

SYMBOLIC ALGORITHMS FOR
EMBEDDED SYSTEM DESIGN

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Armita Peymandoust

June 2003

 Copyright by Armita Peymandoust 2003

All Rights Reserved

 ii

I certify that I have read this dissertation and that, in my opinion, it is
fully adequate in scope and quality as a dissertation for the degree of
Doctor of Philosophy.

Giovanni De Micheli
Principal Advisor

I certify that I have read this dissertation and that, in my opinion, it is
fully adequate in scope and quality as a dissertation for the degree of
Doctor of Philosophy.

David L. Dill

I certify that I have read this dissertation and that, in my opinion, it is
fully adequate in scope and quality as a dissertation for the degree of
Doctor of Philosophy.

Michael Flynn

Approved for the University Committee on Graduate Studies.

 iii

ABSTRACT

The growing market of multi-media applications requires development of complex

embedded systems with significant data-path portions. However, current hardware

synthesis and software optimizations tools and methodologies do not support arithmetic-

level optimizations necessary for data intensive applications. In particular, most high-

level synthesis tools cannot automatically synthesize data paths such that complex

arithmetic library blocks are intelligently used. Thus, the data paths of such circuits are

often manually designed and mapped to pre-optimized library elements. Similarly,

current compilers and software optimization methods are frequently incapable of

optimizations required by multi-media software designers. Namely, most high-level

arithmetic optimizations and the use of complex instructions and pre-optimized

embedded library functions are left to the designers’ ingenuity. In this thesis, results

from symbolic polynomial manipulation techniques are used to develop algorithms for

high-level data-path hardware synthesis, embedded-software optimization, and automated

application specific embedded processor design.

Polynomials are chosen to abstract data-intensive software/hardware library elements

and high-level specifications. Two new arithmetic-level symbolic polynomial

decomposition algorithms are proposed. These algorithms map a specification to an

implementation with minimum number of library elements or minimal delay.

The decomposition algorithms are applied to high-level synthesis of data intensive

circuits by the tool SymSyn. SymSyn performs arithmetic optimization on dataflow

descriptions and automatically maps them into data paths using complex arithmetic

library components. SymSyn is capable of finding the minimal component mapping and

the minimal critical-path delay mapping of the given dataflow. SymSyn is used in

 iv

conjunction with a commercial behavioral synthesis tool on a set of dataflow

descriptions. The results show impressive improvement in area and delay of the

synthesized circuits compared to results from the standalone commercial behavioral

synthesis tool.

Since energy optimization is a primary optimization goal in embedded system designs

energy profiling is combined with the symbolic decomposition algorithms to optimize

power-intensive sections of algorithmic multi-media embedded software. As a result, a

tool flow and methodology is proposed that automatically maps critical code sections to

complex processor instructions and pre-optimized software library available for a given

processor. This optimization methodology is called SymSoft. SymSoft is used to

optimize and tune the algorithmic level description of a set of examples including an

MPEG Layer III (MP3) audio decoder for the SmartBadgeIV portable embedded system.

In addition to improving designers’ productivity, SymSoft lowers the number of

instructions and memory accesses and thus lowers the system power consumption.

A growing number of embedded systems are using application-specific embedded

processors. The design of these processors requires manual specialization of processors

based on an application. Moreover, the use of the new complex instructions added to the

processor is a manual task. Instruction set selection of application specific instruction set

processors is automated by methods that automatically group dataflow operations in the

application software as potential new complex instructions. The set of possible

instructions is then automatically used for code generation combined with high-level

arithmetic optimizations using the symbolic decomposition algorithms. These algorithms

and methodology are used to automatically add new instructions to Tensilica processors

for a set of examples. Results show improvements in designers productivity and efficient

embedded processor specialization for the given applications.

The algorithms and methodologies presented in this thesis cover all aspects of

embedded systems design including hardware, software, and processor design. These

 v

algorithms also bridge the gap between algorithmic design and the semantics of software

and hardware description languages. This task is accomplished by using symbolic

computer algebra that adds the knowledge of algebra to design tools.

 vi

DEDICATION

To mom, dad, and Behrooz, with love and gratitude.

 vii

ACKNOWLEDGMENTS

My deepest gratitude goes to my advisor Prof. Giovanni De Micheli for giving me the

opportunity to work on this thesis. This work would not have been possible without his

keen insight, guidance, and support. I would also like to thank my reading committee

members, Prof. David Dill and Prof. Michael Flynn, for their time and effort spent on

reading this thesis and serving on my Oral exam committee. I like to thank Prof. Zain

Navabi for his encouragements and believing in me since the undergraduate years.

Discussions and suggestions from many members of the CAD group at Stanford have

helped with parts of this research. I would like to thank Tajana Simunic for her

directions on the software optimization work and her help with the SmartBadgeIV

system. I appreciate Prof. Yung-Hsiang Lu’s help with the data acquisition device and

his feedbacks on my papers. I am grateful for discussions and feedbacks of Luc Semeria,

Eui-Young Chung, and Prof. Luca Benini. Also, the presence and patience of all CAD

group members during my talks is appreciated. I thank Evelyn Ubhoff and Kathleen

DiTomaso for their prompt and caring support.

Life is an amazing journey. These past five years of my personal life were filled with

extreme events, both pleasant and sad. It is a blessing to have families and friends to

share the joyous moments and lean on when in need: My mother who directed me to

where I am today with her love, the memory of my father for his unconditional love and

support, my husband Behrooz for the gift of love and humor, Armin for the fun of living

on the edge, Jeyran for always being there, and ... I thank you and love you all dearly.

 viii

TABLE OF CONTENTS

Chapter 1 Introduction ...1

1.1. Motivations ...2

1.2. Design Flow..4

1.3. Thesis Objectives ..6

1.4. Thesis Contributions ...9

1.5. Thesis Outline ...10

1.6. Assumptions and Limitations ...11

Chapter 2 Background ...13

2.1. Symbolic Computer Algebra ..14

2.2. Basic Commutative Algebra ...15

2.3. Gröbner Bases...17

2.4. Summary ...22

Chapter 3 High-Level Data-Path Synthesis ...23

3.1. Related Work ..26

3.2. Gröbner Bases and Data-path Synthesis ...27

3.3. Symbolic Algebra and Library Matching ...28

3.4. Minimal Component Decomposition Algorithm..30

3.4.1. Minimal Component Example...32

3.5. Timing Driven Decomposition Algorithm..34

3.6. Expression Manipulation Techniques...38

3.6.1. Tree-height Reduction ...39

3.6.2. Factor and Expand ...40

3.6.3. Horner Form...41

3.6.4. Substitution and Elimination..42

3.7. Implementation and Experimental Results ...44
 ix

3.8. Summary ...48

Chapter 4 Embedded Software Optimization ..50

4.1. Related Work ..54

4.2. Experimental Setup...55

4.3. SymSoft Methodology and Tool Flow ...56

4.3.1. Library Characterization ..58

4.3.2. Target Code Identification ...61

4.3.2.1. Data Representation Conversion...62

4.3.2.2. Energy Profiling..63

4.3.2.3. Polynomial Formulation ...64

4.3.3. Symbolic Mapping Algorithm ...65

4.4. Results...72

4.4.1. The MP3 Optimization Results..74

4.5. Summary ...80

Chapter 5 Instruction Set Selection and Usage..82

5.1. Related work ...85

5.2. Methodology...87

5.2.1. Automatic Instruction Selection ..89

5.2.1.1. MISO Extraction...90

5.2.1.2. Symbolic Mapping and Optimization...92

5.2.2. Automatic Instruction Mapping...95

5.3. Results...96

5.4. Summary ...98

Chapter 6 Conclusion...100

6.1. Summary of Contributions..101

6.2. Future Directions ..102

 x

LIST OF TABLES

Number Page

Table 3.1. Normalized Delay and Area of Library Elements ..44

Table 3.2. SymSyn Results for Some Examples..45

Table 3.3. Area and Delay Reported by Synopsys Tools Using tsmc.35 Library48

Table 4.1. Sample of IPP Library Elements ..59

Table 4.2. Characterized Complex Library Elements..61

Table 4.3. Results of SymSoft Optimization on a Set of Examples73

Table 4.4. Profiling the Original MP3 Code..75

Table 4.5. Comparing SymSoft Instruction Mapping and a Commercial Compiler76

Table 4.6. MP3 Profile After First Phase of Optimization ..77

Table 4.7. MP3 Profile After Second Phase of Optimization..78

Table 4.8. Execution Time and Energy of Different Versions of the MP3 Decoder.........78

Table 5.1. Execution Time Improvements Reported by the ISS96

Table 5.2. Area Cost of the Added Instructions...97

 xi

LIST OF FIGURES

Number Page

Figure 1.1. Gap in Multimedia and DSP Embedded System Design3

Figure 1.2. Ideal Embedded System Design Flow...4

Figure 3.1. An Implementation for
yx 22

1

+
..25

Figure 3.2. An Implementation of x2-y2...29

Figure 3.3. An Alternative Implementation of x2-y2..29

Figure 3.4. Mapping the S dataflow to Two Components...33

Figure 3.5. Mapping the D dataflow to Four Components ..38

Figure 3.6. A Possible Implementation for ..38 ec

Figure 3.7. Performing THR on (a) Produces (b) ..40

Figure 3.8. Factor May Reduce Number of Components and CPD40

Figure 3.9. Substitution with THR can Maximize Parallelism..43

Figure 3.10. Component Distribution in SymSyn Output ...47

Figure 4.1. SmartBadgeIV Architecture ..56

Figure 4.2. SymSoft Tool Flow ...57

Figure 4.3. Target Code Identification...62

Figure 4.4. Profiler Architecture..64

Figure 4.5. Overview of the Library Mapping Algorithm...68

Figure 5.1. SymASIP Methodology...88

Figure 5.2. Automatic Instruction Selection ..89

Figure 5.3. MISO Extraction on Y1 = a*R1 + b*G1 + c*B1 + d......................................91

Figure 5.4. Automatic Instruction Mapping ..95

 xii

CHAPTER 1

INTRODUCTION

Today’s electronic systems are increasingly more complex as a consequence of the

exponentially growing transistor counts enabled by smaller feature sizes and the

consumer demand for increased functionality, lower cost, and shorter time-to-market.

Design technology tools and methodologies aim to reduce the renowned productivity gap

and enable engineers to cost-effectively transform ideas into electronic systems.

Revolutionary design technology tools have dramatically reduced the total design cost of

systems on a chip (SOC). Examples of such groundbreaking tools include in-house

placement and route softwares, register transfer level (RTL) synthesizers, and intelligent

testbench generators. It is predicted that the next breakthrough design technology will be

innovative embedded system level design tools and methodologies [1]. These tools will

significantly reduce design cost and improve designer’s productivity.

The reason behind this prediction is the ever-increasing demand for embedded systems

and their growing complexity. Embedded systems on a chip are integrated circuits

dedicated to a specific application or specific domain of applications. Such systems

integrate microprocessor cores, memories, and custom hardware blocks on a single chip.

Examples of these systems range from cell phones and personal digital assistants (PDAs)

to medical instruments and automotive electronics.

 2

There are several differentiating factors between the design of embedded systems and

general-purpose electronic systems. The time to market and cost constraints of

embedded systems are typically more aggressive. Energy efficient design is most

important for portable embedded systems. Most notably, hardware and software design

of embedded systems is more tightly coupled. Therefore, co-design of the software and

hardware components of the embedded system is necessary for cost effective

implementation. Tradeoffs must be made between implementing a function in hardware

or software such that given quality and cost constraints are satisfied. Embedded system

level design tools and methodologies are needed to automate the time consuming task of

exploring the design space and to increase designer productivity.

1.1. MOTIVATIONS

In this thesis, the objective is to optimize the design of different components of an

embedded system and to shorten the time required to design, optimize, and verify an

embedded system by innovative system-level design algorithms, tools, and

methodologies. Currently, embedded system designers have noticed that a shift to a

high-level design methodology is inevitable in order to stay competitive in the market.

Embedded systems include microprocessors, embedded software processes that execute

on the microprocessors, custom hardware components, and memory blocks. In order to

meet the aggressive time to market constraints, each component of an embedded systems

must be designed at a higher level of abstraction.

Algorithmic-level specification of the design allows designers to specify more

functionality to be specified more quickly. Synthesizing an algorithmic or architectural-

level specification enables wider design space exploration that results in greater

improvements of the system metrics. Furthermore, an algorithmic specification can be

mapped onto more complex pre-optimized library blocks by high-level synthesis and

component mapping tools. Effective reuse of pre-designed complex library elements

 3

results in designs that are correct by construction. Therefore, the time required to verify

the design is dramatically reduced.

Place & Route

Embedded System

RTL

Behavioral
SW Program

Mathematical Algorithm

Embedded SystemMicroprocessor

Embedded System

Custom
Hardware

Gap {

Figure 1.1. Gap in Multimedia and DSP Embedded System Design

The design of data-intensive embedded systems for multimedia and digital signal

processing (DSP) applications starts with the mathematical description of these

algorithms. However, there is a gap between the mathematical domain and the semantics

of programming languages and behavioral synthesis as shown in Figure 1.1. An efficient

design methodology for data-intensive embedded systems should bridge this semantic

gap. In addition to searching the design space, such tool is expected to have the

knowledge of algebra in order to automate mathematical optimizations required for

algorithmic level design. In order to achieve this goal, the proposed tools and

methodologies in this thesis exploit algorithms from symbolic computer algebra. Using

symbolic computer algebra in algorithmic synthesis is analogous to the use Boolean

algebra in logic synthesis tools that enable efficient synthesis of Boolean logic into

control circuitry. Next, we will take a closer look at the design issues of the hardware

portion, the embedded software processes, and the application specific processors used in

data intensive embedded systems.

 4

Multi-media & DSP
Algorithm Design

HW/SW
PartitioningBehavioral

Synthesis

RTL
Synthesis

Place and
Route

DSP
Compiler

Assembler

LD R21, #30;
ADD R21, R23,R27;. . .

0101011110100010
1110010100100111
1000011110101001
0001100110101011
. . .

SWHW

Figure 1.2. Ideal Embedded System Design Flow

1.2. DESIGN FLOW

As shown in Figure 1.2, the design of embedded systems starts with the algorithmic

description of the application in a high-level language such as C or Matlab. In the ideal

design flow of embedded systems, a software/hardware-partitioning tool automatically

determines which sections of the system specification should be mapped to hardware and

which parts should be implemented as software. After this decision is made, the

architecture of the system is defined. To implement the custom hardware components of

the system, the algorithmic level specification of these components is coded in a

hardware description language (HDL). Next, a behavioral synthesis tool transforms this

algorithmic or behavioral HDL code to its register transfer level (RTL) equivalent. The

RTL description of the hardware is subsequently synthesized to a net-list of logic gates

 5

and memory elements using an RTL synthesis tool. Finally, the layout of the custom

hardware is produced by a placement and route tool from the given net-list.

To implement the software portion of the embedded system, a microprocessor should

be first chosen for the embedded system. One possibility is to select an off-the-shelf

microprocessor suitable for the given application domain. Another possibility is to

design an application specific instruction set processor (ASIP) for the given embedded

system. In the latter case, an ASIP design tool takes the software application code and

automatically generates an ASIP architecture and its supporting tools and compiler. In

either case, the algorithmic C code of the application software is optimized and translated

to assembly code by the compiler of the chosen embedded processor. This assembly

code is next translated to machine code for the given microprocessor.

However, the reality of the embedded system design methodology is not as effortless

and automatic as described above. Most transformations that start from a high-level

algorithmic description require extensive manual intervention by the designer. In

addition, with the increasing complexity of the embedded systems designs, automatic

software and hardware design reuse is becoming increasingly important. Yet, the tool

support for automatic design reuse does not match the real needs of designers.

In reality, most high-level synthesis tools and methods cannot automatically

synthesize data paths such that complex arithmetic library blocks are intelligently used.

Therefore, the hardware designers change the algorithmic HDL code such that it is

suitable for current behavioral synthesis tools and manually map dataflow sections of the

design to components available in the library of pre-designed arithmetic hardware blocks.

This mapping is generally done by inserting synthesis directives that map the dataflow

sections to the desired library components. However, automating this tedious task and

the design of data paths from high-level specifications is necessary to meet aggressive

time to market requirements. Namely, most arithmetic-level optimizations are not

currently supported and they are left to the designers' ingenuity. In this thesis, it is shown

 6

that symbolic algebra can be used to construct arithmetic-level optimization and library

mapping algorithms.

Moreover, embedded software engineers modify the algorithmic-level C code of the

software and manually map the identified critical sections of the code to inline assembly.

However, time to market of embedded software has become a crucial bottleneck. As a

result, embedded software designers often use libraries that have been pre-optimized for a

given processor to achieve higher code quality. Unfortunately, use of complex library

elements and complex processor instructions is currently a manual task and depends on

the designers’ skills. In this thesis, algorithms and methodologies are presented that

automate the use of complex processor instructions and pre-optimized software library

routines simultaneous with high-level arithmetic optimizations using symbolic algebraic

techniques.

Furthermore, there is a growing demand for application-specific embedded processors

in system-on-a-chip designs. Current tools and design methodologies often require

designers to manually specialize the processor based on an application. Moreover, the

new complex instructions added to the processor often should be used manually through

intrinsic function calls. In this thesis, a solution is introduced that automatically groups

dataflow operations in the application software as potential new complex instructions.

The set of possible instructions is then automatically used for code generation combined

with high-level arithmetic optimizations using symbolic algebra.

1.3. THESIS OBJECTIVES

As seen in the previous section, the growing market of multi-media applications has

required the development of complex application specific integrated circuits (ASICs)

with significant data-path portions that accelerate the execution of the computational

intensive kernels of the application. The optimal choice of the arithmetic units

implementing complex dataflows strongly affects the cost, performance and power

 7

consumption of the silicon implementations. Unfortunately, current commercial tools

rely on synthesis directives (pragmas) from designers in order to map dataflow into

complex arithmetic library elements.

On the other hand, existing high-level synthesis tools are effective in capturing HDL

models of the hardware and mapping them into control/dataflow graphs (CDFGs),

performing scheduling, resource sharing, retiming, and control synthesis [8]. The

approach presented in this thesis fits seamlessly into current high-level synthesis flow.

The dataflow segments of the CDFG models are analyzed in light of the arithmetic units

available as library blocks, and data paths are constructed that best exploit the given

library. It is assumed that design is done using libraries that contain, beyond the basic

elements such as adders and multipliers, more complex cells such as multiply/accumulate

(MAC), sine, cosine, …. An example of such a library is the Synopsys DesignWare® [9]

library. The first objective this thesis is to optimize and map dataflow descriptions into

data paths that use complex arithmetic components.

In embedded system design environment, the degrees of freedom in software design

are often much higher than the freedom available in hardware design. As a result, the

primary requirement for embedded system-level design methodology is to effectively

facilitate code performance and energy consumption optimization. Automating as many

steps in the design of software from algorithmic-level specification is necessary to meet

time to market requirements. Unfortunately, current available compilers and software

optimization tools cannot meet all designers’ needs.

Typically, software engineers start with algorithmic level C code, often developed by

standards groups, and manually optimize it to execute on the given hardware platform

such that power and performance constraints are satisfied. Needless to say, this

conversion is a time-consuming and often error-prone task, which introduces undesired

delay in the overall development process. The second objective of this thesis is to

develop a software optimization methodology that reduces manual intervention. This

 8

methodology, SymSoft, is used to optimize a set of examples for the SmartBadgeIV,

explained in Section 4.2, portable embedded system running the Linux embedded

operating system [22]. The results of these optimizations show that by using SymSoft the

critical basic blocks of the benchmark examples can be mapped to the StrongARM SA-

1110 instruction set much more efficiently than the commercial StrongARM compiler.

SymSoft is also used to map critical code sections to commercially available software

libraries with complex mathematical elements such as exp or the IDCT routine. Our

measurements on SmartBadgeIV show that even higher performance improvements and

energy savings are achieved by using these library elements.

Use of application-specific instruction-set processors (ASIP) in such embedded

systems is a natural choice as ASIPs have time-to-market advantage over custom design

ASICs and performance and power advantages over traditional fixed instruction set

processors. Typically, software engineers start with a high level C code that specifies the

application and manually specialize the embedded processor such that performance and

cost constraints are satisfied. This process starts with profiling the application software

to find the computation intensive segments of the code. Mapping these segments to

hardware can greatly reduce the execution time of the application. Most base processors

are capable of efficiently handling control segments of the application. Thus, the sections

that benefit most from acceleration on hardware are data path or basic block segments.

Consequently, the application-specific processor is manually tailored to include new ad-

hoc functional units and instructions that calculate the computation critical basic blocks

of the code. Nevertheless, specialization and design of ad-hoc functional unit extensions

can be very lengthy and burdensome, which in turn introduces undesired delay in the

overall development process.

In addition, most C compilers are unable to use the new complex instructions of the

ASIP efficiently and automatically. In current design methodology, software designers

manually insert intrinsic function calls that correspond to the new complex instructions in

 9

the computation intensive sections of the code. Manually inserting function calls is both

time consuming and error prone. Moreover, designers often miss the opportunity of

reusing the new instructions in other sections of the code to further reduce the execution

time of the application. The third objective of this thesis is to provide a novel and

effective method for instruction selection that is necessary due to the complexity of the

automatically identified instructions. Using this methodology to new instructions are

added automatically to Tensilica processors for a set of examples. Results show that

designers’ productivity is improved and embedded processors are efficiently specialized

for the given applications such that the execution time is greatly improved.

1.4. THESIS CONTRIBUTIONS

In order to satisfy the objectives presented in the previous section a set of algorithms,

tools, and methodologies are presented in this thesis. Their contributions can be

summarized as:

1. For algorithmic design of the hardware blocks of the embedded system, two

dataflow mapping algorithms are defined. These algorithms automate mapping

dataflow sections of a high-level specification of the design to pre-optimized

arithmetic library elements. This work introduces optimizations possible by the

power of symbolic algebra for the first time in field of hardware thesis. The

resulting tool enhances the capabilities of current high-level synthesis tools and

designer’s productivity.

2. A methodology and tool flow is defined for optimized embedded software

programs. This methodology uses energy profiling to select critical section of an

embedded software program. Next, algorithms are developed that map the critical

section of the software to complex instructions available on the target

microprocessor and embedded software library functions. This methodology was

used to optimize a set of examples including an MP3 decoder software for a given

 10

embedded system. Measurements on the system show dramatic performance and

energy consumption improvements.

3. Since software and hardware blocks of an embedded system are tightly coupled, an

efficient software/hardware co-design methodology is introduced in this thesis.

This methodology aims at automating the selection and usage of the instruction set

for an application specific processor. First, an algorithm is used to defined a set of

promising instructions based on the given software application. Next, a symbolic

decomposition algorithm maps the basic blocks of the application to the set of

possible instructions. A final set of instructions is selected and used based on

performance metrics of the application software. This results in adding hardware

to the processor used in the embedded system to accelerate the software

application and improve the overall performance of the embedded system.

1.5. THESIS OUTLINE

Chapter 2 provides a background on the concepts behind symbolic computer algebra

and Buchberger’s algorithm to calculate Gröbner basis of an ideal. This algorithm is

used for multivariate polynomial elimination. Symbolic multivariate polynomial

manipulations and variable elimination are used in the mapping algorithms presented in

this thesis. Concepts explained in Chapter 2 are the backbones of this research.

Chapter 3 describes how SymSyn uses symbolic algebra and polynomial representations

to map dataflow sections of the hardware to a library of complex arithmetic blocks. First,

previous work on deriving the canonical polynomial representation of a Boolean function

is explained. Next, algorithms are explained that map the polynomial representation of a

dataflow to a library represented by a set of polynomials. The mapping algorithms search

for the minimal critical path delay implementation or for the implementation that uses the

least number of components. Results are presented that show the advantage of

component inference by SymSyn compared with a commercial behavioral synthesis tool

 11

in terms of area and delay. Chapter 4 describes our embedded software optimization

methodology called SymSoft. SymSoft automates use of complex processor instructions

and software library routines. First, the critical sections of the code are selected by

execution time and energy profiling. These sections are then transformed into their

polynomial representations. Symbolic computer algebra is used to map these

polynomials to complex instructions available on the given processor and software

functions available in the software library. SymSoft is used to optimize a set of

application including an MP3 decoder for an embedded system called the SmartBadge.

Results show impressive improvements in the performance and energy consumption of

these examples. Chapter 5 focuses on the design of application specific instruction set

processors. The goal is to take the application software and produce an instruction set

and the optimized software based on the chosen instruction set. The dataflow sections of

the code are processed to select a set of potential instructions that implement (parts of)

the basic blocks. These potential instructions are used by a symbolic mapping algorithm

for code generation. Results presented show that our algorithm and methodology can

efficiently specialize embedded processors for a set of applications. Finally, Chapter 6

summarizes the contributions of this research and proposes future research directions.

1.6. ASSUMPTIONS AND LIMITATIONS

This thesis focuses on the optimization and mapping of dataflow sections of a software

program or a hardware description. It is assumed that the control sections of the design

are implemented efficiently by state-of-the-art compilers, synthesis tools, and basic

embedded processors. The target of this thesis is to optimize and cost effectively design

application domains such as multimedia and DSP applications. These applications have

significant dataflow sections that perform arithmetic calculations. These dataflow

sections are typically optimized manually. The algorithms, tools, and methodologies

presented in this thesis complement control optimization capabilities of present compilers

and synthesis tools to automated this process.

 12

The mapping algorithms presented in this thesis assume that a polynomial

representation is available for the dataflow section to be implemented. This assumption

holds in an arithmetic intensive application domain such as the ones targeted in this

research. When a dataflow section is calculating a transcendental function, its

polynomial representation is obtained by approximation. It should be verified through

simulation that the approximation used does not noticeably change the quality of the

application output. This approximation and verification process is not the subject of this

thesis and is currently a manual task that is to be automated in future work.

CHAPTER 2

BACKGROUND

To accelerate design and verification of embedded systems, hardware and software

component libraries are available commercially for design reuse proposes. Hardware

libraries include a set of pre-optimized complex hardware arithmetic components. An

example of such library is the commercial DesignWare® [9] library by Synopsys that

includes multiply-and-accumulate (MAC), sine, cosine, etc. A software library is a set of

pre-optimized software routines. These library routines can be in-house code reused

from previous projects or commercial software libraries available for a given processor.

An example of a commercial software library is Intel’s integrated performance primitives

for the StrongARM SA-1110 processor with routines such as finite impulse response

(FIR) filter, inverse discrete cosine transformation (IDCT), Hamming decoder, etc.

Proposed algorithms, tools, and methodologies in this thesis, concentrate on arithmetic

optimization and library mapping of the dataflow sections of the design. Two factors are

key in automating the optimal mapping of dataflow blocks of a design into pre-optimized

hardware and software libraries. First, a functionality description formalism for dataflow

and library components. Second, methods supporting the decomposition of this formal

representation into a set of library elements implementing arithmetic data paths.

 14

The functionality description formalism needs to be compact and canonical. A natural

way to represent dataflow sections of a description would be to represent them as

polynomials. Polynomial representation has been proven as an effective technique

[10][46][47] for representing both high-level specification and bit-level description of an

implementation (library component), these methods will be described in Section 3.1.

Furthermore, in embedded systems, cost efficiency of computational solutions is

extremely important. Since, multi-media applications can tolerate certain output

degradation polynomials can also be used for approximation and inexact mapping. The

limited accuracy of a polynomial representation is analogous to the limited number of

bits to representing floating point numbers in hardware.

Multivariate polynomial can be transformed into different equivalent polynomials and

decomposed into other polynomials using a known set of algebraic polynomial

decomposition methods and algorithms. These algorithms are implemented in

mathematical tools such as Maple and Mathematica and often referred to as symbolic

computer algebra. In the following sections, the basic theory behind symbolic

multivariate polynomial algorithms is described in more detail.

2.1. SYMBOLIC COMPUTER ALGEBRA

Traditional mathematical computation with computers and calculators is based on

arithmetic of fixed-length integers and fixed-precision floating-point numbers, otherwise

known as numeric computer algebra. In contrast, modern symbolic computation systems

support exact rational arithmetic, arbitrary-precision floating-point arithmetic, and

algebraic manipulation of expressions containing undetermined values (symbols), such as

variable x in (x+1)*(x-1). Several commercial symbolic computer algebra systems

are available on the market; Maple [2] and Mathematica [3] are most widely used.

The algebraic object to be manipulated symbolically is a multivariate polynomial that

represents a (portion of) data path of our design. This polynomial should be decomposed

 15

into polynomials representing the building blocks available in the target library. Such

decomposition is called simplification modulo set of polynomials in symbolic computer

algebra. Most interesting symbolic polynomial manipulations for dataflow optimization

are based on Gröbner bases [4][5][6][7]. Gröbner bases and Buchberger’s algorithm

generalize the division and greatest common divisor (GCD) algorithms of univariate

polynomials to multivariate polynomials. Therefore, it is the heart of symbolic

polynomial factorization.

Gröbner bases also solve variable elimination in a set of polynomials and ideal

membership problems, which is the core of simplification modulo set of polynomials. In

the following section, Gröbner basis and its application to the simplification algorithm are

reviewed. Commercial symbolic computer programs, such as Maple [2], have a built-in

routine that performs simplification modulo set of polynomials. In Maple, this method is

called simplify. Next, the underlying theory of simplification modulo set of polynomials

is described. The reader solely interested in its applications may proceed to Chapter 3.

2.2. BASIC COMMUTATIVE ALGEBRA

Definition 2.1. An Abelian group is a set G and a binary operation “+” satisfying all

the following properties:

i. Closure. For every a, b ∈ G; a + b ∈ G.

ii. Associativity. For every a, b, c ∈ G; a+(b+c)=(a+b)+c.

iii. Commutativity. For every a, b ∈ G; a+b=b+a.

iv. Identity. There is an identity element 0 ∈ G such that for all a ∈ G; a+0=a.

v. Inverse. If a ∈ G, then there is an element ā ∈ G such that a+ā=0.

 16

Definition 2.2. A commutative ring with unity is a set R and two binary operations “+”

and “·”, referred to as addition and multiplication, as well as two distinguished elements

0, 1 ∈ R such that the following axioms hold:

i. R is an Abelian group with respect to addition with additive identity element 0.

ii. Multiplication closure. For every a, b ∈ R; a·b ∈ R.

iii. Multiplication associativity. For every a, b, c ∈ R; a·(b·c)=(a·b)·c.

iv. Multiplication commutativity. For every a, b ∈ R; a·b=b·a.

v. Multiplication identity. There is an identity element 1 ∈ R such that for all

a ∈ R; a·1=a.

vi. Distributivity. For every a, b, c ∈ R; a·(b+c)=a·b+a·c holds for all a, b, c∈ R.

Definition 2.3. A field K is a commutative ring with unity, where every element in K

expect 0 has a multiplicative inverse, i.e, ∀a ∈ K–{0}, ∃ â ∈ K such that a·â=1.

The set of all multivariate polynomials with variables x1, x2,… , xn, coefficients from a

field K, and the two operations addition and multiplication forms a commutative ring

with unity denoted by R [x1, x2,… , xn].

Definition 2.4. Let R be a commutative ring, a non-empty subset I ⊆ R is an ideal

when [7]:

i. 0 ∈ I,

ii. p + q ∈ I for all p, q ∈ I, and

iii. r ⋅ p ∈ I for all p ∈ I and r ∈ R.

Lemma 2.1. Let P = { p1 , p2 ,… , pk } be a finite subset of the polynomial ring

R [x1, x2,… , xn] and < P > = < p1 , p2 ,… , pk > = { h∑
=

k

i 1
i⋅pi | hi∈R [x1, x2 ,… , xn] }.

Then < P > is an ideal in R [x1, x2,… , xn]. < P > is called the ideal generated by P and

the set P is called generator or basis of this ideal. For example, the set of polynomials

 17

P = { p1, p2, p3 } defined below generates a polynomial ideal over

R [x1, x2, x3].

p1 = x1
3 x2 x3- x1 x3

2, p2 = x1 x2
2 x3- x1 x2 x3, p3 = x1

2 x2
2- x3

2

< P > = {a1⋅p1+a2⋅p2+a3⋅p3 | a1, a2, a3 ∈ R [x1, x2, x3] }.

Unfortunately, while P generates the infinite set < P >, the polynomials pi in P may

not yield much insight into this ideal, since for each ideal in a polynomial ring there are

many possible sets of polynomials that generate the ideal. In other words, the ideal basis

is not unique. However, Buchberger [4] has shown that an arbitrary ideal basis can be

transformed into a basis with special properties, which is called the Gröbner basis. A

minimal (or reduced) Gröbner basis forms a canonical representation for a multivariate

polynomial ideal. A canonical representation for ideals enables us to check whether two

ideals are equal. Important applications of Gröbner basis include polynomial

decomposition and variable elimination in a set of multivariate polynomials. One may

say that Gröbner basis is the cornerstone of polynomial decomposition used in our

mapping algorithm. In the next section, a brief description of Buchberger’s algorithm is

given.

2.3. GRÖBNER BASES

Before introducing a formal definition of Gröbner bases, term ordering and reduction

(division) of multivariate polynomials should be defined. A monomial of the form

x1
i1x2

i2
…xn

in, where x1, x2,… , xn are the variables of the polynomial and (i1, i2,… ,in) ∈

are the exponents, is called a term. The set of terms of the polynomial ring

R[x

nZ 0≥

1, x2,… , xn] are denoted by Tx, where N is the set of non-negative integers:

Tx = { x1
i1x2

i2
…xn

in | i1, i2,… ,in ∈ N}.

 18

In division of univariate polynomials, R[x], the polynomials are written such that its

terms are in decreasing order of the degree of x. To define reduction (division) for

multivariate polynomials, an ordering for multivariate term is necessary.

Definition 2.5. A term ordering on R[x1, x2,… , xn] is any relation > on Z

satisfying:

n
0≥

i. > is a total (or linear) on . nZ 0≥

ii. If α, β, and γ ∈ and α > β, then α + γ > β + γ. nZ 0≥

iii. > is well ordered on . This means that every nonempty subset of has a

smallest element under >.

nZ 0≥
nZ 0≥

The leading monomial of polynomial p ∈ R[x1, x2,… , xn] with respect to a total

ordering of the variables, such as the lexicographical ordering, is the monomial in p

whose term is the maximal among those in p; this monomial is denoted by M(p). In

addition, hterm(p) is defined as the maximal term and the hcoeff(p) is defined as the

corresponding coefficient, therefore:

M(p) = hcoeff(p) ⋅ hterm(p).

Example 2.1. Consider p ∈ R[x1, x2] that is written in lexicographical order:

 p = 3x1
2x2+5x1

2+x2
2, M(p) = 3x1

2x2, hterm(p) = x1
2x2, hcoeff(p)=3. ■

Definition 2.6. Reduction: For nonzero p, q ∈ R[x1, x2,… , xn] it is said that p

reduces modulo q if there exists a monomial in p which is divisible by hterm(q). Let α ∈

R[x1, x2,… , xn]-{0}, i.e. the ring of polynomials after removing the trivial 0 polynomial.

If p = α⋅t + r where t ∈ Tx, r ∈ R[x1, x2,… , xn], and
)(hterm q

t
=u , u∈ Tx, then it is written

as p→q p' to signify that p reduces to p' (modulo q) and p' is equal to:

 19

qu
q

pq
q
t

pp ⋅−=⋅
⋅

−=
)hcoeff()M(

'
αα

Example 2.2. Consider the following two polynomials:

p = 6x4+13x3-6x+1, q = 3x2+5x-1,

p→q p'; p' = p – 2x2⋅q = 3x3+2x2-6x+1. ■

If p reduces to p' modulo a polynomial in a set of polynomials Q = {q1, q2,… , qn}, it

is said that p reduces modulo Q and written as p→Q p' (p' = Reduce(p,Q)); otherwise p is

irreducible modulo Q. It is denoted that p→+
Q p' if and only if there is a sequence such

that:

p = p0 →Q p1→Q … →Q pn = p'.

If p→+
Q q and q is irreducible, it is written as p→*

Q q. It can be shown that for a fixed

set Q and a given term ordering, the sequence of reductions is finite [5]. Therefore,

Algorithm 2.1 can be constructed which, given a polynomial p and set Q, finds a

polynomial q such that p→*
Q q. In Algorithm 2.1, Rp,Q denotes the set polynomials in Q-

{0} such that hterm(p) is divisible by hterm(q). Note that any member of Rp,Q can be

chosen in each iteration, but this choice affects the efficiency of the algorithm. For the

sake of simplicity, it is assumed that an efficient selection is implemented in selectpoly.

As mentioned previously any finite set of polynomials Q generates an ideal <Q> and

Q is called the basis of this ideal. If a nonzero polynomial p is reduced to zero modulo Q,

it is determined that p is a member of the ideal generated by Q: p →*
Q 0 ⇒ p ∈ <Q>.

However, the converse is not true for all basis of <Q>.

 20

Algorithm 2.1. Full Reduction of p Modulo Q.

procedure Reduce(p, Q)

 # Given a polynomial p and a set of polynomials Q
 # from the ring R[x1, x2,… , xnz], find a q such that p→*

Q q.
 # Start with the whole polynomial.
 r ← p; q ← 0

 # if no reducers exist, strip off the leading
 # monomial; otherwise, continue to reduce.
 while r ≠ 0 do{
 R ← Rr,Q
 while R ≠ ∅ do{
 #select a polynomial ∈ R
 f ← selectpoly(R)
 R ← R –{f}
 r ← r – (M(r)/M(f)) f
 }
 q ← q +M(r); r ← r – M(r)
 }
 return(q)

end

Definition 2.7. An ideal basis G ⊂ R[x1, x2,… , xn] is called a Gröbner basis (with

respect to a fixed term ordering and the implied permutation of variables) when

p →*
G 0 ⇔ p ∈ <G>.

S-polynomial of p, q ∈ R[x1, x2,… , xn], denoted as Spoly(p, q), is defined as:

]
)M()M(

[))M(),LCM(M(),Spoly(
q

q
p

pqpqp −⋅= .

Example 2.3. For polynomials p = 3x2y-y3-6 and q = 6xy3+5x-1 with degree

ordering:

LCM(M(p), M(q)) = LCM(3x2y, 6xy3) = 6x2y3,

x+5x-12y--2y]
6

156
3

63[6),Spoly(225
32

32 =
−+

−
−−

⋅=
xy

xxy
yx
yyxyxqp

332

 ■

 21

Algorithm 2.2. Buchberger’s Algorithm for Gröbner Bases.

procedure Gbasis(Q)

Given a set of polynomials Q, compute G such that <G> = <Q> and G is a Gröbner
basis.

 G ← Q; k ← length(G)

Initialize B to all possible pairs
 B ← {[i, j] : 1 ≤ i < j ≤ k}

 while B ≠ ∅ do {
 [i, j] ← select a pair from B
 # mark that pair as selected
 B ← B – {[i, j]}
 # Gi denotes the i-th element of the ordered set G
 h ← Reduce(Spoly(Gi, Gj), G)
 if h ≠ 0 then {
 G ← G ∪ {h}; k ← k + 1
 B ← B ∪ { (i, k) : 1 ≤ i < k} }}
 return (G)

end

In can be shown that [5][6], G is a Gröbner basis when:

1. the only irreducible polynomial in <G> is p = 0;

2. Spoly(p, q) →+
G 0 for all p, q ∈ G;

3. if p→*
G q and p→*

G r, then q = r.

Buchberger’s algorithm (Algorithm 2.2) uses the properties above to convert a finite

set Q ⊂ R[x1, x2,… , xn] into a Gröbner basis [4].

In order to check whether a polynomial p is a member of the ideal <Q>, first

Algorithm 2.2 is used to form G a Gröbner basis for <Q>. Procedure Reduce(p, G)

(Algorithm 2.1) must then return zero.

 22

2.4. SUMMARY

The subset of symbolic computer algebra that performs multivariate polynomial

manipulations was described in this chapter. These algorithms are mostly based on

Gröbner basis. A minimal (or reduced) Gröbner basis is a canonical representation for a

multivariate polynomial ideal that enables equality check of two ideals. Gröbner basis

also facilitates ideal membership evaluation and multivariate variable elimination in a set

of polynomials. Decomposing a dataflow polynomial into elements of a library

represented by a set of polynomials, requires a sequence of reductions on the dataflow

polynomial modulo library polynomials. Reduction, the basic step in polynomial

division, was explained in this chapter. In the following chapters, it is shown how

Gröbner basis and reduction of multivariate polynomials are used in automatic data-flow

mapping and embedded system design.

CHAPTER 3

HIGH-LEVEL DATA-PATH SYNTHESIS

In this chapter, a tool called SymSyn is presented that leverages results from Gröbner

basis [4][5][6][7] applications and symbolic polynomial manipulation techniques to

automate mapping of (a portion of) dataflow into complex arithmetic library blocks.

SymSyn framework contains two decomposition algorithms that assume the dataflow and

library elements are represented as polynomials. The first algorithm finds a minimal-

component decomposition of a polynomial representing a (portion of) dataflow. The

decomposition is done in terms of arithmetic library elements, also represented as

polynomials. Due to the importance of high performance design, a second algorithm in

the SymSyn framework is developed to automatically map the dataflow to arithmetic

library elements such that the dataflow has minimal critical path delay. The timing-

driven decomposing algorithm uses various polynomial manipulation techniques as

guidelines to achieve optimal component mapping and resource sharing for minimal

delay.

Example 3.1. As a motivating example, consider the anti-alias function of a MP3

decoder that calculates the following equation in one of its basic block:

;
222

1

yx
z

+
= under the assumption that . 022 >≥+ εyx

 24

A straightforward realization of this equation would use a divider and a square root

operator, which are large and slow components and may not be available in the

component library. For the sake of the example, assume there are no square root and

division operators available in the library. Alternatively, assume the existence of

adder, multiplier, and multiplier-accumulator (MAC) in the given library. Thus,

c=x2+y2 can be easily computed. Next, using symbolic manipulations x2+y2 is

substituted by c.:

c
z

2
1

= .

The given equation can be approximated to a polynomial representation using Taylor

series expansion for a range of c based on the given application:

64
85

32
81

64
279

16
75

64
115

32
9

64
1 23456 +−+−+−≅ ccccccz

The explanation is valid for a given range of c and the error can be computed using

standard approximation methods [11]. If Horner based transform is performed on the

polynomial approximation of z, we obtain:

ccccccz 















































 +−++−++−+≅

64
1

32
9

64
115

16
75

64
279

32
81

64
85

This formula can be implemented using a chain of 6 MACs, or one MAC in 6 cycles.

Figure 3.1 demonstrates one possible implementation. ■

 25

c=x2+y2

x y

MAC

c

DFF

z

clk

32
9

−

64
115

16
75

−

64
279

64
85

32
81

−
64
1

Figure 3.1. An Implementation for
yx 22

1

+

The synthesis tool described in this chapter, SymSyn, automates the algebraic

manipulations shown in this example. SymSyn converts the basic blocks of a behavioral

description, representing dataflow portions of the design, to their polynomial

representations and uses numerical methods for exact and inexact matching with library

elements. If a match is not found, the dataflow is decomposed into the library elements

using symbolic computer algebra.

This chapter is organized as follows: Section 3.1 gives an overview on related work in

this area. Section 3.2 explains how symbolic algebra and Gröbner basis are used in

polynomial decomposition algorithms. In Section 3.3, it is shown how results from

symbolic algebra can be leveraged to decompose a polynomial representing a (portion of)

dataflow. In Section 3.3, the dataflow synthesis tool, SymSyn, is explained with an

example. Sections 3.4 and 3.5 describe the two new algorithms developed for automatic

decomposition of dataflow into complex arithmetic library components. Section 3.6

shows a set of library independent symbolic transformations that are used to accelerate

the proposed algorithms. Finally, Section 3.7 explains the implementation of SymSyn

and shows a set of experimental results.

 26

3.1. RELATED WORK

High-level synthesis and design reuse are essential for system on chip designs. They

can shorten the time required to specify and design a complex system. Since high-level

synthesis takes specifications at a level of abstraction greater than RTL, wider design

space exploration becomes possible [8]. Current high level synthesis tools are capable of

optimizations such as scheduling and resource sharing. Moreover, these tools synthesize

control sections of the design efficiently. However, dataflow and arithmetic

optimizations of the design are generally left to the designer. Mapping the dataflow

sections to pre-designed components is also a manual task. This is presently possible by

synthesis directives manually inserted by the designer.

Most classical work on data-path synthesis focus on allocation of hardware resources

based the availability and scheduling constraints. The MAHA system used critical path

determination to perform hardware allocation [59]. The expert system approach was

taken in the DAA system that develops a rule based data memory controller [60]. More

recently, carry save representation was used for module selection simultaneous with

retiming [61]. In this work, carry-save transformations are preformed across register

boundaries to optimize a synchronous circuit.

In other work [10][46][47], algorithms were developed that enhance high-level

synthesis tools with the capability of mapping high-level specifications onto existing

components. Word-level polynomial representations were introduced as a mechanism for

canonically and compactly representing the functionality of complex components. These

polynomials provide the basis for efficiently comparing the functionality of a circuit

specification and a complex component. Polynomial methods allow a specification to be

compared against potential implementations by computing the numerical distance

between the two. This not only enables fast allocation of exact implementations, but also

allows for detection of approximate and partial implementations.

 27

Polynomial representation of Boolean functions is performed by determining the order

of the minimum polynomial that can represent the given function. This figure is then

used to extract the appropriate number of coordinates from a component to compute

polynomial coefficients. Polynomial representation has been used in matching dataflow

clusters of the design to library cells in the tool POLYSYS [10][46][47]. However,

POLYSYS is limited to test for a match in the library of existing components. In case a

match did not exist, there was no automated way to search for possible interconnections

of library blocks matching the dataflow cluster. In this chapter, symbolic computer

algebra is used to map a polynomial representation of the extracted dataflow section of

our design to a set of polynomial representations of our library elements. This mapping

is performed simultaneously with high-level arithmetic optimizations.

3.2. GRÖBNER BASES AND DATA-PATH SYNTHESIS

The application of the theory described in Chapter 2 is presented in this section. Let L

be the set of polynomial representations of the library elements. In order to synthesize a

data path for a polynomial representation S using library L, S should be a member of <L>.

In order to examine membership in <L>, first G the Gröbner basis of <L> is calculated

and next Reduce(S, G) is used. If S is reduced to zero then S ∈ <L>. If S is reduced to

zero only using polynomials in G that are also in L, then S can be built from the given

library elements.

Example 3.2. As an example, consider:

S = x + x2 + x3 + y + xy +x2y;

L = {1+x+x2, x+y};

G = Gbasis(L) = {x+y, y2-y+1};

Reduce(S, G) returns zero, therefore S ∈ <L>.

While performing Reduce(S, G), we determine that:

S = (x+y)(1+x+x2); therefore S can be decomposed into elements of <L>. ■

 28

3.3. SYMBOLIC ALGEBRA AND LIBRARY MATCHING

After extracting the CDFG of an algorithmic level DSP model, the polynomial

representations of its basic blocks are calculated. The polynomial representation of a

basic block can be directly extracted from algorithmic-level code if the basic block

calculates a polynomial function. If the basic block performs a series of bit

manipulations or Boolean functions, interpolation-based algorithms [46] can be used to

formulate the equivalent polynomial representation. When the basic block implements a

transcendental function, an approximation such as the Taylor or Chebyshev series

expansion is used as its polynomial. The chosen polynomial approximation has to be

verified manually by simulation to ensure that constraints, such as accuracy, are satisfied.

Symbolic computer algebra is subsequently used to intelligently decompose dataflow

to library components and automatically synthesize the data path. The symbolic algebra

routine used in this algorithm is simplification modulo set of polynomials that has been

described in Chapter 2. Assume a basic block (or part of it) is represented by polynomial

p and the library components available are represented by a set of polynomials L. As a

reminder, to simplify a polynomial p modulo the side relation set L, a Gröbner basis is

derived from L, G←Gbasis(L), and Reduce(p, G) is used to obtain the simplified answer.

The built-in function that implements simplification modulo set of polynomials in Maple

is called simplify [2]. In order to comply with Maple terminology, we call the set of

polynomials the side relations.

Note that any polynomial representation can be implemented using only adders and

multipliers. Therefore, any polynomial representation of a basic block is guaranteed an

implementation if the library includes adder and multiplier. Our goal is to find non-

trivial solutions that are minimal in terms of component count or critical path delay.

 29

_

+
*

x

y

b

c
a

Figure 3.2. An Implementation of x2-y2

_
^2

x

y

b

c
a

^2

Figure 3.3. An Alternative Implementation of x2-y2

Example 3.3. As an example, consider a dataflow implementing x^2-y^2 and a

library that includes add, multiply subtract and square functions. Using Maple

syntax, we have:

> a:=x^2-y^2: siderels:={b=x-y, c=x+y}

> simplify(a, siderels,[x,y,b,c]);

 b*c
This is equivalent to the implementation shown in Figure 3.2. Note that siderels

is a subset of our library. Maple computes the Gröbner basis G of siderels and

prints out the result of Reduce(a, siderels). The result indicates that:

a:=x^2-y^2:=b*c:=(x-y)*(x+y)

If the side relation set is changed, other possible solutions for the specification might

be found, for example:

> a:=x^2-y^2: siderels:={b=x^2, c=y^2}

> simplify(a, siderels,[x,y,b,c]);

 b-c

results in the implementation shown in Figure 3.3. ■

 30

As shown in the previous example, different side relation sets can result in different

implementation of the specification. Therefore, to find the best possible implementation,

the side relation set should be set equal to all subsets of the library with all possible

permutations of the input variables. Since this is exponentially expensive, a guided

architectural exploration is necessary. In the next two sections, two algorithms are

introduced that reduce the complexity of this search with two different final objectives.

The first algorithm finds the minimal component decomposition for the given dataflow.

The second algorithm finds the minimal critical path delay implementation of the

dataflow.

3.4. MINIMAL COMPONENT DECOMPOSITION ALGORITHM

In this section, one of the algorithms implemented in our tool SymSyn is introduced.

This algorithm automatically maps a polynomial representation of a (portion of) dataflow

to a set of complex arithmetic library components while using the least number of library

components. This algorithm in conjunction with classical high-level synthesis algorithms

can be used for efficient high-level DSP synthesis. The minimal component

decomposition algorithm described is empowered by Gröbner basis fundamentals

described in Chapter 2. The inputs to this algorithm are polynomial representation of the

dataflow basic block to be synthesized and a set of polynomials that represent the set of

complex arithmetic library components available to the designer. As mentioned in the

previous section, different side relation sets result in different implementations of the

dataflow. Therefore, the described algorithm aims at intelligent side relation set selection

to accelerate the decomposition process for a given criteria. The high-level view of the

selection criteria for minimal number of components is illustrated in Algorithm 3.4.

 31

Algorithm 3.4. Decompose S into elements of library L

procedure Decompose(S, L)

Given polynomial representation of the spec S and a set of polynomials L as library,
 # decompose S into elements of library L.

initialize tree
 treeroot(S);
 depth ← 0
 bound ← -1

while depth ≠ bound do {
 bound ← Explore(S, L, depth) # Explore is defined below
 depth ← depth +1
 }

report best solution in tree

end

used in Decompose procedure
int function Explore(S, L, d)

bound ← -1
 for all n ∈ in tree with depth d do{
 for all sr ∈ L do{
 result = simplify(n, sr);

make result a child of node n
 addchild(n, result);

if result ∈ L
 # solution is found
 bound = treedepth(result); }}

returns –1 if no solution is found yet.
 return(bound)

end

Let S be the polynomial representation of the basic block to be decomposed into

complex library elements. The algorithm starts by simplifying S modulo each library

element as the side relation. The simplification results are stored in a tree data structure.

If a simplification result is identical (or within an acceptable tolerance) to the polynomial

 32

representation of a library element, a possible solution is found and the corresponding

tree node is marked accordingly. If the simplification result stored in a tree node does not

correspond to a library element, the same steps are recursively applied to the new tree

node.

To further reduce the search space a bounding function is used. The bounding

function is the number of library components used to build the specification. In other

words, if a solution is found with two library components the solutions requiring more

than two components will not be explored. Nevertheless, all two-component solutions

will be uncovered and the one with optimal cost (area or delay) will be chosen. The

number of components used is the same as the depth of the simplification tree.

Therefore, the tree is bounded by the depth of the first solution found.

Such bounding function is chosen assuming that if a component is custom designed to

perform a combination of arithmetic operations, it is more cost effective than connecting

a series of components that perform the same arithmetic operations. Clearly, the merit of

the result is strongly dependent on the available library.

3.4.1. MINIMAL COMPONENT EXAMPLE

To clarify the algorithm described above, the library is chosen as a subset of the

Synopsys DesignWare® library consisting of six combinational elements; multiplier,

adder, subtracter, multiplier-accumulator, sine, and cosine. As an example, consider

synthesizing a phase shift keying (PSK) modulator used in digital communication. A

dataflow basic block of PSK has the following polynomial representation:

> S:= 1-.5*x0^2-x0*x1-.5*x1^2+.041667*x0^4+.166668*x0^3*x1+
 .250002*x0^2*x1^2+.166668*x0*x1^3+.041667*x1^4;

As the first step, SymSyn initializes a tree data structure and stores polynomial S in the

root of the tree. For all library elements, SymSyn makes a call to Maple and requests

simplify with side relation set equal to the library element. The results reported by Maple

are kept as new children of the S tree node.

 33

In the first iteration of our example, the side relation is set to the first element in the

library, the multiplier. Shown below are the Maple commands. The first two lines are

the requests sent by SymSyn and the third line is the simplification result reported by

Maple to SymSyn. SymSyn searches for a component in the library that implements the

result, but it is not successful to find one for this instance.

> siderel := {y=x0*x1};

> simplify(S, siderel, [x0,x1,y]);

 .041667*x0^4+.166668*x0^2*y-
.5*x0^2+.041667*x1^4+.166668*x1^2*y-.5*x1^2+.250002*y^2-1.*y+1

In the second iteration, the same steps are performed with the adder as the side

relation. The simplification result now matches an approximation to the cosine function.

Therefore, SymSyn marks this node as one possible solution. The following Maple

commands show the result of this iteration. Note that the result is a Taylor series

approximation of cosine. Since cosine is one of the library elements, one possible

solution is found as shown in Figure 3.4.

> siderel := {y=x0+x1};

> simplify(S, siderel, [x0,x1,y]);

 1.+.041667*y^4-.5*y^2

+ cosine
x0 y
x1

S

Figure 3.4. Mapping the S dataflow to Two Components

Since there is a solution with depth equal to one in the tree, a bound of one is set on

the tree growth. Note that the root is denoted with depth equal to zero. Therefore, a

solution at depth one consists of two components. SymSyn performs the steps described

above for the rest of library elements and keeps the results in root offsprings. After going

through all library elements, SymSyn finds only one solution using two components. The

solution is demonstrated in Figure 3.4. SymSyn will stop decomposing the leaf nodes,

 34

since continuation would result in a search for solutions with three or more components

while the objective is to find a solution using minimal number of components.

3.5. TIMING DRIVEN DECOMPOSITION ALGORITHM

In this section, the second algorithm implemented in SymSyn is introduced. In

contrast to the algorithm described in Section 3.4, here the focus is on minimizing the

critical path delay of the dataflow implementation. Previously, minimizing the number of

components used to implement the dataflow was the primary objective. Similar to

Algorithm 3.4, this algorithm selects side relation sets intelligently to accelerate the

decomposition process, since selecting different side relation sets result in different

implementations of the dataflow.

After extracting the CDFG of an algorithmic-level DSP model, the polynomial

representations of its dataflow basic blocks are passed as inputs to the timing-driven

decomposition algorithm. Algorithm 3.5 shows the pseudo-code of the timing-driven

decomposition algorithm. This algorithm takes the same inputs as Algorithm 3.4; the

polynomial representation of the basic block to be implemented and the polynomial

representations of the complex library elements. Algorithm 3.5, uses the branch-and-

bound method to reduce the side-relation-set selection space while searching for the

implementation with least critical path delay. We define the bounding function as the

best critical path delay of implementations seen so far. The lower bound computed at

each decision branch is the critical path delay of components in the side relation set in

view of data dependencies. If this lower bound is greater than the best critical path delay

of implementations seen so far, the corresponding decision branch is pruned.

 35

Algorithm 3.5. Decompose S into elements of library L
function GuidedDecomposition(exp_tree, max_CPD, L){
 # initialize a solution tree
 solution_tree ← tree(exp_tree);
 depth ← 0
 bound ← max_CPD

for all n ∈ in solution_tree with depth == depth do{
 if depth == 0 then
 choose all sr ∈ L that preserve the exp_tree structure
 else for all sr ∈ L do{
 if cost of sr + cost of node n < bound then {
 result = simplify(n, sr);
 # make result a child of node n
 addchild(n, result);
 add cost of sr to cost of result;
 if result ∈ L then {
 # solution is found
 bound = cost of node result; }
 if no more n ∈ in solution_tree with depth == depth
 depth ← depth +1
 }}
 return the best solution in solution_tree
end
int function CalcMaxCPD(expression_tree){
 CPD = the critical path delay of expression_tree assuming
 the expression is mapped to adders and multipliers only.
 return(CPD)
end
procedure main(S, L)
Given polynomial representation of the spec S and a set of polynomials L as library,
decompose S into elements of library L such that the CPD of S is minimized.
perform expression manipulation techniques

exp_tree [1..NumberOfManipulations] = AllManipulations (S);
for i= 1 to NumberOfManipulations do{

 maxCPD[i]=CalcMaxCPD(exp_tree[i]);
 solution[i]=GuidedDecomposition(exp_tree[i], maxCPD[i]);
 }
 report the best solution in solutions[i]
end

 36

Let S be the polynomial representation of the dataflow. Our goal is to decompose S

into the elements of the library L such that the critical path delay of S is minimized.

Decomposing S is synonym to simplifying S modulo elements of the library L as side

relations. In order to decide which library elements should be used as the side relations, a

decision tree (solution_tree) is used to implement the branch-and-bound algorithm. The

bounding variable is initialized to the critical path delay of mapping the polynomial

solely to adders and multipliers, a.k.a. the lexicographical mapping.

The simplify results are also saved in the tree data structure. If a simplification result

is identical (or within an acceptable tolerance) to the polynomial representation of a

library element, a possible solution is found and the corresponding tree node is marked

accordingly. If the critical path delay of the solution is smaller than previously

encountered solutions, the bounding variable is set to the current delay. In case the

simplification result stored in a tree node does not correspond to any library elements, the

same steps are recursively applied to the new tree node.

In general, the branch-and-bound algorithm is practically applicable to most problems.

However, introducing heuristics that lead quickly to promising solutions can improve the

execution time without hampering the quality of the solution. As for all branch-and-

bound algorithms, the worst-case complexity remains exponential.

The expression manipulation techniques presented subsequently in Section 3.6 are

used as heuristic guidelines for choosing the side relation set. Initially, tree-height

reduction, factorization, expansion, and the Horner-based transform are applied on S. As

a result, there are several polynomials (exp_tree) representing the same dataflow. Each

of these representations can result in the desirable implementation based on the available

library elements. Starting with the primary inputs, the expression tree is covered with the

library elements. All library elements that cover the primary inputs and a portion of the

expression tree are chosen as elements of side relation sets. If the result of simplify

modulo side relation is not a library element, the result is decomposed without further

 37

guidance from the expression tree. Algorithm 3.5 in conjunction with substitution and

tree-height reduction can be generalized to several polynomials in a basic block or across

basic blocks.

Example 3.4. As an example, consider a dataflow segment of a Gabor filter with the

following polynomial representation:

8
24
162

6
144

4
126

6
18

24
16

6
1

42
2
124

2
16

6
14

2
14

2
122221

bbababaab

babaabababaD

+++++

−−−−+++−−=

Assume that D is to be mapped to a library consisting of functions implementing add,

multiply, MAC, square, exp. After factorization, D will be converted to:

1)64424212423228212243446(

)22(
24
1

++−+++−++−

⋅+=

bbbbabaabaaa

baD

The factored form of D guides us to use c=a^2+b^2 as an initial side relation and sets

an initial bound by mapping the factored form lexicographically to adders and

multiplier. SymSyn makes a call to Maple and requests result of the following

simplify operation.

> siderel := {c=a^2+b^2};

> result:=simplify(D, siderel, [a,b,c]);

result=1-c+1/2*c^2-1/6*c^3+1/24*c^4

The last line is the result reported to SymSyn by Maple. As it can be seen, the result

is a Taylor series expansion of exp(c). Therefore, the dataflow can be implemented

using two square components, an adder, and one exp component, as shown in Figure

3.5. The bounding function is now changed to the critical path delay of the potential

implementation. By exploring the other branches of the decision tree (solution_tree),

 38

we realize that all other branches are pruned by the new bound. Therefore Figure 3.5

is implementation with the least critical path delay.

^2

^2
+ exp

a

b
S

Figure 3.5. Mapping the D dataflow to Four Components

Now, assume that there is no exp block in the library. In order to show the power of

other polynomial transformations, the Horner transform (see Section 3.6.3) is

performed on the polynomial result:

ccccresult ⋅⋅⋅⋅+−++−+=)))
24
1

6
1(

2
1(1(1

The formula given above can be implemented using a chain of 4 MACs, or one MAC

in 4 cycles. Figure 3.6 demonstrates one possible implementation. ■

c=a2+b2

a b

MAC

c

DFF

result

clk

6
1

−
2
1 11− 24

1

Figure 3.6. A Possible Implementation for ec

3.6. EXPRESSION MANIPULATION TECHNIQUES

In Section 3.5, an algorithm was introduced that maps a polynomial representation of a

(portion of) dataflow to complex arithmetic library elements such that the critical path

 39

delay is minimized. This algorithm was implemented in the Symbolic Synthesis tool,

SymSyn. To accelerate the speed of minimal critical path delay decomposition in

SymSyn, a guideline is necessary for side-relation selection. Such guideline should

facilitate mapping for maximum parallelism. Different symbolic polynomial

manipulation techniques are chosen as such guidelines. These transformations are the

counterparts of the library independent transformations used in logic synthesis [8]. These

heuristics can also be used as an enhancement to the minimal component decomposition

algorithm. The intent of this section is to describe the manipulation techniques through

simple examples.

3.6.1. TREE-HEIGHT REDUCTION

Tree-height reduction (THR) was introduced long ago [12][13] as an optimization

method for parallel software compilers. It is a technique to reduce the height of an

arithmetic expression tree, where the height of the tree is the number of steps required to

compute the expression. In the best case, it achieves the tree height of O(log n) for an

expression with n operations. Tree-height reduction uses commutativity, associativity,

and distributivity properties of addition, subtraction, and multiplication. In the classical

case, tree-height reduction is achieved at the expense of adding more resources to obtain

maximum parallelism in the expression. In previous work for hardware synthesis, THR

has been proven useful in high-level synthesis of data-intensive circuits such as DSP and

multimedia applications [14][15][16].

In our work, THR is used as an expression tree manipulation technique. THR will

achieve the best execution time when using unlimited number of two input adders,

subtracters and multipliers. Since the focus in this thesis is on libraries with more

complex blocks, THR may or may not result in the optimal execution time. The result is

dependent on the library components available.

Example 3.5. Figure 3.7 shows an example of how THR can reduce the critical path

delay. Figure 3.7b is obtained after applying THR on Figure 3.7a. ■

 40

+
+

* *+
+(b)(a)

a + b * c + d a + d + b * c

Figure 3.7. Performing THR on (a) Produces (b)

3.6.2. FACTOR AND EXPAND

As mentioned previously, traditional tree-height reduction [12][13] only uses

associativity, commutativity, and distributivity to transform expressions. Since we have

access to a symbolic manipulation tool in SymSyn, we can benefit from other

transformations as well. One such transformation is common sub-expression

factorization. Factorization can reduce the number of components used as well as the

tree height of a given expression.

+
+

* ++
*(b)(a)

a * c + a * d+b * c + b * d (a + b)*(c + d)
*

+

**

Figure 3.8. Factor May Reduce Number of Components and CPD

Example 3.6. An example is shown in Figure 3.8. Factorization transforms the

expression shown in Figure 3.8a to the expression show in Figure 3.8b. Figure 3.8b

has three less multiplications, one less addition, and shorter tree height compared to

Figure 3.8a. . ■

 41

Another useful symbolic manipulation technique is expansion. This manipulation

technique changes the polynomial into its sum of products format. Meanwhile, it is

capable of straightforward simplification techniques that can save both delay and area.

Example 3.7. A small example of expansion transforming a+a+a to 3*a which is

more simplified. ■

3.6.3. HORNER FORM

Horner form of a polynomial is a nested normal form with minimal number of

multiplications and additions. Any polynomial can be rewritten in Horner, or nested,

form. The general univariate case is defined as follows [3]:

axaxaxaxa
axaxaxp

nn

nn
n

+⋅+⋅+⋅+⋅=

+⋅++⋅=

−

−

)))(((
)(

1210

10

LL

L

Assume that xn can be calculated using only log2(n) multiplications for integer n. For a

polynomial of degree n, the Horner form requires n multiplications and n additions. The

expanded form, however, requires:

)!(log)(log 2
1

2 ni
n

i
=∑

=

multiplications, which is more than twice as expensive for a polynomial of degree 10.

Thus, one advantage of Horner form is that the work involved in exponentiation is

distributed across addition and multiplication, resulting in savings of some basic

arithmetic operations. Another advantage is that Horner form is more stable to evaluate

numerically when compared with the expanded form. This is because each sum or

product involves quantities which vary on a more evenly distributed scale [3]. For

hardware implementation, Horner form has a distinct advantage. It effectively maps a

 42

univariate polynomial to cost effective multiplier-accumulators (MAC). Horner form is

generalized for multivariate polynomials by specifying an ordered list of variables.

Example 3.8. As a simple example consider the following polynomial in which the

number of multiplications is reduced from 32 to 13:

> S:=x^3+3*x^2*y+x^2+3*x*y^2+2*x*y+2*x^2*z+
y^3+y^2+2*y^2*z+2*y*z+z^2*x+z^2*y+z^2;

> convert(S, ’horner’, [x,y,z]);

z^2+((2+z)*z+(2*z+1+y)*y)*y+((2+z)*z+(2+4*z+3*y)*y+
 (2*z+1+3*y+x)*x)*x ■

3.6.4. SUBSTITUTION AND ELIMINATION

Substitution is defined as replacing a subexpression by a previously computed variable

[8]. It reduces complexity of a function by using an additional variable that was not

previously in its support set. This transformation creates a new dependency between

expressions, but may also eliminate previous dependencies. Substitution has been

previously used in multi-level combinational logic optimization [17][18][19].

Elimination theory [7] based on the Gröbner basis formalizes substitution and variable

elimination for multivariate polynomials. We refer the interested reader to the reference

[7] for the detailed mathematical proof. Note that for arithmetic polynomials, use of a

more general decomposition model is necessary as compared to the algebraic division

modeled in combinational logic synthesis. This is due to the fact the Boolean

idempotence property does not hold in arithmetic polynomials and arithmetic

polynomials can have exponents. Therefore, there is no restriction on the support set of

the divisor and quotient of an expression. For example yx
yx
yx +=

−

− 22

 is a legitimate

division.

Substitution can be combined with THR in order to select a subexpression that

maximizes parallelism.

 43

Example 3.9. As a simple example let us consider a basic block which consists of

two arithmetic expressions:

X:= a*b*c+d;

Y:= X+e*f;

+

*
+

*
(b)

a * b * c + d a * b * c + d + e * f

*

X Y

*
*

+

+

*
+

*
(c)

a * b * c + d d + e * f

*

X Y

+

+

*

+

*
(a)

a * b * c + d e * f

*

X
Y

Z

Figure 3.9. Substitution with THR can Maximize Parallelism

It can be seen that Y is dependent on X, therefore Y is calculated after the value of X is

known as shown in Figure 3.9a. However, if we eliminate X in Y,

Y:=a*b*c+d+e*f, Y can be evaluated in parallel with X. Figure 3.9b shows the

results of tree-height reduction on both X and Y expressions. In order to achieve

maximum parallelism between X and Y, we now substitute only subexpression

a*b*c in Y with a new variable z:=a*b*c. The result is shown in Figure 3.9c. ■

 44

3.7. IMPLEMENTATION AND EXPERIMENTAL RESULTS

SymSyn is an environment that used in conjunction with classical high-level synthesis

algorithms can automate efficient synthesis of dataflow intensive circuits. It takes as

input a data path of the circuit under design and automatically maps that data path to

complex library elements, without need of any directives from the designer. The

program inputs are polynomial representations of dataflow and a set of polynomials

representing the library elements. Output is a report of components used to implement

the dataflow and the way they are connected, such that the critical path delay or number

of components used is minimized. SymSyn contains implementations of the algorithms

described in Sections 3.4 and 3.5 and the heuristics described in Section 3.6 as

accelerators. The implementation is mainly in C programming language with calls to

Maple V [2] for the symbolic manipulations.

Table 3.1. Normalized Delay and Area of Library Elements

Library Element Delay Normalized Delay Area Normalized Area

Add 7.54 1 15090 1
Square 7.89 1.05 89814 5.95
Mult 10.17 1.35 133401 8.84
MAC 17.28 2.29 142554 9.45
Sine 45.21 6.00 625218 41.43
Cosine 45.37 6.02 622849 41.28
SQRT 21.42 2.84 36031 2.39

The efficiency of SymSyn is tested on a number of data-path examples. In these tests,

the area and critical path delay reported are normalized by the area and critical path delay

of a full adder. For example, the critical path delay of an adder is 1 and critical path

delay of a multiplier is 1.35. This number is calculated from the critical path delay

reported by Synopsys Design Compiler (DC) for a 16-bit multiplier divided by the

critical path delay reported by Synopsys DC for a 16-bit adder. The normalized critical

path delay calculation is done for all library components available in the Synopsys

 45

DesignWare® arithmetic component library [9]. Normalized area and critical path delay

of several library elements are shown in Table 3.1.

Experimental results are shown in Table 3.2. The first four dataflows in Table 3.2 are

simple benchmark polynomials. The fifth dataflow polynomial is a basic block of a one-

dimensional inverse discrete cosine transform (IDCT). The next dataflow example is the

anti-alias block described in the introduction. IDCT and anti-alias are widely used in

audio and video compression standards such as JPEG, MPEG, and MP3. The geometric

transformation is used in graphics for image rotation. The next three examples come

from the field of digital communication. One is a band pass filter in frequency domain.

The other performs phase shift keying (PSK) modulation and the third one performs

turbo decoding. The last example is a dataflow segment of the Gabor transform used in

neural systems.

Table 3.2. SymSyn Results for Some Examples

 Lexicographical
Mapping

Minimal Component
Mapping

Minimal CPD
Mapping

Dataflow Examples
of
comps Area CPD # of

comps Area CPD # of
comps Area CPD

a2-b2 3 18.68 2.35 3 10.84 2.35 3 12.90 2.05

b3+ba2c 6 45.20 3.70 4 30.19 4.69 6 39.42 3.70
1-x02/2+x04/24+x0+x1x2 11 65.88 5.70 3 51.72 7.02 6 41.24 5.58
Cos(sin(x0)) 24 180.81 7.40 2 82.71 12.01 9 64.88 6.43
IDCT 9 63.88 4.70 2 15.40 3.34 2 15.40 3.34
anti-alias 27 191.65 9.09 8 60.14 14.55 12 92.61 7.04
Geometric-transform 12 82.56 10.09 2 50.27 8.29 5 43.13 7.92
1/2tanh(a-1)+ 1/2tanh(a+1) 16 94.40 9.74 3 24.85 5.63 4 30.80 4.38
PSK 33 229.01 7.40 2 42.28 7.02 2 42.28 7.02
Turbo decoder 104 817.47 16.14 4 125.3 12.99 4 125.30 12.99
Gabor-transform 79 565.10 12.44 6 96.61 9.41 6 96.61 9.41

In the first set of results of Table 3.2 (lexicographical mapping), it is assumed that the

polynomial representation is mapped only to multipliers and adders. This is same as the

lexicographical component inference that is typical in commercial behavioral synthesis

tools. The number of components column shows the numbers of adds and multiplies in

 46

the data-path polynomial. The area reported is the area of an adder multiplied by the

number of adds, plus the area of a multiplier multiplied by the number of multiplies in the

data-path polynomial. The critical path delay (CPD) reported is the cumulative delay of

components on the critical path.

Next, the example dataflows are mapped and synthesized using SymSyn. The second

set of results shown in Table 3.2 (minimal component mapping), are the results obtained

from SymSyn by applying Algorithm 3.4. The mapping reported is the minimal

component mapping. We have shown the number of library components Algorithm 3.4

has used in mapping each dataflow polynomial to the extended Synopsys DesignWare®

library (DesignWare library [9] plus tanh(x), ln(x), and exp(x) operations). Area is the

sum of areas of the components used by SymSyn in each data-path implementation.

Finally, the last set of results in Table 3.2 (minimal CPD mapping), are derived by

SymSyn using Algorithm 3.5. The emphasis is to decompose each dataflow into the

given library such that the critical path delay of the implementation is minimized. We

have reported the number of components and the area and critical path delay of the

implementation suggested by Algorithm 3.5. Note that Algorithm 3.5 maps for maximal

parallelism and resource sharing is not used. The critical path delay reported is sum of

the delays of components used in the data-path implementation in view of their data

dependencies. Both mapping results shown are using the same component library.

In order to qualify the examples used in Table 3.2, the distribution of components used

in SymSyn output is shown in Figure 3.10. Note that the components used most are the

multiply/accumulate (MAC) operator and the square operator; this result is typical in

data-intensive circuits.

 47

Component Distribution

0

5

10

15

20

25

30

Add Square Mult MAC Sin Cos e(x) ln(x) tanh(x)

Figure 3.10. Component Distribution in SymSyn Output

In order to obtain more precise measurement of the critical path delay and area of our

set of examples, Synopsys Behavioral Compiler and Synopsys Design Compiler are

used to produce the set of results shown in Table 3.3. The examples in Table 3.3 are the

subset of examples shown in Table 3.2 that did not need tanh(x), ln(x), and exp(x)

operations. These operations are not available in the DesignWare library [9]. The

lexicographical columns correspond to results reported by Synopsys Behavioral

Compiler and Design Compiler without any mapping directives in the behavioral HDL

code. The SymSyn mapping columns are the results reported for the same set of examples

when mapping directives suggested by SymSyn are incorporated in the behavioral HDL

code. It can be observed that actual performance and area improvements for these

examples are inline and better than estimated by SymSyn in Table 3.2.

In summary, the results show that we can achieve an average performance

improvement of 25% and an average area improvement of 60% over commercial

behavioral synthesis flow. These improvements are the results of intelligent mapping

 48

algorithms implemented in SymSyn as opposed to the lexicographical mapping currently

available in the commercial tools.

Table 3.3. Area and Delay Reported by Synopsys Tools Using tsmc.35 Library

 Synopsys BC results Synopsys DC results
 Lexicographical SymSyn Mapping Lexicographical SymSyn Mapping

Dataflow Examples Area Est. Delay Area Est. Delay Area Delay Area Delay

a2-b2 120295 11 83087 11 66760 11.21 54815 9.42

b3+ba2c 469030 24 862816 24 285926 29.09 166303 25.44
1-x02/2+x04/24+x0+x1x2 395252 23 137139 16 146526 19.68 93538 14.39
cos(sin(x0)) 790784 39 163349 35 314776 38.17 140256 32.47
IDCT 456704 24 178177 18 323185 29.29 130753 20.52
Anti-alias 3387672 63 288373 48 1761169 69.43 102357 59.89
Geometric-transform 3051440 39 273340 30 1178868 54.07 190937 25.63
PSK 1812833 36 82705 24 1099991 33.33 80670 21.69

3.8. SUMMARY

This chapter has introduced two new decomposition algorithms to map dataflow to a

set of complex arithmetic library components. These algorithms fit seamlessly in the

high-level synthesis flow and enhance the quality of result of data intensive circuit

synthesis. These methods take advantage of two previously developed concepts; one is

the polynomial representation of library blocks and the second is symbolic computer

algebra. Polynomial representation is used to represent the functionality of library

components and the dataflow segment of the chip under design. Symbolic computer

algebra is used to decompose the dataflow to a set of library components. From a

practical standpoint, the contribution of this chapter is to make arithmetic library binding

an automated process, and eliminate the need for user-specified synthesis directives.

Symbolic computer algebra is a powerful set of algorithms not previously used in the

field of synthesis. These algorithms open a new set of opportunities in high-level

synthesis research. Even though algebraic manipulations are best suited for

 49

combinational arithmetic designs, classical scheduling, resource sharing, and retiming

algorithms can be applied to the data-path output to achieve optimized/pipelined designs.

The research presented here is especially promising in the fields of graphics,

multimedia, and digital signal processing where there is a tolerance for computational

error as long as the degradation in audio or video is limited [24][25][20]. This tolerance

can be used to approximate non-polynomials dataflows to polynomial representations,

which are well-suited inputs for our tool SymSyn. This chapter does not explain the

approximation tools and truncation errors since there is a wide body of mathematical

literature available on these topics [11].

CHAPTER 4

EMBEDDED SOFTWARE OPTIMIZATION

In embedded system design environment, the software portion of the system tends to

change frequently as software changes are generally less costly than hardware changes.

Therefore, system-level design tools and methodologies should facilitate embedded

software optimization and support software engineering changes. Pre-optimized software

libraries and complex processor instructions are often available for embedded system

design. Compilers are proficient at optimizations such as dead code elimination, variable

propagation, and loop unrolling. Nevertheless, most compilers are unable to use these

complex assembly instructions and pre-optimized library elements efficiently while

compiling C code for embedded processors. In this chapter, an embedded software

optimization methodology is presented that uses the power of symbolic algebra and the

dataflow decomposition algorithms used in previous chapters for hardware synthesis.

Currently, software engineers typically design key routines in assembly [21] or

manually map a code section to a pre-optimized library element. Example of complex

instructions available range from the simple multiply-accumulate (MAC) to a library of

more complex instructions, such as those developed by Tensilica tools [50][26]. There

are several pre-optimized software libraries commercially available. Intel recently

 51

released a library targeted at multimedia developers for StrongARM SA-1110

embedded processor [34], and TI has a similar library for TI’54x DSP [35]. Embedded

operating systems typically provide a choice from a number of mathematical and other

libraries [36][37]. When a set of pre-optimized libraries is available, the designer has to

choose the elements that perform best for a given section of code. For example, consider

a section of code that calls the log function. The library used in mapping consists of

four different log implementations: double, float, fixed point using simple bit

manipulation algorithm [38], and fixed point using polynomial expansion. Each

implementation has a different accuracy, performance, and energy trade-off. A designer

would need to estimate which of the four implementations would work best, test the

hypothesis, and iterate until the best result is found. Designers are faced with an even

more complex problem when attempting to map a software implementation of IDCT

already present in MP3 standards code into an embedded software library. There are

many ways to implement IDCT on a given processor, and it may be difficult for a

designer to determine which library element is most appropriate.

The objective of this research is to improve the quality of compiled code for

embedded systems and facilitate the software design process. In this chapter, we propose

a new methodology based on symbolic manipulation of polynomials and energy profiling

which reduces manual intervention. This methodology automates the process of

identifying the code sections that benefit from complex library mapping, and then

performs the mapping using symbolic techniques. The set of techniques used in

Chapter 3 for algorithmic-level hardware synthesis are combined with energy profiling,

floating-point to fixed-point data conversion, and polynomial approximation to achieve a

new embedded software optimization methodology. The combination of these tools and

standard compiler optimization techniques allow novel automatic code transformations.

 52

Example 4.1. As a motivating example, consider the following code segment:

for i=1..3

 y = y + cos(i*x);

Using standard loop unrolling, the given code is transformed into the following:

y = cos(x) + cos(2*x) + cos(3*x);

Now assume that for a given application cos(x) can be approximated into a Taylor

series with three terms without noticeable degradation on the output. Many

multimedia applications tolerate computational inaccuracy well, as long as the

resulting effects (e.g. audio, video degradation) are limited. Therefore, y can be

approximated as a polynomial:

4422442242 3
24
13

2
112

24
12

2
11

24
1

2
11 xxxxxxy +−++−++−=

This polynomial can be further simplified using the expand routine in symbolic

algebra:

42

12
4973 xxy +−=

Assuming that the embedded processor used to execute this code has a multiply

accumulate (MAC) instruction, another symbolic routine called the Horner transform

can be used on y:

22)
12
497(3 xxy +−+=

 53

The new equation can be mapped to one multiply instruction and two multiply-

accumulates. Obviously, this mapping is much more efficient than three calls to the

cosine library function. Unfortunately, to our knowledge, there is no available

software optimization tool that performs this simple optimization automatically.

Thus, it would be up to designers to manually implement such optimizations. ■

This chapter presents an algorithm and methodology, called SymSoft, that performs

algebraic manipulations such as the ones shown in Example 4.1 simultaneous with

automatic complex instruction and library mapping. First, a characterization function is

derived for the pre-optimized library elements and complex assembly instructions. Then,

the performance and energy critical code sections are identified using the energy profiler.

If necessary, a tool such as Fridge [24] can be used to help transform floating-point data

types into fixed-point. Next, complex nonlinear arithmetic functions in critical blocks are

approximated as polynomials such that the final output is within the acceptable tolerance

limits. Finally, symbolic algebra is used to map the polynomial representations of the

critical basic blocks to the instruction set and library elements available automatically

such that performance and power consumption are optimized.

This chapter is organized as follows: Section 4.1 discusses previous work in software

optimization for energy and performance. Section 4.2 describes the software and

hardware platform and the measurement setup we are using in our experiments.

Section 4.3 presents the SymSoft flow, and gives an overview of each of its steps and

components. The results of SymSoft optimizations on several software examples for the

SmartBadgeIV system are presented in Section 4.4. SymSoft lowers the execution time

and energy consumption of these examples by using a pre-optimized software library

available for StrongARM and the StrongARM instruction set. Finally, Section 4.5

summarizes the contributions of this work.

 54

4.1. RELATED WORK

Designers have used software performance and size optimization methodologies and

tools of for many years. Generally, compilers are used to translate a high-level

specification into optimized machine code for a target processor. Several researchers

have worked on optimizing compilers in last few years [27]. Prototype research

compilers have shown impressive results [28]. Most optimizing compilers target high-

performance and/or general-purpose computers. Relatively little effort has been

dedicated to create powerful optimizing compilers for embedded processors. Several

researchers are studying automatic code retargeting techniques for embedded processors

[29][30] using graph-covering methods. Graph covering methods have limited

knowledge of algebra. Using algorithms from symbolic algebra, as explained in this

chapter, enables simultaneous code generation and algebraic manipulations. Currently,

most embedded processors (or DSPs) are programmed directly by expert programmers

and code optimization is mostly based on human intuition and skills. In addition, due to

recent growth in market demand for portable devices, optimization of software for power

consumption is gaining importance. As a result, one of the primary requirements for

system-level design methodology of embedded devices is to effectively support code

performance and energy consumption optimization.

Several optimization techniques for lowering energy consumption have been presented

in the past. Numerous methodologies for optimizing memory accesses have been

introduced that combine automated and manual software optimizations [31]. Tiwari et al.

[32][33] used instruction-level energy models to develop compiler-driven energy

optimizations at assembly level such as instruction reordering, reduction of memory

operands, operand swapping in the Booth multiplier, efficient usage of memory banks,

and a series of processor specific optimizations. Several other optimizations such as

energy efficient register labeling during the compile phase [39], procedure inlining and

loop unrolling [40] as well as instruction scheduling [41] have also been suggested. In

addition, various compiler optimizations have been applied concurrently and the resulting

 55

energy consumption was evaluated via simulation [42]. All of these techniques focus on

automated instruction-level optimizations driven by the compiler. Unfortunately, current

available compilers have limited capabilities. Specifically, they are incapable of handling

arithmetic optimizations such as shown Example 4.1.

In the previous work [49], MP3 audio decoder software available from the standards

body [23] was manually optimized for the SmartBadge embedded system [22]. This

work required the designer to first implement a fixed-point library and then to replace all

floating-point operations with fixed point. Then, the designer needed to fully understand

the details of the SmartBadge’s design, so that the critical arithmetic operations can be

manually optimized with inline assembly code. The manual optimization process lasted

several days. This experience is similar to the typical industrial settings, where the

software needs to be ported and optimized to the newer versions of hardware.

The proposed methodology and tool flow uses profiling to identify the code sections

that would benefit most from algebraic optimizations, and then automatically performs

the optimizations using symbolic techniques. Such symbolic techniques have been

previously used in algorithmic level synthesis of data intensive circuits as described in

Chapter 3. SymSoft uses the same principles previously used for high-level component

mapping of hardware and applies them to the software optimization problem. The

outcome of our mapping algorithm is software that runs faster and consumes less energy

on the SmartBadgeIV [22] embedded system while compared to the output of the

commercial StrongARM compiler.

4.2. EXPERIMENTAL SETUP

SymSoft is used to optimize a set of examples on the SmartBadgeIV [22].

SmartBadgeIV, as shown in Figure 4.1, is an embedded system powered by batteries

through a DC-DC converter. It consists of StrongARM SA-1110 processor with

StrongARM SA-1111 companion chip, audio CODEC with microphone and speakers,

 56

Lucent’s WLAN card, sensors and three types of memory: SRAM, SDRAM and FLASH.

SmartBadgeIV currently runs eCos [36] and an embedded version of the Linux operating

system [37]. In this work, the Linux operating system was used since the software library

available to us is implemented for Linux. SmartBadgeIV ’s Linux has the main parts of

the operating system, including a small file system, residing in the SRAM. The larger

file system is remotely mounted from the server via the WLAN card. In our experiments,

the program files and their input data reside in the directory structure on the server.

These files are accessed via the wireless link on the SmartBadgeIV.

All of the measurements were performed using National Instruments Data Acquisition

(DAQ) measurement system capable of 1.25 Msamples/second. We found a sampling

speed of 1 kHz to be sufficient. In our setup, we used one PC to measure system,

processor, and WLAN currents via the DAQ interface, and the other PC to act as a

remote file server for the SmartBadge IV. The execution time of the code was measured

by accessing StrongARM SA-1110 on-board timer.

SA-1111
Analog &
Digital

Sensors

Audio
Codec

Memory:
Flash
SRAM

RF

StrongARM

SA-1110

Battery
SDRAM

DC-DC
Converter

Figure 4.1. SmartBadgeIV Architecture

4.3. SYMSOFT METHODOLOGY AND TOOL FLOW

Ideally, the software designer would write an algorithmic-level description of the

software and have a compiler-like tool optimize it for the given hardware platform.

 57

However, optimum implementation of calculation intensive routines for the particular

hardware design is not possible with traditional compiler optimizations alone.

Commonly, the designer does most of such optimizations by hand. Automating even a

portion of this process can save much design time.

We present a methodology and a tool flow, SymSoft, which facilitates embedded

system software optimization with automating library and complex instruction mapping

for a given embedded processor. Figure 4.2 shows the SymSoft flow. The mapping

methodology consists of three main steps: library characterization, target code

identification, and mapping.

Pre-Optimized Library
elements and Complex

instructions

Symbolic Algebraic
Decomposition

Library
Characterization

Target Code
Indentification

Optimized C Code
with Library Calls

and Inline Assembly

Algorithmic-level C
Code

Figure 4.2. SymSoft Tool Flow

The first step is to characterize the library elements. The characterization not only

includes performance and energy consumption of the complex element for a given

hardware architecture, but also the expected input and output format, accuracy and a

polynomial representation.

 58

The next step identifies the target code for optimization. In this step, an initial check

is performed to see whether data representation used in the algorithmic-level C code

matches the target hardware. Most embedded processors support only fixed point

computation, but many multimedia algorithms utilize floating-point operations. The

profiler, described in Section 4.3.2.2, detects if data representation is an issue within

several seconds. Then, if needed, floating-point operations are replaced with fixed-point

operations with the help of a floating-point to fixed-point converting tool [20][24][25].

The profiler also reports the performance and energy critical functions of the code. The

polynomial representations of the arithmetic sections of the critical routines are

calculated with help of traditional compiler techniques such as loop unrolling. When

necessary, polynomial approximation techniques are used. Accuracy is checked at the

end of the target code identification step to make sure that the code still meets the

specifications, as some rounding occurs both during the data representation conversion

and during the polynomial formulation.

Finally, the target code represented by polynomials is automatically mapped into the

library elements and complex processor instructions. The key contribution in SymSoft is

a new method to map critical code segments into pre-optimized software library elements

and complex assembly instructions using symbolic polynomial manipulation. The

mapping process selects the solution that offers best performance with sufficient

accuracy. Since the SymSoft methodology is compliant with other software optimization

techniques, additional benefits are gained by combining it with traditional complier

optimization algorithms, such as constant and variable propagation, dead code

elimination, and loop unrolling. The next sections describe each part of the SymSoft

flow in detail.

4.3.1. LIBRARY CHARACTERIZATION

The target library consists of pre-optimized software libraries and complex arithmetic

instructions available for the target processor. Complex arithmetic instructions vary from

 59

the simple multiply-accumulate (MAC) to more complex instructions, such as those

developed by Tensilica tools [26]. Pre-optimized software libraries include traditional

embedded system libraries, such as the IEEE floating-point mathematical library for

Linux operating system [37], commercial libraries available for the particular processor,

such as Intel’s integrated performance primitives (IPP) [34], and a set of in-house pre-

optimized routines. Table 4.1 shows a sample of elements of the IPP library. Library

characterization is done on element-by-element basis. Each element is labeled with the

type of inputs and outputs, performance, accuracy, energy consumption, and finally its

polynomial representation.

Table 4.1. Sample of IPP Library Elements

Library Elements Description

Exp Exponentiation
Ln Natural logarithm
DotProd Vector dot (inner) product
Mean Vector arithmetic mean
FIR Finite impulse response filter
IIR Infinite impulse response filter
Conv Convolution
WinHamming Hamming window
FFT Fast Fourier transforms
HuffmanDecode Decodes Huffman symbols
SubBandSynthesis Stage two of hybrid synthesis filter bank
IMDCT Inverse modified discrete cosine transform

 The format of library element inputs and outputs is determined from the library

include files or documentation available with the library element. Techniques discussed

in Section 4.3.2.3 can be used to extract the polynomial representations from the source

code if the code is available. Otherwise, either the distributor needs to provide the

equivalent polynomial representation or it might be obtained from the documentation.

Important part of library characterization is the determination of accuracy, performance

and energy consumption. This information is used to guide the selection process when

more than one library element has same functionality. Most embedded systems have

operating system timers that can be used for fine-granularity performance measurements

 60

on hardware. However, often there is not an easy way to measure processor and memory

power consumption. Alternatively, a cycle-accurate energy consumption simulator [44]

easily provides energy and performance estimates of library elements. Note that the

library characterization step is yet to be automated.

Examples of two characterized complex library elements, SubBand Synthesis and

IMDCT, are shown in Table 4.2. The library has three different versions of each library

element: the open-source floating point version from the MP3 standards library [23],

fixed-point in-house pre-optimized routine, and a version from Intel’s integrated

performance primitive (IPP) library for StrongARM SA-1110 processor [34]. For each

library element, we have measured its performance on the SmartBadgeIV hardware. All

entries in Table 4.2 are represented using polynomials. Since polynomials for complex

library elements can be quite large, we show only a critical portion of IMDCT

polynomial in Equation 1. Equation 1 shows how n/2 windowed samples, yk, are

transformed into n xi samples. Note that this is just a first order polynomial,

since))12)(
2

12(
2

cos(+++ k
n

i
n

π
can be calculated in advance for all i, k and n.

∑
−

=
+++=

1
2

0
))12)(

2
12(

2
cos(

n

k
ki kni

n
yx π

(1)

 61

Table 4.2. Characterized Complex Library Elements

Library Element Execution time Input Type

 float SubBandSyn 0.95 64 bit float

 fixed SubBandSyn 0.01 32 bit fixed
 IPP SubBandSyn 0.002 32 bit fixed
 float IMDCT 0.39 64 bit float
 fixed IMDCT 0.014 32 bit fixed
 IPP IMDCT 0.0002 32 bit fixed

4.3.2. TARGET CODE IDENTIFICATION

The input to the target code identification step is the algorithmic-level C code of the

embedded software. The output of this step is a set of polynomial representations of the

critical code segments that would benefit most from mapping to complex instruction and

pre-optimized library elements. Target code identification consists of three stages as

shown in Figure 4.3. First, the profiler checks to see whether floating point operations

are on the critical path. If needed the floating-point operations are transformed into

fixed-point operations by data representation conversion. Next, the energy and

performance critical procedures are identified. This step can be done either with

simulation using the energy profiler [44] or by profiling directly on the hardware.

Finally, when the power and performance critical procedures are identified, they are

formulated as polynomials suitable for mapping into library elements. In the next

sections, we will take a closer look at each stage of the target code identification step.

 62

Algorithmic-level
C Code

Floating-point
Problem?

Data Representation
Conversion

Energy Profiling

Polynomial
Formulation

Accuracy
Problem

Yes

Yes

No

No

Polynomial Representations of
Critical Code Segments

Figure 4.3. Target Code Identification

4.3.2.1. Data Representation Conversion

Signal processing algorithms are generally developed using ANSI-C with IEEE

floating-point data types. However, these algorithms are often implemented in embedded

systems using fixed-point data types in order to meet the power, cost, and performance

requirements. In this stage, it is checked whether floating-point operations are capturing

most of the execution time and power consumption of the algorithmic-level C code. In

that case, floating-point operations are considered critical and they must be converted to

fixed-point operations. Converting a floating-point algorithm to a fixed-point algorithm

is a time consuming and error prone task. Facilitating and semi-automating this

conversion has been the target of many research projects [20][24][25]. Such tools use

interpolative analysis or analytic techniques to convert floating-point operations into

appropriate fixed-point operations while reducing the manual work and the number of

simulations required. In our tool flow, we opt to use a tool like Fridge [24] (a.k.a.

CoCentric fixed-point designer) to automate this stage of optimization.

 63

4.3.2.2. Energy Profiling

Code optimization requires extensive program execution analysis to identify

performance and energy-critical bottlenecks and to provide feedback on the impact of

code transformations. Profiling is typically used to relate performance to the source code

for CPU and L1 cache [43]. An energy profiler enables easy identification of energy-

critical procedures. It also facilitates analysis of code transformations’ impact on the

processor energy consumption, the memory hierarchy, and the system busses.

The profiler exploits a cycle-accurate energy consumption simulator [44] to relate the

embedded system energy consumption and performance to the source code. Thus, it can

be used for analysis (i.e., to find energy-critical sections of the code), and for validation

(i.e., to assess the impact of each code optimization).

The profiler architecture [44] is shown in Figure 4.4. Source code is compiled using a

compiler for a target processor. The output of the compiler is the executable represented

as assembly code and a map of locations of each procedure in the executable. The

profiler of the cycle-accurate simulator periodically samples the simulation results (by

user defined sampling interval) and maps the energy and performance to the function

executed using information gathered at the compile time. Sampling is used to improve

profiling speed while maintaining accuracy. Once the simulation is complete, the energy

consumption and execution time of each function are displayed.

With the profiler, SymSoft can obtain energy consumption breakdown by procedures

in the source code and thus can quickly identify the sections of the source code whose

optimization can provide the largest execution time and energy savings. In addition, with

the cycle-accurate simulator that is at the heart of the profiler, SymSoft can get detailed

information about performance and energy consumption of smaller subsections of code.

The identified critical code segments are then passed as inputs to polynomial

approximation and symbolic mapping tools that can optimally map the code section into

complex library elements and assembly instructions in few minutes.

 64

ARM Instruction-level Simulator

Processor & L1 Cache Energy Model

Interconnect Energy Model

L2 Cache Memory

L1 Cache

Energy Model Energy Model

Processor Core Model

DC-DC
Converter

Energy
Model B

at
te

ry

AddressData

AddressData

AddressCycle Type

L2 Cache Current

Memory Current

Processor
Current

Battery
Current

Interconnect
Current

Cycle Type

Cycle Type

Data

Profiler

Source Code

 for (i=0; i<30; i++)
 {

x[i] = y[i] + 2 * x[i + 1];
z[i] -= x[i];
y[i] = x[i] + z[i];

 }
LD R21, #30;
ADD R21, R23,R27;
...

Energy
Consumption

Software Profile

 fun energy

 getD 15%
 sort 10%
 init 2%
 ...

Figure 4.4. Profiler Architecture

4.3.2.3. Polynomial Formulation

Our goal is to automatically map the critical code segments selected by the profiler

into pre-optimized library elements or complex assembly instructions such that optimum

execution time and power consumption are achieved. The symbolic mapping algorithm,

described in Section 4.3.3, takes as input the polynomial representations of the critical

code segments and the polynomial equivalence of complex arithmetic assembly

instructions and pre-optimized library elements. The polynomial formulation step

prepares the first set of inputs required by the symbolic mapping algorithm by calculating

the polynomial representations of the critical code segments. The second set of inputs is

calculated in the library characterization step as described in Section 4.3.1.

The polynomial representation of a basic block can be directly extracted from the C

code if the basic block calculates a polynomial function. If the basic block performs a

series of bit manipulations or Boolean functions, interpolation-based algorithms [46][47]

 65

can be used to formulate the equivalent polynomial representation. When the basic block

implements a transcendental function, we use an approximation, such as the Taylor or

Chebyshev series expansion, as its polynomial. The chosen polynomial approximation

has to be verified by simulation to ensure that the software constraints, such as audio

quality, are satisfied. A good approximation can result in large performance and power

improvements for multimedia applications, since these applications can tolerate a slight

degradation in the output. For example, to verify the accuracy of the MP3 decoder we

have used the compliance test provided by the MPEG standard where the range of RMS

error between the samples defines the compliance level [45]. If the approximation is not

sufficient to satisfy the accuracy constraints, the quality of approximation is changed and

verified again through simulation.

The objective of this step is to formulate polynomials that cover as much of the source

code as possible. Consecutively, the likelihood of finding a more complex library

element that matches at least a portion of the formulated polynomial increases. This

objective can be accomplished by using code transformation techniques such as loop

unrolling, constant and variable propagation to form larger basic blocks.

4.3.3. SYMBOLIC MAPPING ALGORITHM

The symbolic mapping algorithm requires two sets of inputs: a set of polynomials

representing the critical code segments and another set of polynomials representing the

pre-optimized library elements and complex instructions. The former has been generated

in the target code identification step and the latter is the output of the library

characterization step. The goal of the symbolic mapping algorithm is to decompose the

polynomial representations of the critical code segments (CCS) into the polynomial

representations of the target library such that execution time and power consumption are

minimized. The power consumption and execution time of each library element are

provided to the mapping algorithm as constants by the library characterization step as

 66

described in Section 4.3.1. As opposed to tree covering based algorithms, in our

algorithm, mapping is performed simultaneously with algebraic manipulations.

The symbolic mapping algorithm uses multivariate polynomial manipulation

algorithms from symbolic computer algebra. The theory behind these algorithms is

described in Chapter 2. Namely, symbolic techniques used are factorization, expansion,

Horner transform, multivariate polynomial substitution, and variable elimination. In this

section, these routines are described by a set of simple examples.

Example 4.2. Factor and expand are inverse operations. Consider using Maple to

factor and expand the following polynomial:

> S := x^2*(x^14+x^15+1);

> P := expand(S);

P = x^16+x^17+x^2

> factor(P);

x^2*(x^14+x^15+1) ■

Example 4.3. Horner form of a polynomial is a nested normal form with minimal

number of multiplications and additions. Any polynomial can be rewritten in Horner,

or nested, form. An example of Horner form polynomial for multiple variables is

shown below:

> S:= y^2*x+y*x^2+4*x*y+x^2+2*x;

> convert(S, ’horner’, [x,y]);

(2+(4+y)*y+(y+1)*x)*x ■

Example 4.4. Simplify implements substitution and variable elimination for

multivariate polynomials:

> S:= x + x^3*y^2 –2*x*y^3;

> simplify(S, {p = x^2–2*y}, [x,y,p]);

x+y^2*x*p ■

 67

The core of the library-mapping algorithm is the simplification modulo set of

polynomials (simplify) routine. The polynomial representations of critical code blocks

are simplified modulo a subset of polynomials representing the library elements called

the side relation set. Choosing the side relation set is a non-trivial and important task,

especially since different side relation sets results in different solutions. In Chapter 3, an

algorithm was introduced that selects the side relation set such that the hardware

implementation of a (portion of) data path with a given component library has minimal

critical path delay. In this chapter, a similar algorithm is used to optimize the execution

time of the critical code segments of software by mapping to pre-optimized library

elements and complex assembly instructions. Since evaluating all subsets of the library is

exponentially expensive, the library-mapping algorithm uses the branch-and-bound

method with execution time and energy consumption as bounding functions to prune the

search space. All previously described symbolic manipulations except simplify are used

as guidelines in formulating different side relation sets to speed up the mapping

algorithm.

Figure 4.5 gives an overview of the mapping algorithm. Inputs to the algorithm are

the polynomial representations of the critical code segments (CCS) and the polynomial

representations of the target library elements. Initially, tree-height reduction,

factorization, expansion, and Horner-based transform are applied to the polynomial

representation of the CCS resulting in several different polynomials representing the

same code segment. Each of the different polynomial representations is used to select a

side relation from the target library. These guidelines are used to increase the speed of

finding the desirable mapping. The polynomial representation of the CCS is simplified

modulo the selected side relation sets in parallel. If the result of simplify matches a

library element then the CCS is mapped. Otherwise, we need to continue to add to the

side relation set until the CCS is fully mapped to our library. The iterative part of the

algorithm, denoted in Figure 4.5 as main loop, is implemented using branch-and-bound

algorithms.

 68

Polynomial Representation of Critical Code Segment

THR Expand HornerFactor

Select Side
Relation Set

Polynomial
Representation of
Library Elements

SimplifyAdd to Side
Relation Set

Best Solution

Mapped?
No

Yes

Main Loop

Figure 4.5. Overview of the Library Mapping Algorithm

Algorithm 4.3.3 shows the pseudo-code of the library-mapping algorithm. Inputs to

this algorithm are the polynomial representation of the critical code section (CCS) and the

polynomial representations of the library elements (L). The bounding function is defined

as the best execution time for CCS seen so far. The lower bound computed at each

decision branch is the execution time of the library elements in the side relation set in

view of data dependencies. If this lower bound is greater than the best execution time

seen so far, the corresponding decision branch is pruned. Decision tree (decision_tree)

implements the branch-and-bound algorithm. The algorithm starts by initializing the root

of decision_tree to the polynomial representation of CCS and calculating an initial bound.

The bounding variable is initialized to the execution time of calculating the CCS

polynomial solely with add and multiply instructions, the lexicographical mapping

(LexMap). Nodes are added to this tree in breadth-first manner. These nodes store the

polynomial result of simplify of their parent node and the chosen side relation set. When

a simplification result corresponds to a polynomial representation of a library element, a

 69

possible solution is found and the corresponding tree node is marked accordingly. If the

execution time of the solution is less than previously encountered solutions, we set the

bounding variable to the current value. In case the simplification result stored in a tree

node does not correspond to any library elements, we apply the same steps to the new

tree node until either a solution is found or the corresponding branch is pruned. Since

CCS is a polynomial and add and multiply instructions are always available in our

library, we are guaranteed to have a solution. However, our mapping algorithm searches

for a solution that best exploits the given software library.

Algorithm .4.3.3. Decompose CCS into elements of library L

function Decompose (exp_tree, boundVal, L) {
 // initialize the decision tree
 decision_tree ← tree (exp_tree)
 Depth ← 0
 Bound ← boundVal
 for all n ∈ decision_tree with depth == Depth do{
 if Depth == 0
 choose sr ∈ L to preserve the exp_tree structure
 else for all sr ∈ L {
 result = simplify (n, sr);
 AddChild (n, result) // make result a child of node n
 if result ∈ L // solution is found
 Bound = Min(cost of node result, Bound);
 }
 if no more n ∈ decision_tree with depth == Depth
 Depth ← Depth + 1
 }
 return the best solution
end Decompose
procedure main (CCS,L)
 exp_tree [1 .. NoManipulations] = AllManipulations (CCS);
 for i = 1 to NoManipulations {
 boundVal[i]=LexMap(exp_tree[i]);
 solution[i] = Decompose(exp_tree[i],boundVal[i]) }
 return the best solution in solutions[i]
end main

 70

The branch-and-bound algorithm in Algorithm 4.3.3 is applicable to most practical

problems and its runtime is in the matter of minutes. Nevertheless, as for all branch-and-

bound algorithms, the worst-case complexity remains exponential. The speed of this

algorithm depends on the initial polynomial and the initial side relation set. Here, we use

a set of library independent symbolic manipulations on the original CCS polynomial to

help with the selection of initial side relation element. These manipulations improve the

execution time without hampering the quality of the solution. First, we apply tree-height

reduction, factorization, expansion, and Horner-based transform to CCS in the

AllManipulations function. As a result, we have several different polynomials (exp_tree)

representing the same code section. Each of these representations can result in the

desirable implementation based on the available library elements.

To select the initial member of side relation sets, we start with the primary inputs and

cover the expression tree with the library elements. We choose all library elements that

cover the primary inputs and a portion of the expression tree as initial elements of the

different side relation sets used to simplify the root of the decision_tree. If the result of

simplify is not a library element, we add more elements to the side relation set without

further guidance from the expression tree and decompose the result. Note that in

selecting the side relations from the library, all different permutations of the variables

with the same data-type are considered. This algorithm is implemented in C with calls to

Maple V for the symbolic manipulations.

Example 4.5. In order to demonstrate the power of our library mapping algorithm,

consider a basic block implementing Equation 2:

))12)(
2

12(
72

cos(+++= mNpd π

(2)

Equation 2 is approximated using Pade approximation to the polynomials shown in

Equation 3 in the previous step of the SymSoft flow as described in Section 4.3.2.3.

 71

642

642

39251520
127

2360
1

7788
2291

7850304
2923

25960
711

7788
36651

)12)(
2

12(
72

xxx

xxx
d

mNpx

+++

−+−
≅

+++=
π

 (3)

The simplification modulo set of polynomials routine can be used to map the

numerator and denominator of Equation 3 to the available instruction set. Let dn be

the numerator of Equation 3 with a, b, and c the constants of the polynomial. In

addition, we define siderels as a subset of the available instructions with renamed

variables. We have:

> dn:=1+a*x^2+b*x^4+c*x^6: siderels:={w=x^2,y=b+c*w,z=a+y*w};

> simplify(dn, siderels,[x,w,y,z]);

1+z*w

Note that the first element of the side relation set (w=x^2) corresponds to the square

or multiply instruction and the other two elements of the set (y=b+c*w, z=a+y*w)

and the result of simplify (1+z*w) correspond to the MAC instruction. The side

relation set can be any subset of the available instruction set with proper renaming of

the variables. Different side relation sets result in finding other possible solutions for

the specification. The above implies:

dn=1+a*x^2+b*x^4+c*x^6=1+z*w

=1+(a+y*x^2)*x^2=1+(a+(b+c*x^2)*x^2)*x^2

Therefore, the numerator of Equation 3 can be mapped to one square and three MACs

instructions. Assuming R1, R2, R3, R4, and R5 hold 1, a, b, c, and x, respectively,

the resulting assembly code is:
MULT R6, R5, R5

MAC R7, R3, R4, R6

MAC R8, R2, R7, R6

MAC R7, R1, R8, R6

 72

In the MP3 decoder program, the basic block evaluating Equation 2 uses floating-

point and takes 2124 cycles to run on the StrongARM SA-1110 processor. The

approximation represented in Equation 3 calculates x using floating-point and d

using fixed-point arithmetic and nested MACs as suggested by the symbolic

optimization. This approximation executes in 901 cycles. Thus, we have achieved an

improvement of 57% for this simple example. The fixed-point version with no

symbolic optimization executes in 1367 cycles. Thus, approximately 50% of the

improvement achieved is due to use of fixed-point arithmetic and 50% is due to

smarter use of processor instructions. ■

4.4. RESULTS

We have tested the effectiveness of SymSoft using the experimental embedded system

SmartBadgeIV and a wide range of code examples used in communication, digital signal

processing, and streaming media. The SmartBadgeIV system and our experimental setup

for hardware execution time and energy consumption measurement were described in

Section 4.2.

The first six software examples are obtained from a DSP software benchmark suite

[48]. The first two examples are software programs that perform common digital signal

processing computations; discrete convolution and dot (inner) product. Convolution is

the linear operator can compute the output of a linear time-invariant (LTI) system in

response to an input sequence given the system impulse response sequence. The dot

(inner) product of two vectors is the summation of the products of the two input

sequences; i.e. ∑ ⋅=
i

iyixz][][.

The next four examples are different digital filters used in digital signal processing and

communication applications. The first filter is a finite impulse response (FIR) filter. The

next two filters are biquad infinite impulse response (IIR) filters. A single IIR filter of

 73

arbitrary order is often decomposed into equivalent cascades of 2nd-order IIR sections

known as biquads. Although the biquad cascade is analytically identical to the single

filter of higher order, the biquad filter realization is more stable and less sensitive to

quantization errors. The last filter is a least-mean-square (LMS) FIR adaptive filter. The

LMS filter is a time-varying linear system for which the filter coefficients are adjusted at

each time step to minimize the error between the actual output and a given desired output.

Finally, the last example is a full MPEG Layer III (MP3) audio decoder

implementation that streams MP3 encoded files from a server to a client

(SmartBadgeIV).

Table 4.3. Results of SymSoft Optimization on a Set of Examples

 Execution time in microsecs
Examples Original SymSoft improvement (%)
Convolution 667 627 6.01
Dot product 358 267 25.42
FIR filter 2418 1170 51.61
IIR filter (4 biquads) 5079 4355 14.25
IIR filter (1 biquad) 1396 1250 10.46
Least Mean Square 1200 1000 16.67
MP3 decoder 5470000 1430000 73.86

Table 4.3 summarizes the results of applying SymSoft tool flow to the set of examples

discussed above. In each case, we start with the fixed-point implementation of the

algorithm and use profiling to select the critical code sections. Optimizing a critical code

section results in noticeable improvement on any given example. Next, the critical code

sections are automatically mapped to the instruction set available on the StrongARM SA-

1110 processor and Intel’s integrated performance primitives (IPP) library for

StrongARM SA-1110 processor [34]. Table 4.3 shows the execution time of each

example before and after the optimization with SymSoft. Note that the original execution

time column, reports the execution time of the examples when all possible optimizations

available with the ARM compiler are used.

 74

The improvements demonstrated in Table 4.3 indicate that by using SymSoft we can

obtain significant execution time improvement for a range of applications over

commercial compilers. The amount of improvement achieved is dependent on the

number of critical blocks that are optimized and the library implementations available for

the given block. Examples in Table 4.3 show improvements in the range of 6% to 73%

with an average of 28% improvement.

In the next section, we will go through all the steps of the SymSoft flow using the

MP3 decoder software as an example.

4.4.1. THE MP3 OPTIMIZATION RESULTS

We start with an algorithmic level description of the MPEG Layer III (MP3) audio

decoder obtained from the International Organization for Standardization (ISO) [23].

Our design goal is to accelerate the MP3 decoder and lower its energy consumption while

keeping full compliance with the MPEG standard. The first step in decoding the MP3

stream is synchronizing the incoming bitstream and the decoder. Huffman decoding of

the SubBand coefficients is performed before requantization. Stereo processing, if

applicable, occurs before the inverse mapping which consists of an inverse modified

discrete cosine transform (IMDCT) followed by a polyphase synthesis filterbank. During

the optimization process, we used instructions available on the StrongARM SA-1110

processor, a mathematical library available with Linux operating system [37], Intel’s

integrated performance primitives (IPP) library for StrongARM SA-1110 processor

[34], and a library populated with in-house pre-optimized routines. The library elements

ranged from simple mathematical functions such as MAC to as complex elements as

IMDCT routine.

The SymSoft flow, as described in Section 4.3, consists of library characterization,

target code identification, and the final library mapping step. The library characterization

step uses hardware measurements for performance and simulations for energy

 75

consumption [44]. The polynomial representation is obtained either from the source code

(Linux mathematical and in-house libraries), or from documentation (IPP library).

The target code identification consists of three important steps: data type conversion,

code profiling, and formulating polynomials to be mapped. The first step is to check if

floating-point data types are suitable for the given platform. Since SmartBadgeIV ’s

processor, StrongARM SA-1110, can only emulate the floating-point operations, there

is a need for data representation transformation. The code was converted to use fixed-

point arithmetic. It was verified through simulation that 27-bit precision fixed-point data-

types are sufficient to meet the compliance test provided by MPEG standard [45].

Automating floating-point to fixed-point data type conversion has been targeted by the

tool Fridge [24]. Profiling the original source code highlights the critical code segments.

Table 4.4 shows the results of profiling original MP3 decoder software we obtained from

the standards body. All profiling reported in Table 4.4 is using hardware measurements.

The results are shown for one frame and represent only the most significant functions in

terms of their performance impact. Next, we formulate equivalent polynomial

representation of each of the critical functions shown in Table 4.4. We use polynomial

approximations for the non-linear calculations in the critical basic blocks. Once more,

we validate that these approximations satisfy the MPEG compliance test [45]. The output

of the target code identification step is a set of polynomials representing the critical

sections of the code.

Table 4.4. Profiling the Original MP3 Code

Function name Execution time (s) %

 III_dequantize_sample 1.1754 45.33

 SubBandSynthesis 0.9481 36.56

 Inv_mdctL 0.3872 14.93

 III_hybrid 0.0670 2.58

 III_antialias 0.0131 0.51

 III_stereo 0.0010 0.04

 III_hufman_decode 0.0007 0.03

 III_reorder 0.0005 0.02

 Total for one frame 2.5931 100.00

 76

In the first phase of optimization, the polynomial representations of the critical code

sections of the first three function shown in Table 4.4 are mapped into the StrongARM

assembly instructions by algorithm described in Section 4.3.3. It is important to note that

StrongARM compiler was not capable of using the MAC instruction effectively.

However, our symbolic algorithm was able to use this instruction efficiently.

Automatically generated inline assembly was inserted in the C code as the result of the

decomposing algorithm. The results of optimizing critical functions of the MP3 code by

SymSoft are compared with the original results from straightforward compilation in

Table 4.5. The numbers reported in Table 4.5 are obtained using the cycle accurate

energy simulator described in Section 4.3.2.2. The first, third, and fifth row in Table 4.5

correspond to the first three rows of Table 4.4. The second, fourth, and sixth row in

Table 4.5 are functions related to the function in the previous row. As we can see, 12-

70% improvement has been achieved using the SymSoft methodology. Such

improvement was previously possible only thorough manual optimization with inline

assembly. The automation introduced by SymSoft drastically reduces the embedded

software optimization cycle.

Table 4.5. Comparing SymSoft Instruction Mapping and a Commercial Compiler

 Execution time (#cycles) Energy Consumption (mWhr)

Function original optimized %imp Original optimized %imp

III_dequantize_sample 650894 421976 35.2 0.940 0.747 20.5

 PowThreeFourth 14135 5380 61.9 0.040 0.009 76.6

SubBandSynthesis 155204 70633 54.5 1.015 0.306 69.8

 generateFilterS 5263831 4196853 20.3 3.630 3.319 8.6

Inv_mdctL 63583 31954 49.7 0.101 0.051 49.6

 generateMDCTTable 1454550 957051 34.2 1.051 0.922 12.2

 77

Next, we profile the MP3 decoder that results from this phase of optimization on the

hardware and measure the execution time of each function while decoding one frame of

the MP3 stream. The resulting performance profile is shown in Table 4.6. Although the

execution time per frame is drastically reduced (by two orders of magnitude compared to

Table 4.4), we can see that still almost 85% of the execution time is spent in the IMDCT

and SubBand synthesis functions.

Table 4.6. MP3 Profile After First Phase of Optimization

 Function name Execution time (s) %

 Inv_mdctL 0.0144 49.54

 SubBandSynthesis 0.0103 35.30

 III_dequantize_sample 0.0013 4.33

 III_stereo 0.0008 2.83

 III_reorder 0.0007 2.28

 III_antialias 0.0006 2.15

 III_hufman_decode 0.0007 2.48

 III_hybrid 0.0003 1.10

 Total for one frame 0.0291 100.00

In the second phase of optimization, the code is mapped to Intel’s IPP library using the

SymSoft methodology. Here we find two primitives that match the two critical

procedures shown in Table 4.6. The resulting performance profile is shown in Table 4.7.

Our method automatically uses two of the IPP routines. While the new profile shows that

SubBand synthesis still takes roughly 35% of the execution time for each frame, we see

that MDCT is no longer a critical portion of the code. Notice that the execution of the

IPP SubBand synthesis routine is one order of magnitude faster than the previous version

and the total time for decoding one frame is reduced by a factor of 5.

 78

Table 4.7. MP3 Profile After Second Phase of Optimization

Function name Execution time (s) %

 ippsSynthPQMF_MP3_32s16s 0.00176 35.242

 III_dequantize_sample 0.00124 24.79

 III_stereo 0.00082 16.46

 III_hufman_decode 0.00067 13.416

 IppsMDCTInv_MP3_32s 0.00047 9.4113

 III_get_scale_factors 3.4E-05 0.6808

 Total time for one frame 0.00499 100.00

Table 4.8 summarizes the performance and the energy results of the overall

optimization process we described in this section. All measurements are performed on

the SmartBadgeIV while running at maximum processing speed and voltage. We start

from the original source code obtained from the standards web site that runs roughly two

orders of magnitude slower than real-time playback. The next two rows show the results

of mapping only into Intel’s IPP library; more specifically, we are able to automatically

use IPP’s SubBand Synthesis and IMDCT in the original code. However, the rest of the

code remains intact and still operates on floating-point data. StrongARM SA-1110

cannot perform floating-point operations natively. As a result, the execution time of the

code is still far from real-time playback.

Table 4.8. Execution Time and Energy of Different Versions of the MP3 Decoder

Code version Execution
time (s)

Improvement
factor Energy (mWhr) Improvement

factor
 Original 503.92 1.0 509.6 1.0

 Original + IPP SubBand 301.43 1.7 292.5 1.7

 Original + IPP SubBand & IMDCT 211.27 2.4 199.1 2.6

 SymSoft first phase (FPh) optimization 5.47 92.1 4.47 114.2

 FPh + IPP SubBand 3.33 151.4 2.78 182.3
 SymSoft final optimization
(FPh + IPP SubBand & IMDCT) 1.43 352.4 1.17 435.2

 IPP MP3 (Best possible) 0.41 1240.8 0.31 1626

 79

The fourth row corresponds to the result of the first phase of optimization using

SymSoft methodology (without using the Intel library). In this phase, the target libraries

used in the mapping step consist of the assembly instructions available on the

StrongARM and a set of in-house fixed-point routines. As shown, we have achieved an

improvement of two orders of magnitude in both performance and energy for this

mapping. The improvement is because of effective use of the MAC instruction available

on StrongARM and conversion of most floating-point operations to fixed point. Fixed-

point accuracy is verified through simulation.

An additional saving of a factor of four is obtained by further optimizing the code and

adding Intel’s IPP library to the target libraries in the mapping step. The improvement of

factor of four is solely due to automatic use of complex library elements that have been

pre-optimized for the given processor. Full compliance to the standard of each version of

MP3 code is ensured by checking the accuracy at each mapping step with MP3

compliance test [45]. Note that even larger energy savings are possible by using

processor frequency and voltage scaling, since the final MP3 code optimized by SymSoft

runs almost four times faster than real-time playback.

The last row in the table, IPP MP3, represents fully hand-optimized MP3 code for

StrongARM available from Intel. The final optimized version by SymSoft is a factor of

3.5-3.7 times worse than the IPP MP3. The lower bound on execution time (IPP MP3) is

achieved by full manual optimization, which is an error-prone and tedious task. Our

methodology reduces the manual intervention of software designers in the optimization

process and its results are still faster than real-time playback. Such improvements were

previously only possible by skilled designers, familiar with the hardware and software,

hand optimizing the code for a given embedded system platform.

As it can be observed from Table 4.8, the reported optimization space for the MP3

decoder spans over three orders of magnitude. The major contribution of this work is to

provide a semi-automated optimization flow that closely approaches the lower bound of

 80

the optimization space within the limitations of polynomial representation for code

sections. Our approach is particularly suitable for data intensive algorithms such as DSP

and multi-media applications, since large portions of these software codes can be easily

represented by polynomials.

4.5. SUMMARY

The contribution of this chapter is a symbolic mapping algorithm and methodology,

SymSoft, for energy and performance optimization of algorithmic level software code to

execute on a given embedded processor. There are three main steps in our methodology:

library characterization, target code identification, and library mapping. The library

characterization step finds a polynomial to represent the functionality of each library

element and associates a set of parameters such as execution time, energy consumption,

and input/output type with each library element. In the target code optimization step, our

tool uses execution time and energy profiling to automatically identify need of automated

data representation conversion and the critical sections of the code that would benefit

most from optimization. For transcendental arithmetic functions, approximation into a

polynomial representation is needed in order to enable symbolic algebra techniques.

Finally, the library-mapping step uses symbolic computer algebra to automatically

decompose the polynomial representations of the critical code sections into a set of

library elements available for the embedded processor.

We demonstrated application of our tool, SymSoft, to the optimization of several

examples on the SmartBadgeIV [22] embedded system. Using SymSoft for source code

optimization, we have been able to increase performance and energy consumption of

these examples dramatically while satisfying the output accuracy requirements. These

improvements are achieved by the use of pre-optimized software library functions,

conversion of critical floating-point operations to fixed point, and reducing the number of

memory accesses and instructions executed in critical code segments. The technique

 81

presented in this chapter can be easily used in conjunction with other compiler

optimization techniques [27].

CHAPTER 5

INSTRUCTION SET SELECTION AND USAGE

In the previous two chapters, the focus has been on the design and optimization of

hardware and software sections of an embedded system independently. In this chapter,

software and hardware co-design is addressed. The co-design methodology presented in

this chapter, identifies sections of the software that are critical and are more appropriate

for hardware. Mapping these segments to hardware can greatly reduce the execution time

of the application. Application-specific instruction-set processors (ASIPs) are suitable

for such embedded systems. ASIPs have time-to-market advantage over custom design

ASICs and performance and power advantages over traditional fixed instruction set

processors. These processors are microprocessors where the instruction set is specialized

based on a given application. ASIPs are tailored to include new ad-hoc functional units

and instructions that calculate the critical sections of the application software.

Typically, the specialization of embedded ASIPs in a manual task. Our objective is to

facilitate the specialization of application-specific processors and to automate the use of

the new complex instructions added to the processor. In this chapter, we propose a new

specialization methodology based on extracting multiple-input single-output dataflow

graphs and symbolic manipulation of polynomials. First, we automatically identify

 83

clusters of combinatorial operations that can be grouped into single operations

implemented in new functional units of the ASIP. Next, we use symbolic algebraic

algorithms to map dataflow sections of our software to the potential new complex

instructions. The combination of algorithms from symbolic computer algebra and

standard compiler optimization techniques allows novel automatic code transformations

that are hard to find by traditional graph covering methods.

Example 5.1. As a motivating example, consider the code segment shown below:

int foo(int a, int b, int c, int d){

 return a*b+c*d;

}

Assume that for a digital video application foo is a critical function. Therefore, we

add a functional unit to the application-specific processor that calculates foo. Next,

consider a basic block of the same digital video application calculating:

Y1 = a * R1 + b * G1 + c * B1 + d;

Y2 = a * R2 + b * G2 + c * B2 + d;

Y = Y2 + q * (Y1 - Y2);

With proper variable renaming and the algebraic knowledge that d = 1*d, we can

calculate Y1 and Y2 using the new foo instruction added to the processor as follows:

Y1 = foo(a, R1, b, G1) + foo(c, B1, d, 1);

Y2 = foo(a, R2, b, G2) + foo(c, B2, d, 1);

By using the expand routine in symbolic algebra, Y can be transformed and mapped

to the foo instruction:

 84

Y = Y2 + q * Y1 – q * Y2;

Y = Y2 + foo(q, Y1, -q, Y2);

Thus, the number of instructions used to calculate this basic block is reduced from 15

instructions to 9 instructions that include 5 foo instructions, 3 adds, and 1 negate.

Now, we formulate one polynomial for the original basic block:

Y = a*R2+b*G2+c*B2+d+q*a*R1+q*b*G1+q*c*B1-q*a*R2-q*b*G2-q*c*B2;

By applying the collect symbolic polynomial manipulation on Y, and substituting 1-

q by p, we have:

Y = ((1-q)*R2+q*R1)*a+((1-q)*G2+q*G1)*b+((1-q)*B2+q*B1)*c+d;

Y = (p*R2+q*R1)*a+(p*G2+q*G1)*b+(p*B2+q*B1)*c+d;

Y = foo(foo(p,R2,q,R1),a,foo(p,G2,q,G1),b)+foo(foo(p,B2,q,B1),c,d,1);

As shown, the new equation can be mapped to 7 instructions: 5 foo instructions, 1

add, and 1 subtract. The new mapping is even more efficient than the previous one.

This complex solution is hard to find in tree mapping methods since the number of

operation to calculate Y initially increases. ■

Currently, no tool can perform these kind of algebraic optimizations automatically.

Furthermore, utilization of additional ASIP instructions is the responsibility of the

designers. Thus, designers manually implement such optimizations using their

knowledge of algebra and insert the proper intrinsic function calls.

This chapter presents a methodology that combines detection of potential new

instructions for application-specific processors with algebraic manipulations such as the

one shown in the previous example. The result of this combination is automatic

 85

instruction set selection and mapping. First, a set of potential functional units is extracted

from the application software by the multiple-input single-output (MISO) dataflow

extraction tool. Next, symbolic algebra is used to map the polynomial representations of

the basic blocks to the new instruction set. The new instruction set is determined based

on the usage frequency, cost, and possible execution time improvement. Finally,

symbolic algorithms are used once more to map the basic blocks to the new instruction

set.

The application of this methodology spans from pure ASIP design with extensible

functional units to processors equipped with embedded reconfigurable arrays. To

minimize microarchitectural and technological assumptions, the analysis of the results

focuses on the former type of designs without excluding the viability for the latter

implementation. As an example of an extensible ASIP, we are using a Tensilica [50][26]

core in our experimental setup.

The chapter is organized as follows: Section 5.1 discusses previous work in software

optimization for configurable processors. Section 5.2 presents our proposed

methodology, and explains each of its steps. The results of several examples and the

improvements achieved by automatically specializing the Tensilica core are presented in

Section 5.3. Finally, Section 5.4 summarizes contributions of this work.

5.1. RELATED WORK

This chapter combines two related areas of research: automatic identification of

instruction-set extensions and use of symbolic algebraic manipulations to map dataflow

sections of the code to complex instructions available on the processor. We will discuss

the latter area first and then the state-of-the art in instruction identification.

Advanced compilers integrate some tree restructuring capabilities based on algebraic

properties to reduce the execution time of complex calculations [27][58]. The goal of

such restructuring is typically very precise; for example isolating constants to minimize

 86

the amount of address calculation at runtime. In such cases, a number of basic tree

transformation rules, applied recursively, result in the desired optimized tree. Similarly,

research compilers [51] for SIMD architectures use a fixed set of algebraic tree

restructuring rules for associativity and commutativity to improve the quality of SIMD

instruction selection. Our approach is more general in that it explores all restructuring

possibilities of a dataflow section derived from results of elimination theory and Gröbner

bases [7]. A comprehensive set of algebraic manipulations becomes necessary, as

defining a straightforward series of transformations is not possible in the general case of

complex instruction selection.

The problem of identifying instruction-set extensions consists of detecting clusters of

operations that, if implemented as a single complex instruction, maximize a metric—

typically performance. Previous works [54][55] have combined template matching (or

instruction mapping) and template generation (instruction identification and selection, in

this text) for ASIPs. Kastner et al. [54] cluster operations based on the frequency of node

types successions—e.g., multiplications followed by additions. The authors observe that

the number of operations per cluster is typically small and conclude that simple pairs of

operations appear to be the best candidates. In addition, their work does not account for

constraints on the number of inputs and outputs of the clusters. Arnold et al. [55] propose

a very similar method from the identification perspective, although the overall goal and

architectural context is rather different. Work in reconfigurable computing (e.g.,

[56][57]) also tackles instruction-set identification. Algorithms are relatively simple and

typically result in small suboptimal instructions.

In the experiments presented in this chapter, we have designed specialized Xtensa

processors for a set of different applications using the Tensilica toolset [50]. Tensilica

provides an extensible core architecture and a methodology and toolset to specialize the

core architecture for a given application. The Xtensa architecture can be extended by

adding new function units to the microprocessor. These extensions are described in the

Tensilica instruction extension (TIE) language. The TIE descriptions are compiled into

 87

hardware and integrated in the core Xtensa processor. However, identifying suitable

extensions to the core Xtensa processor is a manual task and based on designers

creativity. In addition, the TIE instructions added a processor should be used manually in

the application software through intrinsic function calls. Both these limitations are

automated by the methodology presented in this chapter.

5.2. METHODOLOGY

Here we present a methodology that aims to automate specialization of an application-

specific processor by adding new functional units to an extensible basic ASIP core. Our

methodology also targets automatic use of the new functional units in the application

software. Ideally, designers can profile the software code to find the critical sections of

the code. These sections are then added to the ASIP core as new functional units and

instructions. In addition, a compiler-like tool would optimize the algorithmic-level

description of the software to use the new instructions automatically. However, in

reality, optimum selection of new instructions is not possible solely by traditional

profiling tools. Moreover, designers need to manually modify their original code to use

the new functional units or complex instructions. Usually, designers use the profiling

information as a guideline for selecting new instructions. Along with that, the software

code is manually restructured to find common blocks or functions that could be mapped

to new functional units or instructions. Automating selection and use of new instructions

can save much design time.

Figure 5.1 shows the overview of our two-step methodology. We start with the high-

level C code describing our application and the instructions available on the base core. In

the first step, we combine multiple-input single-output (MISO) dataflow extraction with

symbolic algebraic mapping to define the new instruction set. Note that the base

instruction set of extensible ASIPs can generally execute control segments of the

application efficiently. Thus, we focus on dataflow sections of the code and add new

 88

combinational functional units to the base ASIP to accelerate critical basic blocks of the

code.

Algorithmic-level
C Code

Base Instruction Set

New Instruction Set

Automatic
Instruction
Mapping

Optimized C Code
Using

New Instruction Set

Automatic
Instruction
Selection

Figure 5.1. SymASIP Methodology

Once the instruction set is selected, decomposition algorithms empowered by

symbolic algebra are used in the second step to automatically map the basic blocks to the

new instruction set. Each basic block is modeled by its polynomial representation. These

polynomials are decomposed into a sequence of instructions available on the new

customized ASIP by polynomial manipulation techniques.

The key contribution is in the use of symbolic algebra combined with dataflow

extraction technique to automate instruction set selection and use of the new instruction

set for basic block optimization. Note that our methodology is compliant with other

software optimization and processor customization techniques. Additional benefits are

gained for example by customization of the register file and cache units or by compiler

optimizations such as dead code elimination and constant propagation. The next sections

describe steps of our methodology in detail.

 89

5.2.1. AUTOMATIC INSTRUCTION SELECTION

In this section, we will explain the details of the automatic instruction selection step

that corresponds to the first shaded box in Figure 5.1. As mentioned earlier, the base

instruction set of an extensible ASIP is usually sufficient for control flow. Therefore, our

focus is on adding new instructions that effectively execute critical dataflow sections of

the code. Figure 5.2 shows the different steps necessary for automatic instruction set

selection. We start by extracting multiple-input single-output (MISO) dataflow segments

from the high-level C code description of our application. A MISO is a set of nodes and

edges of a directed acyclic graph (DAG) that except for one node all destination nodes of

the edges belong to the MISO [52]. Identification of MISOs within a DAG requires an

algorithm of only linear complexity. The set of extracted MISOs represent the potential

new instructions.

Symbolic Mapping
Algorithm

MISO Generator

Algorithmic-level
C Code

Synthesize

Potential New
Instructions

Base Instruction Set

Cost and
Execution Time Profile

New Instruction Set

Optimized C Code
Using Potential New

Instructions

SELECT

Figure 5.2. Automatic Instruction Selection

Using symbolic algebraic algorithms, the original software application is optimized

and mapped to the union of the base instruction set and the potential new instruction set.

 90

The potential new instructions are synthesized in order to extract their cost and execution

time. The next step is to profile the optimized software code. The output of the profiler

indicates the frequency that each potential new instruction can be used in the application.

Note that the symbolic decomposition step automatically identifies all possible sections

of the code that can be mapped to extracted MISOs without manual intervention or the

need to restructure the original program. Using the frequency of each instruction and

their associated cost and execution time, a set of most promising MISOs are selected as

instructions to be added to the base ASIP. In the next section, we will describe the MISO

extraction and symbolic decomposition steps in more detail.

5.2.1.1. MISO Extraction

The multiple-input single-output (MISO) dataflow extractor tool described in this

chapter implements two different algorithms. Both algorithms extract single output

subgraphs from the basic blocks of the embedded application that correspond to potential

new instructions. The analysis starts with the directed acyclic graph (DAG)

representation of the basic blocks of the given application. Nodes of the DAG are

assembler-like instructions and edges represent data dependency among instructions.

The first method is a greedy algorithm of linear complexity that extracts maximal

single output subgraphs from basic blocks. The extracted subgraphs are called

MaxMISOs (maximal multiple-input single-output). The algorithm starts from each exit

node of the basic block and constructs a subgraph by trying to recursively include the

parent nodes [52]. Subgraph formation never stops for excess of inputs—inputs are

unlimited in a MaxMISO—but it stops if inclusion of a further parent node violates the

output constraint. Therefore, MaxMISOs are maximal in the sense that adding any

further node would fundamentally violate the single output constraint. The algorithm

complexity is linear in the number of nodes of the initial graph. Extracted subgraphs

produce a single result, while their number of inputs is unlimited. If the resulting number

of inputs is unpractical, the MaxMISO is ignored. The MaxMISO algorithm represents a

 91

good tradeoff between complexity of exploration and effectiveness of the resulting

extracted instructions.

The second algorithm used in this chapter is called Optimal [53]. It extracts

instructions satisfying user-given input/output constraints that result in maximal speedup.

Optimal analyses the dataflow graphs of the basic blocks of the application and considers

all possible subgraphs. The input and output requirement of the subgraphs is calculated

and only those satisfying all constraints are selected for further consideration. The

number of subgraphs being exponential in the number of nodes of the graph, Optimal has

an exponential worst case complexity; yet, it exploits some graph characteristics which

allow significant pruning of the search space and, in practice, it exhibits a subexponential

complexity. Graphs with up to a couple of hundreds of nodes can be processed in matter

of hours. While Optimal is designed to satisfy any user-given output constraint, it has

been used here only with a single output.

aR1bG1cB1

d

X XX

+
+

+
Y1

A

C

B

Figure 5.3. MISO Extraction on Y1 = a*R1 + b*G1 + c*B1 + d

Speedup estimation is then performed for the potential instructions extracted by either

the MaxMISO or the Optimal algorithm. The estimation consists in comparing the

approximate subgraph execution time in software, as a sequence of instructions, with the

approximate time the subgraph takes if implemented in hardware, as a single special

instruction. The most promising candidates are then passed on to the Symbolic Mapping

phase.

 92

The behavior of Optimal is now shown on the motivational example seen at the

beginning of this chapter, for an input/output constraint of 4/1. Part of the DAG of the

main basic block is shown in Figure 5.3. Optimal identifies subgraphs within constraints,

and estimates their gain by using a rough estimation model, described in [53]. The

subgraphs A, B and C, are finally selected by Optimal to be passed on to the next phase,

as the most promising candidates for new instructions. Candidate B corresponds to the

foo instruction shown in the motivating example of this chapter. Next, we will show

how Candidate B is chosen by the symbolic mapping technique as a new instruction.

5.2.1.2. Symbolic Mapping and Optimization

The symbolic mapping algorithm requires two sets of inputs: a set of polynomials

representing the basic blocks of the application and another set of polynomials

representing the complex dataflow instructions. The goal of the symbolic optimization

step is to decompose the polynomial representations of the basic blocks into a minimum

number of polynomial representations of available instructions. Such decomposition is

done with the help of symbolic computer algebra routines and algorithms. Functional

units added to an extensible ASIP execute in one cycle or they are automatically

pipelined [50]. Thus, using a minimum number of instructions to calculate a given basic

block improves its execution time.

The polynomial representation of a basic block can be directly extracted from the C

code if the basic block calculates a polynomial function. If the basic block performs a

series of bit manipulations or Boolean functions, interpolation-based algorithms [47] can

be used to formulate the equivalent polynomial representation. Note that Boolean

functions and polynomial functions accelerate greatly when mapped to hardware.

Therefore, these basic blocks are the excellent candidates to be mapped in new functional

units of the processor. Approximation, such as Taylor or Chebyshev series expansion,

can also be used to extract polynomial representation for basic blocks that calculate a

transcendental function. In this chapter, we will not use approximation techniques.

 93

This section gives a brief overview of the mapping algorithm. The core of the library-

mapping algorithm is the simplification modulo set of polynomials (simplify) routine,

described in Chapter 2. The polynomial representations of the basic blocks are simplified

modulo a set of polynomials. This set, a.k.a. the side relation set, represents a subset of

the instruction set. Next, we describe the simplify routine by means of the motivating

example of this chapter. The polynomial representation of the basic block is equal to

(p=q-1):

Y=a*q*R1+a*p*R2+b*q*G1+b*p*G2+c*q*B1+c*p*B2;

Side relation sets are selected from the polynomial representations of the MISOs reported

by the MISO extraction tool (Section 5.2.1.1) with proper variable renaming. In this

example, we show two side relation sets, siderel and siderel2, with elements whose

polynomial representations match Candidate B shown in Figure 5.3. Next, we apply

simplify on Y modulo the selected side relation sets. The result reported by Maple is

shown in bold-italic. A mapping is found when the result of simplify is only one variable

or corresponds to a polynomial representation of an instruction in our instruction set.

This process is repeated for different combinations of the MISOs and the instructions

available on the base core. Candidate B is chosen as a new instruction as it is more

frequently used in execution (or mapping) of Y.

> siderel:={s1=q*R1+p*R2, s2=q*G1+p*G2, s3=q*B1+p*B2};

> z := simplify(Y, siderel, [R1, R2, G1, G2, B1, B2]);

 z = a*s1+b*s2+c*s3
> siderel2:={s4=s1*a+s2*b, s5=s4*1+c*s3};

> simplify(z, siderel2, [s1, s2, s3]);

 s5

As shown, side relation set selection is a non-trivial task. Therefore, to find the best

possible mapping, the side relation set should be set equal to all subsets of the instruction

set with all possible permutations of the input variables. Algorithm 5.2.1.2 is used to

prune the search space efficiently. Let S be the polynomial representation of the basic

 94

block to be decomposed into complex dataflow instructions. We start by simplifying S

modulo each instruction as the side relation. The simplification results are stored in a tree

data structure. If a simplification result is identical to the polynomial representation of an

available instruction, a possible solution is found and the corresponding tree node is

marked accordingly. If the simplification result stored in a tree node does not correspond

to a library element, we recursively apply the same steps to the new tree node.

Algorithm 5.2.1.2. Decompose S into the instruction set L
procedure Decompose(S, L)

Given a polynomial representation of the basic block S
and a set of polynomials L corresponding the instruction set
decompose S into elements of library L.
initialize tree

 treeroot(S);
 depth ← 0
 bound ← -1

while depth ≠ bound do {
 bound ← Explore(S, L, depth) # Explore is defined below
 depth ← depth +1
 }

report best solution in tree
end
used in Decompose procedure
int function Explore(S, L, d)

bound ← -1
 for all n ∈ in tree with depth d do{
 for all sr ∈ L do{
 result = simplify(n, sr);

make result a child of node n
 addchild(n, result);

if result ∈ L
 # solution is found
 bound = treedepth(result); }}

returns –1 if no solution is found yet.
 return(bound)
end

The bounding function used to reduce the search space is the number of instructions

used to calculate the basic block. In other words, if we find a solution that calculates the

basic block with two instructions we will not explore solutions requiring more than two

 95

instructions. Nevertheless, we will uncover all two-instruction solutions and choose the

one with optimal cost or execution time. The number of instructions used is equivalent to

the depth of the simplification tree. Therefore, the tree is bounded by the depth of the

first solution found. This algorithm was implemented in C with calls to Maple V for

symbolic manipulations.

Algorithmic-level
C Code

New Instruction Set

Symbolic Mapping
Algorithm

Optimized C Code
Using

New Instruction Set

Figure 5.4. Automatic Instruction Mapping

5.2.2. AUTOMATIC INSTRUCTION MAPPING

The new instruction set of the ASIP has been chosen by the step described earlier.

The original software code is now automatically transformed to use the new instruction

set assisted by symbolic polynomial manipulation algorithms. Figure 5.4 gives an

overview to the automatic instruction-mapping step. This step also corresponds to the

second shaded box of Figure 5.1. The polynomial representations of basic blocks of the

software application and the new instruction set of the ASIP are available to the symbolic

mapping algorithm. As opposed to tree covering based algorithms, in our algorithm,

mapping is performed simultaneously with algebraic manipulations.

The automatic instruction-mapping step uses Algorithm 5.2.1.2 described in

Section 5.2.1.2. The output of this step is optimized C code with intrinsic function calls

automatically inserted. The optimization criteria consist of using a minimum number of

instructions to calculate a basic block of the original code. Since added functional units

 96

either are pipelined or execute in one cycle, this mapping greatly reduces the execution

time.

5.3. RESULTS

We have optimized several Tensilica [50] cores for a set of software examples using

our automatic instruction selection and mapping methodology. In the first step, the

MISO extraction tool selects a set of possible complex instructions for each software

application. The symbolic mapping technique is used to map the code to the new

instructions available. At the end of this step, a subset of the MISO set is selected and

implemented as new functional units of the ASIP core under design. The selection is

based on the cost of each MISO and the frequency of its use.

Table 5.1. Execution Time Improvements Reported by the ISS

Examples

Base core
Execution time
(cycles)

Extended core
Execution time
(cycles)

Improvement
(%)

dot_product 72990 54011 26.00
Iir 88838 20652 76.75
Fir_2dim 168978 114488 32.25
convolution 182492 123035 32.58
Fir 268228 158642 40.86
DES crypt 1118570 916884 18.03
Adpcm 22514517 14176587 37.03
MP3 2224094335 745248522 66.49
Average 41.25

In the next step of the flow, we take the new instruction set and automatically use the

complex instructions available to optimize our original software code. We have used the

Tensilica [50] software toolchain to measure the execution time improvement of each of

our examples as result of the new instructions added to the base core. The base core is

the default 32-bit Tensilica core plus a 32-bit multiplier. The functional units selected are

added to the base core using the Tensilica instruction extension (TIE) language. Table

5.1 reports the execution time of each example (measured in cycles) as reported by the

Tensilica instruction set simulator.

 97

The first five examples in Table 5.1 are simple filters and dot-product examples from a

DSP benchmark. The DES crypt example is the MD5 message-digest algorithm that

produces a 128-bit fingerprint for an arbitrary length message or file. The adpcm

example is an adaptive differential pulse code demodulator software used for speech

compression/decompression. Finally, the last example is a fixed-point MP3 decoder

software decoding a 5 second long stream. By applying our methodology to the MP3

decoder and adding only three new instructions to the base core, the decoder executes

three times faster.

Table 5.2. Area Cost of the Added Instructions

Examples

Number of
Instructions
Added

Area of
Instructions Added
(mm2)

Area Increase of
the Base Core
(%)

dot_product 1 0.211 7.3
Iir 1 0.503 17.3
fir_2dim 1 0.211 7.3
convolution 1 0.211 7.3
Fir 1 0.199 6.8
DES crypt 3 0.142 4.9
Adpcm 1 0.103 3.5
MP3 3 0.564 19.5
Average 0.268 9.2

To estimate the cost associated with the execution improvements reported in

Table 5.1, we have synthesized the new functional units added for each example using

Synopsys Design Compiler and a 0.35-micron CMOS technology library. The area of the

base core is approximately 0.29 mm2 in this technology. Table 5.2 shows the number of

new instructions added to the base core, the area of the new instructions, and the area

increase of the base core. As it is observed from Table 5.2, our methodology selects a

small number of instructions to be added to the base processor that result in modest area

increase. Nevertheless, due to its strong instruction selection and mapping engine, the

instructions added are key instructions that can be used in many sections of the code, and

thus significantly decrease the execution time. Note that the area reported in Table 5.2 is

an upper bound, as the new instructions are synthesized separate from the base core and

 98

resource sharing is not considered. For all examples shown in this section, we have

added a total of ten different instructions to different cores. The complexity of the added

instructions ranges from two operations to twenty operations.

5.4. SUMMARY

The contribution of this chapter is a new methodology that automates the selection of

very complex instruction set extensions for ASIPs together with aggressive techniques to

map the basic blocks to such complex instructions. This work focuses on arithmetic

intensive applications such as multi-media processing. A basic ASIP core is extended

automatically to include ad-hoc functional units that accelerate the dataflow sections of

the software application. A set of potential instructions is generated by the multiple-

output single-input (MISO) dataflow extraction tool. Symbolic computer algebra is used

to discover transformations that expose unintuitive opportunities for mapping basic

blocks of an application into the potential instructions. The most frequently used MISOs

by the symbolic mapping tool are selected and added to the base ASIP processor.

Symbolic algebra automates very smart instruction mapping previously only possible by

designer’s manual intervention.

We demonstrate the application of our tool to a set of arithmetic intensive examples

including an MP3 decoder software. A Tensilica core was optimized for each application

using the Tensilica tool set. We have achieved an average of 41% improvement in the

execution time of our examples, while paying only an average of 9.2% penalty in area

cost.

Another possible application of our technique is to facilitate reuse of an ASIP in future

generations of an application. While hard-wired ad-hoc functional units present the risk

of inflexibilities towards subsequent changes of an application, our smart symbolic

mapping techniques increase the possibility of using instructions tailored for a previous

generation of the application. In future work, we also plan to find dataflow instructions

 99

with more than one output. Such sections can be selected by the Optimal [53] algorithm

and represented by a set of polynomials for the symbolic mapping step.

CHAPTER 6

CONCLUSION

Embedded systems are now in every corner of our world and their presence is

constantly increasing. Due to their high complexity and short turn around time,

embedded-system design automation is now a necessity. This thesis presents a set of

algorithms and methodologies for design and optimization of different components of an

embedded system. The tools, methodologies, and algorithms presented in this thesis

increase designer’s productivity and reduce to design cycle of an embedded system. In

addition, they provide a better quality of result due to a wide design space exploration at

a high level of abstraction. This thesis starts with the algorithmic-level description of

designs from the multimedia and digital signal processing (DSP) domain of applications.

Multimedia and DSP algorithms are mostly arithmetic intensive descriptions that result

into designs with considerable data-path components.

This thesis leverages from results of research and development in the field of symbolic

computer algebra. By using routines from symbolic computer algebra, the described

design algorithms are capable of algebraic manipulation and arithmetic optimization. To

our knowledge, using symbolic algebra in optimization and synthesis of systems was not

previously explored by other design tools.

 101

6.1. SUMMARY OF CONTRIBUTIONS

In this thesis, symbolic polynomial manipulation techniques are used to develop

algorithms, tools, and methodologies that cover all aspects of embedded systems design

including hardware, software, and processor design.

To design a data-intensive hardware block, a set of algorithms, tools, and

methodologies are presented that automatically map the basic blocks of the algorithmic-

level description of a design to pre-optimized arithmetic library elements. The mapping

and component selection is performed simultaneous with arithmetic manipulations on the

given basic block. These manipulations are possible by using algorithms from symbolic

computer algebra. Since different variation of a dataflow may result in different library

component selection, a wider design space is explored. The result is a data path that

implements the given dataflow optimally using the available library. Our method

eliminates the need for synthesis directives from hardware designers.

Software changes are frequent in embedded systems. Multimedia and DSP

applications have very complex software components. In this thesis, a methodology,

tool, and algorithm are presented to optimize the execution time and energy consumption

of an embedded software program. Energy profiling and symbolic mapping algorithms

are used to select and optimize critical section of an embedded software program

respectively. The symbolic mapping algorithms map the critical section of the software

to complex microprocessor instructions or embedded software library functions. The

results associated with the software optimization methodology show dramatic

improvement on the execution time and energy consumption of a set of programs running

on a prototype embedded system hardware.

Software/hardware co-design is more important for embedded system design as the

software and hardware blocks are more tightly coupled. This thesis presents a co-design

methodology based on application specific processors. A set of functional blocks is

added to the base processor to accelerate the critical sections of the given application.

 102

This defines a new instruction set for the application specific processor. The original

application automatically optimized and mapped to the instruction available on the

processor using an algorithms based on symbolic computer algebra. New hardware is

added to the application specific processor to execute the new instructions defines. The

software executing on this platform is automatically optimized and co-designed. The

method was tested on different applications and a set of specialized processors was

automatically generated. Results show significant execution time improvement achieved

with smart and negligible extra hardware added to the base processor.

6.2. FUTURE DIRECTIONS

Symbolic computer algebra is a powerful set of algorithms not previously used in the

field of system design and optimization. These algorithms open a new set of

opportunities in for future research.

One of these possibilities is automatic algorithm optimization. Currently most

algorithms are designed manually by skilled engineers. Ideally, an algorithm specified by

a designer can be converted by a tool it to an optimum implementation based on a set of

constraints. For example, a Fourier transform may be automatically changed to a fast

Fourier transform algorithm. Most of the skills necessary for this transformation are

implemented in mathematical tools such as Matlab and Maple. Using these algorithms

and a guided search over the solution space can effectively synthesizes a new and

improved algorithm.

On another note, many embedded system applications can tolerate a given degradation

in their output result. For example, an audio decoder satisfies compliancy test when the

root mean square of the difference signal between the output of the decoder and the

supplied reference less than a given number. In other words, in multi-media applications

a notion of arithmetic “don’t care” exists. In this thesis, such “don’t care” conditions

 103

were used to reduce the cost of the system. However to automate such task, one should

leverage results from approximation theory.

The methodology and algorithms presented in this thesis to automate instruction set

selection and usage can be extended to configurable computing. The cost of silicon is

decreasing and hybrid FPGA components are now available on the market. These

components have a microprocessor and configurable fabric on the same chip. An

embedded application can use a similar methodology as the one proposed in this thesis to

efficiently use the processor and FPGA. The computational intensive sections of the

application can be automatically mapped to the FPGA. These blocks can then accelerate

the application code automatically using a symbolic decomposition algorithm.

BIBLIOGRAPHY

[1] “International Technology Roadmap for Semiconductors”, http://public.itrs.net,
2001.

[2] Maple, Computer Software, Waterloo Maple Inc., http://www.maplesoft.com/, 1988.
[3] Mathematica, Computer Software, Wolfram Research Inc., http://www.wri.com/,

1987.
[4] B. Buchberger, “Some Properties of Gröbner Bases for Polynomial Ideals”, ACM

SIG-SAM Bulletin, 10/4, 1976, 19-24.
[5] K. Geddes, S. Czapor, and G. Labahn, Algorithms for Computer Algebra. Boston:

Kluwer Academic Publishers, 1992.
[6] T. Becker and V. Weispfenning, Gröbner Bases. New York: Springer-Verlag, 1993.
[7] D. Cox, J. Little, and D. O’shea, Ideals, Varieties, and algorithms. New York:

Springer-Verlag, 1997.
[8] G. De Micheli, Synthesis and Optimization of Digital Circuits. New York: McGraw

Hill, 1994.
[9] DesignWare Library, Synopsys Inc., http://www.synopsys.com/, 1994.
[10] J. Smith and G. De Micheli, “Polynomial Methods for Allocating Complex

Components”, in Proceedings of the Design, Automation and Test in Europe
Conference, pp. 217-222, March 1999.

[11] J. F. Hart, E. W. Cheney, C. L. Lawson, H. J. Maehly, C. K. Mesztenyi, J. R. Rice,
H. G. Thacher, and C. Witzgall, Computer Approximations. New York: John Wiley
& Sons, 1968.

[12] D. J. Kuck, The Structure of Computers and Computations Vol. I. New York: John
Wiley and Sons, 1978.

 105

[13] D. J. Kuck, Y. Muraoka, and S. C. Chen, “On the Number of Operations
Simultaneously Executable in Fortran-like Programs and Their Resulting Speedup”,
IEEE Transactions on Computers, Vol. C-21, pp. 1293-1310, December 1972.

[14] A. Nicolau and R. Potasman, “Incremental Tree Height Reduction for High Level
Synthesis”, in Proceedings of the 28th Design Automation Conference, pp. 770-774,
June 1991.

[15] D. Kolson, A. Nicolau, and N. Dutt, “Integrating Program Transformations in the
Memory-Based Synthesis of Image and Video Algorithms”, in Proceedings of the
International Conference on Computer Aided Design, pp. 27-30, November 1994.

[16] H. Wang, A. Nicolau, and K. Siu, “The Strict Time Lower Bound and Optimal
Schedules for Parallel Prefix with Resource Constraints”, IEEE Transactions on
Computers, Vol. 45, No. 11, pp. 1257-1271, November 1996.

[17] R. Brayton and C. McMullen, “The Decomposition and Factorization of Boolean
Expressions”, in Proceedings of the IEEE International Symposium of Circuits and
Systems, pp. 49-54, May 1982.

[18] R. Brayton, G. Hachtel, C. McMullen, and A.L. Sangiovanni-Vincentelli, Logic
Minimization Algorithms for VLSI Synthesis. Boston: Kluwer Academic Publishers,
1984.

[19] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli and A. Wang, “MIS: A Multiple-
level Logic Optimization and the Rectangular Covering Problem”, in Proceedings
of the International Conference on Computer Aided Design, 1987.

[20] D. Menard, D. Chillet, F. Charot, and O. Sentieys, “Automatic Floating-Point to
Fixed-Point Conversion for DSP Code Generation”, in Proceedings of the
International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, pp. 270-276, October 2002.

[21] P. G. Paulin, C. Liem, M. Cornero, F. Nacabal, and G. Goossens, “Embedded
Software in Real-Time Signal Processing Systems: Application and Architecture
Trends”, Proceedings of the IEEE, vol. 85, no. 3, pp. 419-435, March 1997.

[22] G. Q. Maguire, M. Smith, and H. W. Peter Beadle, “SmartBadges: A Wearable
Computer and Communication System”, in Proceedings of the 6th International
Workshop on Hardware/Software Codesign, Invited talk, March 1998.

[23] Coded representation of audio, picture, multimedia and hypermedia information,
ISO/IEC JTC/SC 29/WG 11, Part 3, International Organization for Standardization,
May 1993.

[24] M. Willems, H. Keding, T. Grötket, and H. Meyr, “Fridge: An interactive Fixed-
Point Code Generation Environment for HW/SW CoDesign”, in Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing, pp. 687-690,
April 1997.

 106

[25] G. Constantinides, P. Cheung, and W. Luk, “The Multiple Wordlength Paradigm”,
in Proceedings of the IEEE Symposium on Field-Programmable Custom Computing
Machines, March 2001.

[26] A. Wang, E. Killian, D. Maydan, and C. Rowen, “Hardware/Software Instruction
Set Configurability for System-on-Chip Processors”, in Proceedings of the 38th
Design Automation Conference, pp. 184-190, June 2001.

[27] S. S. Muchnick, Advanced Compiler Design and Implementation. San Francisco:
Morgan Kaufmann Publishers, 1997.

[28] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S. Liao, E. Bugnion, and M.
Lam, “Maximizing Multiprocessor Performance with the SUIF Compiler”, IEEE
Computer, vol. 29, no. 12, pp. 84-89, December 1996.

[29] P. Marwedel and G. Goossens, Code Generation for Embedded Processors. Boston:
Kluwer Academic Publishers, 1995.

[30] R. Leupers, Retargetable Code Generation for Digital Signal Processors. Boston:
Kluwer Academic Publishers, 1997.

[31] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and A.
Vanduoppelle, Custom Memory Management Methodology: Exploration of Memory
Organisation for Embedded Multimedia System Design, Boston: Kluwer Academic
Publishers, 1998.

[32] V. Tiwari, S. Malik, A. Wolfe, and M. Lee, “Instruction Level Power Analysis and
Optimization of Software”, Journal of VLSI Signal Processing Systems, vol. 13,
no. 2, pp. 223-238, August 1996.

[33] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of Embedded Software: A
First Step Towards Software Power Minimization”, IEEE Transactions on VLSI
Systems, vol. 2, no.4, pp.437-445, December 1994.

[34] Integrated Performance Primitives for the Intel StrongARM SA-1110
Microprocessor, Intel Corporation, http://www.intel.com, 2000.

[35] TI’54x DSP Library, Texas Instruments Inc, http://www.ti.com, 2000.
[36] eCosTM Reference Manual, Cygnus Solutions, 1999.
[37] Linux-arm math library reference manual, RedHat Inc., 2000.
[38] J. Crenshaw, Math Toolkit for Real-Time Programming. Kansas: CMP Books, 2000.
[39] H. Mehta, R. Owens, M. J. Irwin, R. Chen, and D. Ghosh, “Techniques for Low

Energy Software”, in Proceedings of the International Symposium on Low Power
Electronics and Design, pp. 72-75, August 1997.

[40] Y. Li and J. Henkel, “A Framework for Estimating and Minimizing Energy
Dissipation of Embedded HW/SW Systems”, in Proceedings of the 35th Design
Automation Conference, pp.188-193, June 1998.

 107

[41] H. Tomyiama, H., T. Ishihara, A. Inoue, and H. Yasuura, “Instruction Scheduling
for Power Reduction in Processor-Based System Design”, in Proceedings of the
Design, Automation and Test in Europe Conference, pp. 23-26, February 1998.

[42] M. Kandemir, N. Vijaykrishnan, M. J. Irwin and W. Ye, “Influence of Compiler
Optimizations on System Power”, IEEE Transactions on VLSI Systems, vol. 9,
no. 6, pp. 801-804, December 2001.

[43] ARM Software Development Toolkit, Version 2.11, Advanced RISC Machines
(ARM) Ltd., 1996.

[44] T. Simunic, L. Benini, and G. De Micheli, “Energy-Efficient Design of Battery-
Powered Embedded Systems”, Special Issue of IEEE Transactions on VLSI Systems,
pp. 18-28, May 2001.

[45] Information Technology, Generic Coding of Moving Pictures and Associated Audio:
Conformance, ISO/IEC JTC 1/SC 29/WG 11 13818-4, International Organization
for Standardization, 1996.

[46] J. Smith and G. De Micheli, “Polynomial Methods for Component Matching and
Verification”, in Proceedings of the International Conference on Computer Aided
Design, pp.678-685, November 1998.

[47] J. Smith and G. De Micheli, “Polynomial Circuit Models for Component Matching
in High-Level Synthesis”, IEEE Transactions on VLSI Systems, vol. 9, no. 6,
pp. 783-800, December 2001.

[48] V. Zivojnovic, J. Martinez, C. Schläger and H. Meyr, “DSPstone: A DSP-Oriented
Benchmarking Methodology”, in Proceedings of the International Conference on
Signal Processing Applications and Technology, October 1994.

[49] T. Simunic, L. Benini, G. De Micheli, and M. Hans, “Source Code Optimization
and Profiling of Energy Consumption in Embedded Systems”, in Proceedings of the
International Symposium on Systems Synthesis, pp. 193–198, September 2000.

[50] The Xtensa Processor Generator, Tensilica Inc., http://www.tensilica.com, 1997.
[51] R. Leupers, Code Optimization Techniques for Embedded Processors. Boston:

Kluwer Academic Publishers, 2000.
[52] C. Alippi, W. Fornaciari, L. Pozzi, and M. G. Sami, “A DAG Based Design

Approach for Reconfigurable VLIW Processors”, in Proceedings of the Design,
Automation and Test in Europe Conference, pp. 778-780, March 1999.

[53] K. Atasu, L. Pozzi, and P. Ienne, “Automatic Application-Specific Instruction-Set
Extensions under Microarchitectural Constraints”, in Proceedings of 40th Design
Automation Conference, June 2003.

[54] R. Kastner, A. Kaplan, S. Memik, and E. Bozorgzadeh, “Instruction Generation for
Hybrid Reconfigurable Systems”, ACM Transactions on Design Automation of
Embedded Systems, vol. 7, no. 4, pp. 605-627, October 2002.

 108

[55] M. Arnold and H. Corporaal, “Designing Domain Specific Processors”, in
Proceedings of the 9th International Workshop on Hardware/Software CoDesign,
pp. 61-66, April 2001.

[56] B. Kastrup, A. Bink, and J. Hoogerbrugge, “ConCISe: A Compiler-Driven CPLD-
Based Instruction Set Accelerator”, in Proceedings of the 5th IEEE Symposium on
Field-Programmable Custom Computing Machines, pp. 695-706, April 1999.

[57] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee, “CHIMAERA: A High-
Performance Architecture with a Tightly Coupled Reconfigurable Functional Unit”,
in Proceedings of the 27th Annual International Symposium on Computer
Architecture, pp. 225-235, June 2000.

[58] J. Zory and F. Coelho, “Using Algebraic Transformations to Optimize Expression
Evaluation in Scientific Code”, in Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques, pp. 376-384, October 1998.

[59] A. C. Parker, M. Mlinar, and J. Pizarro, “MAHA: A Program for Data Path
Synthesis”, in Proceedings of the 23rd Design Automation Conference, pp. 252-258,
June 1985.

[60] T. J. Kowalski and D. E. Thomas, “The VLSI Design Automation Assistant:
Prototype System”, in Proceedings of the 20th Design Automation Conference,
pp. 479-483, June 1983.

[61] Z. Yu, K. Y. Khoo, and A. N. Willson, “The Use of Carry-Save Representation in
Joint Module Selection and Retiming”, Proceedings of the 37th Design Automation
Conference, pp. 768-773, June 2000.

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	MOTIVATIONS
	DESIGN FLOW
	THESIS OBJECTIVES
	THESIS CONTRIBUTIONS
	THESIS OUTLINE
	ASSUMPTIONS AND LIMITATIONS

	BACKGROUND
	SYMBOLIC COMPUTER ALGEBRA
	BASIC COMMUTATIVE ALGEBRA
	GRÖBNER BASES
	SUMMARY

	HIGH-LEVEL DATA-PATH SYNTHESIS
	RELATED WORK
	GRÖBNER BASES AND DATA-PATH SYNTHESIS
	SYMBOLIC ALGEBRA AND LIBRARY MATCHING
	MINIMAL COMPONENT DECOMPOSITION ALGORITHM
	Minimal Component Example

	TIMING DRIVEN DECOMPOSITION ALGORITHM
	EXPRESSION MANIPULATION TECHNIQUES
	Tree-height Reduction
	Factor and Expand
	Horner Form
	Substitution and Elimination

	IMPLEMENTATION AND EXPERIMENTAL RESULTS
	SUMMARY

	EMBEDDED SOFTWARE OPTIMIZATION
	RELATED WORK
	EXPERIMENTAL SETUP
	SYMSOFT METHODOLOGY AND TOOL FLOW
	Library Characterization
	Target Code Identification
	Data Representation Conversion
	Energy Profiling
	Polynomial Formulation

	Symbolic Mapping Algorithm

	RESULTS
	The MP3 Optimization Results

	SUMMARY

	INSTRUCTION SET SELECTION AND USAGE
	RELATED WORK
	METHODOLOGY
	Automatic Instruction Selection
	MISO Extraction
	Symbolic Mapping and Optimization

	Automatic Instruction Mapping

	RESULTS

	Adpcm
	SUMMARY

	CONCLUSION
	SUMMARY OF CONTRIBUTIONS
	FUTURE DIRECTIONS

	BIBLIOGRAPHY

