In the Section 4.3 we have seen how malloc and free can be implemented using

hardware memory allocators. Each allocator can perform both memory allocation and

deallocation. A library of such allocators is provided. The designer may then to select the

allocator architecture most suitable to the application. The library of allocator components

contains three basic types of allocators. First a general-purpose allocator can allocate

blocks of any size. The architecture of an optimized general-purpose allocator for which

the deallocation scheme is optimized for latency is presented in Section 8.1. When the size

of the block to be allocated is a fixed constant, the architecture of the allocator can be

greatly simplified. The specific-purpose allocator presented in Section 8.2 can be used in

such case.

The designer could also add new allocators in the library. The basic allocators pre-

sented here can be modified (e.g. to change the allocation or deallocation schemes, allo-

cate a larger number of blocks or handle new sizes of elements) and added to the library.

Definition 8.0. 

(8.0)

Example 8.0.
Figure 8.0

Proposition 8.0. 
Table 8.0: 
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Other types of allocators such as the ones described by Chang et al. [12] and Wuytack et

al. [70] could also be added as new components in the library.

In some cases, the code can also be optimized. Calls to malloc and free can be

removed and memory allocation can be done statically. In Section 8.3, a compiler tech-

nique is presented to automatically remove some of the dynamic memory allocation for

sequences of malloc and free.

8.1 Optimized general purpose allocator

General-purpose allocators are defined as allocators that may allocate blocks of vari-

ous sizes. These allocators consist of the circuit that performs allocation/deallocation and

two lists which keep track of the free blocks and the allocated blocks inside of the memory

segment. To allocate memory, the size of the block to be allocated (malloc_size) is sent to

the allocator. The allocator then searches in its free list a big enough block and returns the

address corresponding to the beginning of this block in the memory segment. In our

implementation, the first acceptable free block is returned (first fit). The block that has just

been allocated is then added to the list of allocated blocks. To free previously allocated

memory, the address of the block to be deallocated is sent to the allocator. The allocator

then searches this block inside of its list of allocated blocks and adds it back to the free

list. Adjacent free blocks are then merged.

In order to simplify the process of looking up for a given block during deallocation, we

propose to encode the characteristics of the allocated block inside of the pointer’s tag. In
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our implementation shown on Figure 8.1, the allocator stores the list of allocated blocks in

an array. The index corresponding to the allocated block in this array is then encoded in

the pointer’s value. During deallocation, this index is sent to the allocator. The allocator

can then directly find the allocated block according to this index, without having to search

the entire array. The resulting optimized allocator is called optimized general purpose.

The encoded value of a pointer consists then of three fields: the allocation tag, the tag

and the index. For a pointer p, the tag p.tag and the index p.index are defined as in

Section 4.2. The allocation tag p.alloc_tag corresponds to the index of the block

inside of the list of allocated blocks. In the implementation presented in this thesis, the

allocation tag corresponds to the 8 most significant bits in the pointer’s value, the tag cor-

responds to the following 8 bits and the index corresponds to the 16 least significant bits

(as defined in Section 4.2.1). Figure 8.2 shows how the different field are laid out for an

array of pointers.

free listlist of allocated blocks

address
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0x-08
0x-0c

size
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8
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Figure 8.1: Architecture of an optimized general-purpose allocator
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Figure 8.2: Encoding of pointers in an array for optimized general-purpose allocator
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8.2 Specific purpose allocator

The malloc function takes one argument: the size of the block to be allocated. When

this size is a unique constant K for all malloc calls mapped one memory segment, this

memory segment can then be represented as an array of elements of size K. Allocating

memory in this segment can simply be performed by returning the first available element

in the array. For deallocation, the array element to deallocate can easily be derived from

the block address. The architecture of the corresponding allocator can then be simplified.

For example a simple bit-vector can be used to keep track of the allocated and free blocks

in the memory segment. Such an allocator, which can only deal with blocks of one size, is

called specific purpose.

Constant propagation can be performed before selecting the allocator in order to have

as many mallocs as possible with constant size.

8.3 Optimizing sequences of malloc and free calls

Some of the dynamic memory allocations are sometimes not necessary and can be

automatically removed at compile-time. This is especially true for legacy code in which

malloc/free are used to manually control storage. The idea here is to analyze to code

and isolate the finite sequences of malloc calls that can be replaced by references to stat-

ically allocated data.

Example 8.1. Consider the following code segment.

p[1] = malloc(4); // malloc1
p[2] = malloc(8); // malloc2
...
free(p[1]); // free1
free(p[2]); // free2
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 In this example, a finite number of objects (two) are allocated by malloc1 and malloc2.

Later on, these blocks are freed by free1 and free2. The dynamic memory allocation in this

case can be optimized by creating the two temporary array elements tmp_malloc1[4]

and tmp_malloc2[8]. The size of these elements corresponds to the size of the object

allocated at each malloc. The malloc calls are then replaced by references to these

temporary variables and the free calls are removed. We end up with the following code

segment in which memory is statically allocated.

char tmp_malloc1[4];
char tmp_malloc2[8];
p[1] = tmp_malloc1;  // malloc(4)
p[2] = tmp_malloc2;  // malloc(8)
...
// free(p[1]);
// free(p[2]);

The optimization can be performed under two conditions. First, the size of the block to

allocate has to be constant. If the size of the block to allocate is not known at compile-

time, a general purpose or optimized general-purpose allocator would have to be used.

Second, if a block is allocated within an unbounded loop, it has to be deallocated within

the same unbounded loop. Using the results of pointer analysis, it is possible to implement

a dataflow analysis [45] that finds at compile time the malloc and free calls that can be

optimized (i.e. removed).

An brief outline of how the analysis is conducted follows. For each dynamically-allo-

cated location set (i.e. each malloc call in the example), a counter is defined. The analy-

sis steps thought the flow-graph of the procedure. The counter is incremented each time an

element of the corresponding location set is allocated. Subsequently, each time an element

of the location set is deallocated (result from pointer analysis), the associated counter is
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decremented. Location sets allocated and not deallocated within the same loop can be

found. The malloc and free corresponding to these locations cannot be optimized. Oth-

erwise, they can be optimized.

During optimization a temporary variable is created for each malloc that can be

removed. The size of each temporary variable corresponds to the size in the malloc call.

These temporary variables are then statically allocated during synthesis. The correspond-

ing free calls are removed.

8.4 Experimental results and discussion

For the set of examples presented here, three types of allocators have been synthesized

as port of the library. In the results presented in Table 8.1, allocators are designed to allo-

cate up to 16 blocks of memory. They are synthesized directly from C using SpC and Syn-

opsys Behavioral Compiler [93]. The general-purpose allocators use first fit to allocate

blocks and merge adjacent free blocks during deallocation. The first row presents the

results for the general-purpose allocator without any optimization. The second row of

Table 8.1 shows the size of the optimized general-purpose allocator for which the deallo-

cation scheme has been optimized using the modified tag as presented in Section 8.1.

Even though the complexity of the controller is reduced (from 52 states to 46), the size of

the optimized allocator is roughly the same because of an increase in the steering logic.

The latency of the deallocation task is however reduced as shown later in Table 8.2.



CHAPTER 8.  Library of Allocators and Optimization of Malloc and Free Page 105

Finally the third row presents the results for the specific-purpose allocator introduced in

Section 8.2. As expected its size is much smaller than the general-purpose allocators.

Table 8.2 shows the results for four different examples. The first two examples test1

and test2 consists of three malloc calls and two free calls. All malloc calls allocate

objects of the same constant size. Hence a specific-purpose allocator can be used. For the

first example, all calls to malloc and free can be removed during optimizations. For the

second example, one of the mallocs is called inside of an unbounded loop and cannot be

removed. The third example is a filter used in the JPEG library of Synopsys COSSAP [93]

and is used, for example, for RGB to YCrCb transformations. The filter implements the

operation  for , where A is a  matrix,

B and C are vectors and Y and X are two  dynamically-allocated matrices. Finally the

last example is the implementation of an ATM segmentation engine. The segmentation

engine receives frames to be sent from the host. These frames are segmented into 48 byte

cells (payload of an ATM cell) to be transmitted on the network. The engine keeps track of

each frame in a queue. For every new frame, a new virtual connection is opened and a new

queue element is allocated. As a results, we have two sets of malloc calls: one to allocate

queue elements, the other to allocate connection status records.

allocator
lines size

C HDL comb. non-comb.
general purpose 297 353 204,191 80,193

general purpose (opt) 289 349 212,065 81,652

specific purpose 85 135 33,579 19,830

Table 8.1: Implementation of the different allocators (area in library units using the tsmc.35 

target library; comb. and non-comb. represent respectively the area of combinational logic 

and non-combinational logic (i.e. registers, etc.) at 100MHz)

Y i[ ] clip A X i[ ] B C,+⋅( )= i 1 2 ... n, , ,{ }= 3 3×

3 n×
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For each example, the first set of results illustrates the case where malloc calls are

mapped to two general-purpose allocators (no sharing). For the ATM segmentation

engine, two specific-purpose allocators are used instead of the general-purpose allocators.

In the other results, one allocator is shared. As expected, the latency (measured by simula-

tion at the RTL level) increases without sharing with a decrease in area. In Table 8.2, we

example
malloc/

free
C 

lines
optimization

HDL
lines

total 
latency
(in ns)

size (1000x) CPU 
time
(in s)comb. non-c.

test1 3 / 2 72

gen. alloc.
(no sharing)

344 713 568 269 14.8

gen. alloc. 315 735 391 180 13.8

gen. alloc.
(optimized)

323 617 405 199 14.4

sequence 167 32 135 87 14.3

test2 3 / 2 66

gen. alloc. 
(no sharing)

339 1,425 551 271 13.8

gen. alloc. 310 1,732 338 177 13.4

gen. alloc.
(optimized)

318 1,221 372 177 13.2

spec.alloc. 294 781 190 109 12.9

video 
filter

4 / 4 190

gen. alloc. 
(no sharing)

659 438 1,287 747 21.7

gen. alloc. 630 465 1,023 632 20.6

gen alloc 
(optimized)

640 403 1,025 637 20.6

ATM 4 / 2 403

spec.alloc.
(no sharing)

618 551 508 419 35.3

gen. alloc. 611 904 1,359 693 35.3

gen alloc 
(optimized)

574 696 1,055 547 35.3

Table 8.2: Results for the different examples and optimizations (size in library units using the 

tsmc.35 target library; frequency 100MHz for test1, test2 and ATM, 50MHz for JPEG; CPU 

time for synthesis measured on Sun Ultra2 does not include high-level synthesis)
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can also verify that the total latency of the design decreases when the optimized general-

purpose allocator (gen. alloc. optimized) is used. The use of a specific-purpose allocator

(spec. alloc.) when possible provides significant reduction both in latency and area.

Finally, further optimizations can be performed when sequences of malloc and free

calls can be removed (sequence).

8.5 Summary

In this chapter, different architectures of allocators were presented. These different

memory allocators are implemented in a library of components. The different architectures

are selected by the designer before synthesis. This fits into the application-specific mem-

ory management methodology outlined in Section 2.3. In addition to a general-purpose

memory allocator, two other optimized allocators were presented. First the specific-pur-

pose allocator, which may only allocate blocks of a fixed-constant size, is the simplest

implementation of an allocator hence it is faster and smaller. Otherwise, in the optimized

general-purpose allocator, information about the allocated blocks is encoded inside of the

pointers’ value to speed up deallocation. Finally simple compiler analyses are presented to

replace sequences of malloc calls by static memory allocation.
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CHAPTER 9. CONCLUSION

This thesis presented a methodology for efficiently mapping C code onto hardware.

The tool SpC is the first solution for synthesizing C code with pointers, complex data

structures and dynamic memory allocation/deallocation. It fits into current memory man-

agement methodology, enabling hardware implementations in which pointers may not

only represent memory addresses but may also reference data physically mapped to regis-

ters, wires, ports, etc. For dynamic memory allocation, an application-specific library of

hardware allocators was designed.

Several optimization techniques are also presented. Compiler optimizations are used

to reduce the storage before loads and stores and eliminate dynamic memory allocations in

sequences of malloc and free. An encoding algorithm, reminiscent of those used for

FSM encoding in logic synthesis, was developed to efficiently encode the values of the

pointers. Finally, a novel architecture of allocators was introduced in which the dealloca-

Definition 9.0. 

(9.0)

Example 9.0.
Figure 9.0

Proposition 9.0. 
Table 9.0: 
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tion process is sped up by encoding some of the information of the memory block refer-

enced inside of the pointer’s value.

Future work is needed to better integrate SpC and existing tools both at the system

level and architectural level. Based on the results of this research, one could define a com-

plete C-based automated refinement methodology in which software models written in C

could be directly synthesized. As an example, the synthesis of pointers would enable the

synthesis of C functions with parameters passed by reference using HLS. This, however,

would require a tighter integration between the tool resulting of this research, SpC, and

HLS. More work is also needed to enable HLS methodology and algorithms to scale to

thousands of lines of code involving nested function calls. The integration of SpC with

existing system-level tools [74,80] would also greatly help software/hardware migration.

On the compiler side, several optimizations could be performed. Many designers and

programmers make use of a specific coding styles (i.e. no out of bound array accesses, use

of predefined data-structures [80], smart-pointers, etc.). Recognizing these coding styles

would improve the accuracy of code analyses, which, in our case, may lead to improved

memory representations. Pointer analysis could also be improved, for example, by looking

more precisely at predicates to avoid false paths in the control flow. Moreover, compiler

front ends and intermediate representation should be modified to better support C/C++

libraries for modeling hardware/software systems [75,81,86, 89].

Another possible extension of this work is on supporting different target architectures,

both software (e.g. DSP, VLIW) and hardware (e.g. FPGA and other reconfigurable archi-

tectures). FPGA for example could be a good target architecture. The more restrictive

design space on FPGAs, as compared to semi-custom ASICs, simplifies the task of HLS.
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Moreover, designers who use FPGAs instead of ASICs are usually willing to trade off per-

formance over time-to-market. Synthesizing FPGA logic directly from C would further

reduce design time making hardware synthesis even more like software compilation.

Finally this research can be extended to other language constructs. The synthesis of

pointers enables the synthesis of functions with parameter passed by reference (cf. Appen-

dix A). It could enable the synthesis of object-oriented features found in C++ or Java [33].
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APPENDIX A. FUNCTIONS AND PASSING
PARAMETERS BY REFERENCE

 

Functions are one of the fundamental constructs of programming languages. They add

structure to a program and make it more readable by hiding some of the implementation

details. They also enable reuse. The functionality described inside a function can be used

at different points in a program. These arguments also apply to hardware behavioral

descriptions in which functions are used to hide functionality (e.g. hide communication

protocols) or reuse components (e.g. defining new complex operations). In this section, we

look into ways of synthesizing C functions in hardware and study their interactions with

the synthesis of pointers. The techniques presented here also apply to any language in

which parameters are passed by reference, which include most programming languages

(e.g. C++, Java, ADA, etc.).

 

A.1 Synthesis of Functions

 

In high-level synthesis tools, function are either inlined or mapped to components. In

the case where they are inlined, each operation inside the functions is scheduled and

mapped to a basic operator (e.g. multiplier, ALU, adder, etc.). These resources can then be

Definition 1.0. 

(1.0)

Example 1.0.
Figure 1.0

Proposition 1.0. 
Table 1.0: 

A
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shared to implement multiple operations inside of a single thread of control (i.e. same pro-

cess in VHDL, or same 

 

always

 

 block in Verilog). The advantages of such an approach are

the following: 1) functions are straightforward to support; and 2) sharing can be performed

at the operation level (fine grain), which may lead to more efficient scheduling and

resource allocation. The disadvantages are: 1) a loss of structural information; and 2) an

increased complexity of the scheduling and resource allocation problems (the size of the

CDFG increased) for which algorithms may have an hard time finding a optimal solution.

The C

 

OSMOS

 

 tool [29] and its commercial version from Arexis [72] use functions to hide

the communication in a behavioral model. The idea follows the good practice of separat-

ing functionality (usually untimed before scheduling) and communications (which may be

described in a cycle-accurate manner or not). Such function implementing communication

protocols can indeed be inlined and considered as a new level of hierarchy when building

the control state machine. However, when the functions inlined also describe functionality

and not just communication, some information about the structure of the hardware to gen-

erate may be lost.

In a tool like Behavioral Compiler [91], functions can be used to explicitly define new

operators implementing complex arithmetic functions such as a multiply accumulate

(MAC) unit. In such case, instead of inline functions and inferring a separate multiplier

and adder for a MAC, the designer may directly instantiate a MAC. Resource allocation

and scheduling is then performed on the MAC itself instead of on separate multiply/add

components. This eases the scheduling and allocation tasks. In such a case, functions are

said to be mapped to components (or operators). Such components are then activated when
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the function is called. The same component can be used at different points in the program,

in such a case, we say that the component is 

 

shared

 

 by the different call sites. 

Commercial synthesis tools usually have limitation on functions that can be mapped to

components. Behavioral Compiler, for example, may only map combinational-logic func-

tions. As a result, a function (or a task in Verilog HDL) may not contain infinite loops, 

 

wait

 

statements or even calls to other functions mapped to components. This works fine for a

simple component such as a MAC but would not scale to complex Intellectual Property

(IP) blocks such as an IDCT or a PCI interface.

Some researches have been working on more elaborate ways of synthesizing func-

tions. In the work of Hald et al. [28], functions may be implemented as multi-cycle opera-

tions and may even call other functions. However, only functions that are called within the

same scope may be shared. Modules can then be instantiated in a hierarchical manner. One

function is mapped to a module and subsequent functions called are mapped to operators

instantiated within this module. To generalize this work, one can imagine a framework

where functions called within different contexts may be mapped to a shared component.

Functions in C differ from their counterparts in Verilog or VHDL. In HDLs, functions

are defined with a set of ports (

 

in, out and inout) to which parameters are passed by

value (i.e., a copy of each parameter is stored within the function). In C, pointers are used

in function calls to pass parameter by reference. In this case, functions do not keep a copy

of the value of parameters passed by reference internally. Example A.2 illustrates the dif-

ference between parameter pass by value and parameter pass by reference. 

Example A.1. We consider the following function definition in HDL:
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2_incr(inout a; inout b) {
a = a + 1;
b = b + 1;

}

 Now assume function 2_incr is called in the following context.

c = 0;
2_incr(c,c);

 In Verilog the parameter c is passed by value. When the function is called, the value of c

(namely 0) is assigned to the local variables a and b inside of the function 2_incr. The

value of a and b after executing the function are both equal to 1. As a result, the value of c

after returning from 2_incr is 1. 

 Let us consider now consider the following C code in which variable c is passed by

reference:

2_incr(int *p; int *q) {
*p = *p + 1;
*q = *q + 1;

}

 where 2_incr is called in the following context:

c = 0;
2_incr(&c,&c);

 In this case the value of c is not copied. The first line *p=*p+1 increments the value of c

from 0 to 1 and the second line *q=*q+1 increments the value of c from 1 to 2. As a

result, when c is passed by reference, the new value of c is 2. 

Synthesizing functions with parameters passed by reference required the synthesis of

the underlying pointers. We have seen in Example A.1 that aliases must be disambiguated

within the function called. Examples A.2 and A.3 show how pointers may be resolved

within a function. They also show that the sharing information is also used to properly

map functions to components. Note that, in general, pointers cannot be replaced by simple
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in or inout ports. Synthesizing functions with parameter passed by reference through the

use of pointers is not straightforward. Accurate pointer analysis is necessary to compute

the set of locations the pointer may reference (points-to set) inside of the function. Infor-

mation about resource sharing is also necessary.

Example A.2. Assume the function 2_incr in Example A.1 written in C, is used as follows.

2_incr(int *p; int *q) {
*p = *p + 1;
*q = *q + 1;

}

main () {
...
2_incr(&a,&b);
2_incr(&c,&c);
...

}

 If the function 2_incr is mapped to a component and only one of such component is

instantiated (i.e. the 2_incr operator is shared at the two call sites). One possible

behavioral description in an HDL like language is the following. The corresponding data-

flow graph is presented on Figure A.1.

2_incr( in p_tag;
        in q_tag;
        inout main_a;
        inout main_b; 
        inout main_c; ) 
{

if(p_tag == 0) 
main_a = main_a + 1;

else
main_c = main_c + 1;

if(q_tag == 0) 
main_b = main_b + 1;

else
main_c = main_c + 1;

}
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main () {
...
2_incr(0,0,a,b,0);
2_incr(1,1,0,0,c);
...

}

 Now if the 2_incr operator is not shared, two components are instantiated. One

possible behavioral description in an HDL-like language is the following. The data-flow

graph for the two functions 2_incr_1 and 2_incr_2 is presented on Figure A.2.

+1

cq
clock 0

clock 1

clock 2

clock 3

clock 4

2_incr

+1

a b

clock 5

clock 6

p

Figure A.1: Implementation of function 2_incr with sharing

a b
clock 0

clock 1
+1 +1

a b 2_incr_1

c
clock 0

clock 1
+1

+1

c
2_incr_2

clock 2

(a) (b)

Figure A.2: Implementations of (a) function 2_incr_1 and (b) function 2_incr_2
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2_incr_1( inout main_a, main_b; ) {
main_a = main_a + 1;
main_b = main_b + 1;

}

2_incr_2( inout main_c; ) {
main_c = main_c + 1;
main_c = main_c + 1;

}

main () {
...
2_incr_1(a,b);
2_incr_2(c);
...

}

 This example illustrates how references must be disambiguated inside of a function. The

behavior of the function depends of the context in which it is called. If we call

2_incr(&a,&b) where a and b are two separate variables, an implementation with two

incrementers (possibly implemented in parallel as on Figure A.2a) is expected. When

2_incr(&c,&c) is called the behavior becomes an incrementer by two (or two

incrementers in serial as on Figure A.2b).

Example A.3. To reinforce the argument, another example is shown. Consider the function

MAC is used to describe a multiply accumulate operator.

void MAC(int *pa; int x; int c) {
*pa = *pa + x*c;

}

void main( void ) {
int a1, a2, x, c;
...
MAC(&a1,x,c);
...
MAC(&a2,x,c);
...

}
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 Assuming the same MAC operator is used for both calls, one possible implementation in

HDL-like language could look like this.

MAC( in pa_tag;
   inout main_a1, main_a2;

 in x, c; ) {
int star_pa[32], tmp_pa[32];

temp = x * c;

if(p_tag==0) 
star_pa = main_a1;

else
star_pa = main_a2;

tmp_pa = star_pa + temp;

if(p_tag==0)
main_a1 = tmp_pa;

else
main_a2 = tmp_pb;

} 

main {
...
MAC(0,a1,0,x,c);
...
MAC(1,0,a2,x,c);
...
}

The previous two examples illustrate how C functions can be synthesized. Functions

that are not inlined get mapped to components. Since parameters are passed by reference

using pointers, loads and stores are resolved within each function according to the differ-

ent caller sites and the sharing information. Ports are added so that each component can

access the difference locations that may be reference within the function. Pointers are

encoded as in Chapter 4 and used to dynamically access these locations inside of the com-

ponent.
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A.2 Optimizing loads and stores inside of functions

The previous section presented how pointers may be resolved inside of functions. Case

or branching statements are added in place of loads and stores in order to dynamically

access the different locations the pointer may reference. In Chapter 6, compiler techniques

are presented to optimize loads and stores. The goal of these optimizations is to reduce the

number of registers used by reducing the number of live variables before loads and stores

using temporary variables. These optimizations are effective when pointers may point to

multiple variables stored in registers. This case happens mostly within functions. When

functions are mapped to components shared by multiple call sites, the points-to set of the

pointers consists of the different variables passed by reference at these difference call

sites. The synthesis of functions with parameters passed by reference is therefore one of

the main motivations for the two optimizations presented in Chapter 6. Examples A.4 and

A.5 respectively illustrate the optimization of a loads and of a loads followed by stores

within a function.

Example A.4. Consider the following code segment:

int MAC(int *p, int c, int x) {
return *p+c*x;

}

main () {
...
o1 = MAC(&a1, c, x1);
...
o2 = MAC(&a2, c, x2);

}

 Assuming that the function MAC() is mapped to one shared component. One possible

scheduled dataflow graph is presented on Figure A.3a. In such a case three registers are

used at clocks 1 and 2 to store the values of p, a1 and a2. When the load is optimized (i.e.
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star_p is defined as early as possible in the code), one register storing the value of

star_p is used instead of the three previous ones. The corresponding scheduled dataflow

graph is shown on Figure A.3b.

 Note that in this example, the result of the optimization is similar to an ASAP scheduling

of the dataflow graph. This is not always the case. An ASAP scheduling may only schedule

the load operation (implemented as a mux) early on, which does not always minimize the

storage.

Example A.5. The following implementation of the MAC() operation includes a load

followed by a store. In this case, temporary variables are used to save one register.

void MAC(int *p, int c, int x) {
*p = *p + c*x;

}

main() {
...
MAC(&a1,c,x);
...
MAC(&a2,c,y);
...
MAC(&a3,c,z);
...

}

*

+

c xp a1 a2

clock 0

clock 1

clock 2

clock 3

clock 4

*

+

c xp a1 a2

clock 0

clock 1

clock 2

clock 3

clock 4

star_p

Figure A.3: synthesis of a function MAC(...) (a) without optimization and (b) with optimization

(a) (b)

MAC MAC
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 Assuming the function MAC is mapped to only one shared component, one possible

scheduled-dataflow graph is shown on Figure A.4a. Note that we need 3 registers at clocks

1-4 to store the values of a1, a2 and a3. After optimizing the store, the temporary

variables _star1_p and _star2_p are created and one register is saved as shown on

Figure A.4_b.

A.3 Encoding the value of the pointers inside of functions

Chapter 4 presents an hardware representation for the value of the pointers. In Chapter

7, a solution for encoding the pointers’ values efficiently is presented. The goals of this

encoding are two: 1) reducing the bit-widths of the pointers’ tag (used to distinguish the

location-sets referenced); 2) reducing the size of the circuits implementing assignments

and comparisons of pointers. As we can see in Example A.6, when a function calls another

function, the pointers in the callee are assigned by the caller. As a result, the sizes of the

points-to sets increase with sharing. Synthesis of functions is therefore a great motivation

for encoding pointers efficiently.

*

+

clock 0

clock 1

clock 2

clock 3

clock 4

clock 5

Figure A.4: synthesis of a function MAC(...) (a) without optimization and (b) with optimization

*

+

clock 0

clock 1

clock 2

clock 3

clock 4

clock 5

(a) (b)

MAC MAC

p a1 a2 a3 c x p a1 a2 a3 c x

a1 a2 a3 a1 a2 a3

star_p star_p
_star2_p_star1_p
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Example A.6. Consider the following code segments, where functions foo() and bar()

are each mapped to one component shared at the different call sites.

main() {
int a, b, c;
...
foo(&a, &b, &c);
...
foo(&b, &c, &d);
...

}

foo(int *r1, int *r2, int *r3) {
...
bar(r1, r2);
...
bar(r2, r3);
...

}

bar(int *q1, int *q2) {
...
}

 Looking only at the initialization of the different pointers in the code, the behavior of the

control logic generated looks like the following.

if(1st call of foo)
{ r1 = &a; r2 = &b; r3 = &c; }

else // (2nd call of foo)
{ r1 = &b; r2 = &c; r3 = &d; }

if(1st call of bar)
{ q1 = r1; q2 = r2; }

else // (2nd call of bar)
{ q1 = r2; q2 = r3; }

 In this code we can see that pointer r1 inside of foo may point to a or b, r2 may point to

b or c, and r3 may point to c or d. Then pointer q1, inside of function bar, may take the

value of r1 or r2, and q2 may take the value of r2 or r3. This corresponds exactly to the
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case presented in Example 7.1. The corresponding pointer-dependence graph and points-

to sets for each pointer is shown again on Figure A.5. A solution to the problem of finding

an optimal encoding of the pointers’ value is presented in Example 7.6.

A.4 Summary

This sections describes how functions can be synthesized. The solution presented in

this thesis supports parameters passed by reference and functions mapped to components.

In C, pointers are used inside of functions to pass parameters by reference. During synthe-

sis, the pointers inside of functions are resolved and encoded as described in Chapter 4.

The points-to set of the pointers is defined by the pointer analysis but depends also on

sharing information. The more sharing, the more locations the pointers may reference

within a function. As a result, the synthesis of functions is a great opportunity for optimiz-

ing loads and stores as shown in Chapter 6. Moreover, function calls inside of functions

requires assignments of pointers. The size of the circuits implementing such assignments

can be also optimized using the encoding technique presented in Chapter 7.

 In other languages such as Java or C++, parameters may directly be passed by refer-

ence without explicitly using pointers. The steps necessary for the synthesis of such refer-

ence involves however the same steps as the synthesis of pointers [33].

r1 r2 r3

q1 q2

Figure A.5: (a) Pointer-dependence graph and (b) definitions of the points-to sets of each pointer

r1 {a,b}
r2 {b,c}
r3 {c,d}
q1 {a,b,c}
q2 {b,c,d}

(b)(a)
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APPENDIX B. DISTANCE METRIC BETWEEN
ENCODINGS OF POINTERS

Chapter 7 presented an algorithm to efficiently encode the symbols (i.e. references) in

the points-to set of each pointer. A formulation of the encoding problem is presented in

Section 7.2. Such formulation introduces the distance function  between the two

encoded sets. When the pointers have the same points-to set and the encoding has the same

length n,  is simply defined as: 

(B.1)

where N= =  is the number of symbols in the points-to sets,  is in the set

of the permutation functions of n bits, and  is the Hamming distance.

However, in general, the points-to sets may differ and their encoding may have differ-

ent lengths (bit-widths). The computation of the distance is then more complex. This

appendix presents a more general definition of the  function.

Definition 2.0. 
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Example 2.0.
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Since the encodings may have different lengths, 0s are first added to the shorter encod-

ing. Both encodings have then the same length. Note that padding with only 1s instead of

0s would lead to the same result.

If the points-to sets  and  are not the same (i.e., they do not contain the same set

of symbols), we are only interested in the symbols in the intersection of the two points-to

sets. Namely, let  be the set of the indices of the symbols in points-to set  that are

also in points-to set .

(B.2)

Since we do not consider all of the symbols in the points-to set we only want to com-

pute the distance on the relevant bits in the encoding. As a result, we define a mask func-

tion in order to mask to non-relevant bits. For a set of symbols  the

bit vector representing the non-constant bits in the encoding of these symbols is given by

the bit-vector  defined as follows:

(B.3)

where the XOR operator  and the OR operator  are applied bitwise to the bit vec-

tors  and .

Example B.1. In the encoding shown in Figure 7.2a, the pointer r2 may point to variables

b or c, where b is associated with value 0 and c is assigned to value 1. Pointer q1 may

point to a, b, or c. However, in the encoding of q1, b is associated with value 01 and c is

assigned to value 10. The intersection of the points-to sets of q1 and r2 is {b,c}. The
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mask for r2 is  after adding one 0 on the left to increase the code length to

2. Pointer q1 has  as a mask.

 On Figure B.1a, the first bit of the mask for r2 is 0 because the first column of the

encoding matrix is constant equal to 0. The second bit of the mask is 1 because the values

in the second column are 0 and 1. For the computation of the mask of q1 on Figure B.1b,

the first row of the matrix, which corresponds to the encoding of symbol a, is discarded

because it is not in the points-to set of r2. The resulting mask for q1 is 11.

The distance is then computed as in Eq. B.1. Instead of computing the Hamming dis-

tance on all bits of the code, we only consider the non-constant bits for the symbols that

are in the intersection of the two points-to set. The distance, in general, is defined as fol-

lows:

 (B.4)

where H() is the Hamming distance and the AND operation  is applied bitwise to the

bit vector resulting of mask(...) and .
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Figure B.1. Computation of the mask bit-vector for (a) r2 and (b) q1.
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Example B.2. For the encoding shown in Figure 7.2a, using the masks computed in

Example B.1, the distance between the encodings of r2 and q1 is then:

 (B.5)

 In the encoding shown in Figure 7.2b, the encoding of r2 remains unchanged. On the

other hand, for q1, b is associated with value 01 and c is assigned to value 11. The mask

for q1 is then . The distance between the two encodings is then

 (B.6)

 We can show in this case that Eq. 7.2 is then minimal equal to 0. Since Eq. 7.1 is also

minimal too with this encoding (minimal length), we have an optimal encoding. The

complexity of the circuit implementing the translation of the pointers’ value in the

assignment r1=r2 is then minimal.

To summarize this appendix, a metric for computing the distance between two

encoded points-to sets was presented. This metric effectively abstracts the complexity of

the circuit implementing the translation of the values of the pointers. It handles the case of

two different points-to sets encoded with different lengths. The idea was to pad the shorter

code with 0s. Then, in the computation, only the encodings of the symbols that are com-

mon to the two points-to sets are considered and the unrelevent bits are masked out.
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