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ABSTRACT 

The growing market of multi-media applications requires development of complex 

embedded systems with significant data-path portions.  However, current hardware 

synthesis and software optimizations tools and methodologies do not support arithmetic-

level optimizations necessary for data intensive applications.  In particular, most high-

level synthesis tools cannot automatically synthesize data paths such that complex 

arithmetic library blocks are intelligently used.  Thus, the data paths of such circuits are 

often manually designed and mapped to pre-optimized library elements.  Similarly, 

current compilers and software optimization methods are frequently incapable of 

optimizations required by multi-media software designers.  Namely, most high-level 

arithmetic optimizations and the use of complex instructions and pre-optimized 

embedded library functions are left to the designers’ ingenuity.  In this thesis, results 

from symbolic polynomial manipulation techniques are used to develop algorithms for 

high-level data-path hardware synthesis, embedded-software optimization, and automated 

application specific embedded processor design. 

Polynomials are chosen to abstract data-intensive software/hardware library elements 

and high-level specifications.  Two new arithmetic-level symbolic polynomial 

decomposition algorithms are proposed.  These algorithms map a specification to an 

implementation with minimum number of library elements or minimal delay. 

The decomposition algorithms are applied to high-level synthesis of data intensive 

circuits by the tool SymSyn.  SymSyn performs arithmetic optimization on dataflow 

descriptions and automatically maps them into data paths using complex arithmetic 

library components.  SymSyn is capable of finding the minimal component mapping and 

the minimal critical-path delay mapping of the given dataflow.  SymSyn is used in 
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conjunction with a commercial behavioral synthesis tool on a set of dataflow 

descriptions.  The results show impressive improvement in area and delay of the 

synthesized circuits compared to results from the standalone commercial behavioral 

synthesis tool.  

Since energy optimization is a primary optimization goal in embedded system designs 

energy profiling is combined with the symbolic decomposition algorithms to optimize 

power-intensive sections of algorithmic multi-media embedded software.  As a result, a 

tool flow and methodology is proposed that automatically maps critical code sections to 

complex processor instructions and pre-optimized software library available for a given 

processor.  This optimization methodology is called SymSoft.  SymSoft is used to 

optimize and tune the algorithmic level description of a set of examples including an 

MPEG Layer III (MP3) audio decoder for the SmartBadgeIV portable embedded system.  

In addition to improving designers’ productivity, SymSoft lowers the number of 

instructions and memory accesses and thus lowers the system power consumption. 

A growing number of embedded systems are using application-specific embedded 

processors.  The design of these processors requires manual specialization of processors 

based on an application.  Moreover, the use of the new complex instructions added to the 

processor is a manual task.  Instruction set selection of application specific instruction set 

processors is automated by methods that automatically group dataflow operations in the 

application software as potential new complex instructions.  The set of possible 

instructions is then automatically used for code generation combined with high-level 

arithmetic optimizations using the symbolic decomposition algorithms.  These algorithms 

and methodology are used to automatically add new instructions to Tensilica processors 

for a set of examples.  Results show improvements in designers productivity and efficient 

embedded processor specialization for the given applications. 

The algorithms and methodologies presented in this thesis cover all aspects of 

embedded systems design including hardware, software, and processor design.  These 
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algorithms also bridge the gap between algorithmic design and the semantics of software 

and hardware description languages.  This task is accomplished by using symbolic 

computer algebra that adds the knowledge of algebra to design tools. 
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CHAPTER 1  

INTRODUCTION 

 

Today’s electronic systems are increasingly more complex as a consequence of the 

exponentially growing transistor counts enabled by smaller feature sizes and the 

consumer demand for increased functionality, lower cost, and shorter time-to-market.  

Design technology tools and methodologies aim to reduce the renowned productivity gap 

and enable engineers to cost-effectively transform ideas into electronic systems.  

Revolutionary design technology tools have dramatically reduced the total design cost of 

systems on a chip (SOC).  Examples of such groundbreaking tools include in-house 

placement and route softwares, register transfer level (RTL) synthesizers, and intelligent 

testbench generators.  It is predicted that the next breakthrough design technology will be 

innovative embedded system level design tools and methodologies [1].  These tools will 

significantly reduce design cost and improve designer’s productivity. 

The reason behind this prediction is the ever-increasing demand for embedded systems 

and their growing complexity.  Embedded systems on a chip are integrated circuits 

dedicated to a specific application or specific domain of applications.  Such systems 

integrate microprocessor cores, memories, and custom hardware blocks on a single chip.  

Examples of these systems range from cell phones and personal digital assistants (PDAs) 

to medical instruments and automotive electronics. 
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There are several differentiating factors between the design of embedded systems and 

general-purpose electronic systems.  The time to market and cost constraints of 

embedded systems are typically more aggressive.  Energy efficient design is most 

important for portable embedded systems.  Most notably, hardware and software design 

of embedded systems is more tightly coupled.  Therefore, co-design of the software and 

hardware components of the embedded system is necessary for cost effective 

implementation.  Tradeoffs must be made between implementing a function in hardware 

or software such that given quality and cost constraints are satisfied.  Embedded system 

level design tools and methodologies are needed to automate the time consuming task of 

exploring the design space and to increase designer productivity. 

1.1. MOTIVATIONS 

In this thesis, the objective is to optimize the design of different components of an 

embedded system and to shorten the time required to design, optimize, and verify an 

embedded system by innovative system-level design algorithms, tools, and 

methodologies.  Currently, embedded system designers have noticed that a shift to a 

high-level design methodology is inevitable in order to stay competitive in the market.  

Embedded systems include microprocessors, embedded software processes that execute 

on the microprocessors, custom hardware components, and memory blocks.  In order to 

meet the aggressive time to market constraints, each component of an embedded systems 

must be designed at a higher level of abstraction.   

Algorithmic-level specification of the design allows designers to specify more 

functionality to be specified more quickly.  Synthesizing an algorithmic or architectural-

level specification enables wider design space exploration that results in greater 

improvements of the system metrics.  Furthermore, an algorithmic specification can be 

mapped onto more complex pre-optimized library blocks by high-level synthesis and 

component mapping tools.  Effective reuse of pre-designed complex library elements 
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results in designs that are correct by construction.  Therefore, the time required to verify 

the design is dramatically reduced. 

Place & Route
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Figure 1.1. Gap in Multimedia and DSP Embedded System Design  

The design of data-intensive embedded systems for multimedia and digital signal 

processing (DSP) applications starts with the mathematical description of these 

algorithms.  However, there is a gap between the mathematical domain and the semantics 

of programming languages and behavioral synthesis as shown in Figure 1.1.  An efficient 

design methodology for data-intensive embedded systems should bridge this semantic 

gap.  In addition to searching the design space, such tool is expected to have the 

knowledge of algebra in order to automate mathematical optimizations required for 

algorithmic level design.  In order to achieve this goal, the proposed tools and 

methodologies in this thesis exploit algorithms from symbolic computer algebra.  Using 

symbolic computer algebra in algorithmic synthesis is analogous to the use Boolean 

algebra in logic synthesis tools that enable efficient synthesis of Boolean logic into 

control circuitry.  Next, we will take a closer look at the design issues of the hardware 

portion, the embedded software processes, and the application specific processors used in 

data intensive embedded systems. 
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Figure 1.2. Ideal Embedded System Design Flow  

1.2. DESIGN FLOW  

As shown in Figure 1.2, the design of embedded systems starts with the algorithmic 

description of the application in a high-level language such as C or Matlab.  In the ideal 

design flow of embedded systems, a software/hardware-partitioning tool automatically 

determines which sections of the system specification should be mapped to hardware and 

which parts should be implemented as software.  After this decision is made, the 

architecture of the system is defined.  To implement the custom hardware components of 

the system, the algorithmic level specification of these components is coded in a 

hardware description language (HDL).  Next, a behavioral synthesis tool transforms this 

algorithmic or behavioral HDL code to its register transfer level (RTL) equivalent.  The 

RTL description of the hardware is subsequently synthesized to a net-list of logic gates 
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and memory elements using an RTL synthesis tool.  Finally, the layout of the custom 

hardware is produced by a placement and route tool from the given net-list. 

To implement the software portion of the embedded system, a microprocessor should 

be first chosen for the embedded system.  One possibility is to select an off-the-shelf 

microprocessor suitable for the given application domain.  Another possibility is to 

design an application specific instruction set processor (ASIP) for the given embedded 

system.  In the latter case, an ASIP design tool takes the software application code and 

automatically generates an ASIP architecture and its supporting tools and compiler.  In 

either case, the algorithmic C code of the application software is optimized and translated 

to assembly code by the compiler of the chosen embedded processor.  This assembly 

code is next translated to machine code for the given microprocessor. 

However, the reality of the embedded system design methodology is not as effortless 

and automatic as described above.  Most transformations that start from a high-level 

algorithmic description require extensive manual intervention by the designer.  In 

addition, with the increasing complexity of the embedded systems designs, automatic 

software and hardware design reuse is becoming increasingly important.  Yet, the tool 

support for automatic design reuse does not match the real needs of designers. 

In reality, most high-level synthesis tools and methods cannot automatically 

synthesize data paths such that complex arithmetic library blocks are intelligently used.  

Therefore, the hardware designers change the algorithmic HDL code such that it is 

suitable for current behavioral synthesis tools and manually map dataflow sections of the 

design to components available in the library of pre-designed arithmetic hardware blocks.  

This mapping is generally done by inserting synthesis directives that map the dataflow 

sections to the desired library components.  However, automating this tedious task and 

the design of data paths from high-level specifications is necessary to meet aggressive 

time to market requirements.  Namely, most arithmetic-level optimizations are not 

currently supported and they are left to the designers' ingenuity.  In this thesis, it is shown 
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that symbolic algebra can be used to construct arithmetic-level optimization and library 

mapping algorithms. 

Moreover, embedded software engineers modify the algorithmic-level C code of the 

software and manually map the identified critical sections of the code to inline assembly.  

However, time to market of embedded software has become a crucial bottleneck.  As a 

result, embedded software designers often use libraries that have been pre-optimized for a 

given processor to achieve higher code quality.  Unfortunately, use of complex library 

elements and complex processor instructions is currently a manual task and depends on 

the designers’ skills.  In this thesis, algorithms and methodologies are presented that 

automate the use of complex processor instructions and pre-optimized software library 

routines simultaneous with high-level arithmetic optimizations using symbolic algebraic 

techniques. 

Furthermore, there is a growing demand for application-specific embedded processors 

in system-on-a-chip designs.  Current tools and design methodologies often require 

designers to manually specialize the processor based on an application.  Moreover, the 

new complex instructions added to the processor often should be used manually through 

intrinsic function calls.  In this thesis, a solution is introduced that automatically groups 

dataflow operations in the application software as potential new complex instructions.  

The set of possible instructions is then automatically used for code generation combined 

with high-level arithmetic optimizations using symbolic algebra. 

1.3. THESIS OBJECTIVES 

As seen in the previous section, the growing market of multi-media applications has 

required the development of complex application specific integrated circuits (ASICs) 

with significant data-path portions that accelerate the execution of the computational 

intensive kernels of the application.  The optimal choice of the arithmetic units 

implementing complex dataflows strongly affects the cost, performance and power 
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consumption of the silicon implementations.  Unfortunately, current commercial tools 

rely on synthesis directives (pragmas) from designers in order to map dataflow into 

complex arithmetic library elements. 

On the other hand, existing high-level synthesis tools are effective in capturing HDL 

models of the hardware and mapping them into control/dataflow graphs (CDFGs), 

performing scheduling, resource sharing, retiming, and control synthesis [8].  The 

approach presented in this thesis fits seamlessly into current high-level synthesis flow.  

The dataflow segments of the CDFG models are analyzed in light of the arithmetic units 

available as library blocks, and data paths are constructed that best exploit the given 

library.  It is assumed that design is done using libraries that contain, beyond the basic 

elements such as adders and multipliers, more complex cells such as multiply/accumulate 

(MAC), sine, cosine, ….  An example of such a library is the Synopsys DesignWare® [9] 

library.  The first objective this thesis is to optimize and map dataflow descriptions into 

data paths that use complex arithmetic components. 

In embedded system design environment, the degrees of freedom in software design 

are often much higher than the freedom available in hardware design.  As a result, the 

primary requirement for embedded system-level design methodology is to effectively 

facilitate code performance and energy consumption optimization.  Automating as many 

steps in the design of software from algorithmic-level specification is necessary to meet 

time to market requirements.  Unfortunately, current available compilers and software 

optimization tools cannot meet all designers’ needs. 

Typically, software engineers start with algorithmic level C code, often developed by 

standards groups, and manually optimize it to execute on the given hardware platform 

such that power and performance constraints are satisfied.  Needless to say, this 

conversion is a time-consuming and often error-prone task, which introduces undesired 

delay in the overall development process.  The second objective of this thesis is to 

develop a software optimization methodology that reduces manual intervention.  This 
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methodology, SymSoft, is used to optimize a set of examples for the SmartBadgeIV, 

explained in Section 4.2, portable embedded system running the Linux embedded 

operating system [22].  The results of these optimizations show that by using SymSoft the 

critical basic blocks of the benchmark examples can be mapped to the StrongARM SA-

1110 instruction set much more efficiently than the commercial StrongARM compiler.  

SymSoft is also used to map critical code sections to commercially available software 

libraries with complex mathematical elements such as exp or the IDCT routine.  Our 

measurements on SmartBadgeIV show that even higher performance improvements and 

energy savings are achieved by using these library elements. 

Use of application-specific instruction-set processors (ASIP) in such embedded 

systems is a natural choice as ASIPs have time-to-market advantage over custom design 

ASICs and performance and power advantages over traditional fixed instruction set 

processors.  Typically, software engineers start with a high level C code that specifies the 

application and manually specialize the embedded processor such that performance and 

cost constraints are satisfied.  This process starts with profiling the application software 

to find the computation intensive segments of the code.  Mapping these segments to 

hardware can greatly reduce the execution time of the application.  Most base processors 

are capable of efficiently handling control segments of the application.  Thus, the sections 

that benefit most from acceleration on hardware are data path or basic block segments.  

Consequently, the application-specific processor is manually tailored to include new ad-

hoc functional units and instructions that calculate the computation critical basic blocks 

of the code.  Nevertheless, specialization and design of ad-hoc functional unit extensions 

can be very lengthy and burdensome, which in turn introduces undesired delay in the 

overall development process. 

In addition, most C compilers are unable to use the new complex instructions of the 

ASIP efficiently and automatically.  In current design methodology, software designers 

manually insert intrinsic function calls that correspond to the new complex instructions in 
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the computation intensive sections of the code.  Manually inserting function calls is both 

time consuming and error prone.  Moreover, designers often miss the opportunity of 

reusing the new instructions in other sections of the code to further reduce the execution 

time of the application.  The third objective of this thesis is to provide a novel and 

effective method for instruction selection that is necessary due to the complexity of the 

automatically identified instructions.  Using this methodology to new instructions are 

added automatically to Tensilica processors for a set of examples.  Results show that 

designers’ productivity is improved and embedded processors are efficiently specialized 

for the given applications such that the execution time is greatly improved. 

1.4. THESIS CONTRIBUTIONS 

In order to satisfy the objectives presented in the previous section a set of algorithms, 

tools, and methodologies are presented in this thesis.  Their contributions can be 

summarized as: 

1. For algorithmic design of the hardware blocks of the embedded system, two 

dataflow mapping algorithms are defined.  These algorithms automate mapping 

dataflow sections of a high-level specification of the design to pre-optimized 

arithmetic library elements.  This work introduces optimizations possible by the 

power of symbolic algebra for the first time in field of hardware thesis.  The 

resulting tool enhances the capabilities of current high-level synthesis tools and 

designer’s productivity. 

2. A methodology and tool flow is defined for optimized embedded software 

programs.  This methodology uses energy profiling to select critical section of an 

embedded software program.  Next, algorithms are developed that map the critical 

section of the software to complex instructions available on the target 

microprocessor and embedded software library functions.  This methodology was 

used to optimize a set of examples including an MP3 decoder software for a given 
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embedded system.  Measurements on the system show dramatic performance and 

energy consumption improvements. 

3. Since software and hardware blocks of an embedded system are tightly coupled, an 

efficient software/hardware co-design methodology is introduced in this thesis.  

This methodology aims at automating the selection and usage of the instruction set 

for an application specific processor.  First, an algorithm is used to defined a set of 

promising instructions based on the given software application.  Next, a symbolic 

decomposition algorithm maps the basic blocks of the application to the set of 

possible instructions.  A final set of instructions is selected and used based on 

performance metrics of the application software.  This results in adding hardware 

to the processor used in the embedded system to accelerate the software 

application and improve the overall performance of the embedded system. 

1.5. THESIS OUTLINE 

Chapter 2 provides a background on the concepts behind symbolic computer algebra 

and Buchberger’s algorithm to calculate Gröbner basis of an ideal.  This algorithm is 

used for multivariate polynomial elimination.  Symbolic multivariate polynomial 

manipulations and variable elimination are used in the mapping algorithms presented in 

this thesis.  Concepts explained in Chapter 2 are the backbones of this research.   

Chapter 3 describes how SymSyn uses symbolic algebra and polynomial representations 

to map dataflow sections of the hardware to a library of complex arithmetic blocks.  First, 

previous work on deriving the canonical polynomial representation of a Boolean function 

is explained.  Next, algorithms are explained that map the polynomial representation of a 

dataflow to a library represented by a set of polynomials.  The mapping algorithms search 

for the minimal critical path delay implementation or for the implementation that uses the 

least number of components.  Results are presented that show the advantage of 

component inference by SymSyn compared with a commercial behavioral synthesis tool 

 



 11 
 
 

in terms of area and delay.  Chapter 4 describes our embedded software optimization 

methodology called SymSoft.  SymSoft automates use of complex processor instructions 

and software library routines.  First, the critical sections of the code are selected by 

execution time and energy profiling.  These sections are then transformed into their 

polynomial representations.  Symbolic computer algebra is used to map these 

polynomials to complex instructions available on the given processor and software 

functions available in the software library.  SymSoft is used to optimize a set of 

application including an MP3 decoder for an embedded system called the SmartBadge.  

Results show impressive improvements in the performance and energy consumption of 

these examples.  Chapter 5 focuses on the design of application specific instruction set 

processors.  The goal is to take the application software and produce an instruction set 

and the optimized software based on the chosen instruction set.  The dataflow sections of 

the code are processed to select a set of potential instructions that implement (parts of) 

the basic blocks.  These potential instructions are used by a symbolic mapping algorithm 

for code generation.  Results presented show that our algorithm and methodology can 

efficiently specialize embedded processors for a set of applications.  Finally, Chapter 6 

summarizes the contributions of this research and proposes future research directions.   

1.6. ASSUMPTIONS AND LIMITATIONS 

This thesis focuses on the optimization and mapping of dataflow sections of a software 

program or a hardware description.  It is assumed that the control sections of the design 

are implemented efficiently by state-of-the-art compilers, synthesis tools, and basic 

embedded processors.  The target of this thesis is to optimize and cost effectively design 

application domains such as multimedia and DSP applications.  These applications have 

significant dataflow sections that perform arithmetic calculations.  These dataflow 

sections are typically optimized manually.  The algorithms, tools, and methodologies 

presented in this thesis complement control optimization capabilities of present compilers 

and synthesis tools to automated this process. 
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The mapping algorithms presented in this thesis assume that a polynomial 

representation is available for the dataflow section to be implemented.  This assumption 

holds in an arithmetic intensive application domain such as the ones targeted in this 

research.  When a dataflow section is calculating a transcendental function, its 

polynomial representation is obtained by approximation.  It should be verified through 

simulation that the approximation used does not noticeably change the quality of the 

application output.  This approximation and verification process is not the subject of this 

thesis and is currently a manual task that is to be automated in future work.   

 

 



 

 
 
 
 
 
 
 
 

CHAPTER 2   

BACKGROUND 

 

To accelerate design and verification of embedded systems, hardware and software 

component libraries are available commercially for design reuse proposes.  Hardware 

libraries include a set of pre-optimized complex hardware arithmetic components.  An 

example of such library is the commercial DesignWare® [9] library by Synopsys that 

includes multiply-and-accumulate (MAC), sine, cosine, etc.  A software library is a set of 

pre-optimized software routines.  These library routines can be in-house code reused 

from previous projects or commercial software libraries available for a given processor.  

An example of a commercial software library is Intel’s integrated performance primitives 

for the StrongARM SA-1110 processor with routines such as finite impulse response 

(FIR) filter, inverse discrete cosine transformation (IDCT), Hamming decoder, etc. 

Proposed algorithms, tools, and methodologies in this thesis, concentrate on arithmetic 

optimization and library mapping of the dataflow sections of the design.  Two factors are 

key in automating the optimal mapping of dataflow blocks of a design into pre-optimized 

hardware and software libraries.  First, a functionality description formalism for dataflow 

and library components.  Second, methods supporting the decomposition of this formal 

representation into a set of library elements implementing arithmetic data paths.   
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The functionality description formalism needs to be compact and canonical.  A natural 

way to represent dataflow sections of a description would be to represent them as 

polynomials.  Polynomial representation has been proven as an effective technique 

[10][46][47] for representing both high-level specification and bit-level description of an 

implementation (library component), these methods will be described in Section 3.1.  

Furthermore, in embedded systems, cost efficiency of computational solutions is 

extremely important.  Since, multi-media applications can tolerate certain output 

degradation polynomials can also be used for approximation and inexact mapping.  The 

limited accuracy of a polynomial representation is analogous to the limited number of 

bits to representing floating point numbers in hardware.   

Multivariate polynomial can be transformed into different equivalent polynomials and 

decomposed into other polynomials using a known set of algebraic polynomial 

decomposition methods and algorithms.  These algorithms are implemented in 

mathematical tools such as Maple and Mathematica and often referred to as symbolic 

computer algebra.  In the following sections, the basic theory behind symbolic 

multivariate polynomial algorithms is described in more detail. 

2.1. SYMBOLIC COMPUTER ALGEBRA 

Traditional mathematical computation with computers and calculators is based on 

arithmetic of fixed-length integers and fixed-precision floating-point numbers, otherwise 

known as numeric computer algebra.  In contrast, modern symbolic computation systems 

support exact rational arithmetic, arbitrary-precision floating-point arithmetic, and 

algebraic manipulation of expressions containing undetermined values (symbols), such as 

variable x in (x+1)*(x-1).  Several commercial symbolic computer algebra systems 

are available on the market; Maple [2] and Mathematica [3] are most widely used.  

The algebraic object to be manipulated symbolically is a multivariate polynomial that 

represents a (portion of) data path of our design.  This polynomial should be decomposed 
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into polynomials representing the building blocks available in the target library.  Such 

decomposition is called simplification modulo set of polynomials in symbolic computer 

algebra.  Most interesting symbolic polynomial manipulations for dataflow optimization 

are based on Gröbner bases [4][5][6][7].  Gröbner bases and Buchberger’s algorithm 

generalize the division and greatest common divisor (GCD) algorithms of univariate 

polynomials to multivariate polynomials.  Therefore, it is the heart of symbolic 

polynomial factorization.   

Gröbner bases also solve variable elimination in a set of polynomials and ideal 

membership problems, which is the core of simplification modulo set of polynomials.  In 

the following section, Gröbner basis and its application to the simplification algorithm are 

reviewed.  Commercial symbolic computer programs, such as Maple [2], have a built-in 

routine that performs simplification modulo set of polynomials.  In Maple, this method is 

called simplify.  Next, the underlying theory of simplification modulo set of polynomials 

is described.  The reader solely interested in its applications may proceed to Chapter 3.  

 

2.2. BASIC COMMUTATIVE ALGEBRA 

Definition 2.1. An Abelian group is a set G and a binary operation “+” satisfying all 

the following properties: 

i. Closure.  For every a, b ∈ G; a + b ∈ G. 

ii. Associativity.  For every a, b, c ∈ G; a+(b+c)=(a+b)+c. 

iii. Commutativity.   For every a, b ∈ G; a+b=b+a. 

iv. Identity.  There is an identity element 0 ∈ G such that for all a ∈ G; a+0=a. 

v. Inverse.  If a ∈ G, then there is an element ā ∈ G such that a+ā=0. 
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Definition 2.2. A commutative ring with unity is a set R and two binary operations “+” 

and “·”, referred to as addition and multiplication, as well as two distinguished elements 

0, 1 ∈ R such that the following axioms hold: 

i. R is an Abelian group with respect to addition with additive identity element 0. 

ii. Multiplication closure.  For every a, b ∈ R; a·b ∈ R.   

iii. Multiplication associativity.  For every a, b, c ∈ R; a·(b·c)=(a·b)·c. 

iv. Multiplication commutativity.  For every a, b ∈ R; a·b=b·a. 

v. Multiplication identity.  There is an identity element 1 ∈ R such that for all  

a ∈ R; a·1=a. 

vi. Distributivity.  For every a, b, c ∈ R; a·(b+c)=a·b+a·c holds for all a, b, c∈ R. 

Definition 2.3.  A field K is a commutative ring with unity, where every element in K 

expect 0 has a multiplicative inverse, i.e, ∀a ∈ K–{0}, ∃ â ∈ K such that a·â=1. 

The set of all multivariate polynomials with variables x1, x2,… , xn, coefficients from a 

field K, and the two operations addition and multiplication forms a commutative ring 

with unity denoted by R [ x1, x2,… , xn ].   

Definition 2.4.  Let R be a commutative ring, a non-empty subset I ⊆ R is an ideal 

when [7]: 

i. 0 ∈ I,  

ii. p + q ∈ I for all p, q ∈ I, and  

iii. r ⋅ p ∈ I for all p ∈ I and r ∈ R. 

Lemma 2.1.  Let P = { p1 , p2 ,… , pk } be a finite subset of the polynomial ring 

R [x1, x2,… , xn] and  < P > = < p1 , p2 ,… , pk > = {  h∑
=

k

i 1
i⋅pi  |  hi∈R [x1, x2 ,… , xn] }.  

Then < P > is an ideal in R [x1, x2,… , xn].  < P > is called the ideal generated by P and 

the set P is called generator or basis of this ideal.  For example, the set of polynomials 
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P = { p1, p2, p3 } defined below generates a polynomial ideal over  

R [x1, x2, x3]. 

p1 = x1
3 x2 x3- x1 x3

2,  p2 = x1 x2
2 x3- x1 x2 x3,  p3 = x1

2 x2
2- x3

2 

< P > = {a1⋅p1+a2⋅p2+a3⋅p3   |   a1, a2, a3 ∈ R [x1, x2, x3] }. 

Unfortunately, while P generates the infinite set < P >, the polynomials pi in P may 

not yield much insight into this ideal, since for each ideal in a polynomial ring there are 

many possible sets of polynomials that generate the ideal.  In other words, the ideal basis 

is not unique.  However, Buchberger [4] has shown that an arbitrary ideal basis can be 

transformed into a basis with special properties, which is called the Gröbner basis.  A 

minimal (or reduced) Gröbner basis forms a canonical representation for a multivariate 

polynomial ideal.  A canonical representation for ideals enables us to check whether two 

ideals are equal.  Important applications of Gröbner basis include polynomial 

decomposition and variable elimination in a set of multivariate polynomials.  One may 

say that Gröbner basis is the cornerstone of polynomial decomposition used in our 

mapping algorithm.  In the next section, a brief description of Buchberger’s algorithm is 

given.   

2.3. GRÖBNER BASES 

Before introducing a formal definition of Gröbner bases, term ordering and reduction 

(division) of multivariate polynomials should be defined.  A monomial of the form  

x1
i1x2

i2
…xn

in, where x1, x2,… , xn are the variables of the polynomial and (i1, i2,… ,in) ∈  

are the exponents, is called a term.  The set of terms of the polynomial ring 

R[x

nZ 0≥

1, x2,… , xn] are denoted by Tx, where N is the set of non-negative integers:  

Tx = { x1
i1x2

i2
…xn

in   |   i1, i2,… ,in ∈ N}.   
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In division of univariate polynomials, R[x], the polynomials are written such that its 

terms are in decreasing order of the degree of x.  To define reduction (division) for 

multivariate polynomials, an ordering for multivariate term is necessary.   

Definition 2.5.  A term ordering on R[x1, x2,… , xn] is any relation > on Z  

satisfying: 

n
0≥

i. > is a total (or linear) on . nZ 0≥

ii. If α, β, and γ ∈ and α > β, then α + γ > β + γ. nZ 0≥

iii. > is well ordered on .  This means that every nonempty subset of  has a 

smallest element under >. 

nZ 0≥
nZ 0≥

The leading monomial of polynomial p ∈ R[x1, x2,… , xn] with respect to a total 

ordering of the variables, such as the lexicographical ordering, is the monomial in p 

whose term is the maximal among those in p; this monomial is denoted by M( p).  In 

addition, hterm( p) is defined as the maximal term and the hcoeff( p) is defined as the 

corresponding coefficient, therefore: 

M( p) = hcoeff( p) ⋅ hterm( p). 

Example 2.1. Consider p ∈ R[x1, x2] that is written  in lexicographical order: 

 p = 3x1
2x2+5x1

2+x2
2, M( p) = 3x1

2x2, hterm( p) = x1
2x2, hcoeff( p)=3.         ■ 

Definition 2.6.  Reduction: For nonzero p, q ∈ R[x1, x2,… , xn] it is said that p 

reduces modulo q if there exists a monomial in p which is divisible by hterm(q).  Let α ∈ 

R[x1, x2,… , xn]-{0}, i.e. the ring of polynomials after removing the trivial 0 polynomial.  

If p = α⋅t + r where t ∈ Tx, r ∈ R[x1, x2,… , xn], and 
)(hterm q

t
=u , u∈ Tx, then it is written 

as p→q p' to signify that p reduces to p' (modulo q) and p' is equal to:   
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qu
q

pq
q
t

pp ⋅−=⋅
⋅

−=
)hcoeff()M(

'
αα

 

Example 2.2.  Consider the following two polynomials: 

p = 6x4+13x3-6x+1, q = 3x2+5x-1, 

p→q p';  p' = p – 2x2⋅q = 3x3+2x2-6x+1.           ■ 

If p reduces to p' modulo a polynomial in a set of polynomials Q = {q1, q2,… , qn}, it 

is said that p reduces modulo Q and written as p→Q p' ( p' = Reduce(p,Q) ); otherwise p is 

irreducible modulo Q.  It is denoted that p→+
Q p' if and only if there is a sequence such 

that:  

p = p0 →Q p1→Q … →Q pn = p'.  

If p→+
Q q and q is irreducible, it is written as p→*

Q q.  It can be shown that for a fixed 

set Q and a given term ordering, the sequence of reductions is finite [5].  Therefore, 

Algorithm 2.1 can be constructed which, given a polynomial p and set Q, finds a 

polynomial q such that p→*
Q q.  In Algorithm 2.1, Rp,Q denotes the set polynomials in Q-

{0} such that hterm(p) is divisible by hterm(q).  Note that any member of Rp,Q can be 

chosen in each iteration, but this choice affects the efficiency of the algorithm.  For the 

sake of simplicity, it is assumed that an efficient selection is implemented in selectpoly. 

As mentioned previously any finite set of polynomials Q generates an ideal <Q> and 

Q is called the basis of this ideal.  If a nonzero polynomial p is reduced to zero modulo Q, 

it is determined that p is a member of the ideal generated by Q:  p →*
Q 0 ⇒ p ∈ <Q>.  

However, the converse is not true for all basis of <Q>.   
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Algorithm 2.1.  Full Reduction of p Modulo Q. 

procedure Reduce(p, Q) 

   # Given a polynomial p and a set of polynomials Q 
   # from the ring R[x1, x2,… , xnz], find a q such that p→*

Q q. 
   # Start with the whole polynomial. 
   r ← p; q ← 0 

   # if no reducers exist, strip off the leading 
   # monomial; otherwise, continue to reduce. 
   while r ≠ 0 do{ 
      R ← Rr,Q 
      while R ≠ ∅ do{  
         #select a polynomial ∈ R 
         f ← selectpoly(R) 
         R ← R –{f} 
         r ← r – (M(r)/M(f)) f  
      } 
      q ← q +M(r); r ← r – M(r) 
   } 
   return(q) 

end 

Definition 2.7.  An ideal basis G ⊂ R[x1, x2,… , xn] is called a Gröbner basis (with 

respect to a fixed term ordering and the implied permutation of variables) when  

p →*
G 0 ⇔ p ∈ <G>. 

S-polynomial of p, q ∈ R[x1, x2,… , xn], denoted as Spoly(p, q), is defined as: 

]
)M()M(

[))M(),LCM(M(),Spoly(
q

q
p

pqpqp −⋅= .   

Example 2.3.  For polynomials p = 3x2y-y3-6 and q = 6xy3+5x-1 with degree 

ordering: 

LCM(M(p), M(q)) = LCM(3x2y, 6xy3) = 6x2y3, 

x+5x-12y--2y]
6

156
3

63[6),Spoly( 225
32

32 =
−+

−
−−

⋅=
xy

xxy
yx
yyxyxqp

332

       ■ 
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Algorithm 2.2. Buchberger’s Algorithm for Gröbner Bases. 

procedure Gbasis(Q) 

# Given a set of polynomials Q, compute G such that <G> = <Q> and G is a Gröbner 
basis. 

   G ← Q; k ← length(G) 

# Initialize B to all possible pairs 
   B ← {[i, j] : 1 ≤ i < j ≤ k} 

   while B ≠ ∅ do { 
       [i, j] ← select a pair from B 
      # mark that pair as selected 
      B ← B – {[i, j]} 
      # Gi denotes the i-th element of the ordered set G  
      h ← Reduce(Spoly(Gi, Gj), G) 
      if h ≠ 0 then { 
         G ← G ∪ {h}; k ← k + 1 
         B ← B ∪ { (i, k) : 1 ≤ i < k} }}  
      return (G) 

end 

In can be shown that [5][6], G is a Gröbner basis when: 

1. the only irreducible polynomial in <G> is p = 0; 

2. Spoly(p, q) →+
G 0 for all p, q ∈ G; 

3. if p→*
G q and p→*

G r, then q = r. 

Buchberger’s algorithm (Algorithm 2.2) uses the properties above to convert a finite 

set Q ⊂ R[x1, x2,… , xn] into a Gröbner basis [4].  

In order to check whether a polynomial p is a member of the ideal <Q>, first 

Algorithm 2.2 is used to form G a Gröbner basis for <Q>.  Procedure Reduce(p, G) 

(Algorithm 2.1) must then return zero.   
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2.4. SUMMARY 

The subset of symbolic computer algebra that performs multivariate polynomial 

manipulations was described in this chapter.  These algorithms are mostly based on 

Gröbner basis.  A minimal (or reduced) Gröbner basis is a canonical representation for a 

multivariate polynomial ideal that enables equality check of two ideals.  Gröbner basis 

also facilitates ideal membership evaluation and multivariate variable elimination in a set 

of polynomials.  Decomposing a dataflow polynomial into elements of a library 

represented by a set of polynomials, requires a sequence of reductions on the dataflow 

polynomial modulo library polynomials.  Reduction, the basic step in polynomial 

division, was explained in this chapter.  In the following chapters, it is shown how 

Gröbner basis and reduction of multivariate polynomials are used in automatic data-flow 

mapping and embedded system design.   

 

 

 



 

 
 
 
 
 
 
 
 

CHAPTER 3  

HIGH-LEVEL DATA-PATH SYNTHESIS 

In this chapter, a tool called SymSyn is presented that leverages results from Gröbner 

basis [4][5][6][7] applications and symbolic polynomial manipulation techniques to 

automate mapping of (a portion of) dataflow into complex arithmetic library blocks.  

SymSyn framework contains two decomposition algorithms that assume the dataflow and 

library elements are represented as polynomials.  The first algorithm finds a minimal-

component decomposition of a polynomial representing a (portion of) dataflow.  The 

decomposition is done in terms of arithmetic library elements, also represented as 

polynomials.  Due to the importance of high performance design, a second algorithm in 

the SymSyn framework is developed to automatically map the dataflow to arithmetic 

library elements such that the dataflow has minimal critical path delay.  The timing-

driven decomposing algorithm uses various polynomial manipulation techniques as 

guidelines to achieve optimal component mapping and resource sharing for minimal 

delay.   

Example 3.1.  As a motivating example, consider the anti-alias function of a MP3 

decoder that calculates the following equation in one of its basic block:  

;
222

1

yx
z

+
= under the assumption that . 022 >≥+ εyx
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A straightforward realization of this equation would use a divider and a square root 

operator, which are large and slow components and may not be available in the 

component library.  For the sake of the example, assume there are no square root and 

division operators available in the library.  Alternatively, assume the existence of 

adder, multiplier, and multiplier-accumulator (MAC) in the given library.  Thus, 

c=x2+y2 can be easily computed.  Next, using symbolic manipulations x2+y2 is 

substituted by c.: 

c
z

2
1

= . 

The given equation can be approximated to a polynomial representation using Taylor 

series expansion for a range of c based on the given application: 
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The explanation is valid for a given range of c and the error can be computed using 

standard approximation methods [11].  If Horner based transform is performed on the 

polynomial approximation of  z, we obtain: 
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This formula can be implemented using a chain of 6 MACs, or one MAC in 6 cycles.  

Figure 3.1 demonstrates one possible implementation.          ■ 
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Figure 3.1. An Implementation for 
yx 22

1

+
  

The synthesis tool described in this chapter, SymSyn, automates the algebraic 

manipulations shown in this example.  SymSyn converts the basic blocks of a behavioral 

description, representing dataflow portions of the design, to their polynomial 

representations and uses numerical methods for exact and inexact matching with library 

elements.  If a match is not found, the dataflow is decomposed into the library elements 

using symbolic computer algebra. 

This chapter is organized as follows:  Section 3.1 gives an overview on related work in 

this area.  Section 3.2 explains how symbolic algebra and Gröbner basis are used in 

polynomial decomposition algorithms.  In Section 3.3, it is shown how results from 

symbolic algebra can be leveraged to decompose a polynomial representing a (portion of) 

dataflow.  In Section 3.3, the dataflow synthesis tool, SymSyn, is explained with an 

example.  Sections 3.4 and 3.5 describe the two new algorithms developed for automatic 

decomposition of dataflow into complex arithmetic library components.  Section 3.6 

shows a set of library independent symbolic transformations that are used to accelerate 

the proposed algorithms.  Finally, Section 3.7 explains the implementation of SymSyn 

and shows a set of experimental results. 
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3.1. RELATED WORK  

High-level synthesis and design reuse are essential for system on chip designs.  They 

can shorten the time required to specify and design a complex system.  Since high-level 

synthesis takes specifications at a level of abstraction greater than RTL, wider design 

space exploration becomes possible [8].  Current high level synthesis tools are capable of 

optimizations such as scheduling and resource sharing.  Moreover, these tools synthesize 

control sections of the design efficiently.  However, dataflow and arithmetic 

optimizations of the design are generally left to the designer.  Mapping the dataflow 

sections to pre-designed components is also a manual task.  This is presently possible by 

synthesis directives manually inserted by the designer.  

Most classical work on data-path synthesis focus on allocation of hardware resources 

based the availability and scheduling constraints.  The MAHA system used critical path 

determination to perform hardware allocation [59].  The expert system approach was 

taken in the DAA system that develops a rule based data memory controller [60].  More 

recently, carry save representation was used for module selection simultaneous with 

retiming [61].  In this work, carry-save transformations are preformed across register 

boundaries to optimize a synchronous circuit. 

In other work [10][46][47], algorithms were developed that enhance high-level 

synthesis tools with the capability of mapping high-level specifications onto existing 

components.  Word-level polynomial representations were introduced as a mechanism for 

canonically and compactly representing the functionality of complex components.  These 

polynomials provide the basis for efficiently comparing the functionality of a circuit 

specification and a complex component.  Polynomial methods allow a specification to be 

compared against potential implementations by computing the numerical distance 

between the two.  This not only enables fast allocation of exact implementations, but also 

allows for detection of approximate and partial implementations.   
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Polynomial representation of Boolean functions is performed by determining the order 

of the minimum polynomial that can represent the given function.  This figure is then 

used to extract the appropriate number of coordinates from a component to compute 

polynomial coefficients.  Polynomial representation has been used in matching dataflow 

clusters of the design to library cells in the tool POLYSYS [10][46][47].  However, 

POLYSYS is limited to test for a match in the library of existing components.  In case a 

match did not exist, there was no automated way to search for possible interconnections 

of library blocks matching the dataflow cluster.  In this chapter, symbolic computer 

algebra is used to map a polynomial representation of the extracted dataflow section of 

our design to a set of polynomial representations of our library elements.  This mapping 

is performed simultaneously with high-level arithmetic optimizations.   

3.2. GRÖBNER BASES AND DATA-PATH SYNTHESIS  

The application of the theory described in Chapter 2 is presented in this section.  Let L 

be the set of polynomial representations of the library elements.  In order to synthesize a 

data path for a polynomial representation S using library L, S should be a member of <L>.  

In order to examine membership in <L>, first G the Gröbner basis of <L> is calculated 

and next Reduce(S, G) is used.  If S is reduced to zero then S ∈ <L>.  If S is reduced to 

zero only using polynomials in G that are also in L, then S can be built from the given 

library elements.   

Example 3.2.  As an example, consider: 

S = x + x2 + x3 + y + xy +x2y; 

L = {1+x+x2, x+y};  

G =  Gbasis(L) = {x+y, y2-y+1};   

Reduce(S, G) returns zero, therefore S ∈ <L>.   

While performing Reduce(S, G), we determine that: 

S = (x+y)(1+x+x2);  therefore S can be decomposed into elements of <L>.       ■ 
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3.3. SYMBOLIC ALGEBRA AND LIBRARY MATCHING 

After extracting the CDFG of an algorithmic level DSP model, the polynomial 

representations of its basic blocks are calculated.  The polynomial representation of a 

basic block can be directly extracted from algorithmic-level code if the basic block 

calculates a polynomial function.  If the basic block performs a series of bit 

manipulations or Boolean functions, interpolation-based algorithms [46] can be used to 

formulate the equivalent polynomial representation.  When the basic block implements a 

transcendental function, an approximation such as the Taylor or Chebyshev series 

expansion is used as its polynomial.  The chosen polynomial approximation has to be 

verified manually by simulation to ensure that constraints, such as accuracy, are satisfied.   

Symbolic computer algebra is subsequently used to intelligently decompose dataflow 

to library components and automatically synthesize the data path.  The symbolic algebra 

routine used in this algorithm is simplification modulo set of polynomials that has been 

described in Chapter 2.  Assume a basic block (or part of it) is represented by polynomial 

p and the library components available are represented by a set of polynomials L.  As a 

reminder, to simplify a polynomial p modulo the side relation set L, a Gröbner basis is 

derived from L, G←Gbasis(L), and Reduce(p, G) is used to obtain the simplified answer.  

The built-in function that implements simplification modulo set of polynomials in Maple 

is called simplify [2].  In order to comply with Maple terminology, we call the set of 

polynomials the side relations. 

Note that any polynomial representation can be implemented using only adders and 

multipliers.  Therefore, any polynomial representation of a basic block is guaranteed an 

implementation if the library includes adder and multiplier.  Our goal is to find non-

trivial solutions that are minimal in terms of component count or critical path delay.   
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Figure 3.2. An Implementation of x2-y2 
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Figure 3.3. An Alternative Implementation of x2-y2 

Example 3.3.  As an example, consider a dataflow implementing x^2-y^2 and a 

library that includes add, multiply subtract and square functions.  Using Maple 

syntax, we have: 

> a:=x^2-y^2: siderels:={b=x-y, c=x+y} 

> simplify(a, siderels,[x,y,b,c]); 

 b*c 
This is equivalent to the implementation shown in Figure 3.2.  Note that siderels 

is a subset of our library.  Maple computes the Gröbner basis G of siderels and 

prints out the result of Reduce(a, siderels).  The result indicates that: 

a:=x^2-y^2:=b*c:=(x-y)*(x+y) 

If the side relation set is changed, other possible solutions for the specification might 

be found, for example: 

> a:=x^2-y^2: siderels:={b=x^2, c=y^2} 

> simplify(a, siderels,[x,y,b,c]); 

 b-c 

results in the implementation shown in Figure 3.3.                                                       ■ 
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As shown in the previous example, different side relation sets can result in different 

implementation of the specification.  Therefore, to find the best possible implementation, 

the side relation set should be set equal to all subsets of the library with all possible 

permutations of the input variables.  Since this is exponentially expensive, a guided 

architectural exploration is necessary.  In the next two sections, two algorithms are 

introduced that reduce the complexity of this search with two different final objectives.  

The first algorithm finds the minimal component decomposition for the given dataflow.  

The second algorithm finds the minimal critical path delay implementation of the 

dataflow. 

3.4. MINIMAL COMPONENT DECOMPOSITION ALGORITHM 

In this section, one of the algorithms implemented in our tool SymSyn is introduced.  

This algorithm automatically maps a polynomial representation of a (portion of) dataflow 

to a set of complex arithmetic library components while using the least number of library 

components.  This algorithm in conjunction with classical high-level synthesis algorithms 

can be used for efficient high-level DSP synthesis.  The minimal component 

decomposition algorithm described is empowered by Gröbner basis fundamentals 

described in Chapter 2.  The inputs to this algorithm are polynomial representation of the 

dataflow basic block to be synthesized and a set of polynomials that represent the set of 

complex arithmetic library components available to the designer.  As mentioned in the 

previous section, different side relation sets result in different implementations of the 

dataflow.  Therefore, the described algorithm aims at intelligent side relation set selection 

to accelerate the decomposition process for a given criteria.  The high-level view of the 

selection criteria for minimal number of components is illustrated in Algorithm 3.4. 
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Algorithm 3.4. Decompose S into elements of library L  

procedure Decompose(S, L) 

# Given polynomial representation of the spec S and a set of polynomials L as library, 
   # decompose S into elements of library L. 

# initialize tree 
   treeroot(S); 
   depth ← 0 
   bound ← -1 

while depth ≠ bound do { 
       bound ← Explore(S, L, depth)      # Explore is defined below 
       depth ← depth +1 
   } 

report best solution in tree 

end 

# used in Decompose procedure 
int function Explore(S, L, d)  

bound ← -1 
   for all n ∈ in tree with depth d do{ 
      for all sr ∈ L do{ 
         result = simplify(n, sr); 

# make result a child of node n  
         addchild(n, result);    

if result ∈ L 
             # solution is found  
             bound = treedepth(result);  }} 

# returns –1 if no solution is found yet. 
   return(bound) 

end 

 

Let S be the polynomial representation of the basic block to be decomposed into 

complex library elements.  The algorithm starts by simplifying S modulo each library 

element as the side relation.  The simplification results are stored in a tree data structure.  

If a simplification result is identical (or within an acceptable tolerance) to the polynomial 
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representation of a library element, a possible solution is found and the corresponding 

tree node is marked accordingly.  If the simplification result stored in a tree node does not 

correspond to a library element, the same steps are recursively applied to the new tree 

node. 

To further reduce the search space a bounding function is used.  The bounding 

function is the number of library components used to build the specification.  In other 

words, if a solution is found with two library components the solutions requiring more 

than two components will not be explored.  Nevertheless, all two-component solutions 

will be uncovered and the one with optimal cost (area or delay) will be chosen.  The 

number of components used is the same as the depth of the simplification tree.  

Therefore, the tree is bounded by the depth of the first solution found. 

Such bounding function is chosen assuming that if a component is custom designed to 

perform a combination of arithmetic operations, it is more cost effective than connecting 

a series of components that perform the same arithmetic operations.  Clearly, the merit of 

the result is strongly dependent on the available library. 

3.4.1. MINIMAL COMPONENT EXAMPLE 

To clarify the algorithm described above, the library is chosen as a subset of the 

Synopsys DesignWare® library consisting of six combinational elements; multiplier, 

adder, subtracter, multiplier-accumulator, sine, and cosine.  As an example, consider 

synthesizing a phase shift keying (PSK) modulator used in digital communication.  A 

dataflow basic block of PSK has the following polynomial representation: 

> S:= 1-.5*x0^2-x0*x1-.5*x1^2+.041667*x0^4+.166668*x0^3*x1+ 
   .250002*x0^2*x1^2+.166668*x0*x1^3+.041667*x1^4; 

 

As the first step, SymSyn initializes a tree data structure and stores polynomial S in the 

root of the tree.  For all library elements, SymSyn makes a call to Maple and requests 

simplify with side relation set equal to the library element.  The results reported by Maple 

are kept as new children of the S tree node.   
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In the first iteration of our example, the side relation is set to the first element in the 

library, the multiplier.  Shown below are the Maple commands.  The first two lines are 

the requests sent by SymSyn and the third line is the simplification result reported by 

Maple to SymSyn.  SymSyn searches for a component in the library that implements the 

result, but it is not successful to find one for this instance. 

> siderel := {y=x0*x1}; 

> simplify(S, siderel, [x0,x1,y]); 

 .041667*x0^4+.166668*x0^2*y-
.5*x0^2+.041667*x1^4+.166668*x1^2*y-.5*x1^2+.250002*y^2-1.*y+1 

In the second iteration, the same steps are performed with the adder as the side 

relation.  The simplification result now matches an approximation to the cosine function.  

Therefore, SymSyn marks this node as one possible solution.  The following Maple 

commands show the result of this iteration.  Note that the result is a Taylor series 

approximation of cosine.  Since cosine is one of the library elements, one possible 

solution is found as shown in Figure 3.4.   

> siderel := {y=x0+x1}; 

> simplify(S, siderel, [x0,x1,y]); 

 1.+.041667*y^4-.5*y^2 

+ cosine
x0 y
x1

S
 

Figure 3.4. Mapping the S dataflow to Two Components 

Since there is a solution with depth equal to one in the tree, a bound of one is set on 

the tree growth.  Note that the root is denoted with depth equal to zero.  Therefore, a 

solution at depth one consists of two components.  SymSyn performs the steps described 

above for the rest of library elements and keeps the results in root offsprings.  After going 

through all library elements, SymSyn finds only one solution using two components.  The 

solution is demonstrated in Figure 3.4.  SymSyn will stop decomposing the leaf nodes, 
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since continuation would result in a search for solutions with three or more components 

while the objective is to find a solution using minimal number of components.  

3.5. TIMING DRIVEN DECOMPOSITION ALGORITHM 

In this section, the second algorithm implemented in SymSyn is introduced.  In 

contrast to the algorithm described in Section 3.4, here the focus is on minimizing the 

critical path delay of the dataflow implementation.  Previously, minimizing the number of 

components used to implement the dataflow was the primary objective.  Similar to 

Algorithm 3.4, this algorithm selects side relation sets intelligently to accelerate the 

decomposition process, since selecting different side relation sets result in different 

implementations of the dataflow.    

After extracting the CDFG of an algorithmic-level DSP model, the polynomial 

representations of its dataflow basic blocks are passed as inputs to the timing-driven 

decomposition algorithm.  Algorithm 3.5 shows the pseudo-code of the timing-driven 

decomposition algorithm.  This algorithm takes the same inputs as Algorithm 3.4; the 

polynomial representation of the basic block to be implemented and the polynomial 

representations of the complex library elements.  Algorithm 3.5, uses the branch-and-

bound method to reduce the side-relation-set selection space while searching for the 

implementation with least critical path delay.  We define the bounding function as the 

best critical path delay of implementations seen so far.  The lower bound computed at 

each decision branch is the critical path delay of components in the side relation set in 

view of data dependencies.  If this lower bound is greater than the best critical path delay 

of implementations seen so far, the corresponding decision branch is pruned. 
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Algorithm 3.5. Decompose S into elements of library L 
function GuidedDecomposition(exp_tree, max_CPD, L){ 
   # initialize a solution tree 
   solution_tree ← tree(exp_tree); 
   depth ← 0 
   bound ← max_CPD 

for all n ∈ in solution_tree with depth == depth do{ 
      if depth == 0 then  
          choose all sr ∈ L that preserve the exp_tree structure 
      else for all sr ∈ L do{ 
         if cost of sr + cost of node n < bound then { 
           result = simplify(n, sr); 
           # make result a child of node n  
           addchild(n, result);  
           add cost of sr to cost of result;       
            if result ∈ L then {  
               # solution is found  
               bound = cost of node result;  } 
 if no more n ∈ in solution_tree with depth == depth 
                depth ← depth +1   
     }} 
     return the best solution in solution_tree 
end 
int function CalcMaxCPD(expression_tree){ 
     CPD = the critical path delay of expression_tree assuming  
                 the expression is mapped to adders and multipliers only. 
      return(CPD) 
end  
procedure main(S, L) 
# Given polynomial representation of the spec S  and a set of polynomials L as library, 
# decompose S into elements of library L such that the CPD of S is minimized. 
# perform expression manipulation techniques 

exp_tree [1..NumberOfManipulations] = AllManipulations (S); 
for i= 1 to NumberOfManipulations do{ 

      maxCPD[i]=CalcMaxCPD(exp_tree[i]); 
      solution[i]=GuidedDecomposition(exp_tree[i], maxCPD[i]); 
   } 
   report the best solution in solutions[i] 
end 
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Let S be the polynomial representation of the dataflow.  Our goal is to decompose S 

into the elements of the library L such that the critical path delay of S is minimized.  

Decomposing S is synonym to simplifying S modulo elements of the library L as side 

relations.  In order to decide which library elements should be used as the side relations, a 

decision tree (solution_tree) is used to implement the branch-and-bound algorithm.  The 

bounding variable is initialized to the critical path delay of mapping the polynomial 

solely to adders and multipliers, a.k.a. the lexicographical mapping. 

The simplify results are also saved in the tree data structure.  If a simplification result 

is identical (or within an acceptable tolerance) to the polynomial representation of a 

library element, a possible solution is found and the corresponding tree node is marked 

accordingly.  If the critical path delay of the solution is smaller than previously 

encountered solutions, the bounding variable is set to the current delay.  In case the 

simplification result stored in a tree node does not correspond to any library elements, the 

same steps are recursively applied to the new tree node.   

In general, the branch-and-bound algorithm is practically applicable to most problems.  

However, introducing heuristics that lead quickly to promising solutions can improve the 

execution time without hampering the quality of the solution.  As for all branch-and-

bound algorithms, the worst-case complexity remains exponential.   

The expression manipulation techniques presented subsequently in Section 3.6 are 

used as heuristic guidelines for choosing the side relation set.  Initially, tree-height 

reduction, factorization, expansion, and the Horner-based transform are applied on S.  As 

a result, there are several polynomials (exp_tree) representing the same dataflow.  Each 

of these representations can result in the desirable implementation based on the available 

library elements.  Starting with the primary inputs, the expression tree is covered with the 

library elements.  All library elements that cover the primary inputs and a portion of the 

expression tree are chosen as elements of side relation sets.  If the result of simplify 

modulo side relation is not a library element, the result is decomposed without further 
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guidance from the expression tree.  Algorithm 3.5 in conjunction with substitution and 

tree-height reduction can be generalized to several polynomials in a basic block or across 

basic blocks.     

Example 3.4.  As an example, consider a dataflow segment of a Gabor filter with the 

following polynomial representation: 
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Assume that D is to be mapped to a library consisting of functions implementing add, 

multiply, MAC, square, exp.  After factorization, D will be converted to: 
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The factored form of D guides us to use c=a^2+b^2 as an initial side relation and sets 

an initial bound by mapping the factored form lexicographically to adders and 

multiplier.  SymSyn makes a call to Maple and requests result of the following 

simplify operation.   

> siderel := {c=a^2+b^2}; 

> result:=simplify(D, siderel, [a,b,c]); 

result=1-c+1/2*c^2-1/6*c^3+1/24*c^4 

The last line is the result reported to SymSyn by Maple.  As it can be seen, the result 

is a Taylor series expansion of exp(c).  Therefore, the dataflow can be implemented 

using two square components, an adder, and one exp component, as shown in Figure 

3.5.  The bounding function is now changed to the critical path delay of the potential 

implementation.  By exploring the other branches of the decision tree (solution_tree), 
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we realize that all other branches are pruned by the new bound.  Therefore Figure 3.5 

is implementation with the least critical path delay. 

^2

^2
+ exp

a

b
S

 

Figure 3.5. Mapping the D dataflow to Four Components 

Now, assume that there is no exp block in the library.  In order to show the power of 

other polynomial transformations, the Horner transform (see Section 3.6.3) is 

performed on the polynomial result: 
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The formula given above can be implemented using a chain of 4 MACs, or one MAC 

in 4 cycles.  Figure 3.6 demonstrates one possible implementation.                       ■ 
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Figure 3.6. A Possible Implementation for  ec

3.6. EXPRESSION MANIPULATION TECHNIQUES 

In Section 3.5, an algorithm was introduced that maps a polynomial representation of a 

(portion of) dataflow to complex arithmetic library elements such that the critical path 

 



 39

delay is minimized.  This algorithm was implemented in the Symbolic Synthesis tool, 

SymSyn.  To accelerate the speed of minimal critical path delay decomposition in 

SymSyn, a guideline is necessary for side-relation selection.  Such guideline should 

facilitate mapping for maximum parallelism.  Different symbolic polynomial 

manipulation techniques are chosen as such guidelines.  These transformations are the 

counterparts of the library independent transformations used in logic synthesis [8].  These 

heuristics can also be used as an enhancement to the minimal component decomposition 

algorithm.  The intent of this section is to describe the manipulation techniques through 

simple examples. 

3.6.1. TREE-HEIGHT REDUCTION 

Tree-height reduction (THR) was introduced long ago [12][13] as an optimization 

method for parallel software compilers.  It is a technique to reduce the height of an 

arithmetic expression tree, where the height of the tree is the number of steps required to 

compute the expression.  In the best case, it achieves the tree height of O(log n) for an 

expression with n operations.  Tree-height reduction uses commutativity, associativity, 

and distributivity properties of addition, subtraction, and multiplication.  In the classical 

case, tree-height reduction is achieved at the expense of adding more resources to obtain 

maximum parallelism in the expression.  In previous work for hardware synthesis, THR 

has been proven useful in high-level synthesis of data-intensive circuits such as DSP and 

multimedia applications [14][15][16].  

In our work, THR is used as an expression tree manipulation technique.  THR will 

achieve the best execution time when using unlimited number of two input adders, 

subtracters and multipliers.  Since the focus in this thesis is on libraries with more 

complex blocks, THR may or may not result in the optimal execution time.  The result is 

dependent on the library components available.   

 

Example 3.5.  Figure 3.7 shows an example of how THR can reduce the critical path 

delay.  Figure 3.7b is obtained after applying THR on Figure 3.7a.                        ■ 
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a   +    b    *   c    +   d a   +  d + b   *   c 

Figure 3.7. Performing THR on (a) Produces (b) 

3.6.2. FACTOR AND EXPAND 

As mentioned previously, traditional tree-height reduction [12][13] only uses 

associativity, commutativity, and distributivity to transform expressions.  Since we have 

access to a symbolic manipulation tool in SymSyn, we can benefit from other 

transformations as well.  One such transformation is common sub-expression 

factorization.  Factorization can reduce the number of components used as well as the 

tree height of a given expression.   
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a  *  c + a   *   d+b  *  c + b  *  d (a   +   b)*(c   +   d)
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**
 

Figure 3.8. Factor May Reduce Number of Components and CPD 

Example 3.6.  An example is shown in Figure 3.8.  Factorization transforms the 

expression shown in Figure 3.8a to the expression show in Figure 3.8b.  Figure 3.8b 

has three less multiplications, one less addition, and shorter tree height compared to 

Figure 3.8a. .                         ■ 
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Another useful symbolic manipulation technique is expansion.  This manipulation 

technique changes the polynomial into its sum of products format.  Meanwhile, it is 

capable of straightforward simplification techniques that can save both delay and area.   

Example 3.7.  A small example of expansion transforming a+a+a to 3*a which is 

more simplified.                         ■ 

3.6.3. HORNER FORM 

Horner form of a polynomial is a nested normal form with minimal number of 

multiplications and additions.  Any polynomial can be rewritten in Horner, or nested, 

form.  The general univariate case is defined as follows [3]:  
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Assume that xn can be calculated using only log2(n) multiplications for integer n. For a 

polynomial of degree n, the Horner form requires n multiplications and n additions. The 

expanded form, however, requires: 
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multiplications, which is more than twice as expensive for a polynomial of degree 10. 

Thus, one advantage of Horner form is that the work involved in exponentiation is 

distributed across addition and multiplication, resulting in savings of some basic 

arithmetic operations.  Another advantage is that Horner form is more stable to evaluate 

numerically when compared with the expanded form.  This is because each sum or 

product involves quantities which vary on a more evenly distributed scale [3].  For 

hardware implementation, Horner form has a distinct advantage.  It effectively maps a 
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univariate polynomial to cost effective multiplier-accumulators (MAC).  Horner form is 

generalized for multivariate polynomials by specifying an ordered list of variables.   

Example 3.8.  As a simple example consider the following polynomial in which the 

number of multiplications is reduced from 32 to 13: 

> S:=x^3+3*x^2*y+x^2+3*x*y^2+2*x*y+2*x^2*z+  
y^3+y^2+2*y^2*z+2*y*z+z^2*x+z^2*y+z^2; 

> convert(S, ’horner’, [x,y,z]); 

z^2+((2+z)*z+(2*z+1+y)*y)*y+((2+z)*z+(2+4*z+3*y)*y+ 
  (2*z+1+3*y+x)*x)*x                       ■ 

3.6.4. SUBSTITUTION AND ELIMINATION 

Substitution is defined as replacing a subexpression by a previously computed variable 

[8].  It reduces complexity of a function by using an additional variable that was not 

previously in its support set.  This transformation creates a new dependency between 

expressions, but may also eliminate previous dependencies.  Substitution has been 

previously used in multi-level combinational logic optimization [17][18][19].  

Elimination theory [7] based on the Gröbner basis formalizes substitution and variable 

elimination for multivariate polynomials.  We refer the interested reader to the reference 

[7] for the detailed mathematical proof.  Note that for arithmetic polynomials, use of a 

more general decomposition model is necessary as compared to the algebraic division 

modeled in combinational logic synthesis. This is due to the fact the Boolean 

idempotence property does not hold in arithmetic polynomials and arithmetic 

polynomials can have exponents.  Therefore, there is no restriction on the support set of 

the divisor and quotient of an expression.  For example yx
yx
yx +=

−

− 22

 is a legitimate 

division.  

Substitution can be combined with THR in order to select a subexpression that 

maximizes parallelism.   
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Example 3.9.  As a simple example let us consider a basic block which consists of 

two arithmetic expressions: 

X:= a*b*c+d; 

Y:= X+e*f; 
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Figure 3.9. Substitution with THR can Maximize Parallelism 

It can be seen that Y is dependent on X, therefore Y is calculated after the value of X is 

known as shown in Figure 3.9a.  However, if we eliminate X in Y, 

Y:=a*b*c+d+e*f, Y can be evaluated in parallel with X.  Figure 3.9b shows the 

results of tree-height reduction on both X and Y expressions.  In order to achieve 

maximum parallelism between X and Y, we now substitute only subexpression 

a*b*c in Y with a new variable z:=a*b*c.  The result is shown in Figure 3.9c.   ■ 
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3.7. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

SymSyn is an environment that used in conjunction with classical high-level synthesis 

algorithms can automate efficient synthesis of dataflow intensive circuits.  It takes as 

input a data path of the circuit under design and automatically maps that data path to 

complex library elements, without need of any directives from the designer.  The 

program inputs are polynomial representations of dataflow and a set of polynomials 

representing the library elements.  Output is a report of components used to implement 

the dataflow and the way they are connected, such that the critical path delay or number 

of components used is minimized.  SymSyn contains implementations of the algorithms 

described in Sections 3.4 and 3.5 and the heuristics described in Section 3.6 as 

accelerators.  The implementation is mainly in C programming language with calls to 

Maple V [2] for the symbolic manipulations.   

Table 3.1. Normalized Delay and Area of Library Elements 

Library Element Delay Normalized Delay Area Normalized Area  

Add 7.54 1 15090 1 
Square 7.89 1.05 89814 5.95 
Mult 10.17 1.35 133401 8.84 
MAC 17.28 2.29 142554 9.45 
Sine  45.21 6.00 625218 41.43 
Cosine  45.37 6.02 622849 41.28 
SQRT 21.42 2.84 36031 2.39 

The efficiency of SymSyn is tested on a number of data-path examples.  In these tests, 

the area and critical path delay reported are normalized by the area and critical path delay 

of a full adder.  For example, the critical path delay of an adder is 1 and critical path 

delay of a multiplier is 1.35.  This number is calculated from the critical path delay 

reported by Synopsys Design Compiler (DC) for a 16-bit multiplier divided by the 

critical path delay reported by Synopsys DC for a 16-bit adder.  The normalized critical 

path delay calculation is done for all library components available in the Synopsys 
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DesignWare® arithmetic component library [9].  Normalized area and critical path delay 

of several library elements are shown in Table 3.1. 

Experimental results are shown in Table 3.2.  The first four dataflows in Table 3.2 are 

simple benchmark polynomials.  The fifth dataflow polynomial is a basic block of a one-

dimensional inverse discrete cosine transform (IDCT).  The next dataflow example is the 

anti-alias block described in the introduction.  IDCT and anti-alias are widely used in 

audio and video compression standards such as JPEG, MPEG, and MP3.  The geometric 

transformation is used in graphics for image rotation.  The next three examples come 

from the field of digital communication.  One is a band pass filter in frequency domain.  

The other performs phase shift keying (PSK) modulation and the third one performs 

turbo decoding.  The last example is a dataflow segment of the Gabor transform used in 

neural systems.   

Table 3.2. SymSyn Results for Some Examples 

  Lexicographical  
Mapping 

Minimal Component  
Mapping 

Minimal CPD  
Mapping 

Dataflow Examples 
# of 
comps Area CPD # of 

comps Area CPD # of 
comps Area CPD 

a2-b2 3 18.68 2.35 3 10.84 2.35 3 12.90 2.05

b3+ba2c 6 45.20 3.70 4 30.19 4.69 6 39.42 3.70
1-x02/2+x04/24+x0+x1x2 11 65.88 5.70 3 51.72 7.02 6 41.24 5.58
Cos(sin(x0)) 24 180.81 7.40 2 82.71 12.01 9 64.88 6.43
IDCT 9 63.88 4.70 2 15.40 3.34 2 15.40 3.34
anti-alias 27 191.65 9.09 8 60.14 14.55 12 92.61 7.04
Geometric-transform  12 82.56 10.09 2 50.27 8.29 5 43.13 7.92
1/2tanh(a-1)+ 1/2tanh(a+1) 16 94.40 9.74 3 24.85 5.63 4 30.80 4.38
PSK 33 229.01 7.40 2 42.28 7.02 2 42.28 7.02
Turbo decoder 104 817.47 16.14 4 125.3 12.99 4 125.30 12.99
Gabor-transform 79 565.10 12.44 6 96.61 9.41 6 96.61 9.41

In the first set of results of Table 3.2 (lexicographical mapping), it is assumed that the 

polynomial representation is mapped only to multipliers and adders.  This is same as the 

lexicographical component inference that is typical in commercial behavioral synthesis 

tools.  The number of components column shows the numbers of adds and multiplies in 
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the data-path polynomial.  The area reported is the area of an adder multiplied by the 

number of adds, plus the area of a multiplier multiplied by the number of multiplies in the 

data-path polynomial.  The critical path delay (CPD) reported is the cumulative delay of 

components on the critical path.   

Next, the example dataflows are mapped and synthesized using SymSyn.  The second 

set of results shown in Table 3.2 (minimal component mapping), are the results obtained 

from SymSyn by applying Algorithm 3.4.  The mapping reported is the minimal 

component mapping.  We have shown the number of library components Algorithm 3.4 

has used in mapping each dataflow polynomial to the extended Synopsys DesignWare® 

library (DesignWare library [9] plus tanh(x), ln(x), and exp(x) operations).  Area is the 

sum of areas of the components used by SymSyn in each data-path implementation.  

Finally, the last set of results in Table 3.2 (minimal CPD mapping), are derived by 

SymSyn using Algorithm 3.5.  The emphasis is to decompose each dataflow into the 

given library such that the critical path delay of the implementation is minimized.  We 

have reported the number of components and the area and critical path delay of the 

implementation suggested by Algorithm 3.5.  Note that Algorithm 3.5 maps for maximal 

parallelism and resource sharing is not used.  The critical path delay reported is sum of 

the delays of components used in the data-path implementation in view of their data 

dependencies.  Both mapping results shown are using the same component library.   

In order to qualify the examples used in Table 3.2, the distribution of components used 

in SymSyn output is shown in Figure 3.10.  Note that the components used most are the 

multiply/accumulate (MAC) operator and the square operator; this result is typical in 

data-intensive circuits.  
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Figure 3.10. Component Distribution in SymSyn Output  

In order to obtain more precise measurement of the critical path delay and area of our 

set of examples, Synopsys Behavioral Compiler and Synopsys Design Compiler are 

used to produce the set of results shown in Table 3.3.  The examples in Table 3.3 are the 

subset of examples shown in Table 3.2 that did not need tanh(x), ln(x), and exp(x) 

operations.  These operations are not available in the DesignWare library [9].  The 

lexicographical columns correspond to results reported by Synopsys Behavioral 

Compiler and Design Compiler without any mapping directives in the behavioral HDL 

code.  The SymSyn mapping columns are the results reported for the same set of examples 

when mapping directives suggested by SymSyn are incorporated in the behavioral HDL 

code.  It can be observed that actual performance and area improvements for these 

examples are inline and better than estimated by SymSyn in Table 3.2.  

In summary, the results show that we can achieve an average performance 

improvement of 25% and an average area improvement of 60% over commercial 

behavioral synthesis flow.  These improvements are the results of intelligent mapping 
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algorithms implemented in SymSyn as opposed to the lexicographical mapping currently 

available in the commercial tools. 

Table 3.3. Area and Delay Reported by Synopsys Tools Using tsmc.35 Library 

  Synopsys BC results Synopsys DC results 
  Lexicographical SymSyn Mapping Lexicographical SymSyn Mapping

Dataflow Examples Area Est. Delay Area Est. Delay Area Delay Area Delay 

a2-b2 120295 11 83087 11 66760 11.21 54815 9.42 

b3+ba2c 469030 24 862816 24 285926 29.09 166303 25.44 
1-x02/2+x04/24+x0+x1x2 395252 23 137139 16 146526 19.68 93538 14.39 
cos(sin(x0)) 790784 39 163349 35 314776 38.17 140256 32.47 
IDCT 456704 24 178177 18 323185 29.29 130753 20.52 
Anti-alias 3387672 63 288373 48 1761169 69.43 102357 59.89 
Geometric-transform  3051440 39 273340 30 1178868 54.07 190937 25.63 
PSK 1812833 36 82705 24 1099991 33.33 80670 21.69 

3.8. SUMMARY 

This chapter has introduced two new decomposition algorithms to map dataflow to a 

set of complex arithmetic library components.  These algorithms fit seamlessly in the 

high-level synthesis flow and enhance the quality of result of data intensive circuit 

synthesis.  These methods take advantage of two previously developed concepts; one is 

the polynomial representation of library blocks and the second is symbolic computer 

algebra. Polynomial representation is used to represent the functionality of library 

components and the dataflow segment of the chip under design.  Symbolic computer 

algebra is used to decompose the dataflow to a set of library components.  From a 

practical standpoint, the contribution of this chapter is to make arithmetic library binding 

an automated process, and eliminate the need for user-specified synthesis directives.   

Symbolic computer algebra is a powerful set of algorithms not previously used in the 

field of synthesis.  These algorithms open a new set of opportunities in high-level 

synthesis research.  Even though algebraic manipulations are best suited for 
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combinational arithmetic designs, classical scheduling, resource sharing, and retiming 

algorithms can be applied to the data-path output to achieve optimized/pipelined designs. 

The research presented here is especially promising in the fields of graphics, 

multimedia, and digital signal processing where there is a tolerance for computational 

error as long as the degradation in audio or video is limited [24][25][20].  This tolerance 

can be used to approximate non-polynomials dataflows to polynomial representations, 

which are well-suited inputs for our tool SymSyn.  This chapter does not explain the 

approximation tools and truncation errors since there is a wide body of mathematical 

literature available on these topics [11]. 

 

 

 



 

 
 
 
 
 
 
 
 

CHAPTER 4  

EMBEDDED SOFTWARE OPTIMIZATION 

 

In embedded system design environment, the software portion of the system tends to 

change frequently as software changes are generally less costly than hardware changes.  

Therefore, system-level design tools and methodologies should facilitate embedded 

software optimization and support software engineering changes.  Pre-optimized software 

libraries and complex processor instructions are often available for embedded system 

design.  Compilers are proficient at optimizations such as dead code elimination, variable 

propagation, and loop unrolling.  Nevertheless, most compilers are unable to use these 

complex assembly instructions and pre-optimized library elements efficiently while 

compiling C code for embedded processors.  In this chapter, an embedded software 

optimization methodology is presented that uses the power of symbolic algebra and the 

dataflow decomposition algorithms used in previous chapters for hardware synthesis. 

Currently, software engineers typically design key routines in assembly [21] or 

manually map a code section to a pre-optimized library element.  Example of complex 

instructions available range from the simple multiply-accumulate (MAC) to a library of 

more complex instructions, such as those developed by Tensilica tools [50][26].  There 

are several pre-optimized software libraries commercially available.  Intel recently 
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released a library targeted at multimedia developers for StrongARM SA-1110 

embedded processor [34], and TI has a similar library for TI’54x DSP [35].  Embedded 

operating systems typically provide a choice from a number of mathematical and other 

libraries [36][37].  When a set of pre-optimized libraries is available, the designer has to 

choose the elements that perform best for a given section of code.  For example, consider 

a section of code that calls the log function.  The library used in mapping consists of 

four different log implementations: double, float, fixed point using simple bit 

manipulation algorithm [38], and fixed point using polynomial expansion.  Each 

implementation has a different accuracy, performance, and energy trade-off.  A designer 

would need to estimate which of the four implementations would work best, test the 

hypothesis, and iterate until the best result is found.  Designers are faced with an even 

more complex problem when attempting to map a software implementation of IDCT 

already present in MP3 standards code into an embedded software library.  There are 

many ways to implement IDCT on a given processor, and it may be difficult for a 

designer to determine which library element is most appropriate.   

The objective of this research is to improve the quality of compiled code for 

embedded systems and facilitate the software design process.  In this chapter, we propose 

a new methodology based on symbolic manipulation of polynomials and energy profiling 

which reduces manual intervention.  This methodology automates the process of 

identifying the code sections that benefit from complex library mapping, and then 

performs the mapping using symbolic techniques.  The set of techniques used in  

Chapter 3 for algorithmic-level hardware synthesis are combined with energy profiling, 

floating-point to fixed-point data conversion, and polynomial approximation to achieve a 

new embedded software optimization methodology.  The combination of these tools and 

standard compiler optimization techniques allow novel automatic code transformations. 
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Example 4.1.  As a motivating example, consider the following code segment: 

for i=1..3 

 y = y + cos(i*x); 

Using standard loop unrolling, the given code is transformed into the following: 

y = cos(x) + cos(2*x) + cos(3*x); 

Now assume that for a given application cos(x) can be approximated into a Taylor 

series with three terms without noticeable degradation on the output.  Many 

multimedia applications tolerate computational inaccuracy well, as long as the 

resulting effects (e.g. audio, video degradation) are limited.  Therefore, y can be 

approximated as a polynomial: 
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This polynomial can be further simplified using the expand routine in symbolic 

algebra: 

42

12
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Assuming that the embedded processor used to execute this code has a multiply 

accumulate (MAC) instruction, another symbolic routine called the Horner transform 

can be used on y: 
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The new equation can be mapped to one multiply instruction and two multiply-

accumulates.  Obviously, this mapping is much more efficient than three calls to the 

cosine library function.  Unfortunately, to our knowledge, there is no available 

software optimization tool that performs this simple optimization automatically.  

Thus, it would be up to designers to manually implement such optimizations.            ■ 

This chapter presents an algorithm and methodology, called SymSoft, that performs 

algebraic manipulations such as the ones shown in Example 4.1 simultaneous with 

automatic complex instruction and library mapping.  First, a characterization function is 

derived for the pre-optimized library elements and complex assembly instructions.  Then, 

the performance and energy critical code sections are identified using the energy profiler.  

If necessary, a tool such as Fridge [24] can be used to help transform floating-point data 

types into fixed-point.  Next, complex nonlinear arithmetic functions in critical blocks are 

approximated as polynomials such that the final output is within the acceptable tolerance 

limits.  Finally, symbolic algebra is used to map the polynomial representations of the 

critical basic blocks to the instruction set and library elements available automatically 

such that performance and power consumption are optimized. 

This chapter is organized as follows:  Section 4.1 discusses previous work in software 

optimization for energy and performance.  Section 4.2 describes the software and 

hardware platform and the measurement setup we are using in our experiments.   

Section 4.3 presents the SymSoft flow, and gives an overview of each of its steps and 

components.  The results of SymSoft optimizations on several software examples for the 

SmartBadgeIV system are presented in Section 4.4.  SymSoft lowers the execution time 

and energy consumption of these examples by using a pre-optimized software library 

available for StrongARM and the StrongARM instruction set.  Finally, Section 4.5 

summarizes the contributions of this work. 
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4.1. RELATED WORK 

Designers have used software performance and size optimization methodologies and 

tools of for many years.  Generally, compilers are used to translate a high-level 

specification into optimized machine code for a target processor.  Several researchers 

have worked on optimizing compilers in last few years [27].  Prototype research 

compilers have shown impressive results [28].  Most optimizing compilers target high-

performance and/or general-purpose computers.  Relatively little effort has been 

dedicated to create powerful optimizing compilers for embedded processors.  Several 

researchers are studying automatic code retargeting techniques for embedded processors 

[29][30] using graph-covering methods.  Graph covering methods have limited 

knowledge of algebra.  Using algorithms from symbolic algebra, as explained in this 

chapter, enables simultaneous code generation and algebraic manipulations.  Currently, 

most embedded processors (or DSPs) are programmed directly by expert programmers 

and code optimization is mostly based on human intuition and skills.  In addition, due to 

recent growth in market demand for portable devices, optimization of software for power 

consumption is gaining importance.  As a result, one of the primary requirements for 

system-level design methodology of embedded devices is to effectively support code 

performance and energy consumption optimization. 

Several optimization techniques for lowering energy consumption have been presented 

in the past.  Numerous methodologies for optimizing memory accesses have been 

introduced that combine automated and manual software optimizations [31].  Tiwari et al. 

[32][33] used instruction-level energy models to develop compiler-driven energy 

optimizations at assembly level such as instruction reordering, reduction of memory 

operands, operand swapping in the Booth multiplier, efficient usage of memory banks, 

and a series of processor specific optimizations.  Several other optimizations such as 

energy efficient register labeling during the compile phase [39], procedure inlining and 

loop unrolling [40] as well as instruction scheduling [41] have also been suggested.  In 

addition, various compiler optimizations have been applied concurrently and the resulting 
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energy consumption was evaluated via simulation [42].  All of these techniques focus on 

automated instruction-level optimizations driven by the compiler. Unfortunately, current 

available compilers have limited capabilities.  Specifically, they are incapable of handling 

arithmetic optimizations such as shown Example 4.1. 

In the previous work [49], MP3 audio decoder software available from the standards 

body [23] was manually optimized for the SmartBadge embedded system [22].  This 

work required the designer to first implement a fixed-point library and then to replace all 

floating-point operations with fixed point.  Then, the designer needed to fully understand 

the details of the SmartBadge’s design, so that the critical arithmetic operations can be 

manually optimized with inline assembly code.  The manual optimization process lasted 

several days.  This experience is similar to the typical industrial settings, where the 

software needs to be ported and optimized to the newer versions of hardware. 

The proposed methodology and tool flow uses profiling to identify the code sections 

that would benefit most from algebraic optimizations, and then automatically performs 

the optimizations using symbolic techniques.  Such symbolic techniques have been 

previously used in algorithmic level synthesis of data intensive circuits as described in 

Chapter 3.  SymSoft uses the same principles previously used for high-level component 

mapping of hardware and applies them to the software optimization problem.  The 

outcome of our mapping algorithm is software that runs faster and consumes less energy 

on the SmartBadgeIV [22] embedded system while compared to the output of the 

commercial StrongARM compiler. 

4.2. EXPERIMENTAL SETUP  

SymSoft is used to optimize a set of examples on the SmartBadgeIV [22].  

SmartBadgeIV, as shown in Figure 4.1, is an embedded system powered by batteries 

through a DC-DC converter.  It consists of StrongARM SA-1110 processor with 

StrongARM SA-1111 companion chip, audio CODEC with microphone and speakers, 
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Lucent’s WLAN card, sensors and three types of memory: SRAM, SDRAM and FLASH.  

SmartBadgeIV currently runs eCos [36] and an embedded version of the Linux operating 

system [37].  In this work, the Linux operating system was used since the software library 

available to us is implemented for Linux.  SmartBadgeIV ’s Linux has the main parts of 

the operating system, including a small file system, residing in the SRAM.  The larger 

file system is remotely mounted from the server via the WLAN card.  In our experiments, 

the program files and their input data reside in the directory structure on the server.  

These files are accessed via the wireless link on the SmartBadgeIV. 

All of the measurements were performed using National Instruments Data Acquisition 

(DAQ) measurement system capable of 1.25 Msamples/second.  We found a sampling 

speed of 1 kHz to be sufficient.  In our setup, we used one PC to measure system, 

processor, and WLAN currents via the DAQ interface, and the other PC to act as a 

remote file server for the SmartBadge IV.  The execution time of the code was measured 

by accessing StrongARM SA-1110 on-board timer. 
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Figure 4.1. SmartBadgeIV Architecture 

4.3. SYMSOFT METHODOLOGY AND TOOL FLOW 

Ideally, the software designer would write an algorithmic-level description of the 

software and have a compiler-like tool optimize it for the given hardware platform.  
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However, optimum implementation of calculation intensive routines for the particular 

hardware design is not possible with traditional compiler optimizations alone.  

Commonly, the designer does most of such optimizations by hand.  Automating even a 

portion of this process can save much design time. 

We present a methodology and a tool flow, SymSoft, which facilitates embedded 

system software optimization with automating library and complex instruction mapping 

for a given embedded processor.  Figure 4.2 shows the SymSoft flow.  The mapping 

methodology consists of three main steps: library characterization, target code 

identification, and mapping. 
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Figure 4.2. SymSoft Tool Flow  

 
The first step is to characterize the library elements.  The characterization not only 

includes performance and energy consumption of the complex element for a given 

hardware architecture, but also the expected input and output format, accuracy and a 

polynomial representation. 
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The next step identifies the target code for optimization.  In this step, an initial check 

is performed to see whether data representation used in the algorithmic-level C code 

matches the target hardware.  Most embedded processors support only fixed point 

computation, but many multimedia algorithms utilize floating-point operations.  The 

profiler, described in Section 4.3.2.2, detects if data representation is an issue within 

several seconds.  Then, if needed, floating-point operations are replaced with fixed-point 

operations with the help of a floating-point to fixed-point converting tool [20][24][25].  

The profiler also reports the performance and energy critical functions of the code.  The 

polynomial representations of the arithmetic sections of the critical routines are 

calculated with help of traditional compiler techniques such as loop unrolling.  When 

necessary, polynomial approximation techniques are used.  Accuracy is checked at the 

end of the target code identification step to make sure that the code still meets the 

specifications, as some rounding occurs both during the data representation conversion 

and during the polynomial formulation. 

Finally, the target code represented by polynomials is automatically mapped into the 

library elements and complex processor instructions.  The key contribution in SymSoft is 

a new method to map critical code segments into pre-optimized software library elements 

and complex assembly instructions using symbolic polynomial manipulation.  The 

mapping process selects the solution that offers best performance with sufficient 

accuracy.  Since the SymSoft methodology is compliant with other software optimization 

techniques, additional benefits are gained by combining it with traditional complier 

optimization algorithms, such as constant and variable propagation, dead code 

elimination, and loop unrolling.  The next sections describe each part of the SymSoft 

flow in detail. 

4.3.1. LIBRARY CHARACTERIZATION 

The target library consists of pre-optimized software libraries and complex arithmetic 

instructions available for the target processor.  Complex arithmetic instructions vary from 
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the simple multiply-accumulate (MAC) to more complex instructions, such as those 

developed by Tensilica tools [26].  Pre-optimized software libraries include traditional 

embedded system libraries, such as the IEEE floating-point mathematical library for 

Linux operating system [37], commercial libraries available for the particular processor, 

such as Intel’s integrated performance primitives (IPP) [34], and a set of in-house pre-

optimized routines.  Table 4.1 shows a sample of elements of the IPP library.  Library 

characterization is done on element-by-element basis.  Each element is labeled with the 

type of inputs and outputs, performance, accuracy, energy consumption, and finally its 

polynomial representation. 

Table 4.1. Sample of IPP Library Elements 

Library Elements Description 

Exp Exponentiation 
Ln Natural logarithm 
DotProd Vector dot (inner) product 
Mean Vector arithmetic mean 
FIR Finite impulse response filter 
IIR Infinite impulse response filter 
Conv Convolution 
WinHamming Hamming window 
FFT Fast Fourier transforms 
HuffmanDecode Decodes Huffman symbols 
SubBandSynthesis Stage two of hybrid synthesis filter bank 
IMDCT Inverse modified discrete cosine transform 

 The format of library element inputs and outputs is determined from the library 

include files or documentation available with the library element.  Techniques discussed 

in Section 4.3.2.3 can be used to extract the polynomial representations from the source 

code if the code is available.  Otherwise, either the distributor needs to provide the 

equivalent polynomial representation or it might be obtained from the documentation.  

Important part of library characterization is the determination of accuracy, performance 

and energy consumption.  This information is used to guide the selection process when 

more than one library element has same functionality.  Most embedded systems have 

operating system timers that can be used for fine-granularity performance measurements 
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on hardware.  However, often there is not an easy way to measure processor and memory 

power consumption.  Alternatively, a cycle-accurate energy consumption simulator [44] 

easily provides energy and performance estimates of library elements.  Note that the 

library characterization step is yet to be automated. 

Examples of two characterized complex library elements, SubBand Synthesis and 

IMDCT, are shown in Table 4.2.  The library has three different versions of each library 

element: the open-source floating point version from the MP3 standards library [23], 

fixed-point in-house pre-optimized routine, and a version from Intel’s integrated 

performance primitive (IPP) library for StrongARM SA-1110 processor [34].  For each 

library element, we have measured its performance on the SmartBadgeIV hardware.  All 

entries in Table 4.2 are represented using polynomials.  Since polynomials for complex 

library elements can be quite large, we show only a critical portion of IMDCT 

polynomial in Equation 1.  Equation 1 shows how n/2 windowed samples, yk, are 

transformed into n xi samples.  Note that this is just a first order polynomial, 
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Table 4.2. Characterized Complex Library Elements 

 
Library Element Execution time Input Type 

 float SubBandSyn 0.95 64 bit float 

 fixed SubBandSyn 0.01 32 bit fixed 
 IPP SubBandSyn 0.002 32 bit fixed 
 float IMDCT 0.39 64 bit float 
 fixed IMDCT 0.014 32 bit fixed 
 IPP IMDCT 0.0002 32 bit fixed 

 

 

 

 

4.3.2. TARGET CODE IDENTIFICATION  

The input to the target code identification step is the algorithmic-level C code of the 

embedded software.  The output of this step is a set of polynomial representations of the 

critical code segments that would benefit most from mapping to complex instruction and 

pre-optimized library elements.  Target code identification consists of three stages as 

shown in Figure 4.3.  First, the profiler checks to see whether floating point operations 

are on the critical path.  If needed the floating-point operations are transformed into 

fixed-point operations by data representation conversion.  Next, the energy and 

performance critical procedures are identified.  This step can be done either with 

simulation using the energy profiler [44] or by profiling directly on the hardware.  

Finally, when the power and performance critical procedures are identified, they are 

formulated as polynomials suitable for mapping into library elements.  In the next 

sections, we will take a closer look at each stage of the target code identification step. 
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Figure 4.3. Target Code Identification 

4.3.2.1. Data Representation Conversion 

Signal processing algorithms are generally developed using ANSI-C with IEEE 

floating-point data types.  However, these algorithms are often implemented in embedded 

systems using fixed-point data types in order to meet the power, cost, and performance 

requirements.  In this stage, it is checked whether floating-point operations are capturing 

most of the execution time and power consumption of the algorithmic-level C code.  In 

that case, floating-point operations are considered critical and they must be converted to 

fixed-point operations.  Converting a floating-point algorithm to a fixed-point algorithm 

is a time consuming and error prone task.  Facilitating and semi-automating this 

conversion has been the target of many research projects [20][24][25].  Such tools use 

interpolative analysis or analytic techniques to convert floating-point operations into 

appropriate fixed-point operations while reducing the manual work and the number of 

simulations required.  In our tool flow, we opt to use a tool like Fridge [24] (a.k.a. 

CoCentric fixed-point designer) to automate this stage of optimization. 
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4.3.2.2. Energy Profiling  

Code optimization requires extensive program execution analysis to identify 

performance and energy-critical bottlenecks and to provide feedback on the impact of 

code transformations.  Profiling is typically used to relate performance to the source code 

for CPU and L1 cache [43].  An energy profiler enables easy identification of energy-

critical procedures.  It also facilitates analysis of code transformations’ impact on the 

processor energy consumption, the memory hierarchy, and the system busses. 

The profiler exploits a cycle-accurate energy consumption simulator [44] to relate the 

embedded system energy consumption and performance to the source code.  Thus, it can 

be used for analysis  (i.e., to find energy-critical sections of the code), and for validation 

(i.e., to assess the impact of each code optimization). 

The profiler architecture [44] is shown in Figure 4.4.  Source code is compiled using a 

compiler for a target processor.  The output of the compiler is the executable represented 

as assembly code and a map of locations of each procedure in the executable.  The 

profiler of the cycle-accurate simulator periodically samples the simulation results (by 

user defined sampling interval) and maps the energy and performance to the function 

executed using information gathered at the compile time.  Sampling is used to improve 

profiling speed while maintaining accuracy.  Once the simulation is complete, the energy 

consumption and execution time of each function are displayed.  

With the profiler, SymSoft can obtain energy consumption breakdown by procedures 

in the source code and thus can quickly identify the sections of the source code whose 

optimization can provide the largest execution time and energy savings.  In addition, with 

the cycle-accurate simulator that is at the heart of the profiler, SymSoft can get detailed 

information about performance and energy consumption of smaller subsections of code.  

The identified critical code segments are then passed as inputs to polynomial 

approximation and symbolic mapping tools that can optimally map the code section into 

complex library elements and assembly instructions in few minutes. 
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    for ( i=0; i<30; i++)
   {

x[i] = y[i] + 2 * x[i + 1];
z[i] -= x[i];
y[i]  = x[i] + z[i];
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LD R21, #30;
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    -----------------
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Figure 4.4. Profiler Architecture 

4.3.2.3. Polynomial Formulation 

Our goal is to automatically map the critical code segments selected by the profiler 

into pre-optimized library elements or complex assembly instructions such that optimum 

execution time and power consumption are achieved.  The symbolic mapping algorithm, 

described in Section 4.3.3, takes as input the polynomial representations of the critical 

code segments and the polynomial equivalence of complex arithmetic assembly 

instructions and pre-optimized library elements.  The polynomial formulation step 

prepares the first set of inputs required by the symbolic mapping algorithm by calculating 

the polynomial representations of the critical code segments.  The second set of inputs is 

calculated in the library characterization step as described in Section 4.3.1. 

The polynomial representation of a basic block can be directly extracted from the C 

code if the basic block calculates a polynomial function.  If the basic block performs a 

series of bit manipulations or Boolean functions, interpolation-based algorithms [46][47] 
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can be used to formulate the equivalent polynomial representation.  When the basic block 

implements a transcendental function, we use an approximation, such as the Taylor or 

Chebyshev series expansion, as its polynomial.  The chosen polynomial approximation 

has to be verified by simulation to ensure that the software constraints, such as audio 

quality, are satisfied.  A good approximation can result in large performance and power 

improvements for multimedia applications, since these applications can tolerate a slight 

degradation in the output. For example, to verify the accuracy of the MP3 decoder we 

have used the compliance test provided by the MPEG standard where the range of RMS 

error between the samples defines the compliance level [45].  If the approximation is not 

sufficient to satisfy the accuracy constraints, the quality of approximation is changed and 

verified again through simulation. 

The objective of this step is to formulate polynomials that cover as much of the source 

code as possible.  Consecutively, the likelihood of finding a more complex library 

element that matches at least a portion of the formulated polynomial increases.  This 

objective can be accomplished by using code transformation techniques such as loop 

unrolling, constant and variable propagation to form larger basic blocks. 

4.3.3. SYMBOLIC MAPPING ALGORITHM  

The symbolic mapping algorithm requires two sets of inputs: a set of polynomials 

representing the critical code segments and another set of polynomials representing the 

pre-optimized library elements and complex instructions.  The former has been generated 

in the target code identification step and the latter is the output of the library 

characterization step.  The goal of the symbolic mapping algorithm is to decompose the 

polynomial representations of the critical code segments (CCS) into the polynomial 

representations of the target library such that execution time and power consumption are 

minimized.  The power consumption and execution time of each library element are 

provided to the mapping algorithm as constants by the library characterization step as 
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described in Section 4.3.1.  As opposed to tree covering based algorithms, in our 

algorithm, mapping is performed simultaneously with algebraic manipulations. 

The symbolic mapping algorithm uses multivariate polynomial manipulation 

algorithms from symbolic computer algebra.  The theory behind these algorithms is 

described in Chapter 2.  Namely, symbolic techniques used are factorization, expansion, 

Horner transform, multivariate polynomial substitution, and variable elimination.  In this 

section, these routines are described by a set of simple examples. 

Example 4.2.  Factor and expand are inverse operations.  Consider using Maple to 

factor and expand the following polynomial: 

> S := x^2*(x^14+x^15+1); 

> P := expand(S); 

P = x^16+x^17+x^2 

> factor(P); 

x^2*(x^14+x^15+1)               ■ 

Example 4.3.  Horner form of a polynomial is a nested normal form with minimal 

number of multiplications and additions.  Any polynomial can be rewritten in Horner, 

or nested, form.  An example of Horner form polynomial for multiple variables is 

shown below: 

> S:= y^2*x+y*x^2+4*x*y+x^2+2*x; 

> convert(S, ’horner’, [x,y]); 

(2+(4+y)*y+(y+1)*x)*x             ■ 

Example 4.4.  Simplify implements substitution and variable elimination for 

multivariate polynomials: 

> S:= x + x^3*y^2 –2*x*y^3; 

> simplify(S, {p = x^2–2*y}, [x,y,p]); 

x+y^2*x*p              ■ 
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The core of the library-mapping algorithm is the simplification modulo set of 

polynomials (simplify) routine.  The polynomial representations of critical code blocks 

are simplified modulo a subset of polynomials representing the library elements called 

the side relation set.  Choosing the side relation set is a non-trivial and important task, 

especially since different side relation sets results in different solutions.  In Chapter 3, an 

algorithm was introduced that selects the side relation set such that the hardware 

implementation of a (portion of) data path with a given component library has minimal 

critical path delay.  In this chapter, a similar algorithm is used to optimize the execution 

time of the critical code segments of software by mapping to pre-optimized library 

elements and complex assembly instructions.  Since evaluating all subsets of the library is 

exponentially expensive, the library-mapping algorithm uses the branch-and-bound 

method with execution time and energy consumption as bounding functions to prune the 

search space.  All previously described symbolic manipulations except simplify are used 

as guidelines in formulating different side relation sets to speed up the mapping 

algorithm. 

Figure 4.5 gives an overview of the mapping algorithm.  Inputs to the algorithm are 

the polynomial representations of the critical code segments (CCS) and the polynomial 

representations of the target library elements.  Initially, tree-height reduction, 

factorization, expansion, and Horner-based transform are applied to the polynomial 

representation of the CCS resulting in several different polynomials representing the 

same code segment.  Each of the different polynomial representations is used to select a 

side relation from the target library.  These guidelines are used to increase the speed of 

finding the desirable mapping.  The polynomial representation of the CCS is simplified 

modulo the selected side relation sets in parallel.  If the result of simplify matches a 

library element then the CCS is mapped.  Otherwise, we need to continue to add to the 

side relation set until the CCS is fully mapped to our library.  The iterative part of the 

algorithm, denoted in Figure 4.5 as main loop, is implemented using branch-and-bound 

algorithms. 
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Figure 4.5. Overview of the Library Mapping Algorithm 

Algorithm 4.3.3 shows the pseudo-code of the library-mapping algorithm.  Inputs to 

this algorithm are the polynomial representation of the critical code section (CCS) and the 

polynomial representations of the library elements (L).  The bounding function is defined 

as the best execution time for CCS seen so far.  The lower bound computed at each 

decision branch is the execution time of the library elements in the side relation set in 

view of data dependencies.  If this lower bound is greater than the best execution time 

seen so far, the corresponding decision branch is pruned.  Decision tree (decision_tree) 

implements the branch-and-bound algorithm.  The algorithm starts by initializing the root 

of decision_tree to the polynomial representation of CCS and calculating an initial bound.  

The bounding variable is initialized to the execution time of calculating the CCS 

polynomial solely with add and multiply instructions, the lexicographical mapping 

(LexMap).  Nodes are added to this tree in breadth-first manner.  These nodes store the 

polynomial result of simplify of their parent node and the chosen side relation set.  When 

a simplification result corresponds to a polynomial representation of a library element, a 
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possible solution is found and the corresponding tree node is marked accordingly.  If the 

execution time of the solution is less than previously encountered solutions, we set the 

bounding variable to the current value.  In case the simplification result stored in a tree 

node does not correspond to any library elements, we apply the same steps to the new 

tree node until either a solution is found or the corresponding branch is pruned.  Since 

CCS is a polynomial and add and multiply instructions are always available in our 

library, we are guaranteed to have a solution.  However, our mapping algorithm searches 

for a solution that best exploits the given software library. 

Algorithm .4.3.3. Decompose CCS into elements of library L 
 
function Decompose (exp_tree, boundVal, L) { 
   // initialize the decision tree 
   decision_tree ← tree (exp_tree) 
   Depth ← 0 
   Bound ← boundVal 
   for all n ∈ decision_tree with depth == Depth  do{ 
        if Depth == 0   
               choose sr ∈ L to preserve the exp_tree structure 
         else for all sr ∈ L { 
               result = simplify (n, sr); 
               AddChild (n, result)  // make result a child of node n 
               if result ∈ L   // solution is found 
                   Bound = Min(cost of node result, Bound);  
         } 
          if no more n ∈ decision_tree with depth == Depth  
              Depth ← Depth + 1 
  } 
  return the best solution  
end Decompose 
procedure main (CCS,L) 
   exp_tree [1 .. NoManipulations] = AllManipulations (CCS); 
   for i = 1 to NoManipulations { 
       boundVal[i]=LexMap(exp_tree[i]); 
       solution[i] = Decompose(exp_tree[i],boundVal[i]) } 
   return the best solution in solutions[i] 
end main 
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The branch-and-bound algorithm in Algorithm 4.3.3 is applicable to most practical 

problems and its runtime is in the matter of minutes.  Nevertheless, as for all branch-and-

bound algorithms, the worst-case complexity remains exponential.  The speed of this 

algorithm depends on the initial polynomial and the initial side relation set.  Here, we use 

a set of library independent symbolic manipulations on the original CCS polynomial to 

help with the selection of initial side relation element.  These manipulations improve the 

execution time without hampering the quality of the solution.  First, we apply tree-height 

reduction, factorization, expansion, and Horner-based transform to CCS in the 

AllManipulations function.  As a result, we have several different polynomials (exp_tree) 

representing the same code section.  Each of these representations can result in the 

desirable implementation based on the available library elements. 

To select the initial member of side relation sets, we start with the primary inputs and 

cover the expression tree with the library elements.  We choose all library elements that 

cover the primary inputs and a portion of the expression tree as initial elements of the 

different side relation sets used to simplify the root of the decision_tree.  If the result of 

simplify is not a library element, we add more elements to the side relation set without 

further guidance from the expression tree and decompose the result.  Note that in 

selecting the side relations from the library, all different permutations of the variables 

with the same data-type are considered.  This algorithm is implemented in C with calls to 

Maple V for the symbolic manipulations. 

Example 4.5.  In order to demonstrate the power of our library mapping algorithm, 

consider a basic block implementing Equation 2: 
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Equation 2 is approximated using Pade approximation to the polynomials shown in 

Equation 3 in the previous step of the SymSoft flow as described in Section 4.3.2.3. 
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The simplification modulo set of polynomials routine can be used to map the 

numerator and denominator of Equation 3 to the available instruction set.  Let dn be 

the numerator of Equation 3 with a, b, and c the constants of the polynomial.  In 

addition, we define siderels as a subset of the available instructions with renamed 

variables.  We have: 

> dn:=1+a*x^2+b*x^4+c*x^6: siderels:={w=x^2,y=b+c*w,z=a+y*w}; 

> simplify(dn, siderels,[x,w,y,z]); 

1+z*w 

Note that the first element of the side relation set (w=x^2) corresponds to the square 

or multiply instruction and the other two elements of the set (y=b+c*w, z=a+y*w) 

and the result of simplify (1+z*w) correspond to the MAC instruction.  The side 

relation set can be any subset of the available instruction set with proper renaming of 

the variables.  Different side relation sets result in finding other possible solutions for 

the specification.  The above implies: 

dn=1+a*x^2+b*x^4+c*x^6=1+z*w 

=1+(a+y*x^2)*x^2=1+(a+(b+c*x^2)*x^2)*x^2 

Therefore, the numerator of Equation 3 can be mapped to one square and three MACs 

instructions.  Assuming R1, R2, R3, R4, and R5 hold 1, a, b, c, and x, respectively, 

the resulting assembly code is: 
MULT R6, R5, R5 

MAC  R7, R3, R4, R6 

MAC  R8, R2, R7, R6 

MAC  R7, R1, R8, R6 
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In the MP3 decoder program, the basic block evaluating Equation 2 uses floating-

point and takes 2124 cycles to run on the StrongARM SA-1110 processor.  The 

approximation represented in Equation 3 calculates x using floating-point and d 

using fixed-point arithmetic and nested MACs as suggested by the symbolic 

optimization.  This approximation executes in 901 cycles.  Thus, we have achieved an 

improvement of 57% for this simple example.  The fixed-point version with no 

symbolic optimization executes in 1367 cycles.  Thus, approximately 50% of the 

improvement achieved is due to use of fixed-point arithmetic and 50% is due to 

smarter use of processor instructions.                        ■ 

4.4. RESULTS 

We have tested the effectiveness of SymSoft using the experimental embedded system 

SmartBadgeIV and a wide range of code examples used in communication, digital signal 

processing, and streaming media.  The SmartBadgeIV system and our experimental setup 

for hardware execution time and energy consumption measurement were described in 

Section 4.2. 

The first six software examples are obtained from a DSP software benchmark suite 

[48].  The first two examples are software programs that perform common digital signal 

processing computations; discrete convolution and dot (inner) product.  Convolution is 

the linear operator can compute the output of a linear time-invariant (LTI) system in 

response to an input sequence given the system impulse response sequence.  The dot 

(inner) product of two vectors is the summation of the products of the two input 

sequences; i.e.    ∑ ⋅=
i

iyixz ][][ .

The next four examples are different digital filters used in digital signal processing and 

communication applications.  The first filter is a finite impulse response (FIR) filter.  The 

next two filters are biquad infinite impulse response (IIR) filters.  A single IIR filter of 
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arbitrary order is often decomposed into equivalent cascades of 2nd-order IIR sections 

known as biquads.  Although the biquad cascade is analytically identical to the single 

filter of higher order, the biquad filter realization is more stable and less sensitive to 

quantization errors.  The last filter is a least-mean-square (LMS) FIR adaptive filter. The 

LMS filter is a time-varying linear system for which the filter coefficients are adjusted at 

each time step to minimize the error between the actual output and a given desired output. 

Finally, the last example is a full MPEG Layer III (MP3) audio decoder 

implementation that streams MP3 encoded files from a server to a client 

(SmartBadgeIV). 

Table 4.3. Results of SymSoft Optimization on a Set of Examples 

  Execution time in microsecs 
Examples Original SymSoft improvement (%) 
Convolution 667 627 6.01 
Dot product 358 267 25.42 
FIR filter 2418 1170 51.61 
IIR filter (4 biquads) 5079 4355 14.25 
IIR filter (1 biquad) 1396 1250 10.46 
Least Mean Square 1200 1000 16.67 
MP3 decoder 5470000 1430000 73.86 

Table 4.3 summarizes the results of applying SymSoft tool flow to the set of examples 

discussed above.  In each case, we start with the fixed-point implementation of the 

algorithm and use profiling to select the critical code sections.  Optimizing a critical code 

section results in noticeable improvement on any given example.  Next, the critical code 

sections are automatically mapped to the instruction set available on the StrongARM SA-

1110 processor and Intel’s integrated performance primitives (IPP) library for 

StrongARM SA-1110 processor [34].  Table 4.3 shows the execution time of each 

example before and after the optimization with SymSoft.  Note that the original execution 

time column, reports the execution time of the examples when all possible optimizations 

available with the ARM compiler are used. 
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The improvements demonstrated in Table 4.3 indicate that by using SymSoft we can 

obtain significant execution time improvement for a range of applications over 

commercial compilers.  The amount of improvement achieved is dependent on the 

number of critical blocks that are optimized and the library implementations available for 

the given block.  Examples in Table 4.3 show improvements in the range of 6% to 73% 

with an average of 28% improvement. 

In the next section, we will go through all the steps of the SymSoft flow using the 

MP3 decoder software as an example. 

4.4.1. THE MP3 OPTIMIZATION RESULTS  

We start with an algorithmic level description of the MPEG Layer III (MP3) audio 

decoder obtained from the International Organization for Standardization (ISO) [23].  

Our design goal is to accelerate the MP3 decoder and lower its energy consumption while 

keeping full compliance with the MPEG standard.  The first step in decoding the MP3 

stream is synchronizing the incoming bitstream and the decoder.  Huffman decoding of 

the SubBand coefficients is performed before requantization.  Stereo processing, if 

applicable, occurs before the inverse mapping which consists of an inverse modified 

discrete cosine transform (IMDCT) followed by a polyphase synthesis filterbank.  During 

the optimization process, we used instructions available on the StrongARM SA-1110 

processor, a mathematical library available with Linux operating system [37], Intel’s 

integrated performance primitives (IPP) library for StrongARM SA-1110 processor 

[34], and a library populated with in-house pre-optimized routines.  The library elements 

ranged from simple mathematical functions such as MAC to as complex elements as 

IMDCT routine. 

The SymSoft flow, as described in Section 4.3, consists of library characterization, 

target code identification, and the final library mapping step.  The library characterization 

step uses hardware measurements for performance and simulations for energy 
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consumption [44].  The polynomial representation is obtained either from the source code 

(Linux mathematical and in-house libraries), or from documentation (IPP library). 

The target code identification consists of three important steps: data type conversion, 

code profiling, and formulating polynomials to be mapped.  The first step is to check if 

floating-point data types are suitable for the given platform.  Since SmartBadgeIV ’s 

processor, StrongARM SA-1110, can only emulate the floating-point operations, there 

is a need for data representation transformation.  The code was converted to use fixed-

point arithmetic.  It was verified through simulation that 27-bit precision fixed-point data-

types are sufficient to meet the compliance test provided by MPEG standard [45].  

Automating floating-point to fixed-point data type conversion has been targeted by the 

tool Fridge [24].  Profiling the original source code highlights the critical code segments.  

Table 4.4 shows the results of profiling original MP3 decoder software we obtained from 

the standards body.  All profiling reported in Table 4.4 is using hardware measurements.  

The results are shown for one frame and represent only the most significant functions in 

terms of their performance impact.  Next, we formulate equivalent polynomial 

representation of each of the critical functions shown in Table 4.4.  We use polynomial 

approximations for the non-linear calculations in the critical basic blocks.  Once more, 

we validate that these approximations satisfy the MPEG compliance test [45].  The output 

of the target code identification step is a set of polynomials representing the critical 

sections of the code. 

Table 4.4. Profiling the Original MP3 Code 

Function name Execution time (s) % 

 III_dequantize_sample 1.1754 45.33 

 SubBandSynthesis 0.9481 36.56 

 Inv_mdctL 0.3872 14.93 

 III_hybrid 0.0670 2.58 

 III_antialias 0.0131 0.51 

 III_stereo 0.0010 0.04 

 III_hufman_decode  0.0007 0.03 

 III_reorder 0.0005 0.02 

 Total for one frame  2.5931 100.00 
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In the first phase of optimization, the polynomial representations of the critical code 

sections of the first three function shown in Table 4.4 are mapped into the StrongARM 

assembly instructions by algorithm described in Section 4.3.3.  It is important to note that 

StrongARM compiler was not capable of using the MAC instruction effectively.  

However, our symbolic algorithm was able to use this instruction efficiently.  

Automatically generated inline assembly was inserted in the C code as the result of the 

decomposing algorithm.  The results of optimizing critical functions of the MP3 code by 

SymSoft are compared with the original results from straightforward compilation in 

Table 4.5.  The numbers reported in Table 4.5 are obtained using the cycle accurate 

energy simulator described in Section 4.3.2.2.  The first, third, and fifth row in Table 4.5 

correspond to the first three rows of Table 4.4.  The second, fourth, and sixth row in 

Table 4.5 are functions related to the function in the previous row.  As we can see, 12-

70% improvement has been achieved using the SymSoft methodology.  Such 

improvement was previously possible only thorough manual optimization with inline 

assembly.  The automation introduced by SymSoft drastically reduces the embedded 

software optimization cycle. 

Table 4.5. Comparing SymSoft Instruction Mapping and a Commercial Compiler 

 Execution time (#cycles) Energy Consumption (mWhr)

Function original optimized %imp Original optimized %imp

III_dequantize_sample 650894 421976 35.2 0.940 0.747 20.5 

        PowThreeFourth 14135 5380 61.9 0.040 0.009 76.6 

SubBandSynthesis 155204 70633 54.5 1.015 0.306 69.8 

        generateFilterS 5263831 4196853 20.3 3.630 3.319 8.6 

Inv_mdctL 63583 31954 49.7 0.101 0.051 49.6 

        generateMDCTTable 1454550 957051 34.2 1.051 0.922 12.2 
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Next, we profile the MP3 decoder that results from this phase of optimization on the 

hardware and measure the execution time of each function while decoding one frame of 

the MP3 stream.  The resulting performance profile is shown in Table 4.6.  Although the 

execution time per frame is drastically reduced (by two orders of magnitude compared to 

Table 4.4), we can see that still almost 85% of the execution time is spent in the IMDCT 

and SubBand synthesis functions. 

Table 4.6. MP3 Profile After First Phase of Optimization  

 Function name Execution time (s) % 

 Inv_mdctL 0.0144 49.54 

 SubBandSynthesis 0.0103 35.30 

 III_dequantize_sample 0.0013 4.33 

 III_stereo 0.0008 2.83 

 III_reorder 0.0007 2.28 

 III_antialias 0.0006 2.15 

 III_hufman_decode  0.0007 2.48 

 III_hybrid 0.0003 1.10 

 Total for one frame  0.0291 100.00 

 

 

 

 

 

 

In the second phase of optimization, the code is mapped to Intel’s IPP library using the 

SymSoft methodology.  Here we find two primitives that match the two critical 

procedures shown in Table 4.6.  The resulting performance profile is shown in Table 4.7.  

Our method automatically uses two of the IPP routines.  While the new profile shows that 

SubBand synthesis still takes roughly 35% of the execution time for each frame, we see 

that MDCT is no longer a critical portion of the code.  Notice that the execution of the 

IPP SubBand synthesis routine is one order of magnitude faster than the previous version 

and the total time for decoding one frame is reduced by a factor of 5. 
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Table 4.7. MP3 Profile After Second Phase of Optimization 

Function name Execution time (s) % 

 ippsSynthPQMF_MP3_32s16s 0.00176 35.242 

 III_dequantize_sample 0.00124 24.79 

 III_stereo 0.00082 16.46 

 III_hufman_decode 0.00067 13.416 

 IppsMDCTInv_MP3_32s 0.00047 9.4113 

 III_get_scale_factors 3.4E-05 0.6808 

 Total time for one frame  0.00499 100.00 

 

 

 

 

 

Table 4.8 summarizes the performance and the energy results of the overall 

optimization process we described in this section.  All measurements are performed on 

the SmartBadgeIV while running at maximum processing speed and voltage.  We start 

from the original source code obtained from the standards web site that runs roughly two 

orders of magnitude slower than real-time playback.  The next two rows show the results 

of mapping only into Intel’s IPP library; more specifically, we are able to automatically 

use IPP’s SubBand Synthesis and IMDCT in the original code.  However, the rest of the 

code remains intact and still operates on floating-point data.  StrongARM SA-1110 

cannot perform floating-point operations natively.  As a result, the execution time of the 

code is still far from real-time playback. 

Table 4.8. Execution Time and Energy of Different Versions of the MP3 Decoder 

Code version Execution 
time (s) 

Improvement 
factor Energy (mWhr) Improvement 

factor 
 Original 503.92 1.0 509.6 1.0 

 Original + IPP SubBand 301.43 1.7 292.5 1.7 

 Original + IPP SubBand & IMDCT 211.27 2.4 199.1 2.6 

 SymSoft first phase (FPh) optimization 5.47 92.1 4.47 114.2 

 FPh + IPP SubBand 3.33 151.4 2.78 182.3 
 SymSoft final optimization  
(FPh + IPP SubBand & IMDCT) 1.43 352.4 1.17 435.2 

 IPP MP3 (Best possible) 0.41 1240.8 0.31 1626 
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The fourth row corresponds to the result of the first phase of optimization using 

SymSoft methodology (without using the Intel library).  In this phase, the target libraries 

used in the mapping step consist of the assembly instructions available on the 

StrongARM and a set of in-house fixed-point routines.  As shown, we have achieved an 

improvement of two orders of magnitude in both performance and energy for this 

mapping.  The improvement is because of effective use of the MAC instruction available 

on StrongARM and conversion of most floating-point operations to fixed point.  Fixed-

point accuracy is verified through simulation. 

An additional saving of a factor of four is obtained by further optimizing the code and 

adding Intel’s IPP library to the target libraries in the mapping step.  The improvement of 

factor of four is solely due to automatic use of complex library elements that have been 

pre-optimized for the given processor.  Full compliance to the standard of each version of 

MP3 code is ensured by checking the accuracy at each mapping step with MP3 

compliance test [45].  Note that even larger energy savings are possible by using 

processor frequency and voltage scaling, since the final MP3 code optimized by SymSoft 

runs almost four times faster than real-time playback. 

The last row in the table, IPP MP3, represents fully hand-optimized MP3 code for 

StrongARM available from Intel.  The final optimized version by SymSoft is a factor of 

3.5-3.7 times worse than the IPP MP3.  The lower bound on execution time (IPP MP3) is 

achieved by full manual optimization, which is an error-prone and tedious task.  Our 

methodology reduces the manual intervention of software designers in the optimization 

process and its results are still faster than real-time playback.  Such improvements were 

previously only possible by skilled designers, familiar with the hardware and software, 

hand optimizing the code for a given embedded system platform. 

As it can be observed from Table 4.8, the reported optimization space for the MP3 

decoder spans over three orders of magnitude.  The major contribution of this work is to 

provide a semi-automated optimization flow that closely approaches the lower bound of 
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the optimization space within the limitations of polynomial representation for code 

sections.  Our approach is particularly suitable for data intensive algorithms such as DSP 

and multi-media applications, since large portions of these software codes can be easily 

represented by polynomials. 

4.5. SUMMARY 

The contribution of this chapter is a symbolic mapping algorithm and methodology, 

SymSoft, for energy and performance optimization of algorithmic level software code to 

execute on a given embedded processor.  There are three main steps in our methodology: 

library characterization, target code identification, and library mapping.  The library 

characterization step finds a polynomial to represent the functionality of each library 

element and associates a set of parameters such as execution time, energy consumption, 

and input/output type with each library element.  In the target code optimization step, our 

tool uses execution time and energy profiling to automatically identify need of automated 

data representation conversion and the critical sections of the code that would benefit 

most from optimization.  For transcendental arithmetic functions, approximation into a 

polynomial representation is needed in order to enable symbolic algebra techniques.  

Finally, the library-mapping step uses symbolic computer algebra to automatically 

decompose the polynomial representations of the critical code sections into a set of 

library elements available for the embedded processor. 

We demonstrated application of our tool, SymSoft, to the optimization of several 

examples on the SmartBadgeIV [22] embedded system.  Using SymSoft for source code 

optimization, we have been able to increase performance and energy consumption of 

these examples dramatically while satisfying the output accuracy requirements.  These 

improvements are achieved by the use of pre-optimized software library functions, 

conversion of critical floating-point operations to fixed point, and reducing the number of 

memory accesses and instructions executed in critical code segments.  The technique 
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presented in this chapter can be easily used in conjunction with other compiler 

optimization techniques [27]. 

 

 



 

 
 
 
 
 
 
 
 

CHAPTER 5   

INSTRUCTION SET SELECTION AND USAGE 

 

In the previous two chapters, the focus has been on the design and optimization of 

hardware and software sections of an embedded system independently.  In this chapter, 

software and hardware co-design is addressed.  The co-design methodology presented in 

this chapter, identifies sections of the software that are critical and are more appropriate 

for hardware.  Mapping these segments to hardware can greatly reduce the execution time 

of the application.  Application-specific instruction-set processors (ASIPs) are suitable 

for such embedded systems.  ASIPs have time-to-market advantage over custom design 

ASICs and performance and power advantages over traditional fixed instruction set 

processors.  These processors are microprocessors where the instruction set is specialized 

based on a given application.  ASIPs are tailored to include new ad-hoc functional units 

and instructions that calculate the critical sections of the application software.   

Typically, the specialization of embedded ASIPs in a manual task.  Our objective is to 

facilitate the specialization of application-specific processors and to automate the use of 

the new complex instructions added to the processor.  In this chapter, we propose a new 

specialization methodology based on extracting multiple-input single-output dataflow 

graphs and symbolic manipulation of polynomials.  First, we automatically identify 
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clusters of combinatorial operations that can be grouped into single operations 

implemented in new functional units of the ASIP.  Next, we use symbolic algebraic 

algorithms to map dataflow sections of our software to the potential new complex 

instructions.  The combination of algorithms from symbolic computer algebra and 

standard compiler optimization techniques allows novel automatic code transformations 

that are hard to find by traditional graph covering methods. 

Example 5.1.  As a motivating example, consider the code segment shown below: 

int foo(int a, int b, int c, int d){ 

  return a*b+c*d; 

} 

Assume that for a digital video application foo is a critical function.  Therefore, we 

add a functional unit to the application-specific processor that calculates foo.  Next, 

consider a basic block of the same digital video application calculating: 

Y1 = a * R1 + b * G1 + c * B1 + d; 

Y2 = a * R2 + b * G2 + c * B2 + d; 

Y  = Y2 + q * (Y1 - Y2); 

With proper variable renaming and the algebraic knowledge that d = 1*d, we can 

calculate Y1 and Y2 using the new foo instruction added to the processor as follows: 

Y1 = foo(a, R1, b, G1) + foo(c, B1, d, 1); 

Y2 = foo(a, R2, b, G2) + foo(c, B2, d, 1); 

By using the expand routine in symbolic algebra, Y can be transformed and mapped 

to the foo instruction: 
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Y = Y2 + q * Y1 – q * Y2; 

Y = Y2 + foo(q, Y1, -q, Y2); 

Thus, the number of instructions used to calculate this basic block is reduced from 15 

instructions to 9 instructions that include 5 foo instructions, 3 adds, and 1 negate.  

Now, we formulate one polynomial for the original basic block: 

Y = a*R2+b*G2+c*B2+d+q*a*R1+q*b*G1+q*c*B1-q*a*R2-q*b*G2-q*c*B2; 

By applying the collect symbolic polynomial manipulation on Y, and substituting 1-

q by p, we have: 

Y = ((1-q)*R2+q*R1)*a+((1-q)*G2+q*G1)*b+((1-q)*B2+q*B1)*c+d; 

Y = (p*R2+q*R1)*a+(p*G2+q*G1)*b+(p*B2+q*B1)*c+d; 

Y = foo(foo(p,R2,q,R1),a,foo(p,G2,q,G1),b)+foo(foo(p,B2,q,B1),c,d,1); 

As shown, the new equation can be mapped to 7 instructions: 5 foo instructions, 1 

add, and 1 subtract.  The new mapping is even more efficient than the previous one.  

This complex solution is hard to find in tree mapping methods since the number of 

operation to calculate Y initially increases.                       ■ 

Currently, no tool can perform these kind of algebraic optimizations automatically.  

Furthermore, utilization of additional ASIP instructions is the responsibility of the 

designers.  Thus, designers manually implement such optimizations using their 

knowledge of algebra and insert the proper intrinsic function calls. 

This chapter presents a methodology that combines detection of potential new 

instructions for application-specific processors with algebraic manipulations such as the 

one shown in the previous example.  The result of this combination is automatic 
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instruction set selection and mapping.  First, a set of potential functional units is extracted 

from the application software by the multiple-input single-output (MISO) dataflow 

extraction tool.  Next, symbolic algebra is used to map the polynomial representations of 

the basic blocks to the new instruction set.  The new instruction set is determined based 

on the usage frequency, cost, and possible execution time improvement.  Finally, 

symbolic algorithms are used once more to map the basic blocks to the new instruction 

set. 

The application of this methodology spans from pure ASIP design with extensible 

functional units to processors equipped with embedded reconfigurable arrays.  To 

minimize microarchitectural and technological assumptions, the analysis of the results 

focuses on the former type of designs without excluding the viability for the latter 

implementation.  As an example of an extensible ASIP, we are using a Tensilica [50][26] 

core in our experimental setup. 

The chapter is organized as follows:  Section 5.1 discusses previous work in software 

optimization for configurable processors.  Section 5.2 presents our proposed 

methodology, and explains each of its steps.  The results of several examples and the 

improvements achieved by automatically specializing the Tensilica core are presented in 

Section 5.3.  Finally, Section 5.4 summarizes contributions of this work. 

5.1. RELATED WORK 

This chapter combines two related areas of research: automatic identification of 

instruction-set extensions and use of symbolic algebraic manipulations to map dataflow 

sections of the code to complex instructions available on the processor.  We will discuss 

the latter area first and then the state-of-the art in instruction identification. 

Advanced compilers integrate some tree restructuring capabilities based on algebraic 

properties to reduce the execution time of complex calculations [27][58].  The goal of 

such restructuring is typically very precise; for example isolating constants to minimize 
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the amount of address calculation at runtime.  In such cases, a number of basic tree 

transformation rules, applied recursively, result in the desired optimized tree.  Similarly, 

research compilers [51] for SIMD architectures use a fixed set of algebraic tree 

restructuring rules for associativity and commutativity to improve the quality of SIMD 

instruction selection.  Our approach is more general in that it explores all restructuring 

possibilities of a dataflow section derived from results of elimination theory and Gröbner 

bases [7].  A comprehensive set of algebraic manipulations becomes necessary, as 

defining a straightforward series of transformations is not possible in the general case of 

complex instruction selection. 

The problem of identifying instruction-set extensions consists of detecting clusters of 

operations that, if implemented as a single complex instruction, maximize a metric—

typically performance.  Previous works [54][55] have combined template matching (or 

instruction mapping) and template generation (instruction identification and selection, in 

this text) for ASIPs.  Kastner et al. [54] cluster operations based on the frequency of node 

types successions—e.g., multiplications followed by additions.  The authors observe that 

the number of operations per cluster is typically small and conclude that simple pairs of 

operations appear to be the best candidates.  In addition, their work does not account for 

constraints on the number of inputs and outputs of the clusters.  Arnold et al. [55] propose 

a very similar method from the identification perspective, although the overall goal and 

architectural context is rather different.  Work in reconfigurable computing (e.g., 

[56][57]) also tackles instruction-set identification.  Algorithms are relatively simple and 

typically result in small suboptimal instructions. 

In the experiments presented in this chapter, we have designed specialized Xtensa 

processors for a set of different applications using the Tensilica toolset [50].  Tensilica 

provides an extensible core architecture and a methodology and toolset to specialize the 

core architecture for a given application.  The Xtensa architecture can be extended by 

adding new function units to the microprocessor.  These extensions are described in the 

Tensilica instruction extension (TIE) language.  The TIE descriptions are compiled into 
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hardware and integrated in the core Xtensa processor.  However, identifying suitable 

extensions to the core Xtensa processor is a manual task and based on designers 

creativity.  In addition, the TIE instructions added a processor should be used manually in 

the application software through intrinsic function calls.  Both these limitations are 

automated by the methodology presented in this chapter. 

5.2. METHODOLOGY 

Here we present a methodology that aims to automate specialization of an application-

specific processor by adding new functional units to an extensible basic ASIP core.  Our 

methodology also targets automatic use of the new functional units in the application 

software.  Ideally, designers can profile the software code to find the critical sections of 

the code.  These sections are then added to the ASIP core as new functional units and 

instructions.  In addition, a compiler-like tool would optimize the algorithmic-level 

description of the software to use the new instructions automatically.  However, in 

reality, optimum selection of new instructions is not possible solely by traditional 

profiling tools.  Moreover, designers need to manually modify their original code to use 

the new functional units or complex instructions.  Usually, designers use the profiling 

information as a guideline for selecting new instructions.  Along with that, the software 

code is manually restructured to find common blocks or functions that could be mapped 

to new functional units or instructions.  Automating selection and use of new instructions 

can save much design time. 

Figure 5.1 shows the overview of our two-step methodology.  We start with the high-

level C code describing our application and the instructions available on the base core.  In 

the first step, we combine multiple-input single-output (MISO) dataflow extraction with 

symbolic algebraic mapping to define the new instruction set.  Note that the base 

instruction set of extensible ASIPs can generally execute control segments of the 

application efficiently.  Thus, we focus on dataflow sections of the code and add new 
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combinational functional units to the base ASIP to accelerate critical basic blocks of the 

code. 

Algorithmic-level
C Code

Base Instruction Set

New Instruction Set

Automatic
Instruction
Mapping

Optimized C Code
Using

New Instruction Set

Automatic
Instruction
Selection

Figure 5.1. SymASIP Methodology 

Once the instruction set is selected, decomposition algorithms empowered by 

symbolic algebra are used in the second step to automatically map the basic blocks to the 

new instruction set.  Each basic block is modeled by its polynomial representation.  These 

polynomials are decomposed into a sequence of instructions available on the new 

customized ASIP by polynomial manipulation techniques. 

The key contribution is in the use of symbolic algebra combined with dataflow 

extraction technique to automate instruction set selection and use of the new instruction 

set for basic block optimization.  Note that our methodology is compliant with other 

software optimization and processor customization techniques.  Additional benefits are 

gained for example by customization of the register file and cache units or by compiler 

optimizations such as dead code elimination and constant propagation.  The next sections 

describe steps of our methodology in detail. 
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5.2.1. AUTOMATIC INSTRUCTION SELECTION 

In this section, we will explain the details of the automatic instruction selection step 

that corresponds to the first shaded box in Figure 5.1.  As mentioned earlier, the base 

instruction set of an extensible ASIP is usually sufficient for control flow.  Therefore, our 

focus is on adding new instructions that effectively execute critical dataflow sections of 

the code.  Figure 5.2 shows the different steps necessary for automatic instruction set 

selection.  We start by extracting multiple-input single-output (MISO) dataflow segments 

from the high-level C code description of our application.  A MISO is a set of nodes and 

edges of a directed acyclic graph (DAG) that except for one node all destination nodes of 

the edges belong to the MISO [52].  Identification of MISOs within a DAG requires an 

algorithm of only linear complexity.  The set of extracted MISOs represent the potential 

new instructions. 
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Figure 5.2. Automatic Instruction Selection 

Using symbolic algebraic algorithms, the original software application is optimized 

and mapped to the union of the base instruction set and the potential new instruction set.  
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The potential new instructions are synthesized in order to extract their cost and execution 

time.  The next step is to profile the optimized software code.  The output of the profiler 

indicates the frequency that each potential new instruction can be used in the application.  

Note that the symbolic decomposition step automatically identifies all possible sections 

of the code that can be mapped to extracted MISOs without manual intervention or the 

need to restructure the original program.  Using the frequency of each instruction and 

their associated cost and execution time, a set of most promising MISOs are selected as 

instructions to be added to the base ASIP.  In the next section, we will describe the MISO 

extraction and symbolic decomposition steps in more detail. 

5.2.1.1. MISO Extraction 

The multiple-input single-output (MISO) dataflow extractor tool described in this 

chapter implements two different algorithms.  Both algorithms extract single output 

subgraphs from the basic blocks of the embedded application that correspond to potential 

new instructions.  The analysis starts with the directed acyclic graph (DAG) 

representation of the basic blocks of the given application.  Nodes of the DAG are 

assembler-like instructions and edges represent data dependency among instructions. 

The first method is a greedy algorithm of linear complexity that extracts maximal 

single output subgraphs from basic blocks.  The extracted subgraphs are called 

MaxMISOs (maximal multiple-input single-output).  The algorithm starts from each exit 

node of the basic block and constructs a subgraph by trying to recursively include the 

parent nodes [52].  Subgraph formation never stops for excess of inputs—inputs are 

unlimited in a MaxMISO—but it stops if inclusion of a further parent node violates the 

output constraint.  Therefore, MaxMISOs are maximal in the sense that adding any 

further node would fundamentally violate the single output constraint.  The algorithm 

complexity is linear in the number of nodes of the initial graph.  Extracted subgraphs 

produce a single result, while their number of inputs is unlimited.  If the resulting number 

of inputs is unpractical, the MaxMISO is ignored.  The MaxMISO algorithm represents a 
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good tradeoff between complexity of exploration and effectiveness of the resulting 

extracted instructions. 

The second algorithm used in this chapter is called Optimal [53].  It extracts 

instructions satisfying user-given input/output constraints that result in maximal speedup.  

Optimal analyses the dataflow graphs of the basic blocks of the application and considers 

all possible subgraphs.  The input and output requirement of the subgraphs is calculated 

and only those satisfying all constraints are selected for further consideration.  The 

number of subgraphs being exponential in the number of nodes of the graph, Optimal has 

an exponential worst case complexity; yet, it exploits some graph characteristics which 

allow significant pruning of the search space and, in practice, it exhibits a subexponential 

complexity.  Graphs with up to a couple of hundreds of nodes can be processed in matter 

of hours.  While Optimal is designed to satisfy any user-given output constraint, it has 

been used here only with a single output. 
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Figure 5.3. MISO Extraction on Y1 = a*R1 + b*G1 + c*B1 + d 

Speedup estimation is then performed for the potential instructions extracted by either 

the MaxMISO or the Optimal algorithm.  The estimation consists in comparing the 

approximate subgraph execution time in software, as a sequence of instructions, with the 

approximate time the subgraph takes if implemented in hardware, as a single special 

instruction.  The most promising candidates are then passed on to the Symbolic Mapping 

phase. 
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The behavior of Optimal is now shown on the motivational example seen at the 

beginning of this chapter, for an input/output constraint of 4/1.  Part of the DAG of the 

main basic block is shown in Figure 5.3.  Optimal identifies subgraphs within constraints, 

and estimates their gain by using a rough estimation model, described in [53].  The 

subgraphs A, B and C, are finally selected by Optimal to be passed on to the next phase, 

as the most promising candidates for new instructions.  Candidate B corresponds to the 

foo instruction shown in the motivating example of this chapter.  Next, we will show 

how Candidate B is chosen by the symbolic mapping technique as a new instruction. 

5.2.1.2. Symbolic Mapping and Optimization 

The symbolic mapping algorithm requires two sets of inputs: a set of polynomials 

representing the basic blocks of the application and another set of polynomials 

representing the complex dataflow instructions.  The goal of the symbolic optimization 

step is to decompose the polynomial representations of the basic blocks into a minimum 

number of polynomial representations of available instructions.  Such decomposition is 

done with the help of symbolic computer algebra routines and algorithms.  Functional 

units added to an extensible ASIP execute in one cycle or they are automatically 

pipelined [50].  Thus, using a minimum number of instructions to calculate a given basic 

block improves its execution time. 

The polynomial representation of a basic block can be directly extracted from the C 

code if the basic block calculates a polynomial function.  If the basic block performs a 

series of bit manipulations or Boolean functions, interpolation-based algorithms [47] can 

be used to formulate the equivalent polynomial representation.  Note that Boolean 

functions and polynomial functions accelerate greatly when mapped to hardware.  

Therefore, these basic blocks are the excellent candidates to be mapped in new functional 

units of the processor.  Approximation, such as Taylor or Chebyshev series expansion, 

can also be used to extract polynomial representation for basic blocks that calculate a 

transcendental function.  In this chapter, we will not use approximation techniques. 

 



 93

This section gives a brief overview of the mapping algorithm.  The core of the library-

mapping algorithm is the simplification modulo set of polynomials (simplify) routine, 

described in Chapter 2.  The polynomial representations of the basic blocks are simplified 

modulo a set of polynomials.  This set, a.k.a. the side relation set, represents a subset of 

the instruction set.  Next, we describe the simplify routine by means of the motivating 

example of this chapter.  The polynomial representation of the basic block is equal to 

(p=q-1): 

Y=a*q*R1+a*p*R2+b*q*G1+b*p*G2+c*q*B1+c*p*B2; 

Side relation sets are selected from the polynomial representations of the MISOs reported 

by the MISO extraction tool (Section 5.2.1.1) with proper variable renaming.  In this 

example, we show two side relation sets, siderel and siderel2, with elements whose 

polynomial representations match Candidate B shown in Figure 5.3. Next, we apply 

simplify on Y modulo the selected side relation sets.  The result reported by Maple is 

shown in bold-italic.  A mapping is found when the result of simplify is only one variable 

or corresponds to a polynomial representation of an instruction in our instruction set.  

This process is repeated for different combinations of the MISOs and the instructions 

available on the base core.  Candidate B is chosen as a new instruction as it is more 

frequently used in execution (or mapping) of Y. 

> siderel:={s1=q*R1+p*R2, s2=q*G1+p*G2, s3=q*B1+p*B2}; 

> z := simplify(Y, siderel, [R1, R2, G1, G2, B1, B2]); 

   z = a*s1+b*s2+c*s3 
> siderel2:={s4=s1*a+s2*b, s5=s4*1+c*s3}; 

> simplify(z, siderel2, [s1, s2, s3]); 

   s5 

As shown, side relation set selection is a non-trivial task.  Therefore, to find the best 

possible mapping, the side relation set should be set equal to all subsets of the instruction 

set with all possible permutations of the input variables.  Algorithm 5.2.1.2 is used to 

prune the search space efficiently.  Let S be the polynomial representation of the basic 
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block to be decomposed into complex dataflow instructions.  We start by simplifying S 

modulo each instruction as the side relation.  The simplification results are stored in a tree 

data structure.  If a simplification result is identical to the polynomial representation of an 

available instruction, a possible solution is found and the corresponding tree node is 

marked accordingly.  If the simplification result stored in a tree node does not correspond 

to a library element, we recursively apply the same steps to the new tree node. 

Algorithm 5.2.1.2. Decompose S into the instruction set L  
procedure Decompose(S, L) 

# Given a polynomial representation of the basic block S  
# and a set of polynomials L corresponding the instruction set 
# decompose S into elements of library L. 
# initialize tree 

   treeroot(S); 
   depth ← 0 
   bound ← -1 

while depth ≠ bound do { 
       bound ← Explore(S, L, depth) # Explore is defined below 
       depth ← depth +1 
   } 

report best solution in tree 
end 
# used in Decompose procedure 
int function Explore(S, L, d)  

bound ← -1 
   for all n ∈ in tree with depth d do{ 
      for all sr ∈ L do{ 
         result = simplify(n, sr); 

# make result a child of node n  
         addchild(n, result);    

if result ∈ L 
             # solution is found  
             bound = treedepth(result);  }} 

# returns –1 if no solution is found yet. 
   return(bound) 
end 

The bounding function used to reduce the search space is the number of instructions 

used to calculate the basic block.  In other words, if we find a solution that calculates the 

basic block with two instructions we will not explore solutions requiring more than two 

 



 95

instructions.  Nevertheless, we will uncover all two-instruction solutions and choose the 

one with optimal cost or execution time.  The number of instructions used is equivalent to 

the depth of the simplification tree.  Therefore, the tree is bounded by the depth of the 

first solution found.  This algorithm was implemented in C with calls to Maple V for 

symbolic manipulations. 
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Figure 5.4. Automatic Instruction Mapping 

5.2.2. AUTOMATIC INSTRUCTION MAPPING 

The new instruction set of the ASIP has been chosen by the step described earlier.  

The original software code is now automatically transformed to use the new instruction 

set assisted by symbolic polynomial manipulation algorithms.  Figure 5.4 gives an 

overview to the automatic instruction-mapping step.  This step also corresponds to the 

second shaded box of Figure 5.1.  The polynomial representations of basic blocks of the 

software application and the new instruction set of the ASIP are available to the symbolic 

mapping algorithm.  As opposed to tree covering based algorithms, in our algorithm, 

mapping is performed simultaneously with algebraic manipulations. 

The automatic instruction-mapping step uses Algorithm 5.2.1.2 described in  

Section 5.2.1.2.  The output of this step is optimized C code with intrinsic function calls 

automatically inserted.  The optimization criteria consist of using a minimum number of 

instructions to calculate a basic block of the original code.  Since added functional units 
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either are pipelined or execute in one cycle, this mapping greatly reduces the execution 

time. 

5.3. RESULTS 

We have optimized several Tensilica [50] cores for a set of software examples using 

our automatic instruction selection and mapping methodology.  In the first step, the 

MISO extraction tool selects a set of possible complex instructions for each software 

application.  The symbolic mapping technique is used to map the code to the new 

instructions available.  At the end of this step, a subset of the MISO set is selected and 

implemented as new functional units of the ASIP core under design.  The selection is 

based on the cost of each MISO and the frequency of its use. 

Table 5.1. Execution Time Improvements Reported by the ISS 

Examples 

Base core  
Execution time 
(cycles) 

Extended core 
Execution time 
(cycles) 

Improvement 
(%) 

dot_product 72990 54011 26.00 
Iir 88838 20652 76.75 
Fir_2dim 168978 114488 32.25 
convolution 182492 123035 32.58 
Fir 268228 158642 40.86 
DES crypt 1118570 916884 18.03 
Adpcm 22514517 14176587 37.03 
MP3 2224094335 745248522 66.49 
Average     41.25 

In the next step of the flow, we take the new instruction set and automatically use the 

complex instructions available to optimize our original software code.  We have used the 

Tensilica [50] software toolchain to measure the execution time improvement of each of 

our examples as result of the new instructions added to the base core.  The base core is 

the default 32-bit Tensilica core plus a 32-bit multiplier.  The functional units selected are 

added to the base core using the Tensilica instruction extension (TIE) language.  Table 

5.1 reports the execution time of each example (measured in cycles) as reported by the 

Tensilica instruction set simulator. 
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The first five examples in Table 5.1 are simple filters and dot-product examples from a 

DSP benchmark.  The DES crypt example is the MD5 message-digest algorithm that 

produces a 128-bit fingerprint for an arbitrary length message or file.  The adpcm 

example is an adaptive differential pulse code demodulator software used for speech 

compression/decompression.  Finally, the last example is a fixed-point MP3 decoder 

software decoding a 5 second long stream.  By applying our methodology to the MP3 

decoder and adding only three new instructions to the base core, the decoder executes 

three times faster. 

Table 5.2. Area Cost of the Added Instructions 

Examples 

Number of 
Instructions 
Added 

Area of 
Instructions Added 
(mm2) 

Area Increase of 
the Base Core 
(%) 

dot_product 1 0.211 7.3 
Iir 1 0.503 17.3 
fir_2dim 1 0.211 7.3 
convolution 1 0.211 7.3 
Fir 1 0.199 6.8 
DES crypt 3 0.142 4.9 
Adpcm 1 0.103 3.5 
MP3 3 0.564 19.5 
Average    0.268 9.2 

To estimate the cost associated with the execution improvements reported in  

Table 5.1, we have synthesized the new functional units added for each example using 

Synopsys Design Compiler and a 0.35-micron CMOS technology library.  The area of the 

base core is approximately 0.29 mm2 in this technology.  Table 5.2 shows the number of 

new instructions added to the base core, the area of the new instructions, and the area 

increase of the base core.  As it is observed from Table 5.2, our methodology selects a 

small number of instructions to be added to the base processor that result in modest area 

increase.  Nevertheless, due to its strong instruction selection and mapping engine, the 

instructions added are key instructions that can be used in many sections of the code, and 

thus significantly decrease the execution time.  Note that the area reported in Table 5.2 is 

an upper bound, as the new instructions are synthesized separate from the base core and 
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resource sharing is not considered.  For all examples shown in this section, we have 

added a total of ten different instructions to different cores.  The complexity of the added 

instructions ranges from two operations to twenty operations. 

5.4. SUMMARY 

The contribution of this chapter is a new methodology that automates the selection of 

very complex instruction set extensions for ASIPs together with aggressive techniques to 

map the basic blocks to such complex instructions.  This work focuses on arithmetic 

intensive applications such as multi-media processing.  A basic ASIP core is extended 

automatically to include ad-hoc functional units that accelerate the dataflow sections of 

the software application.  A set of potential instructions is generated by the multiple-

output single-input (MISO) dataflow extraction tool.  Symbolic computer algebra is used 

to discover transformations that expose unintuitive opportunities for mapping basic 

blocks of an application into the potential instructions.  The most frequently used MISOs 

by the symbolic mapping tool are selected and added to the base ASIP processor.  

Symbolic algebra automates very smart instruction mapping previously only possible by 

designer’s manual intervention. 

We demonstrate the application of our tool to a set of arithmetic intensive examples 

including an MP3 decoder software.  A Tensilica core was optimized for each application 

using the Tensilica tool set.  We have achieved an average of 41% improvement in the 

execution time of our examples, while paying only an average of 9.2% penalty in area 

cost. 

Another possible application of our technique is to facilitate reuse of an ASIP in future 

generations of an application.  While hard-wired ad-hoc functional units present the risk 

of inflexibilities towards subsequent changes of an application, our smart symbolic 

mapping techniques increase the possibility of using instructions tailored for a previous 

generation of the application.  In future work, we also plan to find dataflow instructions 
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with more than one output.  Such sections can be selected by the Optimal [53] algorithm 

and represented by a set of polynomials for the symbolic mapping step. 

 

 

 



 

 
 
 
 
 
 
 
 

CHAPTER 6  

CONCLUSION 

 

Embedded systems are now in every corner of our world and their presence is 

constantly increasing.  Due to their high complexity and short turn around time, 

embedded-system design automation is now a necessity.  This thesis presents a set of 

algorithms and methodologies for design and optimization of different components of an 

embedded system.  The tools, methodologies, and algorithms presented in this thesis 

increase designer’s productivity and reduce to design cycle of an embedded system.  In 

addition, they provide a better quality of result due to a wide design space exploration at 

a high level of abstraction.  This thesis starts with the algorithmic-level description of 

designs from the multimedia and digital signal processing (DSP) domain of applications.  

Multimedia and DSP algorithms are mostly arithmetic intensive descriptions that result 

into designs with considerable data-path components. 

This thesis leverages from results of research and development in the field of symbolic 

computer algebra.  By using routines from symbolic computer algebra, the described 

design algorithms are capable of algebraic manipulation and arithmetic optimization.  To 

our knowledge, using symbolic algebra in optimization and synthesis of systems was not 

previously explored by other design tools. 
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6.1. SUMMARY OF CONTRIBUTIONS 

In this thesis, symbolic polynomial manipulation techniques are used to develop 

algorithms, tools, and methodologies that cover all aspects of embedded systems design 

including hardware, software, and processor design.   

To design a data-intensive hardware block, a set of algorithms, tools, and 

methodologies are presented that automatically map the basic blocks of the algorithmic-

level description of a design to pre-optimized arithmetic library elements.  The mapping 

and component selection is performed simultaneous with arithmetic manipulations on the 

given basic block.  These manipulations are possible by using algorithms from symbolic 

computer algebra.  Since different variation of a dataflow may result in different library 

component selection, a wider design space is explored.  The result is a data path that 

implements the given dataflow optimally using the available library.  Our method 

eliminates the need for synthesis directives from hardware designers. 

Software changes are frequent in embedded systems.  Multimedia and DSP 

applications have very complex software components.  In this thesis, a methodology, 

tool, and algorithm are presented to optimize the execution time and energy consumption 

of an embedded software program.  Energy profiling and symbolic mapping algorithms 

are used to select and optimize critical section of an embedded software program 

respectively.  The symbolic mapping algorithms map the critical section of the software 

to complex microprocessor instructions or embedded software library functions.  The 

results associated with the software optimization methodology show dramatic 

improvement on the execution time and energy consumption of a set of programs running 

on a prototype embedded system hardware. 

Software/hardware co-design is more important for embedded system design as the 

software and hardware blocks are more tightly coupled.  This thesis presents a co-design 

methodology based on application specific processors.  A set of functional blocks is 

added to the base processor to accelerate the critical sections of the given application.  
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This defines a new instruction set for the application specific processor.  The original 

application automatically optimized and mapped to the instruction available on the 

processor using an algorithms based on symbolic computer algebra.  New hardware is 

added to the application specific processor to execute the new instructions defines.  The 

software executing on this platform is automatically optimized and co-designed.  The 

method was tested on different applications and a set of specialized processors was 

automatically generated.  Results show significant execution time improvement achieved 

with smart and negligible extra hardware added to the base processor. 

6.2. FUTURE DIRECTIONS 

Symbolic computer algebra is a powerful set of algorithms not previously used in the 

field of system design and optimization.  These algorithms open a new set of 

opportunities in for future research.   

One of these possibilities is automatic algorithm optimization.  Currently most 

algorithms are designed manually by skilled engineers.  Ideally, an algorithm specified by 

a designer can be converted by a tool it to an optimum implementation based on a set of 

constraints.  For example, a Fourier transform may be automatically changed to a fast 

Fourier transform algorithm.  Most of the skills necessary for this transformation are 

implemented in mathematical tools such as Matlab and Maple.  Using these algorithms 

and a guided search over the solution space can effectively synthesizes a new and 

improved algorithm.   

On another note, many embedded system applications can tolerate a given degradation 

in their output result.  For example, an audio decoder satisfies compliancy test when the 

root mean square of the difference signal between the output of the decoder and the 

supplied reference less than a given number.  In other words, in multi-media applications 

a notion of arithmetic “don’t care” exists.  In this thesis, such “don’t care” conditions 
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were used to reduce the cost of the system.  However to automate such task, one should 

leverage results from approximation theory. 

The methodology and algorithms presented in this thesis to automate instruction set 

selection and usage can be extended to configurable computing.  The cost of silicon is 

decreasing and hybrid FPGA components are now available on the market.  These 

components have a microprocessor and configurable fabric on the same chip.  An 

embedded application can use a similar methodology as the one proposed in this thesis to 

efficiently use the processor and FPGA.  The computational intensive sections of the 

application can be automatically mapped to the FPGA.  These blocks can then accelerate 

the application code automatically using a symbolic decomposition algorithm.   
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