=Pr-L

m Ecole
polytechnique
fédérale
de Lausanne

Thése n°9278

Practical Compilation of Quantum Programs

Présentée le 12 aolt 2022

Faculté informatigue et communications

Laboratoire des systémes intégrés (IC/STI)

Programme doctoral en informatique et communications

pour I'obtention du grade de Docteur &s Sciences

par

Bruno SCHMITT ANTUNES

Acceptée sur proposition du jury

Prof. P. lenne, président du jury

Prof. G. De Micheli, Dr M. Soeken, directeurs de thése
Prof. F. T. Chong, rapporteur

Prof. R. Wille, rapporteur

Prof. E. Charbon, rapporteur

2022

To Fernando, Felipe, Gilda Helena and Francisco Olinto.

Acknowledgements

First, I wish to thank my advisor, Prof. Giovanni De Micheli, for accepting me into his
research lab and providing guidance and support throughout my time at EPFL. I want
to extend my most profound appreciation to my co-advisor, Dr. Mathias Soeken, whom
I now consider a friend, for bringing me to EPFL, introducing me to the field of quantum
computing, and for all the valuable ideas and discussions. This thesis would not have
been possible without his help.

I also wish to thank my jury members Prof. Paolo Ienne, Prof. Edoardo Charbon,
Prof. Frederic T. Chong, and Prof. Robert Wille, for judging the thesis and their helpful
comments and suggestions.

I’'m grateful to Dr. Martin Roetteler, Dr. Stephen Jordan from Microsoft, and Dr. Ali
Javadi-Abhari from IBM for the opportunities to work on exciting summer internships.
I’'m also thankful to all colleagues I interacted with during these internships.

Throughout my years as a graduate student, I have worked alongside talented re-
searchers and fellow students who have helped me in my research. For that, I wish to
thank Alan Mishchenko, Heinz Riener, Siang-Yun (Sonia) Lee, Eleonora Testa, Giulia
Meuli, Kaitlin Smith, Winston Haaswijk, Fereshte Mozafari, and all other LSI members.

My time in Lausanne would have been far less joyful if not for the friends I made there.
I thank Delio, Fabian, Luis Henrique, Manuella, Jason, and Rabei. A big obrigado to my
family and friends in Brazil, Netherlands, and Italy— especially Carmen Schmitt, Bruna
Lacerda, Fabricio Pavan, Virgilio Peixoto, and Daniel Campelo for visiting me. I’'m also
grateful to my cousin Guilherme, his wife Juliana, and their son Noah for bringing great
happiness to my weekends when they moved there: Thanks for all the family lunches.

Finally, I thank my parents and brothers, to whom I dedicate this thesis, for their
immeasurable support during this journey. They are the inspiration that keeps me aiming
at higher goals in my life.

Lausanne, June 16, 2022 Bruno Schmitt

Abstract

It’s been a little more than 40 years since researchers first suggested exploiting quantum
physics to build more powerful computers. During this time, we have seen the develop-
ment of many quantum algorithms and significant technological advances to make these
devices. As a result, at this point, large-scale quantum computers, capable of providing
valuable solutions to complex problems, seem like a certainty, even if still distant.

Nonetheless, there is a great gap between the communities of quantum algorithms
and quantum devices researchers. On the one hand, algorithm designers most often de-
scribe algorithms in a high level of abstraction, using a mixture of natural language,
pseudocode, and mathematical formulas—a form deriving asymptotic complexity esti-
mates while shielding researchers from the low-level complexities and restrictions. On the
other hand, physical devices only understand algorithms implemented using the primitive
low-level abstractions they support.

Most programming systems available for quantum computing are intertwined with
the quantum circuit model, so developers must implement algorithms in terms of low-
level unitary operators. Not surprisingly, the implementation of quantum algorithms
on such a low level of abstraction is very time-consuming, error-prone, and results in
non-portable programs—given the technological diversity of quantum devices.

In this thesis, I study problems related to the compilation of quantum programs,
seeking forms of augmenting the expressive power of current frameworks and narrowing
the gap between algorithmic research and concrete implementations. I focus on scalabil-
ity and practicality—in particular, together with theoretical investigations, I developed
concrete algorithms that are performant and scalable. The embodiment of my research
contribution is a compiler companion library for the synthesis and compilation of quan-
tum circuits called tweedledum.

Keywords: design automation, logic synthesis, reversible logic, compilation, quantum
computing, quantum programming.

il

Zusammenfassung

Es ist etwas mehr als 40 Jahre her, dass Wissenschaftler zum ersten Mal Quantenphysik
als Grundlage fiir leistungsstarke Computer vorgeschlagen haben. Seitdem beobachten
wir die Entwicklung vieler Quantenalgorithmen sowie signifikante technologische Durch-
briiche. All dies fiihrt heutzutage zu einer hohen Zuversicht, dass leistungsstarke Quan-
tencomputer in der Zukunft—wenn auch weit entfernt—wertvolle Losungen zu komplexen
Problemen liefern werden.

Nichtsdestotrotz existiert eine grofe Abstraktionsdifferenz zwischen Wissenschaftlern
im Bereich von Quantenalgorithmen und denen, die an physikalischen Quantencomputern
arbeiten. Entwickler von Quantenalgorithmen beschreiben jene mit einer Mischung aus
natiirlicher Sprache, Pseudocode, sowie mathematischen Formeln oft auf einer sehr hohen
Abstraktionsebene. Dabei leiten sie asymptotische Komplexitdtsergebnisse her, ohne auf
die Implementierungsdetails unterer Abstraktionsebenen einzugehen, die von konkreten
physikalischen Quantencomputern verstanden werden.

Die meisten Programmiersysteme fiir Quantencomputer sind stark mit dem Quanten-
schaltkreis Modell verflochten. Daher miissen Programmierer Algorithmen auf Basis von
maschinennahen unitédren Operationen implementieren. Es {iberrascht nicht, dass dies
sehr zeitintensiv und fehleranféllig ist. Zudem lassen sich die Programme nicht einfach
portieren, da verschiedene Quantencomputer sehr unterschiedliche Fahigkeiten haben.

In dieser Dissertation untersuche ich Compiler von Quantenprogrammen. Diese erwei-
tern existierende Programmiersysteme durch Ausdrucksmoglichkeiten auf hoheren Ab-
straktionsebenen und fiithren schlussendlich dazu, dass die Abstraktionsdifferenz zwischen
algorithmischen Beschreibungen und konkreten Implementierungen verringert wird. Den
Fokus lege ich auf Erweiterbarkeit, Performanz, und praktische Anwendbarkeit. Basie-
rend auf theoretischen Untersuchungen habe ich neue performante und universelle Al-
gorithmen entwickelt. Die Softwarebibliothek tweedledum fasst meine Arbeit zusammen
und erlaubt die Integration meiner wissenschaftlichen Beitrage in existierende Program-
miersysteme fiir Quantencomputer.

Schliisselworter: Entwurfsautomatisierung, Logiksynthese, reversible Logik, Compila-
tion, Quantencomputer, Programmierung von Quantencomputern

v

Contents

Acknowledgements i

Abstract (English/Deutsch) iii

Introduction 1

Contributions L 2
Outline

I Background 5

1 Logic synthesis 7

1.1 Boolean functions 7

1.2 Logic data structures L L L 8

1.2.1 Truthtable 8

1.2.2 Two-level expressions 9

1.2.3 Binary decision diagrams 9

1.2.4 Multi-level logic networks 11

1.3 Boolean satisfiability oL 14

2 Quantum computing 15

2.1 Quantum bits 15

2.2 Quantum operators 16

2.3 Thecircuitmodel 18

2.4 Representation of quantum functionality 19

25 Oracles 20

II Synthesis 23

3 Introduction to quantum circuits synthesis 25

3.1 Synthesis problems L 26

vii

viii CONTENTS

4 ESOP-based synthesis 29
4.1 Motivation.o 29

4.2 Contributions 29
4.3 Previouswork 30
4.4 Divide-and-conquer extraction L. 34
4.4.1 Selection heuristics Lo 35

4.5 Experimental results L L oL 35
4.6 Use case: ESOP-based reversible logic synthesis 38
4.6.1 Experimentalresults 39

4.7 SUMMATY . . . o v vt e e e e e e e e e e e e e e e 40

5 XAG-based synthesis 43
5.1 Motivation 43

5.2 Contributions 44

53 Previouswork 44
54 Synthesisflow 46
5.5 Experimentalresults 51
5.6 Summary e e e e e e 52

6 Symbolic algorithms for permutation synthesis 55
6.1 Motivation 55

6.2 Technical background L. 56
6.2.1 Graphs 56

6.2.2 Permutation. o 57

6.2.3 Reconfiguration problems 57

6.2.4 Statespace 58

6.2.5 Decision diagrams o 58

6.3 Contributions 59
6.4 A*-based algorithm L 59
6.5 SAT-based algorithm 61
6.6 wDD-based algorithm 63
6.7 Experimentalresults 64
6.8 Summary e e e e 67

7 SAT-based linear synthesis 69
7.1 Motivation. oL 69

7.2 Technical background 69
7.3 Previouswork L 71
7.4 Contributions 72
7.5 Synthesis algorithmo oo 72

7.6 Discussion e e e e 74

CONTENTS ix

IIT Compilation 75
8 Introduction to compilation of quantum programs 77
8.1 Contributions 79

9 The tweedledum library 81
9.1 The intermediate representation 81
9.1.1 Fundamental concepts 81

9.2 Synthesis 83
9.3 Compilation 85
9.3.1 Utility 85

9.3.2 Decomposition o 86

9.3.3 Mapping 87

9.3.4 Optimization 91

9.4 Show case: Boolean function compilation. 93
9.4.1 IBM'’s challenge: The Zed city problem 97

9.5 Show case: Mapping 99
9.6 Summary 101
10 Conclusion 103
10.1 Future directions 104
Bibliography 107

Curriculum Vitae 123

Introduction

The history of quantum computing dates back to the early 1980s when Paul Benioff
demonstrated a quantum mechanical model of a Turing machine [23]. Around the same
time, Yuri Manin and Richard Feynman argued about the inherently exponential cost of
simulating generic quantum systems using conventional classical digital computers [89,
60]. Feynman suggested, in his work, that a computer that uses quantum mechanical
phenomena for computation might simulate quantum systems more efficiently. Since
then, a series of papers [53, 39, 27, 8] have formalized an abstract model of quantum
computation and the concept of a quantum Turing machine, and many researchers have
striven to build such devices.

Technology advances have motivated a new wave of investment in quantum research
in the past few years. Today we are in the Noise Intermediate-Scale Quantum (NISQ,
[110]) era, characterized by the appearance of quantum computers with sizes ranging
from fifty to a few hundred qubits—e.g., IBM recently announced a 127-qubit device [3].
At this point, large-scale quantum computers, capable of providing valuable solutions
to complex problems, seem like a certainty, even if still distant. As a result, we have
seen a rapid increase in research to create new quantum algorithms and research to de-
velop design tools for quantum computers. I refer to the “Quantum Algorithm Zoo”
website for algorithmic advances [76]; It holds a comprehensive list of quantum algo-
rithms with their respective speed-up factors. On the design tool front, we have seen
the appearance of a large variety of programming environments—for instance Q# [145],
Silq [28], Quipper [68], Qiskit [150], Cirq [55] PyQuil/Forest [131], Pennylane [26],
ProjectQ [142], StrawberryFields [78]. Such frameworks aim to bridge the gap be-
tween algorithm researchers and developers by providing ways of implementing quantum
algorithms using a programming language or API, which a compiler translates into an
executable format for a quantum device.

Nonetheless, the gap between these communities is still significant. Quantum algo-
rithm designers often work at a high level of abstraction and do not consider current
frameworks and hardware capabilities a limiting factor when conceiving and describ-
ing new algorithms [41]. On the other hand, most programming systems available for
quantum computing are intertwined with the quantum circuit model, so developers must
implement algorithms in terms of low-level unitary operators. Not surprisingly, the
implementation of quantum algorithms on such a low level of abstraction is very time-
consuming, error-prone, and results in non-portable programs—given the technological

1

2 CONTENTS

diversity of quantum devices.

Besides being essential for executing programs on physical devices, designs tools also
play an indispensable role in resource estimation, i.e., estimating resources required to
implement quantum algorithms on future fault-tolerant hardware. There is a whole field
of resource estimation that is motivated by the need to understand better the power of
quantum computing to make policy decisions, stimulate investment, and guide research
towards technological advances that will lead to scalable devices.

In this thesis, I study problems related to the compilation of quantum programs,
seeking forms of augmenting the expressive power of current frameworks and narrowing
the gap between algorithmic research and concrete implementations. I focus on scal-
ability and practicality—in particular, alongside theoretical investigations, I developed
concrete algorithms that are performant and scalable. The embodiment of my research
contribution is a compiler companion library for the synthesis and compilation of quan-
tum circuits called tweedledum. In contrast to most solutions, I designed it to enhance
other compilers and frameworks, and some of these tools indeed use it already. The
following section briefly outlines the contributions.

CONTRIBUTIONS

Many quantum algorithms use operations with classically described behavior, particu-
larly oracular ones [70, 40, 88, 118, 143, 46]. An algorithm uses an oracle to access a
Boolean function, i.e., it queries the oracle on some input to obtain the corresponding
function’s output.

Researchers use oracles extensively when studying quantum algorithms’ complexity
because counting the number of queries required to evaluate a function is more straight-
forward than counting the number of computational steps. Thus, to try inferring nontriv-
ial lower bounds more readily, investigators characterize the computational complexity
by the asymptotic growth rate of the number of queries with growing input size—an
analysis that only assumes the existence of an oracle.

However, a developer needs to provide a concrete implementation of the whole al-
gorithm, oracles included, to execute it on an actual device or accurately estimate the
resources necessary to perform such algorithms. Such an implementation must consist
of a sequence of elementary quantum operators supported by the underlying hardware.
Furthermore, due to the physical properties of quantum states, all quantum operations
need to be reversible; thus, a classical function that defines the oracle’s behavior must
be reversible, a characteristic not often found in real-world problems. On the contrary,
we often employ quantum oracles defined by complex, irreversible functions.

Using most of today’s frameworks, we have an impractical situation. We are de-
manding developers to reversibly implement the desired function using low-level quan-
tum operations while attempting to minimize quantum resources usage, i.e., the number
of qubits and operations.

This thesis aims at remedying this situation by allowing designers to implement the

CONTENTS 3

complicated classical subroutines on a high level of abstraction and then automatically
translate such implementations into low-level quantum circuits. We present various con-
tributions that support our goal. The first tackles the problem of ESOP-based synthesis
scalability [137], a technique capable of generating reversible circuits with an optimal
number of qubits due to a natural affinity between exclusive sum-of-products (ESOP)
expressions and Toffoli gates. We describe a new algorithm that outperforms state-of-
the-art methods in both scalability and effectiveness. This improvement also benefits
some hierarchical synthesis techniques, specifically those relying on direct synthesis to
generate circuits for small logic functions decomposed from a large one, e.g., LUT-based
hierarchical reversible logic synthesis (LHRS) [138]. It enables those methods to split
a logic function into fewer pieces, which, in turn, can minimize the number of required
qubits.

The second contribution is an improvement to a hierarchical synthesis algorithm
specifically designed to work on xor-and inverter graphs (XAG). This technique synthe-
sizes circuits over a fault-tolerant gate set, Clifford+T', and focuses on minimizing the
total number of gates and, more specifically, the number of T gates, which are more
expensive to error correct [11, 63]. The improved technique can significantly reduce the
number of qubits and Clifford gates. Crucially, these improvements are possible without
increasing the number of T' gates or the execution time.

The thesis also presents the results of research directed towards the development and
analysis of symbolic algorithms for solving two reconfiguration problems [12, 155] that
appear in the context of quantum circuit mapping, which is the process of modifying a
high-level circuit that assumes full qubit connectivity, into a lower-level one that respects
the device’s connectivity (or coupling) constraints. This process is an essential step
during the compilation and frequently requires the inclusion of additional operations, in
this case, SWAP operations. We can use the three proposed algorithms to do the mapping
itself or as a post-mapping optimization technique. All three algorithms guarantee local
optimality, i.e., they generate permutation circuits with the optimal number of SWAPs
or optimal depth.

While performant, SWAP-based mappers and the synthesis of permutation circuits
using SWAPs are suboptimal. The reason is that today’s quantum hardware cannot
execute SWAP gates directly. Thus, we must translate SWAPs into a sequence of CNOT
gates during compilation. In various applications, the cost of these subcircuits dominates
the total costs. Fortunately, we can improve the implementation of permutation circuits
by leveraging the properties of the CNOT gate. The last synthesis technique we present
in this thesis is the SAT-based method for generating linear reversible circuits [108], i.e.,
those that are composed only of CNOT gates. Although this technique is much more
general, we mainly employ it to synthesize permutation circuits and disprove a 15-year-
old conjecture that reversal is at least as depth-intensive to synthesize with CNOTs as
any other permutation on a path [83].

Finally, we present tweedledum, an extensible and efficient open-source library for
quantum circuit synthesis and compilation. It has state-of-the-art performance in many

4 CONTENTS

compilation tasks relevant to NISQ and fault-tolerant applications. We describe most of
its state-of-the-art techniques for synthesizing and compiling quantum circuits, alongside
practical implementation improvements to some of them, and the library’s core: an in-
tuitive and flexible intermediate representation that supports different abstraction levels
across the same circuit structure.

The contributions above are published in [123, 124, 120, 119, 37]. In addition to the
work described here, other publications completed during my doctoral studies include
[136, 135, 93, 130, 113, 134, 122].

OUTLINE
This thesis is divided into three parts:

e Part I (Chapters 1 and 2) covers background material most of necessary for this
thesis. Chapter 1 introduces concepts from the field of classical logic synthesis
and some of the various ways employed to represent Boolean functions. Chapter 2
provides a brief introduction to quantum computing.

e Part IT (Chapters 3 to 7) covers synthesis algorithms. In Chapter 3, we introduce
quantum circuit synthesis. Chapters 4 and 5 tackle the problem of synthesizing
large, complex, irreversible Boolean functions into quantum circuits. Chapter 6
studies two problem on graphs that appear in the context of quantum circuit map-
ping and provide three SWAP-based algorithms to synthesize permutation circuits.
Lastly, Chapter 7 deals with the optimal synthesis of linear circuits.

e Part III (Chapters 8 and 9). Chapter 8 briefly introduces the whole compilation
process for quantum programs. In Chapter 9 we describe tweedledum—an com-
piler companion library for the synthesis and compilation of quantum circuits that
embodies our research. We demonstrate its power using two show case examples:
oracle synthesis and quantum circuit mapping.

Part 1

Background

Chapter 1
Logic synthesis

As general notation, we are using [n| = {1,...,n}.

1.1. BOOLEAN FUNCTIONS

A Boolean variable x is a variable that takes one of the two values from the domain
{false, true}, or {0,1}. Variables are often denoted by z1,z3,23,...; but we will often
find it convenient to use just the numerals 1,2, 3, ... to stand for variables, or write just
J instead of x;, because it takes less space. A positive literal is the Boolean variable x
and a negative literal is its complement Z. Similarly to variables, we can write ‘2’ to
denote the ‘zy’ literal, and ‘2’ for its complement. The Boolean AND of k literals is a
cube, or product, i.e., c =13 A--- Al (we may omit the symbol A in forming cubes, e.g.,
i ANl =11---1). If a variable is not represented by a positive literal or a negative
literal in a cube, then its value is said to be a don’t care literal. A minterm is a cube, in
which every variable is represented by either a negative or positive literal. A cube with
k don’t care literal values covers 2 minterms.

A multiple-output Boolean function f : {0,1}" — {0,1}™ maps n Boolean input
variables to m Boolean output values. We refer to

Brm = {f [{0,1}" — {0,1}""} (1.1)

as the set of all multiple-output Boolean functions with n inputs and m outputs, where
m,n > 1. We write B,, = B, ;1 to denote the set of all single-output Boolean functions.

We can represent f as a m-tuple of n-variable Boolean functions (fi,..., f,,) where
fi € By, for each ¢ € [m] and thus f(z) = (fi(x),..., fm(z)) for each z € {0,1}". We use
Y1,---,Ym—1 to denote the outputs of a function.

The support of f is the subset of variables that influence the output value of the
function f. Unless stated otherwise, we assume that a Boolean function is completely
specified. The cofactors are derived from the function by substituting constant values
for the input variables. For example, Boole’s expansion of a function f, often called
Shannon’s expansion, where fz, = f(z; = 0) and f;, = f(z; = 1) are the negative and

7

8 CHAPTER 1. LOGIC SYNTHESIS

positive cofactors of the function f with respect to variable x;, respectively.

1.2. LOGIC DATA STRUCTURES

This section introduces the data structures used in this thesis for logic synthesis and
optimization. These include truth tables, two-level expressions, binary decision diagrams,
and multi-level logic networks.

1.2.1 Truth table

A natural way of representing a Boolean function is through the exhaustive enumeration
of its mapping, thus creating a table in which every truth assignment of its input variables
has a corresponding function value listed. A truth table is precisely that.

Example 1.1. The function primez(x) takes a 3-bit number and returns true if this
number is prime, i.e., primes(z) = [(z3zaz1)2 is prime]. We can represent it using the
following truth table:

I3 X9 I ‘ primes
0O 0 O 0
0O 0 1 0
0 1 O 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Note that the input side of a truth table is redundant, e.g., given two functions with
the same number of inputs, their truth table will only differ on the output column. Hence,
we can represent the truth table for a Boolean function f as a bitstring bon_1 ... b1bg
where b, = f(z) when = (z,,...21)2. In other words, each character in the bitstring
corresponds to the function value of f evaluated at some assignment to its variables.
The most-significant bit byn_; corresponds to f(1,...,1) and the least-significant bit by
corresponds f(0,...,0). Thus the truth table representation for the primes(z) function
in Example 1.1 is 10101100, or 0xAC in hexadecimal.

Unfortunately, truth tables are impractical to represent large functions because their
size grows exponentially with the number of input bits, 2. Nonetheless, they are tremen-
dously useful to represent and manipulate small functions. For functions with up to 16
variables, truth tables are typically much faster than alternative representations. Fur-
thermore, truth tables are canonical representations of Boolean functions: Two Boolean
functions are equivalent if and only if they have the same truth table. Canonicity is a
valuable property in many applications.

1.2. LOGIC DATA STRUCTURES 9

1.2.2 Two-level expressions

We can also use Boolean expressions composed of literals, an inner operator, and an
outer operator to represent Boolean functions. For example, the sum-of-products (or
SOP) representation has ‘A’ (logical AND) as inner operator and ‘v’ (logical OR) as
outer operator. An SOP for an n-variable Boolean function has the form:

m

f@nyooymr) =\ @R A ALY (1.2)
=1

for some m and polarities p;; € [3], meaning x? = 1 (a don’t care), w;

x? = z;. Note that each term corresponds to a cube, and their order does not change

the function. An SOP evaluates to true if at least one term is true. An SOP in which all

= Zj, and

terms are minterms and unique (i.e., without repetition) is canonical for a function up to
the terms’ order. However, such SOPs are not of much practical interest. In general, we
are interested in finding the most concise SOP-form for a Boolean function. Such forms
are not canonical, and finding them is an intractable problem (in fact, NP-complete []).

Example 1.2. The function prime,(x) takes a 4-bit number and returns true if this
number is prime, i.e., primey(z) = [(z4z32221)2 i prime]. We can represent it using
the following SOP:

prime4(a:) = T4T3T2%1 V T4T3T2L1 V T4T3T2T1

V Z4232201 V T4Z3T2T1 V T4T3T2X1
or, more concisely:
prime, (z) = x3%T2z1 V T3x2x1 V T4T3T1 V T4T3T2.

In quantum computing, implementing logical exclusive-OR (XOR) is cheaper than
implementing logical OR. Hence, the use of two-level forms focuses on a crucial variation
of (1.2) that emerges when changing the outer operator ‘v’ to ‘@’. Such an expression
is called ezclusive-or sum-of-products (ESOP).

Example 1.3. The function prime,(z) takes a 4-bit number and returns true if this
number is prime, i.e., primey(z) = [(zaz3z221)2 i prime]. We can represent it using
the following ESOP:

primey(z) = z4x2x1 ® 321 D T4T3L2.

1.2.3 Binary decision diagrams

First proposed by Lee [85] and further developed by Akers [9], a binary decision diagram
(or BDD for short) is a graph-based representation of a Boolean function. In their
original form, BDDs are not canonical. To canonicalize the representation, Bryant [34, 35]
introduced constraints on variable ordering and proposed several reduction rules, leading

10 CHAPTER 1. LOGIC SYNTHESIS

to the well-known reduced ordered BDD. For the remainder of this thesis, we use “BDD”
to denote a binary decision diagram that is ordered and reduced.

The basic idea behind BDDs is a divide-and-conquer scheme based on Boole’s ex-
pansion theorem. Recall that this theorem allows us to rewrite any Boolean f as
Zifz, V T; fz,—effectively dividing f into two subfunctions, or cofactors, f;, and fz,,
which are combined with different factors. We can depict the recursive application of
this theorem to its limits (i.e., while the resulting subfunctions have input variables) as
a tree, i.e.,

f3 I3
/ \ / \ (1.3)
32 f32 f33 f32
far fem fai fam fwr S faa e
Here we decided to omit the factors and use numerals to denote literals. The leaves of
this tree, i.e., the functions at the bottom layer, are either the constants zero (false) or
one (true). Also, note that we can interpret Boole’s expansion f = z;fy, V Zifz, as a
if-then-else, with z; being the condition and the cofactors being the branches. Visually,

if (4)

else / then (1 '4)

@

A binary decision tree is a structure based on both (1.3) and (1.4). The following
example illustrates it.

we can represent it as

Example 1.4. A binary decision tree for primes(x):

A binary decision tree consists of several decision vertices and terminal vertices. Ter-
minal vertices are labeled with a Boolean value, either true ((T]) or false ((L]). Decision
vertices @ are labeled with a name or index designating a Boolean variable z; and have
two successors called LO and HI. The LO successor is drawn as a dashed line and corre-
sponds to the node’s decision variable being equal to zero. The HI successor, drawn as a
solid line, corresponds to the node’s decision variable being equal to one. Using a binary

1.2. LOGIC DATA STRUCTURES 11

decision tree, one can determine the value of a Boolean function for any given variable
assignment by following a path from the root vertex to a terminal vertex.

Note that each vertex in a binary decision tree can be associated with a Boolean
function—which are subfunctions of the root vertex’s one. Binary decision diagrams
use the fact that these subfunctions repeatedly occur when representing functions of
practical interest and thus need to be represented only once. We guarantee their unique
representation by applying the reductions rules described in [34].

Example 1.5. The binary decision diagram for primes(x):

Binary decision diagrams are ordered in the sense that the Boole’s decomposition is
applied with respect to some given variable ordering which also has an effect on the is
number of nodes. Improving the variable ordering for BDDs is NP-complete [30] and
many heuristics have been presented that aim at finding a good ordering.

1.2.4 Multi-level logic networks

A logic network for functions of n variables (z1, . . ., z,) is a sequence of r gates T, . . ., Tpir
with the property that each gates combines at least two of the preceding gates:

zi = fi(Tiy ® Pig, - - o Ty, EBpiki), forn<i<n+r. (1.5)

A k;-input Boolean function f; defines the behavior of each gate. The fan-ins z;; ® p;;,
where 0 < ¢; < 4, are either the constant ¢ = 0, primary inputs, or preceding gates. The
polarity flags p;; are Boolean constants used to complement the gate’s fan-ins. (Note
that for this general definition, these polarity flags are unnecessary as the negation of
a fan-in can be incorporated into the gate function f;. Nevertheless, we opted to leave
them explicit.) We refer to the set {z1,z2,...,Zn4r} as nodes of the logic network.
A Boolean function described by the logic network is represented in terms of outputs
Yl - - -, Ym, Where

and 0 < o; < n+r. We use y; to refer to the output of a preceding node To; with
polarity p;.

We can represent logic networks as directed acyclic graphs (DAG) in which the ver-
tices correspond to the constant-0 input, the n primary inputs, the r gates, and the
m primary outputs. The arcs (directed edges) represent inputs and can only point to

12 CHAPTER 1. LOGIC SYNTHESIS

previous vertices, i.e., there is an arc z; — x; if j > ¢ > n and z; belongs to z;’s set of
fan-ins. Also, if a gate x,, is an output, then there is an arc y; — z,,—we say that z,,
drives output y;.

Example 1.6. We can implement a logic network for primes(x) as follows:

T4 =3 N\N2T1
s = T3 N\ Xg

re =4V T5

The output is yo = xg. We could also implement it using a single gate x4 = T3zo V 3271
that is also the output y;.

Observe that our definition of a logic network does not impose any restriction on
gates’ functionality—f; in (1.5). Hence, when representing it as a DAG, each vertex
corresponds to a logic function with an unbounded number of inputs. Interestingly, we
can represent these functions as truth tables or two-level expressions. In the latter case,
we can leverage the proven efficiency of two-level optimization techniques to optimize
these functions. However, while potentially very compact, such a DAG does not support
robust logic optimization because it imposes impractical requirements on optimization
techniques, e.g., the ability to deal with all functions’ types and sizes. Furthermore, the
cumulative memory footprint for each functionally unbounded vertex is potentially huge.

This definition, therefore, is of little practical interest due to excessive generality.
We can specialize the definition by constraining the internal vertices’ functionality to
alleviate this issue. In extreme cases, one can use the same function, with a bounded
number of inputs, for all vertices and add polarity attributes to the arcs. In principle,
this restriction increases the representation size in the number of vertices and arcs; in
practice, it unlocks better (smaller) representations because it supports more effective
logic optimization techniques.

Before looking at concrete specialized logic networks, let me introduce some proper-
ties. A logic network is called k-regular, if k; = k for all n < i < mn +r, ie., all gates
have the same number of fan-ins. It is called k-feasible, if k; < k for all vertices. We say
a logic network is homogeneous, if f; = f; foralln <i<j<n+r.

This thesis uses three common specializations of general definition:

And-Inverter graph (AIG) [82]. An AIG is a 2-regular homogeneous logic network,
in which each gate function f; is the 2-input AND. Thus, the network is composed
of AND gates and inverters, which are modelled using the polarity flags—hence our
decision of expressing them explicitly on the general definition. Due to their regularity
and homogeneity, AIGs are particularly efficient for Boolean function representation and
reasoning.

1.2. LOGIC DATA STRUCTURES 13

Example 1.7. We can implement an AIG for prime,(z) as follows:

n

Xor-And graph (XAG). An XAG is a 2-regular logic network that is not homoge-
neous since its gates can be either 2-input AND or XOR. Similarly to AIGs, inverters
are modelled using polarity flags. Thus each gate has one of following forms:

Ti =Tiy DTy, or ;= (Tip D Pig) AN (Ti, D Piy)s (1.7)

Example 1.8. We can implement an XAG for primey(x) as follows:

An interesting characteristic of AIGs and XAGs is that their simple data structure
enables quick and cheap structural hashing among nodes: Two nodes with the same
inputs under the same polarity conditions are merged (similar to a reduction rule of
BDD). However, unlike BDDs, they are not canonical, even when structurally hashed.

k-LUT network. A k-input lookup table (k-LUT) is a hardware device that can im-
plement any Boolean function up to k£ inputs and thus can be modeled as a truth table.

14 CHAPTER 1. LOGIC SYNTHESIS

A k-LUT network is a k-feasible logic network in which the gates’ functionality is rep-
resented by a truth table with at most k& inputs. Since a truth table can represent any
Boolean function, there is no need for polarity flags, i.e., p;; = 0 for all gate fan-ins and
p; = 0 for all outputs.

Example 1.9. We can implement a k-LUT network, where k = 3, for prime,(z) as
follows:

1

It is worth noting that we rarely implement functions as k-LUT networks. Their
original use was to map logic designs into the building blocks of field-programmable gate
arrays (FPGA) [44], which can compute any Boolean function up to a given number
of inputs, i.e., look-up tables (LUT). Later, LUT mappers found a successful applica-
tion in logic synthesis and circuits optimization [102] because of their ability to “cut”
(decompose) large Boolean functions into smaller ones. There are several efficient state-
of-the-art mappers [38, 116, 111] and post mapping optimization techniques [121, 87]
available. Traditionally, they aim to minimize delay and area of the resulting circuit.

1.3. BOOLEAN SATISFIABILITY

The Boolean satisfiability problem (hereafter SAT) asks whether a given propositional
formula representing an n-variable Boolean function f is satisfiable or not, i.e., whether
there exists an assignment of variables z € B™ such that f(z) = 1. When such an
assignment does not exist, the formula is said to be unsatisfiable (UNSAT).

The SAT problem is NP-complete [45]. Still, several instances of practical interest
are efficiently solvable using state-of-the-art SAT solvers [81, 29, 51]—even instances
containing tens of thousands of variables and millions of constraints. Most modern SAT
solvers require a conjunctive normal form (CNF) encoding of the problem. In such
encoding, a given property’s presence (absence) is represented by a positive (negative)
literal of a variable. The combined literals form clauses—i.e., a disjunction of literals.
The conjunction of clauses forms the CNF. The encoding of a problem is crucial and can
significantly impact the execution time of an SAT solver.

Another important characteristic of modern solvers is that they can accept a set
of assumptions, which enforces a value to a variable. The process of determining the
satisfiability of a problem under given assumptions, is called incremental SAT solving
[59]. For more details on Boolean satisfiability, see [29, 81].

Chapter 2

Quantum computing

Quantum computing is the study of performing computational tasks using a quantum
mechanical system, e.g., a quantum computer. Therefore, the subject is often mistakenly
thought of as complex, requiring years of physics training and understanding all about
the wave-particle duality, boson-fermion statistics, or even Schréodinger’s equation. For-
tunately, this thinking could not be further from the truth: understanding almost the
entire body of research on quantum information and computing requires only knowing
how to manipulate vectors and matrices whose entries are complex numbers [4].

The core of quantum computation consists of encoding information on the state of
a quantum system. We represent such a state as a normalized column vector in C".
Using Dirac notation [57], we denote such a vector as |¢). To do a computation, we
must have ways of altering states. Most often, we transform a state using a unitary
transformation, i.e., an action on a state |¢) € C™ can be regarded as a unitary matrix
U : C" — C™. After computation, the state becomes U |¢). The sequential application
of two transformations U followed by V' yields the state V(U |¢)), or (VU) |¢). Once the
system reaches a solution state |¢'), we can extract the encoded information by applying
a quantum measurement operator.

This chapter briefly introduces the basic concepts of quantum computing required to
understand the contents of the thesis. For more details, we refer the reader to [105].

2.1. QUANTUM BITS

The quantum bit, or qubit for short, is the unit of quantum information. The state of
a qubit is described as a unit vector in C2. As is customary, we fix an orthonormal
basis {|0), |1)} of C2 called the computational basis. The states |0) and |1) are known as
classical states. A qubit is fundamentally different from a bit because, until measured, it
can be on a state of superposition of classical states—i.e., a linear combination of both
classical states:

6) = a|0) + B1) = [g]

15

16 CHAPTER 2. QUANTUM COMPUTING

where o and [are complex values, known as amplitudes. Since the state of a qubit is
required to be a unit vector in C2, we have |a|? + |3|?> = 1. Furthermore, note that each
squared amplitude |a|? and |3|? indicate the probability of whether the qubit state will
be classical 0 or 1 after a measurement operation, respectively.

The state of n qubits is given by a unit vector in the 2™-dimensional complex vector
space C2". We denote the states of the computational basis by |€) = |z, ... z2z1), where
x € F} and Fy = ({0,1}, @, -) is the binary field. We can combine the state of different
subsystems |¢o) € C?" and |¢1) € C2™ by taking their tensor product |¢;)®|do) € C2™",
which is defined as:

B ®[do) = D Byln)® D oxlz) = > D axBy(ly) @ |z)),

yery xzeFy yeFY xeFy

where |x) and |y) are orthonormal basis for the spaces C2" and C2", respectively. To
simplify the notation, we often omit the ® sign when computing the tensor product of
two basis states |z) and |y). The resulting state is defined as the basis state labelled by
the concatenation yx:

ly) ® |z) = |yz) = |ym - .- 129120 . . . T2T1) .

Example 2.1. Suppose we have two-qubit system in states o |0) + B|1) and v |0) + 4 |1),
respectively. The combined state is given by:

(@]0) +B8[1)) ® (710) + 1)) = ay(|0) ®10)) + 24(|0) ® [1))
+8v(11) ®10)) + Bé(11) @ [1))

Using the simplified notation, We can rewrite it as:
ay[00) + ad [01) + Bv|10) + B4 |11)

A multi-qubit state that can be written as a combination of one-qubit states is said
to be separable. A non-separable state is said to be entangled. For example, no two

independent one-qubit states |¢o) and |¢p1) exists such that |¢p1) ® |po) = % |00) +
% |11)—a state known as the Bell state, a perfect superposition of the classical states

00 and 11.

2.2. QUANTUM OPERATORS

A quantum operator U maps one quantum state into another, i.e, U : C2" — C%", where
n is the number of qubits. A quantum unitary operator, or just unitary, is an invertible
linear operator such that Ut = U1, where U' is the conjugate-transpose (adjoint) of
U. Equivalently, U is a linear operator that preserves the Ls-norm, and thus maps
unit vectors to unit vectors. We denote % (d) the set of unitary operators on a complex
vector space of dimension d. After computation, the state becomes U |¢). The sequential

2.2. QUANTUM OPERATORS 17

Name(s) Symbol(s) Matrix
Identity Id ((1) (1))
1 (1 1
Hadamard H 7z (1 1
Pauli-X, Not X, 04 ((1) (1)>
Pauli-Y Y, 0, (? BZ)
Pauli-Z Z,0, ((1) _01)
1 0
Phase P(0), R1(0) (0 eie)
S-gate, VZ S ((1) (;)
1
T-gate, m/8 T (0 ez‘g)
(100 0\
0100
Controlled Not CNOT 000 1
\0 0 1 0
(100 0\
Swap SWAP g (1) (1) 8
\0 0 0 1/

Table 2.1: Common quantum operators by name(s), symbol(s) and the corresponding
unitary matrices.

application of two transformations U,V € % (2") yields the state V(U |¢)), or (VU) |¢)—
where U is applied first. Two unitary operators U € % (2") and W € % (2™) operating
on different subsystems may be combined with the tensor product U @ W € U (2"t™):

(V@ U)(l¢1) ® b)) =V [61) @ U |o) -

Unitary operators can fully describe quantum computations. However, they are of no
practical use by themselves since we cannot directly access all the information describing
quantum states—in particular, given the state of a qubit |¢p) = a|0) + |1), we cannot
measure the complex amplitudes « and 3. This lack of access is not just a practical
limitation; it is part of the postulates of quantum physics. Measurement is an operation
that allows reaching into the Hilbert space to probe the quantum state. A crucial aspect

18 CHAPTER 2. QUANTUM COMPUTING

of it is that it alters the state of the quantum system: the effect of the measurement is
that the new state is precisely its outcome; in the case of our qubit, either |0) or |1).
Therefore, measurement is a non-unitary operator.

2.3. THE CIRCUIT MODEL

The quantum circuit model of computation introduced by Deutsch [54] and further de-
veloped by Yao [39], provide us with a convenient tool for representing the evolution of
a quantum system. For example, if we want to describe the computation the Bell state
for two-qubits system initialized in state |00), we may write

CNOT((H ® I) |00)) = iz 100) +)

! 11
7 |
We first apply a Hadamard operation on the first qubit and then apply the CNOT
operator to the resulting state and the second qubit. The shortcomings are obvious: the
order of operations reads from right to left. We need to explicitly specify all identity
operations to get the padding-right to perform matrix multiplication. The quantum
circuit model allows us to write the same computation as

0) {H |4 1
o T} 00+ 1)

This diagram is read from left to right, with each horizontal line representing a qubit. The

horizontal axis indicates time. A box on the qubits’ lines expresses the application
of an operator U. Some operators have a special notation. For example, the ‘@’ symbol
represents the X operator. Also, a solid circle ‘@’ indicates the control qubit(s) of a
controlled operator.

We can use the quantum circuit model to very concisely represent some quantum
algorithms. As one example, the following quantum circuit describes the Grover algo-
rithm [69]. For an n-variable Boolean function f for which there exists exactly one &
such that f(#) = 1, it can find & with high probability by querying f only O(y/2") times.

O(\/2_”) times

0) —* g&n U Z (w.h.p.)
f

The above circuit first creates a uniform superposition of all inputs. Then it iterates
over a quantum implementation of f (i.e.,), that marks the solution state |Z), and
a quantum operator , known as diffusion, amplifies this state’s amplitude. Finally,
since we amplified the amplitude of the solution state, the final measurement will return
the solution with high probability.

2.4. REPRESENTATION OF QUANTUM FUNCTIONALITY 19

2.4. REPRESENTATION OF QUANTUM FUNCTIONALITY

The basic mathematical objects to be dealt with when representing quantum func-
tionality are Hamiltonians of a quantum system. These are linear, unitary mappings
C?" +— C?" that describe the system’s evolution. There are several ways for representing
quantum operators, and each way has its strengths and weaknesses. We evaluate the ef-
ficiency of a representation by its succinctness in describing operators and its capability
of supporting transformations and manipulations. Since no representation is universally
suitable for all applications, conversion is essential during compilation, where various
synthesis and transformation techniques are applied.

Unitary matrix. The most natural way to represent a Hamiltonian is to choose a basis
of the Hilbert space and then consider the corresponding transformation matrix, which is
a 2™ x 2" complex-valued unitary matrix. Unitary matrices are canonical representations
of quantum operators. That is, two quantum operators are equivalent if and only if they
have the same unitary matrix. Canonicity is an important property that may be useful
in many applications of synthesis and verification. Unitary matrices, however, are often
impractical to represent operators that act on many qubits because their size grows expo-
nentially with the number of qubits. For instance, if we use a unitary matrix to represent
a functionality on IBM’s 65-qubit computer, it would have 265 x 265 ~ 1.361129 - 10%°
entries. (Also, if we had the means to represent big unitary matrices explicitly, then we
would not need quantum computation.) Though theory allows arbitrary unitary matri-
ces, the currently available physical hardware can only handle a limited set operating on
one or two qubits.

Example 2.2. The Toffoli gate, named after Tommaso Toffoli [149], is a 3-qubit gate,
which is almost' universal for classical computation but not for quantum computation.
Its matriz representation is:

(10000000\
01000000
00100000
00010000
00001000
00000100
0000O0O0TO0 1
\0 0000010

Circuit. As discussed in the previous subsection, quantum circuits provide a conve-
nient tool for representing quantum computations. While such representation has the

Various sources wrongly classify the Toffoli operator as universal (or functional complete). However,
this cannot be the case since it belongs to the set of falsity-preserving operators [109].

20 CHAPTER 2. QUANTUM COMPUTING

advantage of simplicity, it lacks canonicity, i.e., there are many different ways of rep-
resenting a given computation with an available set of universal elementary operators.
Finding an implementation that uses the fewest resources is not only advantageous but
imperative given the stringent resource constraints in quantum hardware.

Example 2.3. The following circuit implements the Toffoli operator using the Clifford+T
gate set:

fanY
A\

SIEIE]
=

>@<

!

A\

{H o1t Fo{T - Tt <
As we mentioned, circuits are not a canonical representation. Thus there are various

other ways of implementing the Toffoli operator. For example, the following construction
can be found in [16]:

,?‘f\ [F N
|_l\J I—I A
HHT & T] o-{H}

While this thesis focuses on quantum circuits, one should know that many other
ways of representing quantum functionality exist, e.g., quantum decision diagrams [99,
5, 106], phase polynomials [19], and ZX calculus [42, 43], to name a few. If we consider
restricted functionality, the list gets even longer. This is because no representation
is universally suitable for all applications, and thus, as we demonstrate in Chapter 9,
conversion between them is crucial for developing robust compilation flows for quantum
programs.

2.5. ORACLES

A quantum oracle is a “black-box” operator that is used as an input to another algorithm.
Such an oracle can often be understood as a classical computation specified by a Boolean
function. Oracles are widely used for studying the complexity of quantum algorithms [15].
Counting the number of oracle queries needed to evaluate a function is easier than count-
ing the number of computational steps. Thus, to try inferring nontrivial lower bounds
more readily, quantum algorithm researchers characterize the computational complexity
of an algorithm by the asymptotic growth rate of the number of queries with growing
input size—an analysis that only assumes the existence of an oracle, and does not require
its implementation.

We say that the oracle gives access to a Boolean function, meaning that an algorithm
that uses the oracle only has access to the function’s input and output, not its internal
structure. In the following, we describe two natural ways of implementing an oracle
characterized by a Boolean function f on a quantum computer.

2.5. ORACLES 21

Bit oracle. A bit oracle is a quantum operator By specified by a Boolean function f
for which the effect on all computational basis states is given by

By : |z} [y) [0)* = |z) |y & f()) [0)", (2.1)

where ‘@’ is the logical exclusive-or operator and a > 0 corresponds to the number of
extra qubits used to store intermediate results for the computation of f(z), the so-called
ancilla qubits.

Phase oracle. A phase oracle is also a quantum operator specified by a Boolean func-
tion f. However, its effect on all computational basis states is given by

Py |z) = (-1)/®) |z). (2:2)

Equation (2.2) means that if z is not a satisfying input, the oracle does nothing to its
corresponding state |z). Otherwise, it rotates the states’ phase by 7 (or 180 degrees).

It turns out that these two oracle models are almost equivalent: the phase oracle can
be obtained from one use of the bit oracle and the use of the Hadamard operator on the
output qubit. There’s also a subtlety that f(z) and f(x) are equivalent for phase oracles
and cannot be distinguished because of a global phase.

Part 11

Synthesis

23

Chapter 3

Introduction to quantum circuits
synthesis

A look into the “Quantum Algorithm Zoo” website [76] reveals that most quantum al-
gorithms are specified in a high level of abstraction. These specifications use quantum
operators defined as unitary matrices or other abstract representations non-executable
by the hardware directly. Hence, one has to find a way to turn these operators into a
quantum circuit made of elementary gates. This problem is known as circuit synthesis
and can be either exact or approximate with a certain precision € —i.e., given an opera-
tor U, we can synthesize any circuit C such that ||[Uc — U|| < ¢, where U, is the unitary
that circuit implements.

Recall that circuits are not canonical, i.e., many quantum circuits can implement a
unitary over a given set of elementary operators. Hence, we can choose, or search for, the
one that minimizes a precise criterion. There are three widely used criteria to evaluate
synthesis algorithms’ quality of results:

e The size of the resulting circuit in the number of elementary gates. The rationale
behind this criterion is that one cannot avoid some noise in the physical realization
of the gate, and noise can alter the output of a computation to a wrong result.

e The depth of the resulting circuit in the number of time steps. The depth is closely
related to the time required for the execution of the quantum circuit. One signif-
icant problem physicists face when designing a quantum computer is the decoher-
ence time, i.e., maximum time available to execute a quantum algorithm before the
qubits involved in the computation interact enough with the outside environment
to lose all the information they carry.

e The width of the resulting circuit in the number of qubits. Some synthesis algo-
rithms require the use of extra quantum memory, i.e., the use of ancillary qubits.
Given the stringent qubit constraints in current quantum hardware, finding circuits
that use fewer qubits is not only advantageous but imperative. Also, ancillary
qubits often help reduce the depth and the number of costly operations when using

25

26 CHAPTER 3. INTRODUCTION TO QUANTUM CIRCUITS SYNTHESIS

Unitary synthesis (for U € % (2")) Reversible synthesis (for 7w € San)
Qo Qr(0)
. . o1 Qr(1)
|)® lv)® :
‘ Qon_1 Qr(2n—1)
Oracle synthesis (for f: {0,1}" — {0,1}™) Linear synthesis (for A € F3*")
|z) |z)
|z) |Az + b)
ly) ly @ f(=))

Figure 3.1: Some common quantum synthesis problems that emerge during compilation
of quantum programs.

a fault-tolerant gate set, e.g., reducing the number of T gates in circuits over the
Clifford+T gate set.

3.1. SYNTHESIS PROBLEMS

Synthesis problems and their respective solving techniques change drastically depend-
ing on the abstract representation of the quantum functionality we want to implement.
For example, the synthesis of generic operators is exponentially hard by nature: being
generic means that we are dealing with unitary matrices without any particular struc-
ture, which, in turn, implies that having complete knowledge of such an operator requires
exponentially sized memory and an equivalently exponential amount of time access each
all entries. Therefore, even when heuristic, techniques that solve this problem work only
for operators with few qubits.

Reversible Synthesis. If an operator consists of a permutation of the basis states,
its matrix representation is a permutation matrix of size 2™ x 2", and we can describe
its behavior using a reversible Boolean function f, : {0,1}" — {0,1}", where f, is a
bijective function. A quantum circuit that implements this function realizes the unitary

U : |z) = | fr(2)) -

The function f,.(z) can come in many forms, such as a truth table, a permutation,
a decision diagram, or a logic network. The realm of reversible logic synthesis deals
with the problem of synthesizing a reversible circuit out of one of these forms. Most
early algorithms expected a truth table [97, 90, 52, 115] or a permutation [127] as input.
Since these representations grow exponentially with n, these algorithms do not scale well.
Thus, they not efficiently applicable to large reversible functions, i.e., n > 20. To cope
with this problem, researchers proposed alternative implementations based on symbolic
representations, e.g., binary decision diagrams [140, 139] or Boolean satisfiability prob-

3.1. SYNTHESIS PROBLEMS 27

lems [133]. While these symbolic representations can sometimes handle large functions,
they do not always guarantee compactly representing them.

Oracle synthesis. This is a particular case of reversible synthesis where we want to
implement a specific irreversible Boolean function f : {0,1}" — {0,1}™. Note that
real-world problems and algorithms of interest almost exclusively use irreversible func-
tions. Since a quantum circuit cannot represent such functions, we must embed f into
a reversible function—a process doable either implicitly or explicitly. For the latter, we
need to find a reversible function f, over k variables such that

f'r(may) = (may ® f(x))a

where x = xg,...,Zn—1, Yy = Yn,---,Yk_1, k > max(n,m), and ‘@’ referring to the XOR
operation. Such an embedding is also referred to as Bennett embedding [24], and implies
the existence of the following quantum operation:

Ur:lz)ly) = |z) [y @ f(z)) -

The function f can be given in various forms, e.g., a logic network or a decision diagram.
If the function is small, we can directly synthesize a quantum circuit by representing it
as an ESOP. The following chapter demonstrates how we can push the boundary of what
is considered "small."

Nevertheless, we need to frequently employ a hierarchical synthesis approach to deal
with practical functions. Such an approach might even rely on a direct method to
synthesize a circuit. They work by decomposing a function and storing intermediate
results on ancilla qubits. Given an irreversible Boolean function f they find an (n+1+a)-
qubit quantum circuit that realizes the unitary

Uy : |z} [9)10)* = |2) [y @ f(=)) |0)*

where a > 0, which means that the synthesis algorithm might use the a additional qubits
to store intermediate computations. Chapter 5 presents improvements to a state-of-the-
art technique that directly synthesizes a circuit from a XAG. While scalable, a significant
disadvantage of such methods is that the number of ancilla qubits cannot be bounded
apriori, i.e., it is a consequence of the algorithm’s execution. Therefore, a hard limit on
the number of qubits might restrict their use. There are few techniques to mitigate this
problem [96, 56|, enabling the exploration of the trade-off qubits and gates.

Linear Synthesis. Linear synthesis is another particular case of reversible synthesis.
In this case, we are interested in operators that belong to the family of linear reversible
circuits, i.e., CNOT circuits. Over the years, researchers have extensively studied their
irreversible counterparts [13, 107, 64, 31]. Abstractly, we can represent a linear operator
acting on n qubits as a Boolean matrix A € F3*™ where each row corresponds to one

28 CHAPTER 3. INTRODUCTION TO QUANTUM CIRCUITS SYNTHESIS

output as a linear combination of the inputs, and Fy is the Galois field of two elements.
In our case, A needs to be invertible, and CNOT is the primitive linear gate. Unfortu-
nately, such constraints make difficult the reuse of known synthesis techniques from the
irreversible realm in the reversible (quantum) one.

In [108], Patel et al. designed a block version of the Gaussian elimination algorithm
to synthesize linear reversible circuits. More recently, two papers proposed modifying the
Gaussian elimination algorithm to synthesize circuits compliant with a connectivity graph
given as input of the algorithm [79, 104]. Both use Steiner trees to perform a custom
Gaussian elimination: the circuit is synthesized column by column, but the process to
eliminate nonzero elements is modified to respect the connectivity constraints.

In the context of quantum circuit mapping, we are interested in synthesizing a special
family of linear circuits: the permutation circuits, which must also respect coupling con-
straints. These circuits appear prominently in various quantum computing benchmarks
[49] and might dominate the their total implementation costs.

Chapter 4

ESOP-based synthesis

4.1. MOTIVATION

This chapter investigates ways of scaling-up ESOP-based synthesis for oracle synthesis.
The importance of this investigation resides in the severe resource limits imposed by near-
term quantum hardware. While there are various techniques to synthesize a quantum
circuit from a Boolean network, most require an unbounded number of additional qubits,
i.e., the algorithm’s execution determines the total number of qubits in the resulting
circuit.

In contrast, due to a natural affinity between exclusive sum-of-products (ESOP)
expressions and Toffoli gates, ESOP-based synthesis can generate reversible circuits with
an optimal number of qubits. Meaning that given an ESOP expression for a Boolean
function f : {0,1}" — {0,1}™, one can readily derive a reversible network that acts on
n + m qubits.

A major drawback in using this technique lies in its required input: a two-level ESOP
expression. In practical applications, we rarely find Boolean functions represented as
ESOP, especially the large ones. They are often given as multi-level Boolean networks,
and thus we need to convert them into ESOP expressions through a process known
as collapsing. There are two state-of-the-art techniques to collapse a Boolean network
represented as an and-inverter graph (AIG) into a two-level ESOP expression: the AIG
extract method and the BDD extract method [137]. In this chapter we study them in
detail.

4.2. CONTRIBUTIONS

Both state-of-the-art techniques lack the necessary scalability to cope with the increasing
complexity of the logic functions used on quantum computers. Therefore, in this chapter,
we present the results of research directed towards the development of a new ESOP
extraction algorithm:

e We revisit both the AIG and BDD extract methods and propose ways to improve
them.

29

30 CHAPTER 4. ESOP-BASED SYNTHESIS

e We introduce a divide-and-conquer collapsing method, called DC extract, that over-
comes scalability limitations of the state-of-the-art approaches.

e We apply the new collapsing method in an ESOP-based reversible logic synthesis
technique, allowing us to find quantum circuits with up to 50% reduced quantum
gate costs.

The experimental results at the end of this chapter confirm the effectiveness of the
proposed method. Specifically, we show that we are able to collapse AIGs that previous
methods were unable to. This opens up the possibility of a qubit-optimal realization of
these circuits, which is crucial due to the severe resource limits imposed by today’s and
near-term quantum hardware.

This work appears in [123] and was presented at IEEE 49th International Symposium
on Multiple-Valued Logic (ISMVL’2019). An implementation appears in tweedledum.

4.3. PREVIOUS WORK

Before describing our approach to collapsing, we present two methods previously used,
namely AIG [137] and BDD [58] extract. We explain some of their implementation
details, respective shortcomings and examine ideas on improving those techniques. We
show that these ideas did not lead to sufficient improvements and thus further affirm the
inability of the two approaches to cope with the complexity of large benchmarks.

AIG extract. This method computes an ESOP expression for each vertex in an AIG in
a topological order. First, each primary input z; is assigned the trivial ESOP expression
z;. The ESOP expression of each subsequent vertex is computed by conjoining the ESOP
expressions of its previous nodes:

z; if 1 <i<n,
€; = (41)

(eip ® piy) N (€5, D piy) ifn+1<i<n+r,

where r is the number of gates, i and 4; identify x; inputs, 1 < ig < iand 1 <43 <. The
polarity flags p;; are Boolean constants used to complement the gate’s fan-ins and thus
used to complement the ESOP expression corresponding to these fan-ins. The following
example illustrates the technique.

Example 4.1. The following AIG implements f = x1 @ x2 ® 3. Recall from Chapter 1
that in a AIG, each vertex is a 2-input AND gate. In this example, we chose to represent
them with their index i inside instead of the operator A to better relate them to their
corresponding ESOP expression e;.

4.3. PREVIOUS WORK 31

n
€1 =2 €2 = T2 €3 = T3

/ \
€4 = X2T3
e5 = ToI3

eg = ToX3 D Toxz3 D1
er = 212273 © T1T273 D T1
eg = X123 D T1T2T3

€9 = T1T2T3 © T1X2x3 D 12273 D T1T2x3 D 1

Above, we show the individual ESOP expression for each vertex of the AIG. We
compute these expressions using (4.1). Since expressions ey through es are straightforward
to obtain, we workout show how to calculate expression eg:

e =(ea®1)A(esd1)
=eqe5PesPes D1

0
= ToT3%3T3 D ToZs ® Tox3 D 1

= T9T3 D Toz3 P 1

As shown in the above example, the number of product terms in the resulting ESOP
expression of each vertex is the product of the number of terms of its inputs. Hence, the
usage of this technique is highly limited in both scalability and quality of results. Note
the difference in the size of the computed ESOP expression and the original function.

We can slightly improve this collapsing technique by optimizing the ESOP expressions
generated through its application. Over the years, researchers have proposed several
ESOP minimization strategies [103, 113]. However, none is scalable enough to be applied
after collapsing each vertex without paying a significant execution time penalty. Thus,
we use a greedy, low-effort minimization strategy in our implementation. The strategy
relies on properties of ESOP expression:

e We can add two identical terms, i.e., distance-0, to any ESOP without changing
the function represented by it,

e A single term can represent the XOR of two distance-1 cubes.

One can think of our technique as a “lazy” exorcism [103]: before adding a new term
to an expression, it first tries to find another term that is either distance-0 or distance-
1. If this search is successful, then it transforms both terms accordingly. Despite its
simplicity, empirical observations indicate that most of the time, the size is about the
same as the size of its inputs largest ESOP.

Parallelization is another way of improving this method. Indeed, this technique is
embarrassingly parallel since we traverse the logic network in topological order. The

32 CHAPTER 4. ESOP-BASED SYNTHESIS

construction of each internal vertex’s ESOP depends only on ESOPs of vertices that
we have already visited and thus already have an ESOP for it. Hence, we can collapse
all vertices in the same level in parallel. Our work, however, does not explore such
improvement.

BDD extract. This method first expresses the AIG as a BDD by translating each
vertex into a BDD in topological order. From the BDD, a particular case of an ESOP
expression, a Pseudo-Kronecker expression (PSDKRO) [117], is extracted using the al-
gorithm presented in [103]. For a detailed discussion of the algorithm, we refer to [58].

Before delving into the details of how to extract a Pseudo-Kronecker expression from
a BDD, let me show how we can solve a more straightforward problem, namely, how to
generate an SOP, or a general ESOP, from a BDD. Recall from Subsection 1.2.3 that
using a binary decision diagram, one can determine the value of a Boolean function for
any given variable assignment by following a path from the root vertex to a terminal
vertex. We can use this fact to generate an SOP expression by focusing on paths that
terminate at the TRUE vertex. Each of these paths corresponds to one SOP term. We
construct the terms by following the paths from the root to TRUE while collecting the
factors!.

f = Z3x9 V 3T (42)

Also, note that in f = z; fy, V Z; fz,, the two terms are mutually disjoint, and thus we
can trivially replace ‘V’ with ‘@’, yielding the XOR~form of Boole’s expansion. Since we
use this expansion to build a BDD, an SOP generated by traversing the BDD has the
interesting property that all its cubes are also mutually disjoint, i.e., they cover disjoint
sets of minterms. Therefore, we can trivially transform the SOP in (4.2) into an ESOP
by replacing V’ with ‘@’, thus

[=2Z3xo V23201 = T3x2 O X32%7. (43)

Technically, the ESOP in (4.3) is a Pseudo-Kronecker expression; however, not a
good one. Since we built it by traversing the BDD, we implicitly considered only the
XOR-form of Boole’s expansion. We can achieve better results by also considering two

!Keep in mind that an algorithm that extracts an SOP from a BDD does not know a priori the paths
that lead to the terminal vertex TRUE. Hence, it follows all paths while collecting factors. If the path
leads to TRUE, a cube is created using these factors. Otherwise, they are discarded

4.3. PREVIOUS WORK 33

other expansions:

of

f=1z® Tig (positive Dawio) (4.4)
f=fu® izg—i (negative Davio) (4.5)

where gﬁ is the Boolean derivative, or Boolean difference, of f with respect to z, defined
as f = fz, ® [a,

In some sense, when we follow both paths, fz, and f;,, of a decision vertex ¢ while
collecting the factors, Z; and x;, we are applying Boole’s expansion. Now, if we want to
use the positive Davio expansion instead, we must follow the fz, path without collecting
the factor and simulate following a path to %ﬁ while collecting z;. Note, however, that
%ﬁ might not be present in our decision diagram, and thus we must add it. We use this
same principle to use the negative Davio expansion.

Example 4.2. Suppose we are given a Boolean function f as the BDD in (4.2), and
we want to extract an ESOP expression from it. Our idea is to use the positive Davio
expansion once and Boole’s expansion twice. We must first add 6%% to the diagram to
successfully use our idea. Then we traverse the BDD following the path corresponding to
the expansions we chose.

[=20 @ 37071 @ 32277

Note that is this case, we did not follow all paths in the BDD, and the dotted path
from @ to @ does not actually exist—its a “simulated” path.

The ESOP expression obtained in the previous examples is larger than in (4.3).
Clearly, our chosen sequence of expansions was not particularly good. We can try chang-
ing the sequence to find a better ESOP, which the BDD extract algorithm cleverly does.
The algorithm traverses the BDD twice. The best expansion is found for each node dur-
ing the first pass and saved in a hash table. During the second pass, we follow the paths
corresponding to the best expansion of each vertex while collecting the factors. When
the traversing procedure reaches the bottom of the diagram in the TRUE vertex, it uses
all collected factors to generate a cube and add it to the resulting ESOP expression.

Implementing BDD extract is reasonably straightforward using a BDD package such
as CUDD [141]. We enable dynamic variables reordering during the BDD construction,
which allows us to work with relatively large multi-output functions. Nevertheless, it is
the construction process that bounds the performance. Furthermore, there exists a family
of Boolean functions whose BDD sizes are exponential in their formula sizes under all

34 CHAPTER 4. ESOP-BASED SYNTHESIS

variable orderings. This unfortunate characteristic of BDD causes this extraction method
not to have the necessary scalability to cope with the increasing complexity of the logic
functions used on quantum computers.

4.4. DIVIDE-AND-CONQUER EXTRACTION

The main technical contribution of this chapter is the introduction of a divide-and-
conquer collapsing method. This new approach stands on a natural and straightforward
idea:

e Divide the given problem into small-enough subproblems.
e Solve these subproblems independently.
e Combine these solutions to get a final solution.

Our divide-and-conquer technique relies on the fact that any Boolean function f can
be written as

f=fNg®fANgp® - ®fAgn (4.6)

for n Boolean functions g,, over the same support as f. By factoring, the right-hand-side
becomes

fAGL @ ®gn)

which equals f when g; @ --- @ g, = 1. The careful selection of a set {g1,92,...,9n} is
a key component of our method because it directly affects its effectiveness. We need to
choose this set in such a way that makes easier to collapse all individual f A g;. This
might sound counter-intuitive at first, but if we limit our choices for g; so that we have
a set of single-cube factors of f, then the variables present in g; can be ignored when
collapsing f A g;, i.e., we will collapse f,, instead of the whole f.

In practice, our implementation represents f as an AIG and g; as cube; f A g; is
represented as a tuple (f;, g;), where fg, is the original AIG f with the variables present
in g; being assigned constant values in accordance to their polarity in the cube. These
constant values simplify the AIG through constant propagation.

After dividing the problem, we use BDD extract to collapse these f,, AIGs into ESOP
e;. Finally, we can combine our results in two different ways: one will leave the factors
multiplying the intermediate ESOPs, while the other will expand the multiplications.
The following example illustrates our method.

Example 4.3. Let f be a $-variable Boolean function. Using (4.6), we can represent
the function as

=N @fAN@RDOfAGBDfAgu

with g1 = 1 Ax2, g2 = T1 AN T2, g3 = 1 A T2 and g4 = T1 A T2.
With f given as an AIG, we can divide our problem by creating the four tuples (f1,91),
(f2,92), (f3,93), (fa,94). We solve it by collapsing the simplified f; separately, where

4.5. EXPERIMENTAL RESULTS 35

i = {1,2,3,4}, thus generating: (e1,01), (€2, 02), (€3, 95), (€4, 94). Finally, we can report
the combined solution either as:

f=e1Ngi@®exNga®e3NgsDesAgy

or as an expanded ESOP expression, with the multiplications e; A\ g; carried out.

4.4.1 Selection heuristics

The efficiency of our method is intimately related to the selection of variables to factor.
Therefore, this section defines different heuristics to select the variables.

Fixed variable selection. This heuristic chooses variables to factor using only one
criterion: the combined size, in the number of vertices, of the resulting AIGs. The idea is
to minimize this number as much as possible. The first variable is chosen by temporarily
factoring all variables, one at a time, and choosing one with minimal combined size.
Using the two resulting AIGs as starting point, we select the second variable in the same
way: we temporarily factor all remaining variables, one at a time, from both AIGs and
pick a variable using the same criteria. This process continues until we have chosen a
predefined number of variables.

Free variable selection. This heuristic selects variables using the same criteria as the
previous one. The difference is the recursive way it chooses them. After choosing the
first variable, the two resulting AIGs are used as two different starting points to choose
the second one. In practice, this means that the selected variable as the second factor in
one branch might differ from that picked in the other.

4.5. EXPERIMENTAL RESULTS

We implemented the algorithm described in C++ using both CUDD and ABC [33]
as external static libraries. ABC is an open-source tool designed for logic synthesis,
technology mapping, and formal verification for logic circuits. We also use it to check
the results for equivalence.

We use a set of Verilog netlists of several IEEE-compliant arithmetic floating-point
designs in half (16-bit) precision to evaluate our method. For synthesis, all Verilog
files were translated into AIGs and optimized for size using ABC’s resyn2 script. The
collapsing of these functions is used as an example to illustrate the strength of this
method when searching for a good ESOP representation which is a good starting point
for a quantum logic synthesis flow.

We ran all experiments on an Intel(R) Xeon(R) CPU E5-2690 v4 at 2.60GHz and
used the GNU 1.7 version of the command time to obtain the reported execution times
and peak memory.

36 CHAPTER 4. ESOP-BASED SYNTHESIS

The results of collapsing are reported in Table 4.2. The first column identifies each
benchmark by its name. The remaining columns report the results of using different
techniques for collapsing in terms of ESOP number of cubes (# terms), time, and peak
memory usage (mem).

Both state-of-the-art methods failed to collapse the whole set of benchmarks. In this
experiment, we set the timeout to one week. Note that the AIG extract has the worst
execution time and result quality. BDD extract, run with dynamic variable reordering,
improves these results and can collapse an additional benchmark. The free variable
selection heuristic configured DC extract to factor cubes with 2, 4, and 8 variables. The
improvement is remarkable; when cubes of 8 variables are factored, not only were all
benchmarks successfully collapsed but also fp _and, fp _div and fp sub were processed
within four minutes and using much less memory—when compared with the other runs of
DC extract. Note fp_ mult runs out of memory (OOM) in the other runs of DC extract.

Finally, to evaluate the impact of factoring without considering the variable selection
heuristics, we implemented a random variable selection procedure that behaves similarly
to the free variable selection heuristic. Still, instead of minimizing the size of the resulting
AIGs at each recursion step, it randomly selects one of the remaining variables. We used
this heuristic to collapse each benchmark a hundred times. Not surprisingly, the results
shown in Table 4.1 indicate the need to select the variables carefully.

DC extract (8 random factored vars)

benchmark min max avg stdev

fp_add 98.88 4515.3 976.63 1355.33
fp_cmp 0.55 0.94 0.71 0.16
fp_div 202.08 425.5 265.17 80.97
fp_exp 5.58 7.4 6.27 0.50
fp_invsqrt 1.18 1.79 1.51 0.25
fp In 0.65 1.11 1.00 0.18
fp_log2 0.55 1.02 0.91 0.19
fp _mult — — — —
fp_recip 0.78 1.3 1.17 0.18
fp_sincos 0.42 0.95 0.77 0.17
fp_sqrt 0.32 0.81 0.70 0.20
fp_square 0.3 0.66 0.50 0.15
fp_sub 150.61 2586.4 822.07 715.83

Table 4.1: DC extract execution time when choosing factors randomly.

37

‘sudisop qurod Suryeoq orpewWYILIe (31q-97) uoIswaId JTey oY) I0] SOWIT) UOINIAXH :g'F ORI,

EXPERIMENTAL RESULTS

PO'V8LI S9VET L80T0SPT L8 LIVIT 9L°TIZL 90988691 ¥T LSGSTT ¥9°C6E0E 96CTO89T oL oL qns™ dj
GT'eT €20 €89 Le21 90°0 €482 et 200 1€L2 10°2T 200 €892 99T €20 982L arenbs™ dy
19'€T §z0 896€ Lv'el 01’0 81302 L0'ET ¥1°0 8902 10°2T 91°0 €961 9%'L 16'8 0ST6T pbs™ dj
16°€T 6€°0 6768 Gg'ST 820 L219 G6'8T 1870 G829 1681 6L°0 106S 80'TT €001 766S€ soouts ™ dy
Ly'81 6.0 9vEeL [4°x48 12°0 619¢ 6LCT €20 9.6¢ 0T°€T 6£°0 £87¢E 118 68°€ 8LVLT dwar™ dy
62097001 VE'TI8TY T6E69876 INOO NOO oL oL [dy
L871 Sv'0 €€881 ¥0'€l 8¢°0 ¢0STT 6L71 170 az801 8'LT 09°0 91801 19°L ¥0'€ 9LV 0€ g0 dj
6571 $9'0 ¥89vV¢ 9TVl 60°1 00991 8V'€C 4N 10€91 S 2 181 ¥TLIT 12°01 07’9 0ve6y up dy
08'81 €60 881¢ gg'el 8¢€'1 626¢ 25841 081 8€CT 0481 00°C €1ee (4813 S0'vL L06ST pabsaur dy
oL'1e 96'¢ 99211 EV'Ly 6S°1¢ L8011 8C'VL 18°06 41418 88°9GT ¥e'e8c 0LVIL 8¢'GC8 66'L69V1 9TL16C dxo™ dj
1¢°8L¥C 0g'ere 88T0IT0€ TS'8I9Y 6976ST 9L60990€ 96°L6E9 Ly'ovey 08ev0S6% oL OL Alp dy
L8691 1.0 L89781 oLl ¥6°0 €GEV8L 8791 8G°0 LvEV8L 98'91 08°0 €9EV81 OL dur™ dj
61°68L1 187€1 G20009¥T OL'LLOLT CL'€TV0T 0CTITSELT TE€06108 CV'680LC ¥EITILIT oL OL ppe dj

(q) wowr (s) oWy SWIIAY F# 7 (qN) wew () oWy SRy # _ (q) wewr (s) ewry suwey # _ (qN) wew (s) ewry suwrIey # _ (q) wew (s) owry SWIO) # NIewyouaq

4.5.

(srea paiojoey §) j0eIpXe D (sTea paiojoej §) 30RI13X0 D (sTen po10jor]) 30RIIX D 10RI1IX0 A9 JoRIXD DY

38 CHAPTER 4. ESOP-BASED SYNTHESIS

4.6. USE CASE: ESOP-BASED REVERSIBLE LOGIC SYNTHESIS

ESOP-based logic synthesis is heavily used in reversible logic synthesis due to the natural
correspondence of product terms in ESOP expressions and Toffoli gates. Let X be the set
of variables in the reversible circuit. Recall that a (multiple-controlled mixed-polarity)
Toffoli gate has a (possibly empty) set of control lines, which are literals over X and one
target line, which is a variable in X that is not a control line. The Toffoli gate will invert
the variable assigned to the target line if, and only if, the polarity of all inputs to the
control lines match the polarities specified for the gate.

T4

T3

T2

)

Zo o D T4T3T2T1

One can build up an ESOP expression on the same target line by concatenating
Toffoli gates that act on the same target line. Vice versa, given an ESOP expression, one
can easily extract a sequence of Toffoli gates with control lines according to the literals in
the product terms. When considering multiple-output functions, the resulting quantum
circuit requires n + m qubits, where m is the number of outputs.

Example 4.4. Given a Boolean function f such as
[= T1Z22374T5 © T1T2T3T4 D T1T2T4T5 © T1Z2T4T5 D T1T2T3 D T1T2T3T4

Then the following reversible circuit implements f

] zs
T4 Z4
z3 z3
z2 z2
1 z1
0> DD f

In quantum compilation, such a reversible circuit is an intermediate representation.
Once we have it, we can straightforwardly map it into a lower-level quantum circuit over
a given quantum gate library using additional steps. For example, we could map it to a
universal fault-tolerant quantum gate library such as Clifford+T.

The cost model for quantum operations is non-trivial, but a good heuristic will try
to minimize both the number of Toffoli gates and the number of controls in Toffoli
gates, which corresponds, respectively, to the number of product terms in the ESOP
expressions and the number of literals in the product terms. Such a heuristic is good
because, when using the Clifford+T, the T gate is considered the most expensive, and
the cost of implementing a Toffoli in the number of T gates is directly proportional to
its number of controls. According to [92],the costs of implementing multiple-controlled
Toffoli gates are

4.6. USE CASE: ESOP-BASED REVERSIBLE LOGIC SYNTHESIS 39

#Controls |0 1 2 3 4 5
#Tgates| 0 0 7 16 24 31

The circuit in example 4.4 has a cost of 143 T gates. We can do better using the
proposed algorithm. In an ESOP expression generated through its use, we can cluster
product terms with the same factor and use an additional helper qubit, called ancilla, to
store these factor values. The following circuit illustrates this.

Zs Ts5
T4 T4
z3 z3
) o— X9
z1 z1
0 P—P—4 D—P ¥ f
0 S—b ©—0

The bottom qubit is the ancilla, which we initialize to 0. We iteratively compute in
this qubit all factors x1xs, Z122, Z1Z2, and z1Z5 in Gray code order—which allows us to
transition from one factor to another using only CNOT gates. In general, if the factors
have k literals, we can transition from one to another using a single (k — 1)-controlled
Toffoli gate, since the distance of two factors in Gray code order is 1. DC extract must
use the fixed variable selection heuristic to exploit this property. The above circuit
implements the same function as the one in example 4.4; while, at the expense of using
one more qubit, it costs 109 T-gates.

4.6.1 Experimental results

We implemented the synthesis method described in previous section as a standalone
tool capable of using the factored results of DC extract to synthesize reversible circuits.
Table 4.3 shows the results in terms of the number of qubits and T gates. In the case of our
technique, we also report the number of factored variables (v). The first column name
the benchmarks. The next column presents the results obtained by directly mapping
product terms into multiple-controlled Toffoli gates when the benchmark is collapsed
without factoring, followed by the results of optimizing the direct mapping using [98], an
approach which factors Toffoli gates that share the same controls and stores the factor
on an ancilla qubit. The third column corresponds to results obtained when using the
our synthesis method. As these experimental results show, our method of deriving the
factors more explicitly, when compared to [98], leads to circuits with fewer quantum
gates.

Finally, in the last column are the results of [137], which is a complete synthesis
flow for quantum—hence our methods should not be viewed as a substitute but as a
complement for it. Nevertheless, for the unitary operator benchmarks, we can achieve
an improvement of up to 50% when compared to [137]. However, the results for the binary
operators, namely fp add, fp sub, fp_div, and fp_cmp, have very large T gate count.
The problem lies with the large size of their ESOP expressions, which, to our knowledge,
cannot be handled by any state-of-the-art ESOP optimization tool. Consequently, we did

40 CHAPTER 4. ESOP-BASED SYNTHESIS

not use the direct method nor [98] to synthesize them. However, we expect an even larger
T gate count when using these techniques. The multiplication benchmark (fp_ mult) was
only synthesized using [137].

Direct map [98] [137] Our method

name qubits T qubits T qubits T v qubits T
fp_add 156 33521 10 49 1.44 x 10°
fp_cmp 40 30426 8 37 18296672
fp_div 144 589721 12 49 2.84 x 10°
fp_exp 32 784887 33 752558 32 1193083 9 33 344603
fp_invsqrt 32 136023 33 129692 32 169282 7 33 101204
fp In 32 969757 33 931516 32 1623461 7 33 585468
fp_log2 32 623948 33 566315 32 850331 7 33 400281
fp _mult 267 141657

fp_recip 32 170245 33 150448 32 198167 4 33 136137
fp_sincos 33 376733 34 326403 34 452129 6 34 191136
fp_sqrt 32 122793 33 106216 32 133489 2 33 58184
fp_square 32 129797 33 126803 32 165545 5 33 108935
fp_sub 156 33626 9 49 147 x 10°

Table 4.3: Synthesis results in number of qubits and T gates.

4.7. SUMMARY

Various quantum algorithms use subroutines that perform a classical computation on a
superposition of exponentially many input states. Some examples include:

e Modular exponentiation for factoring [128].
e Evaluating orbital functions for quantum chemistry [20].
e Reciprocals for solving systems of linear equations [70]

Naturally, these applications, and other scientific computing ones, require the ability
to do arithmetic using fractional (non-integer) numbers, which we can represent using
either fixed-point or floating-point representations. The latter offers significant savings
in the number of qubits when the required range of values and (or) relative precision are
large. Thus, finding good circuits for floating-point arithmetic could be of tremendous
use in many quantum computing applications.

This chapter presented a new collapsing method that outperforms existing state-
of-the-art ones. Its main advantages are the improved scalability and effectiveness in
collapsing all half-precision (16 bits) floating-point arithmetic benchmarks, an important
step towards implementing practical algorithms for quantum computing. Also, design
flows for synthesizing reversible logic in quantum computers, such as [137], can use these
results as a starting point to map these operations into circuits with fewer qubits.

4.7. SUMMARY 41

We also demonstrated how to apply this new collapsing method to ESOP-based
reversible logic synthesis by implementing a new technique that allows us to find quantum
circuits with up to 50% reduced quantum gate costs.

Chapter 5

XAG-based synthesis

5.1. MOTIVATION

The previous chapter introduced a technique capable of scaling-up ESOP-based synthesis
to work with large Boolean functions. Using it allows us to synthesize quantum circuits
with an optimal number of qubits, however, at the cost of significantly increasing the
number of gates, as illustrated by the experimental results. In general, there exists a
trade-off between the number of qubits and the number of gates in quantum circuit
synthesis.

Recall that we could mitigate this gate explosion slightly by noting that we can
cluster product terms with the same factor and use an additional helper qubit to store
these factor values. If we take this principle up a notch, we enter the realm of hierar-
chical synthesis methods. In hierarchical synthesis, we decompose a Boolean function
f into smaller ones, easily synthesizable by a direct method such as ESOP-based syn-
thesis. When generating a circuit for the original f, we synthesize these small functions
separately, storing their outputs in ancillary qubits.

Figure 5.1 illustrates a method known as k-LUT-based synthesis. This method starts
from any logic network and decomposes it using k-LUT mapping [44] as its first step.
This initial step has a relevant impact on the synthesis result. The k parameter allows
us to control the maximum number of inputs for each subfunction and thus somewhat
manage the number of qubits in the resulting circuit. A small k yields a decomposition
of the initial function into a more significant number of subfunctions, which, in turn,
leads to the synthesis of circuits with more qubits since we need qubits to store these
intermediate results.

This chapter investigates improvements to a hierarchical synthesis algorithm specifi-
cally designed to work on XAGs. This technique synthesizes circuits over the Clifford+T
gate set and focuses on minimizing, not only the total number of gates, but, more specifi-
cally, the number of T" gates—a typical concern when dealing with fault-tolerant quantum
computing.

43

44 CHAPTER 5. XAG-BASED SYNTHESIS

|1)

] ZAE |z2)
iﬁ |z3)

)

| |z4
T8 D |0)
b :0;

D D 0
& If)

Figure 5.1: k-LUT-based synthesis: Starting from a logic network that implements the
primey(z) = [(z4z3z221)2 is prime]|, we first decomposes it using k-LUT mapping [44],
in this case k = 3.

5.2. CONTRIBUTIONS

The contributions of this chapter are as follows:

e We formally introduce a new multi-level Boolean network, high-level XAG, which
allows us to explore more optimizations opportunities during synthesis.

e We present results demonstrating that our flow is capable of reducing the number
of qubits by up to 24.95% and the number of Clifford gates by up to 43.3% when
compared to [94]. Crucially, these improvements are possible without increasing
the number of T" gates nor the execution time.

e We generalize this technique to properly handle the general case of oracle synthesis
Us - |z) [y) |0)* — |z) |y @ f(x)) |0)¥, i.e., when the state of the target qubits is |y)
instead of |0). Note that the original implementation of [94] does not handle this
case correctly.

This work appears in [120] and was presented at the Design Automation & Test in
Europe Conference (DATE’2020). An implementation appears in tweedledum.

5.3. PREVIOUS WORK

The previous state-of-the-art technique considers logic networks over the gate basis
{=,®, A} [94]. The principle behind this technique is to identify patterns in the XAG
network, which conveniently translate into quantum circuits characterized by few gates.
In particular, the method isolates the graph parts that translate to a single Toffoli gate,
i.e., the AND gates. Doing so allows us to draw a direct correlation between the network’s
number of AND gates and the cost in the number of T' gates and qubits.

5.3. PREVIOUS WORK 45

The first step in this technique is to represent the function as a XAG and then
minimize its number of AND gates. The minimum number of AND gates required
to implement a Boolean function as a XAG is known as the function’s multiplicative
complexity [151], and it directly correlates to the function’s resistance against algebraic
attacks [47]. I called it functional multiplicative complexity to differentiate from the
number of AND gates used in XAG representation, known as structural multiplicative
complexity [67, 147]. These metrics play an essential role in cryptography [10, 36, 65, 112],
being used to assess a function’s vulnerability to attacks (potentially from quantum
computers). Perhaps ironically, we can use their multiplicative minimization techniques
[147, 148] to build better quantum circuits.

The key idea in reference [94, Algorithm 1] is to look at the two inputs of an AND
gate as parity functions over variables that are either primary inputs or preceding AND
steps:

where Pg,; and Pg,, are the parity functions over the set of variables indexed by S1;, S2; C
[i —1]. Since the parity function is reversible, the inputs can be easily computed in-place,
i.e., without the need for an extra qubit. The AND vertices, on the other hand, need
out-of-place computation:

Cleanup
U
1
Ps,; ' ‘
ff\/l\ /l\r\r '\r\/L /J\r\r\‘
oD \NPARNVARNY, . D OO0
l 1
! 1
Psg,, : :
Jany a Ve A N v a I—Z—If DD
(NPARNVERN N ZAR TN SZARNZaR e
0) & |:)

Note the use of a clean ancilla qubit to hold the result. The above construction was
introduced in [66]. It combines ideas from [22, 105] and [75] to minimize the number
of T gates. The idea is that when we are computing an AND gate that will be later
cleaned up (uncomputed), we can save T gates by introducing phase errors. These errors
are not a problem as long as the other intermediate operations relying on the AND
are not sensitive to these errors, and we fix them during cleanup. In the construction
above, during the cleanup, we execute the gates in the highlighted box only when the
measurement yields 1 as a result—an unfavorable result that requires us to correct the
phase.

46 CHAPTER 5. XAG-BASED SYNTHESIS

|ZE1> p— PP P N v |I1>
|z2) |z2)
: :
X4 T4
10) —D—6> & & S |0)
|0) b S7 |0)
|0) S0 ly1)

Figure 5.2: Starting from a XAG (left) that represents the primey(z) function, we syn-
thesize a quantum circuit (right) using [94, Algorithm 1].

The algorithm starts by computing each AND gate in three simple steps: First, it
computes the input parity functions in-place, then the AND gate in a new ancilla qubit,
and then it cleans up the input. After that, it copies the state of the qubit holding the
output step to the output qubit. Finally, it restores the ancilla qubits to |0) by cleaning
up all AND steps. The synthesized circuit achieves the upper bound in the number of T
gates of four times the structural multiplicative complexity of the input XAG.

While we can rely on classical logic synthesis techniques to optimize the structural
multiplicative complexity of the initial XAG, this problem is known to be intractable
[61], and thus a hard limit on the number of ancillae may prohibit the use of this tech-
nique. One option is to use SAT to find the best strategy to compute and cleanup the
required intermediate results using a target number of qubits a. Such techniques are
called pebbling strategies [96] and enable the exploration of the trade-off between qubits
and gates.

5.4. SYNTHESIS FLOW

Our synthesis flow uses a higher-level representation of the XAG, known as high-level
XAG, that enables us to identify optimization opportunities to save qubits and Clifford
gates easily. Also, our flow lowers the level of abstraction in small steps: Starting from
a high-level XAG, we synthesize a reversible circuit with parity gates and Toffoli gates,

where a parity gate is
|z1) |z1)
|z2) |2)
|z3) 11 |21 © 72 @ 73)

Then we translate it into a circuit composed of CNOT and Toffoli gate, which, in turn,

arity

is lowered to the Clifford+T gate set. This progressive lowering allows our flow to dis-
cover more facts about the program, thus finding better optimization opportunities. For

5.4. SYNTHESIS FLOW 47

Figure 5.3: XAG and high-level XAG representations of a 2-bit ripple-carry adder. The
label ¢ outside each vertex identifies the gate x;. In this figure, we opted to leave the
labels of corresponding vertices on both graphs the same for clarity.

example, we can easily merge the parity gates and use known linear synthesis techniques
such as [108] to optimal CNOT circuits that implement them.

High-level XAG. A high-level XAG is a logic network in which each local function
Fg, is either a 2-input AND or a 2-input XOR. The inputs, however, are parity functions,
i.e. each gate has one of the two following forms:

z; = Ps,; N Ps,; or z;=PFgs,® Ps, (5.1)

for n < i < n+r, where Pg,, and Ps,, are parity functions over the set of variables
indexed by Si;, S2; C [i — 1]. Note that we can represent XOR gates as one parity
function Ps. Also, we can merge XOR gates into the inputs of the AND steps, except
when they drive an output. The logic level of a primary input or gate i is defined as the
earliest possible time in which it can be computed. Formally,

0 ifi <m,
,L' —
max{l; : j € (S1;U S2)}+1 otherwise.

Similarly, we define the reverse logic level I as the latest possible time in which gate
1 must be computed while not increasing the depth of the logic network.

Translating a XAG into an high-level XAG is straightforward. We merge all XOR
gates that are not driving an output into the input parity functions of the AND gates or
the input parity function of a output XOR gate.

Like when synthesizing a circuit from a XAG, the algorithm that uses a high-level

48 CHAPTER 5. XAG-BASED SYNTHESIS

XAG also focuses on steps that need out-of-place computation, i.e., the outputs and the
AND steps. However, by using a high level of abstraction, we can simplify our algorithm
implementation and more easily discover optimization opportunities. In a high-level
XAG, we explicitly represent the intersection between the two parity functions that are
inputs to each AND gate:

Pg,, Psg,,
When computing the AND vertices, we start with the intersection between the two
inputs:

n [Py -y

3= 5=

S1i \ (S1: N S2i) {) 5

S - BE - R
J—
& &
S1i N Sa; { g 5
=1 =
Sai \ (S1i N Sa;) —*
|0) ® |z:)

Synthesis algorithm. In the algorithms below, each gate x; for 0 < ¢ < n + r has
attributes LR(4), L(3), R(i), FANIN(:), REF(s), LAST REF(i), LVL(3), and TGT(¢), which
interact as follows: LR(%) is the set of indexes of the variables that are common in both
input parity functions, i.e., LR(i) = S1; N S2;. L(¢) and R(¢) are the set of indexes of the
variables that appear in only one of the input parity functions, i.e., L(i) = S1; \ LR(4) and
L(i) = So; \ LR(¢). The FANIN(%) is a vector of indexes such that FANIN(7) = Sy; U Sa;

The REF(4) attribute tells the algorithm the number of references to gate z;, including
cleaning up. For example, given a gate zj that uses z; in its input, if x5 needs clean
up, then two references are added to x;: one for the computation of x; and one for its
clean up. However, if 3, does not need cleanup (e.g., it drives an output), then just one
reference is added. LAST REF(%) tells the index of the last reference.

Finally, LVL(¢) is simply the reverse logic level I}, and TGT(:) indicates the target
qubit of a gate. Initially, TGT(7) is & for all gates.

The synthesis process begins by assigning qubits to the primary inputs and primary
outputs. The assignment is trivial for the inputs but more complicated for the outputs.
For the sake of clarity, we look at the assignment as a separate algorithm.

Before delving into the details of the assignment algorithm, however, let’s understand
what are the complications with the primary outputs. Suppose we are given a high-level
XAG with m outputs. An output can be:

1. The constant xg.

5.4. SYNTHESIS FLOW 49

2. A primary input.
3. The output of a AND gate.

4. The output of a XOR gate.

There are also the cases where an output is the complement of one of those, and when we
have one gate driving more than one output. The first three cases are simple to handle:

1. We either do nothing or add a NOT gate to the output qubit. The later happens
when the output is the complemented constant gate.

2. We use a CNOT gate to copy the classical state from the input qubit to the output
qubit.

3. We compute the AND gate directly on the output qubit—saving a qubit and the
gates that would be necessary to clean up.

Careful handling the fourth case allows us to save qubits and some gates. We compute
the XOR gate on the output qubit. Note, however, that all explicit XOR steps are
outputs. Thus, this direct computation saves us nothing. To save resources, we look
among the inputs of the XOR for AND gates that we can compute on the output qubit.
We are conservative in our search: The AND gate should either have only one reference
or be the only AND gate among the inputs. If the AND gate has more than one reference,
then we need to guarantee computing the XOR gate only after all other steps that depend
on the AND.

We now present the algorithm to assign qubits to the inputs and outputs:

Algorithm A (High-level XAG preprocessing). Given a high-level XAG with n inputs

and m outputs, a quantum circuit, and a set of n + m qubits Q, this algorithm assigns

target qubits to the primary inputs and primary outputs. The set Q is implemented as a

vector where the first n elements identify the qubits used as primary inputs and the last

m the primary outputs.

A1. [Assign PL] Set the target qubits of all primary input steps, that is, TGT(z) < Q[i—1],
for 1 <i < n. (Remember the Oth step is the constant.)

A2. [Assign AND PO.] For each primary output i, if TGT(i) = & and o; = A, then set
TGT(i) + Q[n + (i — 1)].

A3. [Assign XOR PO.] For each primary output ¢ in which o; = @ and TGT(i) = @.
Set TGT(7) < Q[i — 1] and look for a AND step among its inputs: First, we create
vector A of all the AND that have not being assigned a qubit among the inputs of
i, i.e., for j € FANIN(3), if o; = A and TGT(j) = &, then add j to A. Now, for
k € A, if REF(i) = 1 or SIZE(A) = 1, and LVL(LAST REF(k)) < LVL(i); then set
TGT(k) TGT(i), REF(k) + REF(k) — 1.

In the following algorithm, we use functions that have the same name as quantum

gates to denote the addition of the respective gate to the quantum circuit. The functions
TOFFOLI and PARITY take two inputs: A set of controls qubits and a target qubit.

50 CHAPTER 5. XAG-BASED SYNTHESIS

Algorithm B (Synthesize circuit). Given a high-level XAG with n inputs and m outputs,
a quantum circuit, and a set of n + m qubits Q, this algorithm assign target qubits to
the primary inputs and primary outputs.

B1. [Preprocessing.] Execute Algorithm A.

B2. [Compute level.]| We process the nodes of the high-level XAG level by level. We set
Imax ¢ max{l; €0<i<n}. For1l < h < lyax, we do: for all nodes ¢ such that
LVL(Z) = h, if i is an XOR node, i.e., o; = @, execute step B3; Otherwise execute
step B4.

B3. [Compute XOR.] We directly compute the gate on its target qubit: PARITY ({TGT(j) :
j € FANIN(%), TGT(j) # TGT(4)}, TGT(2)). Then we update the reference counters of
all nodes used by i: REF(j) = REF(j) — 1 for j € FANIN(%).

B4. [Compute AND.] If TGT(i) = &, we request an ancilla a and set TGT(i) + a. If
IL(¢)| < |R(7)|, we swap them L(%) <> R(¢). We choose two qubits k and v to hold
the in-place computation of the inputs. We set k to be an element of L(z). If LR(2)
is not empty, then we choose v € LR(z); Otherwise, we pick v € R(i). We execute
step B3 and add a Toffoli: TOFFOLI({TGT(k), TGT(v)}, TGT(¢). We also update the
reference counters of all nodes used by i: REF(j) = REF(j) — 1 for j € FANIN(?).
Lastly, we clean up the inputs by executing B5 in reverse oder.

B5. [Compute outputs.] Do:
e PARITY({TGT(j) : j € L(i),j # k}, TGT(k))
e PARITY({TGT(j) : j € LR(3),] # v}, TGT(v))
o If LR(i) is not empty: PARITY ({TGT(v)}, TGT(k))
e PARITY({TGT(j) : j € R(i),j # v}, TGT(v))

B6. [Recursively try to cleanup.] For j € FANIN(:), if REF(:) = 0, then we compute j
using step B3 and try to cleanup the inputs j using this step.

B7. [Missing outputs.] This step takes care of any primary output that might not have
been computed. For example, a primary output that is a primary input. Set ¢ = n.
For each primary output o: We do PARITY ({TGT(¢)}Q[¢]) if Q[¢] # TGT(0) and o # 0,
and then ¢ <+ ¢ + 1.

B8. [Complement outputs.] Set i = n. For each primary output: We do X(Q[¢]) if the
output is complemented, and then ¢ <7+ 1. |

These algorithms are able to handle the synthesis of both forms, i.e., the general form
given Uy : |z) |y) [0)F — |z) |y @ f(z)) |0)¥, and the zero-target form where |y) equals |0).
When computing the zero-target form, however, we can get better results by adapting
these algorithm to take advantage of the fact that we know the output qubits are on
state |0). In such case, we try to postpone the computation of the outputs as much as
possible, so that we can use those qubits as ancilla for the intermediate computations.

5.5. EXPERIMENTAL RESULTS o1

5 6 0
jo1) A e
|Z2) 1 | ; > >
N E=1 ' R~} h=1
|a) 4|F §§ = =
0) E; i
10) oL
0) S —H
5 6 0 12
|z1) i — - |z1)
|z2) + & D —— L |zg)
|z3) - —— 1 1 - |3)
|z4) H—— i - |z4)
|0> :______:: 'E ‘i |: : |y0>
|0) b, {; 00 - ly1)
|0) : o |y2)

Figure 5.4: Starting from the XAG in Figure 5.2, we first create a high-level XAG (left).
We synthesize a quantum circuit with parity gates and Toffoli gates (top right); Then
we lower it to a circuit composed of CNOT gates and Toffoli (bottom right), which, in
turn, would be lowered to a circuit over the Clifford+7 gate set.

Also note that, for simplicity, we chose to not show measurement-based cleanup
in Algorithm B. It is, however, straightforward to adapt the algorithm to include this
technique: We just need to add slightly modified versions of steps B4 and B5 to cleanup
AND gates. Our C++ implementation incorporate such changes.

5.5. EXPERIMENTAL RESULTS

We use various arithmetic and random-control functions from [14] as well as crypto-
graphic functions and IEEE floating-point operations [7| as benchmarks. For the EPFL
benchmarks, we list the currently best-known results for multiplicative complexity ob-
tained from the state-of-the-art optimization approaches in [94]. We compile the func-
tions into quantum operations of two forms: the general form and the zero-target form.
The resulting quantum circuit representation uses the Clifford+7" gate set.

In [94], the authors provide a C++ implementation of their algorithm that does not
properly handle the general form. The problem lies with the measurement-based cleanup.
Their implementation might apply this technique on Toffoli gates acting on the output
qubits, thus destroying the initial state |y). We modify their implementation to correct
this behavior. For the first form, we compare our implementation against the modified
version of their implementation. We can directly compare the results of synthesizing into
the zero-target form.

We report the results in Table 5.1. The difference between synthesizing into the
different forms is only on the number of qubits; Both 7' and Clifford gate counts stay

52 CHAPTER 5. XAG-BASED SYNTHESIS

the same. Thus, we only distinguish between the two forms in the qubits column: The
results in parentheses correspond to the zero-target form. Note that we don’t ignore
any Clifford gates. (In [94], the Clifford gates in the decomposition of Toffoli gates to a
Clifford+7T gate set are ignored.) Also, we report the number of Clifford gates for the
worst case, i.e., we assume that all measurement-based cleanups fail—meaning that we
will need Clifford to fix the phase.

EPFL benchmarks On these benchmarks our algorithm improves, on average, 4.07%
the number of qubits and 8.72% the number of Clifford gates. The largest improvement
is of 24.95% in the number of qubits and 43% in the number of Clifford gates, and occurs
for the adder, when synthesizing for the general form. Such impressive gain is due to
Algorithm A, which is able to correctly identify that all Toffoli gates can be directly
computed on the output qubits, and, thus, don’t need to be cleanup.

Cryptographic functions & IEEE floating-point We were unable to obtain re-
sults for all crypto benchmarks due to memory constraints. The state-of-the-art fails
on Keccak-f, SHA-256 and SHA-512. Our method, on the other handle, can handle
SHA-256 because of its multilevel intermediate representation, which is more memory
efficient. The other results show a significant improvement on the number of Clifford
gates: 22.21% on average. On the IEEE floating-point operations we also observe an
important gain in the number of Clifford gates.

5.6. SUMMARY

In this chapter, we presented a flow for oracle synthesis. The flow allows quantum
algorithm designers to define the classical behavior of these quantum operations on a
high level of abstraction, e.g., a Python function. Then we translate it to a XAG that we
optimize using classical logic synthesis techniques. We focused on XAGs with a minimal
number of AND gates since this number is proportional to the T-count of the resulting
quantum circuit. The impact of the number of XOR nodes in the graph, on the other
hand, should be better studied in the future. In our experiments, we have seen that the
relation between the number of XOR steps and the number of CNOT gates is not so
straightforward.

Our technique achieves better results compared to other state-of-the-art synthesizers.
We can reduce the number of qubits by 24.95% and the number of Clifford by 43.3%
in the best cases. Crucially, these improvements were possible without increasing the
number of T gates or the execution time.

In addition, our multilevel intermediate representation (IR) allowed us to manipulate
circuits with a more significant number of gates more efficiently. For example, we dealt
with a benchmark that required too much memory when represented using a low-level
IR. Also, we can more easily identify the linear parts of the quantum circuit to apply
resynthesis technique to reduce the CNOT overhead.

5.6. SUMMARY 53

Benchmark State-of-the-art [94] Proposed Gain
qubits T Clifford qubits T Clifford qubits Clifford

Arithmetic functions [14]
adder 513 (385) 512 3820 385 (385) 512 2167 24.95% — 433%
bar 1095 (1032) 3328 33536 1095 (1095) 3328 32768 — (-6.10%) 2.29%
div 6252 (6188) 24240 333081 5950 (5948) 24240 306211 4.83% (3.88%) 8.07%
log2 19500 (19469) 77744 1201139 19479 (19458) 77744 1118969 0.11% 0.06% 6.84%
max 1572 (1444) 3724 21854 1443 (1315) 3724 19289 821% 893% 11.74%
multiplier 12194 (12069) 47760 1017983 12169 (12065) 47760 686236 0.21% 0.03% 32.59%
sin 4122 (4099) 16300 112934 4098 (4095) 16300 108793 0.58% 0.10% 3.67%
sqrt 6376 (6372) 24976 283381 5961 (5960) 24976 245303 6.51% 6.47% 13.44%
square 5365 (5246) 20724 309490 5312 (5235) 20724 259974 0.99% 0.21% 16.00%
Random control [14]
arbiter 1437 (1437) 4724 13657 1437 (1437) 4724 13657 — — —
cavle 505 (504) 1976 6506 497 (487) 1976 6488 1.58% 3.37% 0.28%
ctrl 93 (93) 340 943 90 (87) 340 943 3.23% 6.45% —
dec 349 (349) 1364 3068 349 (349) 1364 3068 — — —
i2¢ 77 (771) 2492 8285 758 (739) 2492 8193 2.45% 4.15% 1.11%
int2float 113 (111) 400 1531 103 (98) 400 1494 8.85% 11.71% 2.42%
mem 6881 (6319) 20452 72535 6241 (5655) 20452 68521 9.30% 10.51% 5.53%
priority 458 (455) 1308 4537 451 (447) 1308 4518 1.53% 1.76% 0.42%
voter 6652 (6652) 22604 237227 6652 (6652) 22604 215023 — — 9.36%
Crypto functions [7]
AES-128 6784 (6659) 25600 2947672 6752 (6752) 25600 2288312 0.47% (-1.40%) 22.37%
AES-192 7616 (7491) 28672 3292468 7584 (7584) 28672 2560868 0.42% (-1.24%) 22.22%
AES-256 9344 (9219) 35328 3690293 9312 (9312) 35328 2877317 0.34% (-1.01%) 22.03%
Keccak-ff
SHA-2561 23585 (23585) 90292 583182318
SHA-512f
IEEE floating-point (7]
FP-add 5576 (5513) 21536 600804 5512 (5512) 21536 536401 1.15% (0.02%) 10.72%
FP-div 82457 (82394) 329060 36311574 82393 (82393) 329060 32636047 0.08% — 10.12%
FP-eq 506 (506) 1260 4094 506 (443) 1260 4032 — (1245%) 151%
FP-f2i 1594 (1531) 5868 38416 1531 (1529) 5868 38070 3.95% (0.13%) 0.90%
FP-mul 19806 (19743) 78456 2217382 19742 (19742) 78456 2002297 0.32% (0.01% 9.70%
FP-sqrt 91520 (91457) 365568 84586674 91456 (91456) 365568 73925221 0.07% — 12.60%

t The missing results are due to the system running out of memory (OOM).

Table 5.1: Experimental results

Chapter 6

Symbolic algorithms for
permutation synthesis

6.1. MOTIVATION

In this chapter, we study symbolic algorithms to solve two related problems on graphs:
the token swapping problem, introduced by Yamanaka et al. [155], and the permutation
routing via matchings problem, proposed by Alon et al. [12]. In both, we are given a
connected graph with n vertices, a set of n tokens, and an initial bijective assignment
between tokens and vertices, i.e., a permutation. We are also given a target permutation.
The goal is to move each token to its destination vertex in the target permutation by
applying a sequence of token swaps among adjacent vertices. We refer to both as a
reconfiguration problem.

The difference between the two problems lies in the optimization goal. In the token
swapping problem, the aim is to minimize the total swaps. In the permutation routing
via matchings, the goal is to minimize the total number of steps by picking matchings,
i.e., a disjoint collection of edges, and swapping the tokens of all vertices connected by
an edge on the matching at each step—some authors have referred to this as the parallel
token swapping problem.

Both problems appear in the context of quantum circuit mapping [157]: the process
of modifying a high-level quantum circuit, which assumes full qubit connectivity, into
a lower-level one that respects the device’s connectivity (or coupling) constraints. This
process is not always possible without including additional gates. A SWAP-based mapper
models mapping as a reconfiguration problem in which the vertices correspond to the
device’s physical qubits and the tokens to the high-level circuit’s virtual qubits. A two-
qubit gate can only be executed between virtual qubits mapped to adjacent physical
qubits. The mapper uses SWAPs to move virtual qubits to adjacent physical ones when
this is not the case.

55

56 CHAPTER 6. SYMBOLIC ALGORITHMS FOR PERMUTATION SYNTHESIS
3¢ 2¢ ole 20 e 20 a2 e 0 ks
@ {oz} {za} {01} ONER0 G
ik 20¢
{0,2},{1,3} . @ a {0,1},{2,3}
ﬁag&
Figure 6.1: This figure shows two solutions to a reconfiguration problem. Give a con-
nected graph with a set of tokens placed on its vertices; our goal is to use swap operations
to equalize the tokens’ and vertices’ labels. On the top solution, we employ four steps
with one swap operation, which is optimal number of swaps. On the bottom solution, we

use two steps with two swaps each. We can apply swap in parallel in both steps because
they work on disjoint sets of vertices.

6.2. TECHNICAL BACKGROUND

In the following, we introduce the necessary technical background to understand our
algorithms to solve these problems.

6.2.1 Graphs

A graph is an ordered pair of sets G = (V, E), where V is a finite set of vertices and E
is a finite set of edges or arcs. In an undirected graph, the edges are unordered pairs.
In this work, we write u — v instead of {u,v} to denote the undirected edge between
vertices 4 and v. In a directed graph, we use the term arc in aset £ C V x V to denote
a link between two vertices and write u — v instead of (u,v) to denote an arc from u
to v.

For any edge u — v in an undirected graph, we call u a neighbor of v, and vice versa.
We denote §(v) the set of neighbors of v and the degree of a vertex is |§(v)|, i.e., its
number of neighbors. In directed graphs, we distinguish two kinds of neighbors. For any
directed edge u — v, we call u a predecessor of v and v a successor of u. Accordingly,
we use § (v) and 61 (v) to denote the set of predecessors and the set of successors of a
vertex v respectively.

Given two undirected graphs G; = (Vi, E1) and G2 = (Va, E2), we say that a subgraph
isomorphism from G to G2 is an injective function f : V4 — V5 such that v; — v; implies
f(vi) — f(vj) for all v;,v; € Vi. A matching M of a graph G is subgraph where every
vertex has degree 1, i.e., no two edges on M have a common vertex.

In a directed graph, a directed walk is a sequence of vertices v; — vog —> --- —> y;
such that v;—1 — v; € F for every index i. A directed walk is called a directed path if
it visits each vertex at most once.

6.2. TECHNICAL BACKGROUND o7

6.2.2 Permutation

A permutation is a bijective function f : X — X where X is a finite set {1,2,...,n}. A
permutation is represented as a tuple m = (a1, ag, ..., a,) in which each item k moves to
ak. For example, m = (3,1,2,4) implies 1 — 3, 2+ 1 and 3 — 2—in this example item
4 is already on its place. We write S, to denote the symmetric group on X, i.e., the
set of all permutations, and use 7. to denote the identity permutation (1,2,...,n). A
transposition 7(; ;) € Sy, is an elementary permutation which interchanges two elements
and leaves all others unchanged. Any permutation can be decomposed into a sequence
of transpositions which can be made canonical. We can represent the previous example
permutation as m = 7(31) © 7(3,1). Note that we apply transpositions from right to left.

An inversion of 7 is a pair of indices ¢ < j such that 7 (¢) > 7 (j), where 4,5 € [n] and
7(i) denotes the i*® element. The number of inversions of 7 is denoted inv(r). The sign
of a 7 is sgn(m) = (—1)™(™), For any transposition sgn(7(;j)) = —1. For all m;,7; € Sy,
sgn(m; o m;) = sgn(m;) - sgn(m;).

Theorem 1. Let ™= T4, 5,) © """ © T(ag,by) © T(ar,b1) b€ any decomposition of w € Sy, into
a sequence of transpositions. Then

sgn(m) = (—1)k.

Proof. We can rewrite m as mg oy where m1 = (g, 3,) and T2 = T(q, 5,)©" " * © T(qy,b,), then
sgn(m) = sgn(m) - sgn(me). Next we can do the same for 7 and iteratively for all sub-
sequent 7y such that each my is a transposition7(,, ,). Clearly, sgn(m) = Hle sgn(m;).
The conclusion now follows by recalling that sgn(7(;;) = —1. O

6.2.3 Reconfiguration problems

Definition 1 (Token assignment). Given an undirected graph G = (V, E), with V =
{v1,...,vp}, a token assignment is a bijective mapping IL : V. — {1,...,n}. By assuming
an order on the vertices vi < --- < v, a token assignment can equally be described by a
permutation w € Sy, where (i) = I(v;).

Given a connected undirected graph G = (V, E), an initial token assignment mjyiy = 7o
and a target token assignment 7arget. We define the two problem of interest as follows.

Problem 1 (Token swapping, [155]). Find a sequence of transpositions T(q, b,)s - - - > T(ax by)
with ve, — vy, such that

Ty = Tj—1 © T(ai,bi) fOT all 1 < % < k,
and T = Tiarget, Where k is minimum.

Problem 2 (Permutation routing via matchings, [12]). Find a sequence of matchings

58 CHAPTER 6. SYMBOLIC ALGORITHMS FOR PERMUTATION SYNTHESIS

My,...,M; C E on G such that

mi=mi1o || Tapy foralll<i<e,
{va; v, YEM;

and Ty = Tiarget, Where £ is minimum.

Note that it is always possible to relabel the graph such that 7 is the identity per-
mutation, mg = m.. Hence, we assume such an initial token assignment in the remainder
of this chapter without loss of generality.

6.2.4 State space

A state-space is a 6-tuple S = (S, A, cost, T', so, Sx) where S is a finite set of states, A is a
finite set of actions, cost : A — Rg , T C Sx AxS is a transition relation (deterministic
in (s,a)), sp € S is the initial state, and S, C S is the set of goal states. State-spaces are
often represented as directed graphs. Given a state-space S, we can construct a directed
graph Dg = (S, E), where the set of vertices V' consists of all possible states, and an arc
v — w only if there exists an action a € A that transforms the state in v to the state

in w, denoted v — w.
a

6.2.5 Decision diagrams

Zero-suppressed decision diagram (ZDD, [100]). A ZDD is a graph-based repre-
sentation of a finite family of finite subsets. Given a set of variables X = x1,...,z,, a
ZDD is a directed acyclic graph with non-terminal vertices IV, also called decision ver-
tices, and two terminal vertices T and L. Each vertex v € N is associated with variable
V(v) € X and has two successor vertices HI(v),LO(v) € N U{T, L}. The vertices on
a directed path to a terminal vertex follows a fixed variable order which guarantees the
canonicity of the ZDD.

Each vertex in the ZDD represents a finite family of finite subsets over X. The
terminal node L represents the empty family () and the terminal vertex T represents the
unit family—a family containing the empty set {#}. Each decision vertex v represents
the subset

LO(’U) U {S U {xv(v)} | S e HI(U)}

Given two ZDDs f and g, the following list of operations is part of what is called a
ZDD family algebra. Each operation can be efficiently implemented using ZDDs.

union fUug={a|la€ foraceg}
intersection fNg={a|a € fand a € g}

difference f\g={a|lac fand o ¢ g}
nonsupersets f\,g={a € f|B € g implies a 2 B}

For a detailed description of how ZDDs are represented in memory and how the family
algebra operations are implemented, we refer the reader to the literature [80, 100].

6.3. CONTRIBUTIONS 59

Permutation decision diagram (7DD, [101]). A 7DD is a ZDD-like data structure
for representing finite sets of permutations. Minimal changes to ZDD semantics allows
7DD to be build on top of a ZDD implementation. First, each transposition is represented
by a variable in a ZDD.

Each vertex in the 7DD represents a finite set of permutations. The terminal vertex L
retains its semantics, i.e., it represents an empty set of permutation (), while T represent
the unit set which is the set containing identity permutation 7.. Each decision vertex
represents the subset

LO(v) U {HI(v) - 755}

Given two mDDs f and g, the binary set operations: union, intersection and difference
work in the same manner as in ZDDs. What differentiate 7DD is the following two
operations.

transposition [Ty ={a 7oy |la € f}
cartesian product fxg={af|a€ f,B € g}

6.3. CONTRIBUTIONS

In this chapter, we present the results of research directed towards the development and
analysis of symbolic algorithms for solving both problems:

o A*based algorithm. We study the use of A* search algorithm [71] to solve both
problems using admissible heuristics, which guarantee optimality and non-admissible
heuristics.

e When trying to optimize for the number of swaps, we prove that any non-admissible
heuristic will obtain a result that deviates from an optimal result by an even number
of swaps.

o SAT-based algorithm. Inspired by [144], we introduced a new encoding which relies
only on SAT for solving both problems.

e Finally, we show how both problems emerge in the context of quantum circuit
mapping [157].

This work appears in [124] and was presented at IEEE 50th International Symposium
on Multiple-Valued Logic (ISMVL’2020). An implementation appears in tweedledum.

6.4. A*~-BASED ALGORITHM

We can abstract both problems to the mathematical problem of finding a minimal cost
path from a start vertex to a goal vertex in a directed graph Dy = (S, E) representing
a state space. Each vertex s € S represents a state in such a graph, i.e., in our case,
one possible token assignment. The set of actions, which transforms a state, changes

60 CHAPTER 6. SYMBOLIC ALGORITHMS FOR PERMUTATION SYNTHESIS

depending on the problem. In the token swapping problem, A corresponds to the set of
edges in G, while in the permutation routing via matchings, A corresponds to the set of
matchings M in G.

The graph D, is not explicitly specified as the number of vertices and edges is too
large. Instead, the graph is implicitly represented by means of a set of source vertices
S’ € S and a successor operator I' : &' — (S X cost)|A|, i.e., an operator that, given a
vertex s;, generates the set of tuples (s, cost(a)), where s;, € 67 (s;), for all a € A.

We employ an informed search algorithm, namely A* [71], to solve the problem of
finding a lowest-cost path in D;. Given a start vertex sp, the algorithm iteratively
generates parts of a subgraph of D, by applying the successor operator I'(s;). We say
that a vertex has been expanded when the successor operator is applied to it. For each
expanded vertex s; € Dy a weight is calculated for all its successors s, s; = Sk, using

weight(sx) = g(sk) + h(sk),

where g(s;) = g(s;) + cost(a) is the cost to reach vertex s and h(sg) is a heuristic
function that estimates the cost from si to the target vertex. In other words, weight(sy)
gives an estimate of the total cost of a path using that vertex. At each iteration, the
vertex with the lowest cost is chosen to be expanded. The algorithm expands the vertex
with the lowest cost first, some parts of the search space (those that lead to expensive
solutions) are never explored. Hence use of a good heuristic is important in determining
the performance of A*. Further, if h(s) is admissible, that is, it never overestimates
the cost of the cheapest path from s, to a target vertex, then A* guarantees finding an
optimal solution.

Token swapping. We describe two heuristics for solving the token swapping problem.
The first is admissible and follows from the following theorem.

Theorem 2. Let d(I1(v;)) be the distance of a token II(v;) to its target vertex vy. Let K
be the sum of distances of all tokens to their target vertices K =Y " ; d(II(v;)), then
K

h(sk) = 9

is an admissible heuristic for solving the token swapping problem.

Proof. Any solution would need a least % swap operations as every swap reduces K by
at most 2. O

Experiments demonstrate that such admissible heuristic can still take a long time to
find optimal solutions for problems with up to 20 vertices. Given the inherent complexity
of the problem, this is a good indication that employing an admissible heuristic might
be prohibitive, especially if the problem instances grow. Hence, we explored different
non-admissible heuristics which aggressively prune the search space. We report results
for when using h(s;) = K. Furthermore, we prove the following corollary to Theorem 1.

6.5. SAT-BASED ALGORITHM 61

Corollary 1. Any non-optimal solution to the token swapping problem differs from an
optimal solution by an even number of swaps.

Proof. Let Tiarget be any permutation and 7(4, p,) ©*** © T(a5,5,) © T(a1,5;) D€ any sequence
of swaps which transforms the identity permutation 7, into 7iarget. If sgn(marget) is 1
(—1), then such sequence must have an even (odd) number of swaps, since sgn(marget) =
(—=1)*. The conclusion now follows because this is true for both optimal and non-optimal
sequences. O

Permutation routing via matchings. Solving this variant of the problem requires
knowing all the matchings of the graph, i.e., computing the set of all combinations of
edges in which no two edges have a common vertex. We use ZDDs to represent the set of
all matchings. Given a graph G(E, V') the ZDD is defined over the |E| variables e € E.
The ZDD with all matchings M is described by

M zp\vLGJV (5(2”))

where g refers to the ZDD that represents the universal family of all subsets of E.
We also employ one admissible and one non-admissible heuristic to solve this problem.
The admissible heuristic follows from the following simple lemma.

Lemma 1. Let d(II(v;)) be the distance of a token II(v;) to the target v;. Let K be the
mazimum distance of all tokens to their target vertices L = max d(II(v;)), then

h(sk) =1L
is an admissible heuristic to solve the permutation routing via matchings problem.

Proof. Any solution needs at least L steps as every step reduces L by at most 1. ([

6.5. SAT-BASED ALGORITHM

We use the state-space representation to formulate the token swapping and permutation
routing via matching problems as the Boolean satisfiability problem. In the encoding, I
use two types of variables: one indicates whether a token is placed in a vertex at a given
step, and the other indicates whether a swap between two vertices took place at a given
step. Our encoding uses four different types of clauses to constrain the problem such
that the solution corresponds to a correct placement of swaps:

C1. At each level, each token must be assigned to exactly one vertex and each
vertex must be assigned to exactly one token.

C2. If at steps [and [+ 1 a vertex is assigned the same token, then no swapping
involving that vertex occurred at .

62 CHAPTER 6. SYMBOLIC ALGORITHMS FOR PERMUTATION SYNTHESIS

C3. If at levels [and [+ 1 a vertex is assigned to different tokens, then a swap in-
volving that vertex occurred and must have occurred with its adjacent vertex
that at level [is assigned the token.

The last necessary constraint changes depending on the problem we are solving.
The constraint C4a is necessary when searching for an optimal number of swaps, while
constraint C4b is necessary when searching for an optimal number of matchings.

C4a. At each level at most one swap can occur.
C4b. At each level, each vertex can only be involved in at most one swap.

Let 2!, be a Boolean variable which indicates whether a token ¢ is assigned to the
vertex v at the level [. Constraint C1 can be split into two parts: one guarantees that
each token is assigned to exactly one vertex, expressed as

VIVt al, =1,
v

and the other ensures that each vertex is assigned to one token

ViV, zp, = 1.
t

Let s!,, be a Boolean variable representing whether a swap between vertices v and w
occurs at step . The constraint C2

l I+1 =l
) N mtj = /\ Svw>
wed(v)

where §(v) is the set of vertices adjacent to v. Similarly, constraint C3

=l I+1 l l
Tty N) = \/ (svw A wtw)'
wed(v)

Constraint C4a can be expressed as

{v,w}eE

Constraint C4b allows multiple non-conflicting swaps per step, i.e., a set of swaps that
act on different vertices, and is described by

Vive, Y sb, <1
weH(v)

As the SAT-based approach always answers a given formula in a satisfiable/unsat-
isfiable (yes/no) manner we need to translate the minimization of the number of swaps

6.6. mDD-BASED ALGORITHM 63

(or steps) into series of queries to the SAT solver. We build a formula that encodes a
question of whether there is a solution to the problem using a specified number of swaps
(or steps) using the above constraints. In practice, for both optimizations goals, this
corresponds to the number of steps [we encoded.

Our implementation solves the problem incrementally by adding a new step whenever
the SAT formula is unsatisfiable. We do not always start with [= 1 as it is possible to
analyze each problem instance to get a lower bound on the necessary number of swaps (or
steps) required. When optimizing the number of swaps, the lower bound corresponds to
the sum of shortest paths connecting the start and target vertices of each token divided
by 2 (see Lemma 2), while the lower bound on the number of steps corresponds to the
longest shortest path (see Lemma 1).

The encoding can have an enormous effect on the speed with which a SAT solver can
find an answer to our problem. Thus it is important to consider means to improve it.
In this case, we can reduce the number of variables and simplify some clauses by noting
that when encoding the possibility of a token been at a certain vertex at a given step I,
we only need to consider those vertices that reachable by the token in [steps from its
initial position. Further, when optimizing for the number of swaps, we can reduce the
number of queries to the solver by encoding two new steps, instead of one, whenever the
solver returns unsatisfiable—this can be done because of Lemma 2.

6.6. TDD-BASED ALGORITHM

As discussed in the previous section, 7DDs allow for a compact representation of sets of
permutations as well as efficient operations such as the Cartesian product.

The set for permutations given by using one SWAP operation is U?:_II T(is)- Lhus,
all possible configurations generated by up to kK SWAPs are given by

Py = me
n—1

P =PU |7y (6.1)
=1

P,.=P, 1 x P, fork>2

Using this formula we can increase k until Py = P, for any k¥ > m. This means
that m is the minimum number of SWAPs required to cover all possible configurations.

Based on the results and procedures of the previous section, a algorithm for solving
the token swapping problem with a minimal number of SWAPs can be formulated. For
this purpose, we first represent the final configuration as permutation 7;. Then, all
permutations are enumerate as in (6.1). Ater each step k, we check whether 7 is
contained in the set of all permutations P;. When this check returns a positive answer,
then the minimum number of SWAPs is k. Then, we need to extract the sequence of
SWAPs. For this purpose, the algorithms moves backwards going from Py to to Py by
applying gates in T'. The algorithms can be formulated as follows.

64 CHAPTER 6. SYMBOLIC ALGORITHMS FOR PERMUTATION SYNTHESIS

Algorithm E (7 DD-based synthesis). The final permutation ¢ and the set of allowed
transpositions 7" are given.

E1. [Initialize.] Set Py < {me}, P = PyUT and k < 1.

E2. [Found minimum? If P, N {ns} #, i.e., 7y € Py, go to step E4.

E3. [Increase k.| Set k < k+ 1, Py, < Pr—1 x P; and go to step E2.

E4. [Extract SWAP.] Select a transposition 7(,,) € T such that mf - 7(5) € Pr_1.

E5. [Next SWAP?| Set k <~ k —1 and 7y < 7y - Tz). If k = 1, terminate; otherwise go
to step E4. |

6.7. EXPERIMENTAL RESULTS

We implemented our methods in C++ into the quantum compilation framework twee-
dledum. We evaluate the different approaches with benchmarks on the latest reported
hardware architectures based on the superconducting circuit technology. All experiments
were run on an Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz. As SAT solver, we used
a variation of MapleSAT [114].

Benchmarks. As benchmarks, we use a set of 8338 instances of the token swapping
problem, which we encountered while mapping quantum circuits from previous works
on quantum mapping [157]. These benchmarks contain various functions taken from
RevLib [152] as well as quantum algorithms written in Quipper [68] or the Scaffold
language [6] (and pre-compiled by the ScaffoldCC compiler [74]). The set of circuits was
chosen for evaluation because they are commonly seen in quantum compilation literature
and are publicly available for use.

We partition the quantum circuits into parts that can be mapped without SWAPs
using an SAT solver as described in [72]. The reconfiguration problems that we studied
in this chapter arise from the need to connect these parts into a larger quantum circuit:

|Subcircuit Subcircuit Subcircuit |

Swaps

Swaps

We use three real device topologies. The first is Rigetti’s 16-qubit quantum computer
where the topology consists of two octagons connected by a square:

We also use the IBM Q14 Melbourne, a 14-qubit quantum computer with the follow-

6.7. EXPERIMENTAL RESULTS 65

ing coupling constraints—we use an undirected graph for this device.

Rigetti 16Q N IBM 140 N IBM 20Q
10 10° 10"
/// // 7
’ ~ s
/ //I i
10" B 10% e 10? ,
Y] . 153 s Y 7 ’
bl e 2 e b ,
2 / 2 2 ,
30 /’ 3 w0t S 3 e
2 . 2 p
& / 3 ki e
g /
§ 10t 4 -§ 10— é 107t P =
] I i
c < c 7
5 s g /
2 2 2
1072 10-% 1072 PPN
i A
:(_’?,:I. e
R
105+ r : |10k . - , : 105K , . i
10°% 102 10! 10! 10° 10° 10°% 103 10+ 10t 10° 10° 107 107 107! 10! 10° 10°
admissible heuristic admissible heuristic admissible heuristic
Rigetti 16 IBM 14 IBM 20Q
10 g Q < 10” Q - 10"
% /! -
/ . x
L) 4 x
10 10° y 10 , X
g g s g e
i} 2 e ke i
T < < .t
5 H / H T
o 10 2 10! o 10" j‘...
S .
2 2 . 2 bs
A 2 2 L,
£ 107 £ 10 £ 107 /'
] 3 B /
c < c ,/
5 s § /
2 g 2 S/
107 10-2 1072 s
e e
// ///
1075 4 - 1075 42 - - 105 42 -
10-° 1072 107} 10! 10° 10° 10-° 102 10— 10 10° 10° 10-% 1077 107 10! 10° 10°
admissible heuristic admissible heuristic admissible heuristic

Figure 6.2: Execution time comparison between A*-based algorithm with an admissible
heuristic and A*-based algorithm with a non-admissible heuristic. In the top row, the
optimization goal is the number of swaps. In the bottom row, the optimization goal is
the number of steps.

Method. We try to solve each problem instance for two optimization goals (minimum
number of swaps and minimum number of steps) by employing three methods: A*-based
with admissible heuristic, A*-based with non-admissible heuristic, and SAT-based. Thus,
we run our program a total of 50028 times. Each time we set a timeout of 3 hours.
Figure 6.2 shows the execution time results for solving instances with different opti-
mization goals and using A*-based methods with two heuristics—one admissible and one

66 CHAPTER 6. SYMBOLIC ALGORITHMS FOR PERMUTATION SYNTHESIS

non-admissible. In the top row, the goal is to minimize the number of swaps, while on
the bottom row, the goal is to reduce the number of steps. As expected, the results show
that the non-admissible heuristic has better execution time for both purposes. We note
that the non-admissible heuristic is a clear winner when optimizing for the number of
swaps; when optimizing for the number of steps, we see that the non-admissable heuristic
is still a winner but in many cases performs similarly to the admissible heuristic.

Next, we analyzed the quality of results obtained by employing the A*-based method
with a non-admissible heuristic. We calculate the difference in the number of swaps
and steps between the obtained result and a known optimal result for each problem
instance—which, as we proved, will always be an even number. When solving the token
swapping problem, the non-admissible heuristic found an optimal solution in 85.2% and
70% of the benchmarks for Rigetti’s 16Q and 20Q, respectively. For IBM’s 14Q device,
it found solutions using two extra swaps in 87.8% of the cases. The heuristic would use
eight additional swaps in the worst cases, but this only happens in less than 1% of the
cases. When optimizing for the number of steps, the non-admissible heuristic does not
perform well. Indeed, for this case, optimum results are only reached 55.5%, 55.8%, and
13.0% of the time for Rigetti’s 16Q, IBM’s 14Q, and 20Q, respectively. Further, the
number of extra steps might be as high as thirteen.

Rigetti 16Q 1BM 14Q . IBM 20Q
x

x mmom: som— X

SAT

107 10 1074 10! 107 10° 10 107 107 10- 10* 10% 107 10" 10! 10! 10° 10°
admissible heuristic admissible heuristic admissible heuristic

Rigetti 16Q IBM 14Q . IBM 20Q
x

X memossecuem X XM X0 XWX K7 x X
/ , ,

SAT

p
10 S w0 g
e ."

;n'* 10 ° 10! 10! 10% 107 io" 107 107" 10° 10° 10° ;ﬂ'“ 107 107" 10! 107 107

admissible heuristic admissible heuristic admissible heuristic
Figure 6.3: Execution time comparison between A*-based algorithm with an admissible
heuristic and SAT-based algorithm. In the top row, the optimization goal is the number
of swaps. In the bottom row, the optimization goal is the number of steps.

Figure 6.3 shows the execution time results for solving instances with different op-
timization goals and using the two methods which guarantee optimal results, namely

6.8. SUMMARY 67

A*-based with admissible heuristic and SAT-based. The top row shows the results for
obtaining an optimal number of swaps, while the bottom row shows results for getting
an optimal number of steps. We find that the SAT-based algorithm is better suited for
solving the permutation routing via matchings problem, while the A*-based algorithm
does better when solving the token swapping problem—although, for many instances,
this difference is negligible or non-existent.

6.8. SUMMARY

In summary, we explored different non-admissible heuristics which aggressively prune the
search space. We report results for when using h(si) = L+ K, where K = Y ;- ; d(II(v;))
as in Lemma 2.

We presented two symbolic algorithms for solving token swapping and permutation
routing via matchings problems. We evaluated the algorithms using a set of practical
benchmarks obtained while mapping quantum circuits into different device architectures.
The results demonstrate that the A*-based algorithm with an admissible heuristic per-
forms better than the SAT-based method when solving the token swapping problem
optimally. The SAT-based method outperforms the A*-based algorithm when optimally
solving the permutation routing via matchings problems.

We also evaluated the use of non-admissible heuristics when using the A*-based
algorithm. For the token swapping problem, we proved that any result from using a non-
admissible heuristic, if not optimal, will deviate from an optimal outcome by at most an
even number of swaps. Further, our non-admissible heuristic obtained optimal solutions
for most of the benchmarks. When dealing with the permutation routing via matchings
problem, using a non-admissible heuristic is not as advantageous.

Chapter 7

SAT-based linear synthesis

7.1. MOTIVATION

In the previous chapter, we studied two reconfiguration problems on graphs and showed
how both appear in the context of quantum circuit mapping, the task of finding a map-
ping from virtual instructions to allowed physical ones. The presented techniques syn-
thesize SWAP-based circuits that permute qubits on a coupling graph and thus enable
the execution of gates on non-adjacent qubits. Also, these permutation circuits appear
prominently in various quantum computing benchmarks [49].

Today’s quantum hardware, however, cannot execute SWAP gates directly. Thus,
during compilation, we must translate SWAPs into a sequence of CNOT gates using the
following identity:

y =Y (7.1)

These translated circuits allow us to evaluate the cost in the number of gates and

depth more precisely. Also, we note that they can dominate the total costs for many
applications. We can improve the implementation of permutation circuits by leveraging
the properties of the CNOT gate, as shown in Figure 7.1.

7.2. TECHNICAL BACKGROUND

The family of circuits that permute qubits on a coupling graph is part of the more
general family of linear circuits. Let Fo be the Galois field of two elements. We say that
a Boolean function f : F§ — [is linear if

f(z1 @ z2) = f(z1) © f(22)

for any z1,z9 € F7 where ‘@’ is the bitwise XOR. This straightforwardly extends to the
n-input and m-output functions f : F3 — F3' where we can define f using a m x n
non-singular Boolean matrix A such that

fle)=Az =y

69

70 CHAPTER 7. SAT-BASED LINEAR SYNTHESIS

D
v
D
Y

8

N

—
fan)
L
ran)
N>
N
D
fan)
L
ran)
%
Van)
U
8
w

v

K—
fan)

|£L'4 D & |I1
|z1) - P < |z4)
|$2> O—P P—D & |$3>
|z3) —4 4 |z2)
|CE4> © s> |J)1>

Figure 7.1: This figure shows the results of synthesizing the reversal permutation on a
line graph with four vertices while optimizing for the number of operations. On top, we
used the method described in the previous chapter to obtain a permutation circuit based
on SWAP and then translated it into a CNOT-based one; The result is a circuit with 18
CNOT operations. On the bottom, we directly synthesized a CNOT-based circuit using
the technique described in this chapter, which results in a circuit with 15 operations.
(We could also have used Kutin’s construction for reversal permutations on a line [83].)

where and y are column vectors representing the function’s n inputs and m outputs
bits respectively. In the case of linear reversible Boolean functions, n equals m, and we
have a one-to-one correspondence between the inputs and the outputs. We can derive
matrix A from the functions’s truth table: the columns correspond to the outputs for
each set of inputs containing a single non-zero bit. Note that these matrices are more
compact than those used to represent arbitrary gates in quantum computing.

Example 7.1. The derivation of the linear transformation that reverse a permutation
from the reverisble Boolean function that describes it.
Ty w3 x x| fs fs fa N

O 0o O OoOjO0 O 0 O

O 0 O 1|1 0 0 O v oy oz 14
e R /0 0 0 1
0 0 1 1)1 1.0 0 A— [0 0 1 0
T fs{0 1 0 o0
o o byl o 1o fa\l 0 0 0
o 1 1 0|0 1 1 0O

o 1 1 11 1 1 0 ' .
1 0 0 O0/!0 o0 0 1 Now, we check with the matm: mn-
1 0 0 1 1 0 0 1 deed reverses a permutation:
S 0 0 01 1 Z4
1 0 1 1|1 1 0 1 001 0|[e] (e
1 1 0 0|0 0 1 1 010 0 s | = | 2
L I 100 0) \a -
1 1 1 0|0 1 1 1

1 1 1 1|1 1 1 1

7.3. PREVIOUS WORK 71

Description Primitive Topologies Size bounds
[108] Grouped Gaussian elimination CNOT Fully connected O (l(;‘:n)
[79, 104] Gaussian elimination with CNOT Any O(n?)
Steiner trees
[154] Recursive elimination of rows CNOT Any 2n2
and columns
Chapter 6 A* with admissible heuristic SWAP Any Optimal
This SAT formulation CNOT Any Optimal

Table 7.1: Summary of size-optimizing methods. Bounds are in terms of operation the
method is based on (1 SWAP = 3 CNOTs). Note that SWAP-based methods can only
synthesize permutations. Also, while out method is optimal, it only practical for small
values of n.

7.3. PREVIOUS WORK

While the method described in this chapter can synthesize any linear reversible circuit, we
focus the discussion on the synthesis of permutations using CNOTs. Existing methods for
synthesizing permutation circuits either optimize for size or depth, using either SWAPs
or CNOTs. Some methods are exact but non-scalable, some are tailored to certain
topologies, and some are general-purpose heuristics. In Tables 7.1 and 7.2, we summarize
prior literature separated by whether they optimize for size or depth.

In [108], Patel et al. designed a block version of the Gaussian elimination algorithm.
Instead of treating columns separately, as in straight Gaussian elimination, their algo-
rithm treats blocks of m columns. For each block, their algorithm first tries to eliminate
patterns that repeat in different rows. Note that this first step eliminates more than
one nonzero element using a single row operation when successful. The second step is to
apply Gaussian elimination to handle any remaining nonzero entry below the diagonal.
After applying these two steps to all blocks, we end up with a an upper triangular matrix,
which we transpose and then the process is repeated to reduce it to the identity. To our
knowledge, this algorithm is the best algorithm for synthesizing linear reversible circuits
without taking into account connectivity constraints.

More recently, two papers proposed modifying the Gaussian elimination algorithm to
synthesize circuits compliant with a connectivity graph given as input of the algorithm
[79, 104, 154]. They use Steiner trees to perform a custom Gaussian elimination: the
circuit is synthesized column by column, but the process to eliminate nonzero elements
is modified to respect the connectivity constraints.

Kutin et al. [83] showed how to synthesize any reversible linear operation while
optimizing for depth, but their work is restricted to a path topology. Alon [12] proposed
SWAP-based depth optimizing algorithms for a variety of graphs, and Zhang’s [156] work
improves upon Alon’s routing method for trees.

72 CHAPTER 7. SAT-BASED LINEAR SYNTHESIS

Description Primitive Topologies Depth bounds
[12] Graph matchings SWAP Various 3n
[156] Caterpillar partition and SWAP Tree 3n+ O(logn)
matchings
[83] Odd-even transposition sort CNOT Line n
and manual for specific per-
mutations
[154] Using n? ancillas CNOT 2D grid O(logn)
[50] Divide and conquer CNOT Fully connected 3n + 8log,(n)
[21] Divide and conquer Reversal Any O(k?) + 2r
Chapter 6 SAT formulation SWAP Any Optimal
This SAT formulation CNOT Any Optimal

Table 7.2: Summary of depth-optimizing methods. Bounds are in terms of operation the
method is based on (1 SWAP = 3 CNOTs). Note that SWAP-based methods can only
synthesize permutations. Also, while out method is optimal, it only practical for small
values of n.

7.4. CONTRIBUTIONS

The contributions of this chapter are as follows:

e We propose a SAT encoding of the problem and describe a SAT-based algorithm
that can find circuits with optimal size or depth using CNOTs.

e We show this algorithm improves over prior optimal SWAP-based methods when
synthesizing permutation circuits.

e We use the proposed algorithm to disprove a 15-year-old conjecture by Kutin et
al. [83] that reversal is at least as depth-intensive to synthesize with CNOTs as any
other permutation on a path.

This work part of a broader paper [37] that will appear at the 59th Design Automation
Conference (DAC’2022). An implementation appears in tweedledum.

7.5. SYNTHESIS ALGORITHM

We formulate the problem of finding an optimal-depth circuit for a linear matrix repre-
senting a reversible function as instances of the Boolean satisfiability problem. In our
encoding, we use two kinds of variables. Matrix variables, mz » Which indicate whether
a matrix entry (i,k) is 0 or 1 at depth d; and CNOT gate variables, g¢ ,,, which indicate
that a CNOT between qubits ¢ and t took place at depth d.

7.5. SYNTHESIS ALGORITHM 73

Example 7.2. A 3-qubit linear function synthesis would be encoded as such, where a
3 x 3 Boolean matriz represents the linear function over 8 bits, and a CNOT application
transforms the matriz by XOR-ing two rows:

d d d d d d
Moo M1 Mp2 L) mo1 Mmoo
d d d d d d
myo Miy Mig| — mio mi myo

d
d d d 962 d d d d d d
Mo M1 Mgo 77 Mmoo ©ma o Mg ©myy Mgy © My,

Our encoding uses four different types of clauses to constrain the problem such that
the solution corresponds to a valid linear reversible circuit:

C1. Each depth that does not hold the target transformation must have at least one
CNOT.

V{d:3(d+1)}, Z gg—n +g£j—>c > 1.
(e,t)eEE

C2. At each depth that has at least one CNOT, each qubit can only be involved in one
CNQOT.

V{d:3d+1)},VeeV, Y gi, +gt,. =1
ted(c)

where §(c) is the set of qubits adjacent to c.

C3. If at depth d the variable indicating a CNOT (3, k) is true, then all elements of the
k-th row at depth d+1 must be XOR-ed between the element and its corresponding
element in the i-th row at the previous depth d.

d d+1 _ .d d
9est = /\ (mt,j - mt»j ® mcyj)
J

C4. If at depths d and d + 1 a matrix entry in the i-th row has different values, then
exactly one of the CNOT variables that has i as target must be true.

The SAT solver only answers whether a given formula is satisfiable or unsatisfiable.
Therefore, we need to translate our optimization objective into a series of queries to
the SAT solver. In this case, each query “asks” the solver if there exists a circuit that
implements the desired transformation using a specified depth. Our implementation
incrementally solves the problem: first, we build a formula that encodes a solution with
a specified depth using the above constraints; then, if the formula is unsatisfiable, we
increment the depth by adding new variables and constraints. We keep incrementing the
depth until we find a satisfiable formula to decode and build a linear reversible circuit.

We can use a slightly different encoding to find reversible CNOT circuits with optimal
size. In such a case, the only difference lies in the first type of constraints: Instead of

74 CHAPTER 7. SAT-BASED LINEAR SYNTHESIS
requiring depths to have at least one CNOT, we restrict the number to exactly one.

7.6. DISCUSSION

Our SAT-based solution can be applicable with scalable heuristics to improve their qual-
ity [37], but they are also useful on their own. We studied CNOT-depth-optimal solutions
for permutations on a path, which was the focus of Kutin et al.’s paper [83]. They con-
jectured that reversals are at least as hard as any other permutation, and that reversals
are synthesizable with depth 2n + 2. However, by solving for all instances of 8-qubit
permutations, we found one permutation that required depth 2n + 3 = 19, as shown in
Figure 7.2, thus disproving the conjecture. In addition, we found that swapping two ends
of the path is achievable in depth n + 7 for all n, whereas their construction requires
depth n + 8 for odd n.

24 oo e
221
20 4
R et e —— -==s
16
14
12 J—

10 o = ece eoe

8] wmee @mese w= oo

optimal CNOT depth

6] eee ae e (7,6,5,2,3,4,0,1)
4 .
2 4
0 T T T T T T T T T

0 5000 10000 15000 20000 25000 30000 35000 40000

permutation

Figure 7.2: Optimal depth of all permutations on an 8 qubit path synthesized by our
method.

Part 111

Compilation

75

Chapter 8

Introduction to compilation of
quantum programs

The emergence of quantum computers with an increasingly higher number of qubits and
longer coherence times marks the beginning of an exciting era in quantum technology,
as it empowers us to solve problems that are out of reach for any of the best classical
supercomputers. The “Quantum Algorithm Zoo” [76] website holds a comprehensive list
of quantum algorithms with their respective speed-up factors. While finding quantum
algorithms that yield a significant scaling advantage in time-to-solution, known as a
quantum speed-up, over their classical counterparts has been a substantial concern in
the quantum computing research community, their concrete implementation and precise
resource analysis are still lacking.

Researchers often describe algorithms in a high level of abstraction, using a mixture
of natural language, pseudocode, and mathematical formulas. This high-level form facil-
itates proving correctness and deriving asymptotic complexity estimates while shielding
algorithm designers from the low-level complexities and restrictions. However, to execute
an algorithm on a quantum computer, a concrete implementation must be provided using
low-level abstractions, i.e., the primitive unitary operators supported by the underlying
hardware. Note that this is also true in the classical realm.

All computer applications (classical or quantum) rely on software programs built on
top of the low-level abstractions provided by a device. One can see a software program
as the embodiment of an abstract algorithm in a programming language. In the early
days of classical computers, developers had to translate algorithms to programs directly
in machine code and, after that, in assembly language. In the early 1950s, Hopper
introduced the term compiler to refer to a routine that “compiled” programs from pre-
existing pieces [73]; note that it functioned as a loader or linker, not the modern notion
of a compiler. Today the term denotes a program that translates a high-level, human-
readable programming language into machine code.

While most of today’s classical software relies on compilers, they were not widely
adopted at first because early ones were somewhat unreliable and generated code that

7

7T8CHAPTER 8. INTRODUCTION TO COMPILATION OF QUANTUM PROGRAMS

Algorithm G (Grover’s algorithm).

G1. Initialize the system to the uniform superposition over all
states

2" —1
|,¢))((n) N 1 Z), High-level program (in silq [28])
\/on
2 =0 1 def grover[n:!N](f: const uint(n] !- lifted B):!N

2 nlterations := floor(n/(4-asin(2~(-n/2)))};

3 cand := @:uintin];

4 for k in [@..n)

5 cand (k] := Hicand[k]);

6

7

8

G2. Perform the following “Grover iteration” O(1/27) times:

1. Apply the operator Uy : |z) — (=1)¥ @) |g)
2. Apply the diffusion operator Uy = 2 |¢) (¢| — I

for k in [@..nIterations)
if flcand) {
9 phase(m);
10 }
11 nd := iffusi nd) ;
G3. Measure the resulting quantum state in the computational 2 cand: 1=-groverniffuslon{cand
basis. 13 return measure(cand’ as !N;

O(V2") times I - I [Classical

B Quantum

O(V/2") times
O(v/2") times
10) {4}
10) {4}
0) {a}- o {H}—— i e =0 N S o) {& | z
‘0) 7 E::{.~.~.0.:::::::.°~.~:~:.°.°:'-w-'." |1) @ &
1) g 5

Low-level program

Figure 8.1: Compilation flow overview. A quantum algorithm contains both classical
operations and quantum operations. The latter can be given in various forms and some-
times can even be classically defined, e.g., Oy. A compiler translates a high-level program
into a sequence of operations executable by a quantum processing unit (QPU).

did not perform as well as what an average developer could write in assembly. Since then,
compiler technology has come a long way: today’s sophisticated optimizing compilers go
to great lengths to ensure efficient, reliable code generation, which is on par, if not better
than the code the best human developer could write. Such an improvement has, in turn,
enabled classical programming languages to increase significantly in expressive power
and sophistication—empowering developers to build more complex programs and more
straightforwardly implement algorithms.

In contrast, most programming systems available for quantum computing are in-
tertwined with the quantum circuit model, which means that the developer must still
describe an algorithm in terms of primitive unitary operators. Not surprisingly, the im-
plementation of quantum algorithms is very time-consuming, error-prone, and results in
non-portable programs, given the diversity of quantum devices.

8.1. CONTRIBUTIONS 79

To explore new algorithms and programs for quantum computing and enhance the
developers’ productivity, we have seen many quantum frameworks striving to support
higher-level abstractions, e.g., Q# [145], Silq [28], Quipper [68], Qiskit [150], Cirq [55]
PyQuil/Forest [131]|, Pennylane [26], ProjectQ [142], StrawberryFields [78]. These
frameworks enable the creation of increasingly more complex programs by combining
and adapting a small set of known quantum algorithms that use arbitrary technology-
independent operations. Nevertheless, given the stringent resource constraints in near-
term quantum hardware, the use of higher levels of abstraction is only possible when allied
with sophisticated compilation algorithms capable of generating highly optimized low-
level circuits. Since circuit compilation and optimization are essential for quantum com-
puting, there are numerous competing compilers and toolkits, e.g., giskit-terra [150],
quilc [132], ScaffCC [74], staq [18], and tlket) [129]. We refer to [62] and [84] for a
surveys of quantum software stacks.

8.1. CONTRIBUTIONS

In the following chapter, will discuss the embodiment of our research contribution: a
compiler companion library for the synthesis and compilation of quantum circuits called
tweedledum. This library adds a unique solution to the fast dynamic field of quantum
compilation. In contrast to most solutions, we designed it to enhance other compilers
and frameworks, and some of them indeed use it already, e.g., qiskit-terra [150],
quilc [132| and staq [18]. The library integrates state-of-the-art algorithms used for
quantum compilation, targeting most of the pipeline of a quantum software stack: from
the abstract higher algorithmic layers to the physical mapping layer. The following
principles guide its design and implementation:

e Performance. It must be fast. Compilation performance is critical to productivity.
The longer the compiler takes to build a circuit, the more likely developers are taken
out of their development flow. On top of that, developers often try to compile a
circuit many times while experimenting; hence even short waiting periods can add
up to significant disruption.

e Scalability. The library must scale up to problem sizes in which quantum circuits
outperform classical ones. (Even if such circuits cannot run on today’s quantum
devices, accurate resource estimation is necessary to help guide the development of
new hardware.)

o Customizability. The intermediate representation (IR) is based on a handful of
fundamental concepts, leaving most of it entirely customizable. For example,
tweedledum does not have a fixed set of operators nor imposes any restriction
on how their effects are defined.

We also present less significant contributions to quantum circuit mapping, adaptative
decomposition of quantum gates, and ways of composing different algorithms to create
effective compilations flows.

Chapter 9

The tweedledum library

The library aims to be easy to use, comprehend, and extend. Therefore, we base its
intermediate representation only on a handful of fundamental concepts: wires (qubit
and bit), operator, instruction, and circuit. It is worth noting that the operator con-
cept is entirely customizable. This customizability ensures the library can adapt to a
fast-changing research environment yielded by industry and academia exploring several
technologies that support quantum computation.

We implement tweedledum [119] as an open-source library in C++-17 and provide
Python bindings for easy integration into existing compilers/frameworks. The remainder
of this work describes tweedledum’s core data structures and briefly introduces most of its
state-of-the-art techniques for synthesizing and compiling quantum circuits. To demon-
strate the many features implemented in tweedledum and its design space exploration
capabilities, we present two non-trivial use cases. The ultimate goal of the tweedledum
is to create an open-source environment in which state-of-the-art quantum compilation
techniques can be developed and compared.

9.1. THE INTERMEDIATE REPRESENTATION

In tweedledum, the standard intermediate representation is a quantum circuit. A circuit
has a set of wires (qubits and bits) and a sequence of operators applied to those wires,
the so-called instructions. An operator is an abstract effect that may modify the state of
a subset of wires. An instruction is an operator applied to a specific subset of qubits and
bits. In other words, to represent a quantum computation, we first create an empty circuit
to which we add qubits and bits. Then we create instructions by applying operators to
these qubits and bits.

9.1.1 Fundamental concepts

Wires (qubits and bits). We represent qubits and bits using memory semantics.
Meaning that instructions act on references to qubits (and bits) and do not consume
their value, i.e., state; we say that they affect their state via side effects. A benefit of

81

82 CHAPTER 9. THE TWEEDLEDUM LIBRARY

using memory semantics is that the intermediate representation inherently prevents a
program from violating the no-cloning theorem [153].

Operators. Conceptually, an operator is an effect that we can apply to a subset of
qubits and bits, which, most often, this effect is unitary evolution. To ensure a high level
of customizability, the library does not have a fixed set of operators nor imposes restric-
tions on how their effects are defined. On the contrary, it encourages and facilitates the
implementation of user-defined ones. Indeed, one of the main strengths of tweedledum
lies in its use of a uniform concept, known as Operator, to enable describing different
levels of abstractions and computations.

Example 9.1. We can define high-level operators such as the truth table operator, the
permutation operator, or low-level operators like the Hadamard operator. The following
circuit illustrate how flexible is the intermediate representation.

Permutation

o . Phase polynomial
Unitary matrix S Linear matrixﬂ
A I
0) i —(11)_(1z1) n<|=
|) — XAG 8 01 Ixi(: fifo
0) 44 = - H o000 —A |=
|) ;0 - o 010 (1) ?
Jh1 =218 20 10|11 e }:
10) (, 1110 A
T

Exclusive sum-of-products Truth table A custom operator

The library imposes two minimal requirements for the Operator concept. Namely,
every Operator must be identifiable, even as an “unknown,” and operators must target at
least one qubit. (Note that the number of targets is intrinsic to an operator; the number
of controls is not—we explain the reason for this when introducing instructions.)

There is also a special set of compiler-internal operators has a null effect on wires. We
call them meta-operators. One example is the Barrier operator: it acts as a compiler
directive to separate pieces of a circuit during compilation. Any optimizations or rewrites
are constrained to only act between them. The execution of a quantum circuit should
completely ignore all meta-operators.

Instructions. An instruction is the embodiment of the application of an operator to
a specific subset of wires. The number of qubits must be equal to (or greater than)
the number of targets required by the operator. If the latter, the extra qubits are
considered controls. This design choice aims to counter-balance the easiness of defining
new operators, which might lead to an explosion in their number.

Example 9.2. In tweedledum, the instructions NOT, CNOT and TOFFOLI are the

9.2. SYNTHESIS 83

same operator X applied to a different number of qubits.

= —

> XHXHX

Circuit. In tweedledum, a quantum circuit is a directed acyclic graph with labeled

Va e
U\

A\
fan)
L

vertices and labeled edges. Vertices correspond to instructions. Their label determines
which operator the instruction applies. The edges encode input/output relationships
between instructions, and their label indicates the qubit (bit) associated with this rela-
tionship. Its underlying implementation also allows it to be treated as a simple list of
instructions (netlist).

|4) ———

Co
0) {#}-+-[x]
c

0) —{X]|

Figure 9.1: Quantum circuit representation for teleportation of a quantum state.

9.2. SYNTHESIS

In this section, we briefly describe the various synthesis methods implemented in the
library:

a_star_swap_synth [Chapter 6] — pprm_synth [Chapter 4]

cx_dihedral_synth [95] — sat_linear_synth [Chapter 7]

decomp_synth [52]

sat_swap_synth [Chapter 6]

diagonal_synth [125]
— spectrum_synth [135]

gray_synth [17]
— steiner_gauss_synth [79, 18]

lhrs_synth [138]

linear_synth [108] — transform_synth [97]

— pkrm_synth [Chapter 4] — xag_synth [Chapter 5]

An exciting feature of tweedledum is the ability to insert classical logic directly into
quantum circuits and to synthesize it during compilation. Moreover, the library provides
means for a user to define such classical logic as a Python function. By combining most
of the EPFL logic synthesis libraries [136], we can create compilation flows that handle
the translation of this Python function into a sequence of elementary quantum operators.

84 CHAPTER 9. THE TWEEDLEDUM LIBRARY

If not given as a Python function, tweedledum also accepts Boolean functions pro-
vided in others forms. Both decomp_synth and transform_synth take as input a re-
versible function in the form of a permutation. (Note that a reversible function imple-
ments a bijective mapping between input and output binary signals; thus, a reversible
function is a permutation of its inputs.) The decomposition-based synthesis technique
iteratively decomposes the function into simpler functions based on the Young subgroup
decomposition [52]. Transformation-based synthesis keeps changing the function by ap-
plying multiple controlled X operators until it becomes the identity function.

More often, however, we will be dealing with irreversible Boolean functions. Given
an irreversible function f, it is known that there must exist a reversible Boolean function
fr:{0,1}"*1 5 {0,1}"*! such that

fr(z,y) = (z,y ® f(z)),

where z = g, ...,Tn—1 and ‘@’ refers to the XOR operation. (For the sake of clarity,
we limit the discussion to single-output Boolean functions, but the technique can be
extended to accommodate multiple-output functions.) Such an embedding is also re-
ferred to as Bennett embedding [25], and implies the existence of the following quantum
operation:

U :|z) ly) = |2) [y @ f(2))

The operation Uy is also known as a single-target operator. Single-target opera-
tors describe complex operations that cannot generally be implemented natively on a
quantum computer. tweedledum provides three techniques to synthesize single-target
operators directly. Starting from a functional representation of f, i.e., a truth table,
both pkrm_synth and pprm_synth techniques synthesize a particular case of an exclusive
sum-of-products (ESOP) expression for f. We can easily translate such ESOP into a
cascade of multiple-control X operators. These techniques, however, are only applicable
to small Boolean functions as they can be both very time-consuming and generate a
quantum circuit with a prohibitive number of instructions [123, 113|. spectrum_synth
[135] uses the Rademacher-Walsh spectrum of a truth table to generate a circuit over
the operator set Clifford+ Rz directly.

For a more scalable solution, we combine these direct methods with the hierarchical
synthesis approaches. The latter allows us to achieve scalability by decomposing the
initial function into small parts suitable for functional synthesis. The synthesis method
generates a reversible circuit for each part and combines them following the structural
representation of the function. The combination of subcircuits might require additional
qubits, which store intermediate computation steps. Given an irreversible Boolean func-
tion f they find an (n + 1 + a)-qubit quantum circuit that realizes the unitary

Uy : |z} [y) 0)* = |z) [y & f(=)) |0)*

where a > 0, which means that the synthesis algorithm can use the a additional qubits to

9.3. COMPILATION 85

store intermediate computations. lhrs_synth [138] and xag_synth [120] are examples
of hierarchical synthesis.

Linear reversible circuits form a subclass of quantum circuits in which implemen-
tation requires only CNOT operators. Synthesis methods aiming to reduce the size of
these circuits play an essential role in tweedledum since other algorithms depend on
them. Given a binary matrix describing the classical function, the library has two tech-
niques for synthesizing such circuits. Both methods rely on a modified implementation
of Gaussian elimination, which yields asymptotically optimal circuits. They differ in
that the steiner_gauss_synth [79, 18] algorithm can synthesize circuits that respect
the connectivity constraints of device architectures. We also provide two techniques,
a_star_swap_synth and sat_swap_synth [124], to synthesize an even more constrained
class of linear reversible circuits: those composed entirely of SWAP operators.

The sum-over-path form can help a compilation flow to circumvent possible structural
biases present on a quantum circuit. As we have seen, it is straightforward to obtain it
from a quantum circuit over CNOT and P(f) operators. tweedledum implements two
synthesis algorithms that take as input the sum-over-path form. Namely, gray_synth [17]
and cx_dihedral_synth [95]. The latter is a Boolean satisfiability-based method that
guarantees optimality in the number of operators but is not scalable. As we will discuss
later, a decomposition technique is better suited when the sum-over-path form is not
sparse, i.e., when most or all linear combinations are present.

Finally, we note that the library provides one synthesis method to handle constrained
unitary matrices. diagonal_synth [125] implements a algorithm to synthesize circuits
that perform arbitrary controlled phase-shift operations, which must be given in the form
of a diagonal unitary matrix.

9.3. COMPILATION

9.3.1 Utility

Passes in this category provide simple utilities that do not fit any other category, which
more complex passes might either require or significantly benefit from using it. For
example, since tweedledum does not modify circuits in place, all passes that modify a
circuit must do a shallow duplication, i.e., create a new circuit with the same wires.
There are also passes to reverse and invert circuits. The reverse pass creates a new
circuit with the instruction applied in the reverse topological order. Inversion is similar,
but with the addition of applying the adjoint instruction.

We also have an instruction canonicalization pass. The goal of canonicalization is
to make optimizations more effective. Very often, we can write instructions in multiple
forms. For example, we can write them with equivalent operators T' = P(%’r) = P(-%);
or apply an operator to a permutation of the same wires SWAP (g, 1) = SWAP(q1, q0)-
The latter case requires caution as the equivalence depends on the specific operator:
While the permutation of controls always yields equivalent instructions, this is not always
the case for targets’ permutation. Canonicalization means selecting one of these forms to

86 CHAPTER 9. THE TWEEDLEDUM LIBRARY

be canonical and then going through a circuit and rewriting all instructions equivalent to
the canonical form into the canonical form. Thus, canonicalization allows optimization
passes that look for specific patterns to focus only on the canonical forms rather than all
forms.

9.3.2 Decomposition

During the compilation of a technology-independent quantum circuit, high-level instruc-
tions often need to be broken down into a series of lower-level instructions. We already
talked extensively about synthesis: a process that can lower abstraction by inputting a
high-level quantum functionality specification and outputting a quantum circuit. Here,
we introduce decomposition, another procedure with similar capability.

We define decomposition as systematically breaking down high-level instructions into
a series of lower-level ones. We emphasize “systematically” because it is the characteris-
tic that differentiates decomposition from synthesis. A decomposition technique builds a
lower-level implementation by applying some construction rule(s). Compared to synthe-
sis, decomposition techniques are faster and produce predictable results, i.e., we know
in advance the resulting number of instructions and qubits. The following table lists all
decomposition algorithms currently provided in tweedledum, along with a short descrip-
tion.

Short description

barenco_decomp | This decomposition pass is capable of breaking down Pauli-
(X/Y/Z) instructions controlled by three or more qubits.
We based our implementation on the principles presented by
Barenco et al. in [22].

bridge_decomp | Trivially decomposes a bridge instruction into a series of
CNOT instructions.

euler_decomp | Decompose a arbitrary one-qubit instruction, given as unitary
matrix, as a sequence of at most three R, and R, operators.
This is due to the ZYZ decomposition: Given any 2 x 2 uni-
tary matrix U, there exist angles v, ¢, 6, and \ satisfying:
U = ¢7R.(6)R, ()R () [22].

linear_decomp | Decompose an instruction given as a sum-over-path form. This
method works best when the form is not sparse, i.e., when most
or all linear combinations are present.

parity_decomp | Trivially decomposes a parity instruction into a series of
CNOT instructions.

Table 9.1: Decomposition algorithms.

The cost to decompose a multiple controlled Pauli instruction depends on whether

9.3. COMPILATION 87

—o—
—o—
—o—
1T o o
0 0
- 0) |0)) 0)
—b—
(a) (b) (c)
o o
|d) d) [0) € . 5 |0)

(d) (e)

Figure 9.2: Different ways of decomposing a multiple controlled X instruction (a), de-
pending on the number of ancillae available.

the circuit has clean ancillae available. (Here, we measure cost by the number of instruc-
tions.) For example, the circuit might have enough clean ancillae to allow a “v-chain”
decomposition, as illustrated in Figure 9.2. If that is not the case, we need to use the
more costly “dirty-ancilla” decomposition (based on Lemmas 7.1 and 7.2 from [22]). An
interesting feature of our implementation of barenco_decomp is its adaptability. It uses a
“y-chain” for as long as there is a clean ancilla, then switches to “dirty-ancilla.” Further-
more, depending on the user configuration, the algorithm can automatically add clean
ancillae and use relative phase instructions [92] for intermediate computations.

9.3.3 Mapping

The physical qubits in most quantum hardware are not fully connected, which means
that not every pair can participate in the same physical instruction. These connectivity
restrictions are known as coupling constraints. In tweedledum, the Circuit class has no
mechanism to enforce them, i.e., we can apply an operation between any pair of qubits.
Therefore, synthesized or constructed circuits typically cannot be directly executed on a
quantum device. We refer to them as unmapped circuits and define virtual (or logical)
qubits and instructions as those present in them. The task of finding a mapping of virtual
instructions to allowed physical instructions is known as quantum circuit mapping. The
completion of this task is not always possible without applying additional operators to
the circuit.

Formally, we model the connectivity requirements of an unmapped circuit using an
undirected graph G, = (V, E,) where V is the set of virtual qubits V' = {vg,v1,...,Un—-1}
and E, C (‘2/) is a set of qubit pairs {v;,v;} used by the instructions in the circuit.
(Note that one-qubit instructions can be safely ignored since the coupling constraints
do not affect their mapping.) We model the coupling constraints in a similar way. A
unidirected graph (P, Ep) where P = {po,p1,...,Pm—1} is a set of physical qubits and
an edge {py,pw} € Ep C (];) means that an instruction can be executed using the two

88 CHAPTER 9. THE TWEEDLEDUM LIBRARY

physical qubits p, and p,,. The library divides mapping into two sub tasks: placement
and routing.

Placement. The goal is to find a subgraph monomorphism 7 : V' + P that respects
(vi,vj) € E, = (m(v;),m(vk)) € Ep. If such a morphism exists, then we call 7 a
perfect placement and the mapping task requires only a relabeling of the virtual qubits to
physical qubits, i.e., replace each virtual qubit v; in the unmapped circuit by a physical
qubit m(v;). Otherwise, we must resort to routing. Table 9.2 shows the placement
algorithms implemented tweedledum.

Example 9.3. Suppose we are given the following circuit and its corresponding connec-
tivity requirements:

HJT}—T]
{TH

VanY

N
U

H]

A\

%

N
U

When we try to map this circuit on the IBMQ5 Yorktown device, we can find a perfect
placement:

Both ApprxSatPlacer and SatPlacer try to find a perfect placement by solving
a Boolean satisfiability problem. We encode a qubit placement problem as a Boolean
function. This function is satisfiable if and only if there is a perfect qubit placement.
An SAT solver determines the Boolean function’s satisfiability. When the problem is
satisfiable, the solver provides a satisfying assignment from which we extract the perfect
placement.

It is essential to properly consider how to encode the placement problem as a Boolean
function because the encoding can have an enormous effect on the speed with which an

9.3. COMPILATION 89

Short description

ApprxSatPlacer | At first, it tries to find a perfect placement for the qubits
using Boolean satisfiability. On failure, it relax the problem’s
constraints and tries to approximate a perfect one.

LinePlacer [48]| | Transforms a connectivity requirements graph G, into a graph
in which each component is a line. Then tries to map this
graph to the coupling graph as one long line starting from a
high degree physical qubit and greedily choosing the highest
degree available neighbor.

RandomPlacer | Randomly place virtual qubits into physical qubits.
SatPlacer Try to find a perfect placement using Boolean satisfiability.

TrivialPlacer | Place each virtual qubit v; into physical qubit p;.

Table 9.2: Placement algorithms.

SAT solver can find an answer to our problem. Both ApprxSatPlacer and SatPlacer
use two kinds of clauses to constrain the problem such that a solution corresponds to one
correct placement—namely, the qubit constraints and the instruction constraints. The
qubit constraints guarantee that (1) each virtual qubit is placed on precisely one physical
qubit and (2) at most one virtual qubit is placed on a physical qubit. The instruction
constraints ensure that virtual qubit pairs used by the instructions in the circuit are
placed on adjacent physical qubits.

The encoding used by SatPlacer has only one kind of variable, which expresses
whether a virtual qubit is placed on a physical qubit. Let z,, be a Boolean variable
which indicates whether a virtual qubit v is placed on a physical qubit p. We can express
the qubit constraints as

(1) vap =1,YweV, and (2) Z Typ <1, Vp € P.
peP veV

Given a physical qubit py,, let 6(p,,) is the set of physical qubits adjacent to p,,. Then
we can formally express the instruction constraints as

Tvipm = Z Ty,p, = 1, Vpm € P, Y{v;,v;} € E,.
Pr€S(pm)

As seen in the results in Section 9.5, SatPlacer can quickly find a perfect placement
for each of the 900 benchmarks in QUEKO [146]. While such results are impressive, the
technique is limited to either returning a perfect placement or no placement. Therefore,
if SatPlacer fails to find a perfect placement, then another placement technique must be
employed. ApprxSatPlacer addresses this limitation by adding another kind of variable
that slightly changes the encoding. These new variables allow the activation (or deacti-

90 CHAPTER 9. THE TWEEDLEDUM LIBRARY

vation) of the instruction constraints. Let A, v; be a Boolean variable which indicates
whether to activate or not a instruction constraint. We rewrite SatPlacer’s instruction
constraints as

;05 N Toip = Z To;pn = 1, Vpm € P, V{vi,v;} € E,.
Pr€S(Pm)

At first, technique ApprxSatPlacer tries to find a perfect placement for the qubits,
i.e., it assumes all instruction constraints are active. Suppose the SAT solver concludes
that it is impossible to find such a placement. In that case, it returns a conflicting clause
that can help to identify which instruction constraints cannot be satisfied together. We
must relax the constraints by deactivating at least one of them. We implemented two
heuristics to choose which instruction constraints to deactivate:

e We create instruction constraints while iterating over the instructions of a circuit,
which intrinsically creates an ordering. Our first heuristic chooses first to deactivate
constraints that appeared later.

e While iterating over the circuit, we also keep track of how many instructions depend
on a given constraint. That is the number of instructions that depend on virtual
qubits v; and v; to be adjacently placed. We call this metric the constraint’s weight.
The second heuristic chooses first to deactivate constraints with a lower weight.

We repeat the process of calling the SAT solver while deactivating constraints until
we can find a placement that satisfies the active constraints. Note that such a placement
might be partial, i.e., some virtual qubits are left unplaced.

Routing. Given an initial placement, a router transforms a circuit so that all two-qubit
instructions operate on physically adjacent qubits. Thus, our goal becomes finding a way
of mapping a given circuit on a given device architecture with low overhead, whether in
the number of additional instructions or depth of the resulting circuit.

All routers implemented in tweedledum guarantee the compilation of any quantum
circuit to any architecture represented as a simple connected graph. They are, therefore,
completely hardware agnostic. The rest of this subsection focuses on our implementation
of LazyRouter, a modified implementation of SabreRouter that can work with partial
initial placements. For the routing algorithm to proceed, we require an initial placement
of virtual qubits into physical qubits. The routing algorithm iteratively constructs a new
circuit that conforms to the desired architecture constraints by visiting all instructions
of the original circuit.

The algorithm starts by visiting all instructions that have not an unvisited predecessor
in the circuit. It immediately adds to the new circuit all instructions compatible with
the current placement—i.e., the one-qubit instructions acting on placed qubits and two-
qubit instructions action on adjacently placed qubits. If an instruction requires unplaced
qubit(s), the routing algorithm either postpone its addition to the new circuit or place

9.3. COMPILATION 91

Short description

BridgeRouter | This router maps the circuit by trivially replacing all CNOT
instructions operating on physically separated qubits by Bridge
instructions.

LazyRouter | A modified implementation of SabreRouter which can work with
partial initial placements. Unplaced qubits are lazily placed, i.e.,
we placed them only when they participate in a two-qubit in-
struction or at the end of the routing process.

SabreRouter | This router implements the SWAP-based routing heuristic de-
scribed in [86] (Algorithm 1). The heuristic aims to minimize
the number of SWAPs inserted and the depth of the circuit. It
requires a complete initial placement.

Table 9.3: Routing algorithms.

the qubit(s). It chooses to postpone one-qubit instructions and to deal with two-qubit
instructions the following way:

e If the instruction acts on one unplaced qubit, we place this qubit in its partner’s
nearest available physical qubit.

e If the instruction acts on two unplaced qubits, we try to place both in the closest
pair of available physical qubits.

The routing algorithm checks for postponed instructions whenever it places a qubit.
Since postponed instructions are guaranteed to be one-qubit, they are immediately added
to the new circuit. The algorithm adds SWAPs to the new circuit whenever it encounters
two-qubit instructions incompatible with the current placement, i.e., the instruction acts
on non-adjacently placed qubits. The selection of SWAPs follows the same heuristic as
SabreRoute, detailed in [86]. The routing process ends when all original instructions are
present in the new circuit.

9.3.4 Optimization

With the limited space and time resources available on current quantum devices, aggres-
sive circuit optimization techniques are essential to extract all performance out of the
machines. They often play a crucial role in whether a circuit can or cannot execute in
a device or a simulator. Furthermore, they provide more accurate resource estimates,
which might guide quantum algorithms and hardware development.

tweedledum provides circuit optimizations as a set of orthogonal compilation passes,
which can be composed into compilation flows. Optimization techniques range from
purely structural, relying only on the relationship between instructions on a quantum
circuit representation, to purely functional, e.g., when they rely on resynthesizing a circuit

92 CHAPTER 9. THE TWEEDLEDUM LIBRARY

from a unitary matrix. There exists a significant trade-off between the quality of results
and scalability. On the one hand, structural transformations offer better scalability at
the cost of inferior quality of results. On the other hand, functional optimizations offer
the contrary: better quality of results and poor scalability.

Instruction cancellation. As the name implies, this pass performs basic instruction
cancellation: it traverses a circuit and removes pairs of adjacent adjoint instructions. This
optimization is purely structural, and its effectiveness is highly dependent on instruction
canonicalization. For example, a pair of adjacent instructions which apply the operators
T and P(—7%), respectively, will not be optimized.

Phase folding. This optimization pass extends [19]’s implementation of T-par’s T-
count optimization algorithm to enable merging parameterized phase operators and han-
dling arbitrary operators. The implementation handles operators not belonging to set
{X,CNOT,SWAP, P(0)} conservatively. It ignores their phase contribution, meaning
that this pass only keeps track of phase polynomial terms that are trivially mergeable.

Example 9.4. Take the following circuit implementation of the Toffoli gate found in

[105]:
T
i Ho{rtfe{st

Phase folding can optimize this circuit by merging the highlighted gates into a single

T |—which can be place on either original gates’ locations.
p g 9

Linear resynthesis. The instruction cancellation pass suffers from structural bias:
the input/output relationship between instructions (the structure) strongly influences
the quality of results. Resynthesis techniques circumvent this problem by traversing the
circuit, searching subcircuits that they know how to represent functionally and synthe-
size. In the linear resynthesis pass, we first identify linear subcircuits and represent their
functionality as a binary matrix. Then we try to find a less costly implementation by
resynthesizing a new subcircuit using linear_synthesis or our sat_linear_synthesis
algorithm, described in Chapter 7. If the new subcircuit has fewer instructions than
the original, we use it in the circuit. Otherwise, we ignore it. Users can also re-
place zero gain subcircuits since they might help other optimizations escape their struc-
tural bias. Furthermore, we can apply this pass to a mapped circuit using either the
steiner_gauss_synth or our’s algorithm because both synthesize circuits while respect-
ing coupling constraints.

9.4. SHOW CASE: BOOLEAN FUNCTION COMPILATION 93

9.4. SHOW CASE: BOOLEAN FUNCTION COMPILATION

This section will use an example of use Grover’s algorithm to solve an instance of the
vertex coloring problem to illustrate how to build compilation flows using tweedledum.

Let’s start by explaining the problem we want to solve. Vertex coloring is the problem
of assigning colors to vertices of a graph such that adjacent vertices are not of the same
color. Let G = (V, E) be an undirected graph, where V is the graph’s vertex set, and E
is the set of edges. In our illustrative example, we want to color the following graph:

(1)
9‘9

While coloring the above graph is easy, we know this problem’s decision version,
where we are interested in whether a graph can be colored with k colors, is NP-complete
[77]. Its optimization version, where we look for the smallest number of colors required
to color a graph, is NP-hard. In our example, we want to know whether it is possible to
color the graph using three colors, i.e., k = 3.

We can solve the problem by assuming the existence of an oracle capable of identifying
correct solutions. This oracle takes |V| binary strings as input, each representing a color
assigned to a vertex, and returns a Boolean value indicating whether the assignment is
valid, i.e., it solves the problem:

Vo —2—]

v —2 |

vy —2 | Oracle

— [is valid?]

Now, we can query this oracle with all input combinations until we find one for which
the output indicates that the input is a valid coloring of the vertices. Classically, we will
query the oracle O(2") times in the worst case, where n is the total number of input
bits—in our example n = 8. However, a quantum computer can solve such a problem
with high probability by querying the oracle only O(v/2") times.

Boolean modeling. Before delving into how a quantum computer can achieve such
a feat, let’s look at how to model our oracle as a Boolean function. We assign to each
vertex a binary string that represents a color and formulate the following constraints:

e Every vertex must have a valid color assigned to it.

e Two adjacent vertices cannot have the same color.

94 CHAPTER 9. THE TWEEDLEDUM LIBRARY

We define the three colors as A (‘01’), B (‘10’), and C (‘11’)—note that ‘00’ is an
invalid color. For each vertex i € [3], we create a variable, which is a bit string of length
2. The oracle can then be modeled as a Boolean function f(vo,v1,v2,v3) that evaluates
to 1 (true) only for those variable assignments representing a graph coloring satisfying
all constraints.

Grover’s algorithm [69]. The basic idea of Grover’s algorithm is to invert the phase
of the desired basis state, and then invert all the basis states about the average amplitude
of all the states. The algorithm uses n+ 1 qubits, where the first n of them are initialized
with |0) and the last one is initialized with |1). The initialization operator Ujpi; creates a
uniform superposition of all classical states that are inputs to the oracle function f and
then repeatedly applies two operators to the state:

1. Uy, a bit oracle of the Boolean function f that is cast into a phase oracle.
2. The second operator

Uy = Uit - (2]0™) (07| — Ipn) - Ul

init

is a 2" x 2™ diffusion operator. Here, |0™) is the classical state represented by the
bit string with n zeros, I~ is the identity operator of size 2™ x 2", and Ui];it is the
adjoint operator of Upit.

In circuit form:

O(v/27) times

A

@ Oracle (Uy) 2 (whp) oy
n T

Note that Grover’s original paper worked mostly with oracles that evaluated to true

for only one input assignment, i.e., when only one solution exists. Grover briefly consid-
ered the possibility of multiple solutions but provided no details concerning the efficiency
of his method. A later work by other researchers offered such details [32].

Implementation. The circuit in (9.1) represents an abstract implementation of Grover’s
algorithm that we need to make concrete to solve our problem. We start by defining the
oracle’s behavior using a Boolean function, which we define using Python:

1 def f(v0, vi, v2, v3 : BitVec(2)) -> BitVec(1):

2 not_00 = (vO !'= 200’) and (vl '= °00’) and

3 (v2 !'= °00’) and (v3 != 200°’)

A c_01 = (v0 !'= v1)

5 c_123 = (vl !'= v2) and (vl !'= v3) and (v2 != v3)

6 return not_00 and c¢_01 and c_123

9.4. SHOW CASE: BOOLEAN FUNCTION COMPILATION 95

This function returns ‘1’ (true) only when all vertices have a valid color (i.e, either
‘01%, ‘10’ or ‘11’), and no adjacent vertices have the same color.

In this sort of problem, there is often a degree of commonality between various non-
solutions. For example, one typically knows beforehand that some assignments (or com-
binations of assignments) of the variables are inconsistent, i.e., violate one or more of
the constraints, and cannot participate in any solution. In our example, we know that
‘00’ is not a valid color. Thus, we can simplify the implementation of our function by
ensuring we will never call it with a input combination in which at least one of the input
variables is ‘00’:

1 def f(v0, v1, v2, v3 : BitVec(2)) -> BitVec(1l):
2 c_01 = (vO0 !'= v1)

3 c_123 = (v1 =~ v2 =~ v3 == ’007’)

4

return c¢_01 and c_123

Note that the naively implementation of Ujy;; creates the superposition of all classical
states by applying the Hadamard gate to all qubits. If we want to use this optimized
function, however, we to guarantee that our initialization only creates the superposition
of all walid computational basis states, that is, all states for each ‘00’ is not assigned to
a vertex. We will not further discuss Ujpjt’s implementation and assume it to be given.

In the following, we describe two flows to compile this high-level definition of f into
a quantum circuit. Both flows start in the same way: They take the Python function
and transform it into a XAG representation:

LUT-based flow. This flow transforms the XAG into a k-feasible Boolean logic net-
work (k-LUT networks). In simpler words, it takes the 8-input function and represents
it in terms of smaller Boolean functions that have at most k£ inputs, in this case we chose
k = 4 and obtain the following network:

3-LUT

14-LUT| 3-LUT| [3-LUT]

A

96 CHAPTER 9. THE TWEEDLEDUM LIBRARY

Then the compilation proceeds in two steps: first, each k-LUT is translated to a
single-target gate with at most k control lines and combined in a reversible logic network:

g .
[z3) % % |z3)
za) L L |za)
[zs) — — |as)
[ze) — — |z6)
[z7) — — |27)
|zg) |zg)
[0) m 0)
o ' o
0 0
10) & 1£)

Note that the parameter k provides some control over the number of qubits the
resulting circuit will have. Since each LUT is a truth table, the single-target gates in the
above circuit are also defined using truth tables. Hence, the second compilation step is
to translate these high-level operators into lower-level quantum ones.

We can proceed in several ways. For example, we could synthesize the truth tables
into Clifford+Rz circuits using spectral synthesis [135], or translate them into BDDs and
use the technique introduced in Chapter 4 to extract ESOP expressions. In this case, we
opt for directly deriving ESOPs from the truth tables using pkrm_synth:

fo =221 ® 2073 ® 1272 ® T273
fi=220x4® g
fo=23® 25D 27

fs = fofif

Now, we can straightforwardly map each expression to a sequence of multiple-control
Toffoli gates, which, in turn, will be decomposed further into Clifford+7" and so forth until
we reach a representation based on the primitive operations provided by the underlying

hardware.
,,,,, fo o
1) 4 - |z1)
[2) |z2)
: A S i
|a3) - 0)—o—i |z3)
| . I |
|z4) 1 3] — |za)
|s) -+ ¢ 1 r |zs)
|ze) : ; |z6)
|z7) = ; |z7)
|zs) - , : |zs)
E ' f3 E 5
l0) +&- & 0O T T B B e = 10)
0) ——————— & & & JI; OO0 [0)
[0) :
) .

9.4. SHOW CASE: BOOLEAN FUNCTION COMPILATION 97

XAG-based flow. The second flow is the method presented in Chapter 5. It starts by
raising the level of abstraction. It transforms the original XAG into a high-level XAG,
i.e., a XAG that implicitly represents most XOR gates as parity function, which are the
inputs to the AND:

Then it lowers it to a circuit consisting of CNOT gates and Toffoli, which, in turn, is
lowered to a circuit over the Clifford+T" operator set.

Both flows lower the level of abstraction in small steps. This progressive lowering
process enables the flows to discover more facts about the program, thus helping them find
better optimization opportunities. For example, we can easily apply pebbling techniques
to save qubits in a circuit defined using single-target gates because the information
about the compute/cleanup pairs is readily available. Once this circuit is lowered into a
sequence of Toffoli gates, we can more effectively apply cancellation. Indeed, identifying
pairs of gates that cancel is generally easier when they are in their high-level form than
in their Clifford+7'x implementation.

9.4.1 IBM'’s challenge: The Zed city problem

Zed city is a newly established (fictitious) municipality in Tokyo composed of 11 districts.
Four convenience store chains A, B, C, and D have each built their first store in this
new city. The goal is to use vertex coloring to distribute stores in the districts that still
do not have one yet, while ensuring that there is only one store per district and that

98 CHAPTER 9. THE TWEEDLEDUM LIBRARY

adjacent districts do not have stores from the same chain.

The Boolean modeling to solve this problem is similar to our previous example.
However, in this challenge, we want to find a coloring using four colors: A (‘00’), B (‘01’),
C (‘10’), and D (‘11’). Thus, we model the oracle’s behavior using a function. Note that
some vertices are already colored; we will assume that our initialization operator ensures
not querying this function with inputs known beforehand to be non-solutions, i.e., an
input that assigns color A to vertex vg. The following Python function implements the
desired behavior.

def f(v0, vi, v2, v3, v4, v5, v6 : BitVec(2)) -> BitVec(1l):

1

2 cl = (vi[0] == vi1[1]) and (v3 != v1)

3 c023 = ((vO =~ v2 =~ v3) == ’00’)

4 cd = (v4 '= v1) and (v4d != v3)

5 cb = (vb != v2) and (v != v3)

6 c6 = ((v2 =~ v3 =~ vb6 =~ v6) == ’00’) and (v6 != v4)

7 return cl1 and c023 and c4 and c5 and c6

IBM’s challenge states that only five iterations are necessary to solve the problem
when using a simulator. Hence, we use the following high-level circuit to solve the
problem.

5 times

|0) "‘1—4{ Uinit }— - —|Ud # (w.h.p.)
B e

We evaluate our flow by solving the Zed city problem in IBM’s challenge, which

further imposes a constraint on the number of qubits: a solution must use at most 32
qubits. We use IBM’s challenge as an example and evaluation because highly-optimized
handcraft solutions are available [1]. We use these solutions as a baseline. First, we
compare the code readability: Our Python implementation of f is objectively simpler
to understand and implement than any of the submitted solutions—which define Uy in
terms of low-level quantum operators.

In Figure 9.3, we report the results of compiling U using the flows described earlier.
As baseline, we use IBM’s sample solution and the top three submission with the same
cost function as in the challenge, i.e., cost = niq + 10 - n2q, where niq is the number
one-qubit operators and naq the number of two-qubit operators. The rationale behind

9.5. SHOW CASE: MAPPING 99

this cost assignment is that CNOT instructions have an error rate one order of magnitude
larger than one-qubit instruction [2]!.

First, note that the XAG-based flow requires only 30 qubits while beating IBM’s
solution and coming reasonably close to the top two submissions in terms of cost. We
observe a trade-off between the number of operations and qubits. Unfortunately, this flow
could not use more qubits to minimize gates. By contrast, when using the k-LUT-based
flow, we can adjust the values of k to explore the solution space.

Results from different flows and synthesis methods

1064 ¢ @ Ihrs-synth
© xag-synth
0o @ top3-submissions
e ibm
z
o 1054 eoo000®
°
%
°
Qubits cost ° o ° e
IBM’s solution 32 30667 T T T T T r T -
15 20 25 30 35 40 45 50
Whit3z 32 16613 Qubits
QunaVillage 32 17053
IIQeQIC 32 25490
XAG-based flow 30 19065

LHRS-based flows 16 - 53 22585 - 1163940

Figure 9.3: The results of implementing Grover’s algorithm using different means. The
cost function is cost = n1q+ 10 naq, where n14 is the number one-qubit instructions and
ngq the number of two-qubit instructions.

9.5. SHOW CASE: MAPPING

Section 9.3.3 outlined two problems related to mapping quantum circuits to constrained
devices: placement and routing. We briefly presented some of the techniques imple-
mented in tweeledum to solve the mapping problem. This section will evaluate their ef-
fectiveness and performance by running benchmark circuits and comparing them against
established compilers.

The frameworks used in this evaluation. We compare against two frameworks:
IBM’s qiskit-terra 0.17.4 (Python) and CQC’s t|ket> 0.11.0 (C++). We empir-
ically selected the combination of placement and routing techniques to obtain a good
compromise between execution time and the quality of the solution:

e In tweedledum, we use ApprxSatPlacer and LazyRouter.

L At the time of the challenge. While this difference might have shrunk since then, it is still true that
two-qubit operations are more prone to error than single-qubit ones [2].

100 CHAPTER 9. THE TWEEDLEDUM LIBRARY

Execution time by benchmark and tool

10°
10% 4

103-
5 1074 W"'ﬁ - v e
£ o] : 2 . AR Y
= 1(1)91: P I }'*"‘:".’ﬁ: W ':ﬁ""a::"‘"n:ﬁs"a"%’i =‘~.- T Gl ‘:";\9 oy

10771 h#&ﬁ_ 3 DTN 4 AT PR R R A P A R oy o

107+ STy - : : £

101
CX overhead by benchmark and tool

10% 4 M$ - "'_"".“
.. _‘,?..‘:'G*o‘..ac“ - B

B 1074 R - ';,'.'?.l:f.;‘ ‘n"v g PR
> B L X o . LRI =y .

g gl T T it S P e : -

§ 10° - o1 : o w » -.VM* w s ¥

o A\ . -

1014 s

[8] 4

1074

< qiskit » tlket> « tweedledum

Figure 9.4: Comparison between mapping algorithms from tweeledum, qiskit-terra,
and t|ket>, when using the QUEKO benchmark set.

e In giskit-terra, we choose to use CSPLayout to try finding a perfect placement.
If it fails, then we use a combination of SABRE layout and routing to do the
mapping [86].

e In t|ket>, we disable the use of bridges and call its generic routing method, which
we assume does the best job.

Runtime Environment. The tests were executed on a dedicated server featuring
an Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz with 256GB of RAM, running Linux
Ubuntu 20.04.2 LTS (Focal Fossa). We installed all frameworks through pip and used
Python version 3.8.5.

Benchmarks. We used the two sets of benchmarks to evaluate the mappers. The
first set is the same used by Zulehner et al. [157] consists of 158 programs taken from
“Reversible Logic Synthesis Benchmarks Page,” [91] the RevLib collection [152], Quip-
per [68], and ScaffCC [74]. These benchmarks are used in several papers on mapping
techniques [86, 48, 157]. The second set of benchmarks is the QUEKO benchmark suite
[1486].

Target architectures. The algorithms compared in this section work for any quan-
tum architecture. For the first set of benchmarks, we use IBM Montreal architecture,
which has 26 qubits. The QUEKO benchmarks define which of the following architec-
tures should be used for each benchmark: Rigetti Aspen-4, IBM Tokyo, IBM Rochester,
and Google Sycamore

Evaluation. Our evaluation of the results takes into consideration both efficiency
and quality of the result. We evaluate the efficiency of each solution along one dimension:
The time that each mapper needs to process a quantum circuit. We measure the quality
of a solution by counting the number of controlled X instructions added by the mapping
algorithm, the CX overhead.

Summary of Results. Figures 9.4 and 9.5 summarize the comparison between
tweeledum, qiskit-terra, and t|ket>. Using the QUEKO benchmark set, the results

9.6. SUMMARY 101

shown in Figure 9.4 demonstrate that tweedledum can perfectly map all benchmarks and
be the fastest at doing it. We observe that qiskit-terra and t|ket> are, respectively,
42.28 and 83.05 times slower compared to our library on average. In our analysis of the
raw data, we normalize the execution time of each benchmark using tweedledum as a
baseline. Then we aggregate all the results using the geometric mean.

As shown in Figure 9.5, tweeledum does not perform as well on the other benchmark
set. It is still significantly faster: On average, 276.6 times faster than qiskit-terra and
4.68 times faster than t|ket>. On the other hand, the quality of results is worse: 8%
compared to qiskit-terra and 15% compared to t|ket>. (Note that our library also
implements SABRE, which is even faster than the method used here while delivering the
same quality of results as qiskit-terra. It does not, however, guarantee to find perfect
placement when one exists.)

Execution time by benchmark and tool

Time(s)
=
A

< tweedledum > giskit < tlket>

Figure 9.5: Comparison between mapping algorithms from tweedledum, qiskit-terra,
and t|ket>, when using a benchmark set taken from various sources.

9.6. SUMMARY

It is widely believed that a language’s expressive power influences the depth at which
people can think. Existing quantum computing programming languages and frameworks
limit the kinds of control structures, data structures, and abstractions developers can
use; thus, the forms of algorithms they can construct are likewise limited. This chapter
introduced tweedledum—a library that augments the expressive power of current frame-
works by providing methods for synthesis, compilation, and optimization of quantum
circuits. The library also seeks to create an open-source environment where state-of-the-
art quantum compilation techniques can be developed and compared.

Finally, we see fast-paced changes in the field of quantum computing design tools.
These changes are driven by various factors, ranging from enhanced compilation tech-
niques and the desire to support higher levels of abstractions to technological advances
in quantum hardware. While we cannot predict what the future will hold, the flexible
design of tweedledum offers many possibilities for coping with future improvements.

Chapter 10

Conclusion

The research presented in this thesis focused on narrowing the gap between high-level
quantum programs and technology-dependent implementations. We studied several tech-
niques for synthesizing quantum operators that can be classically defined using Boolean
functions. Various promising quantum algorithms rely on such operators, and, often,
their cost dominates the total cost of a concrete implementation. On synthesis, we pre-
sented the following contributions:

e In Chapter 4, we presented an algorithm that can synthesize qubit-optimal circuits
from large Boolean networks and a use-case that employs the technique to generate
circuits using fewer T" gates. We also mentioned how such a technique can be used
in conjunction with hierarchical synthesis methods based on k-LUT networks to
explore the trade-off between the number of qubits and the number of gates.

e Then we introduced a new flow for oracle synthesis that achieves better results
than other state-of-the-art synthesizers in Chapter 5. We can reduce the number of
qubits by 24.95% and the number of Clifford by 43.3% in the best cases. Crucially,
these improvements were possible without increasing the number of T" gates or the
execution time.

e Finally, the last two chapters of Part II explored ways of synthesizing linear re-
versible circuits. We first focused on the family of permutation circuits, which
appear in the context of quantum circuit mapping. These circuits can dominate
the total costs for many applications. Chapter 6 described three algorithms to
do the mapping itself or be used as a post-mapping optimization technique. All
three algorithms guarantee local optimality, i.e., they generate permutation circuits
with the optimal number of SWAPs or optimal depth. Chapter 7 proposed an SAT-
based linear synthesis method that guarantees optimality when using CNOT gates.
Although the latter is not scalable, we can use it with other heuristic synthesis
methods to improve quality.

In Part III, we described the embodiment of our research contribution: a com-
piler companion library for the synthesis and compilation of quantum circuits called

103

104 CHAPTER 10. CONCLUSION

tweedledum. The last chapter provided context on how our synthesis techniques fit
quantum compilation’s broader perspective and presented two use cases for our library
and algorithms.

The presented work can empower the current frameworks and compilers to allow de-
velopers to use higher-level abstractions when implementing algorithms. The importance
of this work for quantum computing is twofold:

e It is widely believed that a language’s expressive power influences the depth at
which people can think [126]. Existing quantum computing programming lan-
guages and frameworks limit the kinds of control structures, data structures, and
abstractions developers can use; thus, the forms of algorithms they can construct
are likewise limited. Therefore, the availability of more powerful compilers that can
process more sophisticated, high-level languages can stimulate and aid the discov-
ery of new quantum algorithms—which is crucial to quantum computing progress.

e Also, while existing NISQ devices can rely on a manual or semi-manual compi-
lation process, which requires developers to describe algorithms in terms of basic
unitary operators supported by the underlying machine, this will not be true for
large-scale quantum computers. Larger devices will possess thousands of qubits
and support error-correcting techniques. At such a scale, requiring developers to
manually handle all the necessary complexity of implementing an algorithm will
be impractical and likely to yield worse results.

Even now, the second point is essential. Albeit not having these large devices avail-
able, designing tools capable of handling large programs can play an indispensable role
in resource estimation, i.e., estimating resources required to implement algorithms on
future hardware. This allows us to understand better the power of quantum computing
to make policy decisions, stimulate investment, and guide research towards technological
advances that will lead to scalable devices.

10.1. FUTURE DIRECTIONS

This work is but a small step towards the strenuous goal of practical quantum computing.
Many more will be needed before we get to the point of having reliable and scalable
design tools empowering users with the ability to define quantum algorithms in a high
level of abstraction while respecting the stringent constraints of real devices, let alone
the necessary technology advances required for building programmable fault-tolerant
machines. We close this thesis with some directions that might be taken for improving
our current compilation stack.

Oracle synthesis. Several challenges remain, awaiting satisfactory solutions for the
automated synthesis of large Boolean functions. Techniques that find a solution without
exceeding a given number of ancillae are still rare. Indeed, our state-of-the-art techniques
require reversible logic synthesis methods that need additional qubits. Typically, the

10.1. FUTURE DIRECTIONS 105

execution of the synthesis algorithm determines the number of ancilla qubits, i.e., it
cannot be bounded a priori.

Also, in XAG-based synthesis, we greatly benefit from starting with an optimized
network with lower multiplicative complexity. Thus, discovering new heuristics capable
of further minimizing the number of AND gates would significantly impact the resources
required to implement these networks as quantum circuits. Furthermore, the impact of
the number of XOR nodes in the graph should be better studied. In our experiments, we
have seen that the relation between the number of XOR steps and the number of CNOT
gates is not straightforward.

The use of relative phase. Hierarchical synthesis based on k-LUT networks allows us
to somewhat control the number of qubits in the resulting circuit through the selection of
k. The price paid for such a rudimentary control is a more significant number of gates,
which result from the synthesis of the incidental intermediate functions implemented
by each LUT. As in XAG-based synthesis, we compute and clean up most of these
functions, making them insensitive to phase errors. Therefore, further research into how
to implement arbitrary relative phase functions might allow us to reduce the number of
gates significantly, as it happens when implementing relative phase ANDs.

Tailored LUT mapping for quantum. Today we obtain a LUT network using clas-
sical logic synthesis algorithms that aim at minimizing the number of LUTs. However,
when synthesizing quantum circuits, the number of LUTs might not be as influential
as the functions these LUTs implement, i.e., we might be able to generate a less costly
quantum circuit from a network with more LUTs if their functionality can more easily be
implemented in quantum. The XAG-based synthesis technique indicates that to be the
case: one can see a XAG as a LUT network in which the inputs to the AND gates are
arbitrarily sized LUT implementing a parity function, and the AND gates are 2-LUTs.

Bibliography

1]

2]
3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

IBM Quantum Challenge. https://github.com/quantum-
challenge/2019/tree/master/, 2019.

IBM Quantum Experience. https://quantum-computing.ibm.com, 2019.

IBM Unveils Breakthrough 127-Qubit Quantum Processor.
https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-
Quantum-Processor, November 2021.

Scott Aaronson. Quantum Computing since Democritus. Cambridge University
Press, Cambridge, 2013.

A. Abdollahi and M. Pedram. Analysis and Synthesis of Quantum Circuits by
Using Quantum Decision Diagrams. In Proceedings of the Design Automation &
Test in Europe Conference, pages 1-6, Munich, Germany, 2006. IEEE.

Ali J Abhari, Arvin Faruque, Mohammad J Dousti, Lukas Svec, Oana Catu, Am-
lan Chakrabati, Chen-Fu Chiang, Seth Vanderwilt, John Black, and Fred Chong.
Scaffold: Quantum programming language. Technical report, Princeton University,
NJ, Dept of Computer Science, 2012.

Victor Arribas Abril, Pieter Maene, Nele Mertens, and NP Smart. Bristol fashion
MPC circuits. https://homes.esat.kuleuven.be/{sim}nsmart/MPC/, 2019.

Dorit Aharonov, Alexei Kitaev, and Noam Nisan. Quantum circuits with mixed
states. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing - STOC 98, pages 20-30, Dallas, Texas, United States, 1998. ACM
Press.

Akers. Binary Decision Diagrams. IEEE Transactions on Computers, C-27(6):509—
516, June 1978.

Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and
Michael Zohner. Ciphers for MPC and FHE. In Elisabeth Oswald and Marc Fis-
chlin, editors, Advances in Cryptology - EUROCRYPT 2015, volume 9056, pages
430-454. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

107

108

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

BIBLIOGRAPHY

Panos Aliferis, Daniel Gottesman, and John Preskill. Quantum accuracy threshold
for concatenated distance-3 codes. arXiv:quant-ph/0504218, October 2005.

Noga Alon, F. R. K. Chung, and R. L. Graham. Routing Permutations on Graphs
via Matchings. SIAM Journal on Discrete Mathematics, 7(3):513-530, May 1994.

Noga Alon, Mauricio Karchmer, and Avi Wigderson. Linear Circuits over GF(2).
SIAM Journal on Computing, 19(6):1064-1067, December 1990.

Luca Amaru, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. The EPFL
combinational benchmark suite. Proceedings of the 24th International Workshop
on Logic & Synthesis (IWLS), 2015.

Andris Ambainis. Understanding quantum algorithms via query complexity. In
Proceedings of the International Congress of Mathematicians (ICM 2018), pages
3265-3285, Rio de Janeiro, Brazil, May 2019. WORLD SCIENTIFIC.

M. Amy, D. Maslov, M. Mosca, and M. Roetteler. A Meet-in-the-Middle Algorithm
for Fast Synthesis of Depth-Optimal Quantum Circuits. IEEE Transactions on
Computer-Aided Design of Integrated Clircuits and Systems, 32(6):818-830, June
2013.

Matthew Amy, Parsiad Azimzadeh, and Michele Mosca. On the controlled-NOT
complexity of controlled-NOT-phase circuits. Quantum Science and Technology,
4(1):015002, 2018.

Matthew Amy and Vlad Gheorghiu. Stag—A full-stack quantum processing
toolkit. Quantum Science and Technology, 5(3):034016, 2020.

Matthew Amy, Dmitri Maslov, and Michele Mosca. Polynomial-Time T-Depth
Optimization of Clifford+T Circuits Via Matroid Partitioning. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 33(10):1476-1489,
October 2014.

Ryan Babbush, Dominic W Berry, Ian D Kivlichan, Annie Y Wei, Peter J Love, and
Alan Aspuru-Guzik. Exponentially more precise quantum simulation of fermions
in second quantization. New Journal of Physics, 18(3):033032, March 2016.

Aniruddha Bapat, Andrew M. Childs, Alexey V. Gorshkov, Samuel King, Eddie
Schoute, and Hrishee Shastri. Quantum routing with fast reversals. Quantum,
5:533, August 2021.

Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Nor-
man Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter.

Elementary gates for quantum computation. Physical Review A, 52(5):3457-3467,
November 1995.

BIBLIOGRAPHY 109

23]

[24]

[25]

[26]

[27]

28]

29]

[30]

[31]

[32]

[33]

Paul Benioff. The computer as a physical system: A microscopic quantum mechan-
ical Hamiltonian model of computers as represented by Turing machines. Journal
of Statistical Physics, 22(5):563-591, May 1980.

C. H. Bennett. Logical Reversibility of Computation. IBM Journal of Research
and Development, 17(6):525-532, November 1973.

Charles H Bennett. Time/space trade-offs for reversible computation. SIAM Jour-
nal on Computing, 18(4):766-776, 1989.

Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, M. Sohaib Alam,
Shahnawaz Ahmed, Juan Miguel Arrazola, Carsten Blank, Alain Delgado, So-
ran Jahangiri, Keri McKiernan, Johannes Jakob Meyer, Zeyue Niu, Antal Széiva,
and Nathan Killoran. PennyLane: Automatic differentiation of hybrid quantum-
classical computations. arXiw:1811.04968 [physics, physics:quant-ph], February
2020.

Ethan Bernstein and Umesh Vazirani. Quantum Complexity Theory. SIAM Jour-
nal on Computing, 26(5):1411-1473, October 1997.

Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev. Silq:
A high-level quantum language with safe uncomputation and intuitive semantics.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 286-300, London UK, June 2020. ACM.

Armin Biere, Marijn Heule, and Hans van Maaren, editors. Handbook of Satisfia-
bility. Number volume 336 in Frontiers in Artificial Intelligence and Applications.
I0S Press, Amsterdam ; Washington, DC, second edition edition, 2021.

B. Bollig and I. Wegener. Improving the variable ordering of OBDDs is NP-
complete. IEEE Transactions on Computers, 45(9):993-1002, Sept./1996.

Joan Boyar and René Peralta. A New Combinational Logic Minimization Tech-
nique with Applications to Cryptology. In David Hutchison, Takeo Kanade, Josef
Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor,
Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri
Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, and Paola Festa,
editors, Ezperimental Algorithms, volume 6049, pages 178-189. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

Michel Boyer, Gilles Brassard, Peter Hgyer, and Alain Tapp. Tight Bounds on
Quantum Searching. Fortschritte der Physik, 46(4-5):493-505, June 1998.

Robert Brayton and Alan Mishchenko. ABC: An Academic Industrial-Strength
Verification Tool. In David Hutchison, Takeo Kanade, Josef Kittler, Jon M.
Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz,

110

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

BIBLIOGRAPHY

C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug
Tygar, Moshe Y. Vardi, Gerhard Weikum, Tayssir Touili, Byron Cook, and Paul
Jackson, editors, Computer Aided Verification, volume 6174, pages 24-40. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010.

Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans-
actions on Computers, C-35(8):677-691, August 1986.

Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys, 24(3):293-318, September 1992.

Melissa. Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ra-
macher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-
Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 1825-1842, Dallas Texas USA, October 2017. ACM.

Cynthia Chen, Bruno Schmitt, Helena Zhang, Lev S. Bishop, and Ali Javadi-
Abhari. Optimizing quantum circuit synthesis for permutations using recursion.
In Proceedings of the 59th Annual Conference on Design Automation - DAC 22,
San Francisco, CA, USA, 2022. ACM Press.

D. Chen and J. Cong. DAOmap: A depth-optimal area optimization mapping
algorithm for FPGA designs. In IEEE/ACM International Conference on Com-
puter Aided Design, 2004. ICCAD-2004., pages 752-759, San Jose, CA, USA, 2004.
IEEE.

A. Chi-Chih Yao. Quantum circuit complexity. In Proceedings of 1993 IEEE 3/th
Annual Foundations of Computer Science, pages 352-361, Palo Alto, CA, USA,
1993. IEEE.

Andrew M. Childs and Dominic W. Berry. Black-box Hamiltonian simula-
tion and unitary implementation. Quantum Information and Computation,
12(1&2):pp0029-0062, January 2012.

Frederic T. Chong, Diana Franklin, and Margaret Martonosi. Programming lan-
guages and compiler design for realistic quantum hardware. Nature, 549(7671):180—
187, September 2017.

Bob Coecke and Ross Duncan. Interacting Quantum Observables. In Luca Aceto,
Ivan Damgard, Leslie Ann Goldberg, Magntas M. Halldérsson, Anna Ingoélfsdottir,
and Igor Walukiewicz, editors, Automata, Languages and Programming, volume
5126, pages 298-310. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

Bob Coecke and Ross Duncan. Interacting quantum observables: Categorical al-
gebra and diagrammatics. New Journal of Physics, 13(4):043016, April 2011.

BIBLIOGRAPHY 111

[44] J. Cong and Yuzheng Ding. FlowMap: An optimal technology mapping algorithm
for delay optimization in lookup-table based FPGA designs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 13(1):1-12, Jan./1994.

[45] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the Third Annual ACM Symposium on Theory of Computing - STOC ’71, pages
151-158, Shaker Heights, Ohio, United States, 1971. ACM Press.

[46] Pedro C. S. Costa, Stephen Jordan, and Aaron Ostrander. Quantum Algorithm for
Simulating the Wave Equation. Physical Review A, 99(1):012323, January 2019.

[47] Nicolas T. Courtois, Mourouzis Theodosis, and Daniel Hulme. Solving circuit opti-
misation problems in cryptography and cryptanalysis. Cryptology ePrint Archive,
Report 2011/475, 2011.

[48] Alexander Cowtan, Silas Dilkes, Ross Duncan, Alexandre Krajenbrink, Will Sim-
mons, and Seyon Sivarajah. On the qubit routing problem. arXiv:1902.08091
[quant-ph], page 32 pages, 2019.

[49] Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D. Nation, and Jay M. Gam-
betta. Validating quantum computers using randomized model circuits. Physical
Review A, 100(3):032328, September 2019.

[50] Timothee Goubault de Brugiere, Marc Baboulin, Benoit Valiron, Simon Martiel,
and Cyril Allouche. Reducing the Depth of Linear Reversible Quantum Circuits.
IEEE Transactions on Quantum Engineering, 2:1-22, 2021.

[61] Leonardo de Moura and Nikolaj Bjgrner. Z3: An Efficient SMT Solver. In David
Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern,
John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Stef-
fen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard
Weikum, C. R. Ramakrishnan, and Jakob Rehof, editors, Tools and Algorithms for
the Construction and Analysis of Systems, volume 4963, pages 337-340. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

[52] Alexis De Vos and Yvan Van Rentergem. Young subgroups for reversible computers.
Advances in Mathematics of Communications, 2(2):183, 2008.

[63] David Deutsch. Quantum theory, the Church-Turing principle and the universal
quantum computer. Proceedings of the Royal Society of London. A. Mathematical
and Physical Sciences, 400(1818):97-117, July 1985.

[54] David Elieser Deutsch. Quantum computational networks. Proceedings of the
Royal Society of London. A. Mathematical and Physical Sciences, 425(1868):73—
90, September 1989.

[65] Cirq Developers. Cirq. Zenodo, August 2021.

112

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

BIBLIOGRAPHY

Yongshan Ding, Xin-Chuan Wu, Adam Holmes, Ash Wiseth, Diana Franklin, Mar-
garet Martonosi, and Frederic T. Chong. SQUARE: Strategic Quantum Ancilla
Reuse for Modular Quantum Programs via Cost-Effective Uncomputation. In
2020 ACM/IEEE j7th Annual International Symposium on Computer Architec-
ture (ISCA), pages 570-583, Valencia, Spain, May 2020. IEEE.

P. A. M. Dirac. A new notation for quantum mechanics. Mathematical Proceedings
of the Cambridge Philosophical Society, 35(3):416-418, July 1939.

R. Drechsler. Pseudo-Kronecker expressions for symmetric functions. IEEE Trans-
actions on Computers, 48(9):987-990, Sept./1999.

Niklas Eén and Niklas Sorensson. An Extensible SAT-solver. In Gerhard Goos,
Juris Hartmanis, Jan van Leeuwen, Enrico Giunchiglia, and Armando Tacchella,
editors, Theory and Applications of Satisfiability Testing, volume 2919, pages 502—
518. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

Richard P. Feynman. Simulating physics with computers. International Journal of
Theoretical Physics, 21(6-7):467-488, June 1982.

Magnus Gausdal Find. On the Complexity of Computing Two Nonlinearity Mea-
sures. In David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Al-
fred Kobsa, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz,
C. Pandu Rangan, Bernhard Steffen, Demetri Terzopoulos, Doug Tygar, Gerhard
Weikum, Edward A. Hirsch, Sergei O. Kuznetsov, Jean-Eric Pin, and Nikolay K.
Vereshchagin, editors, Computer Science - Theory and Applications, volume 8476,
pages 167-175. Springer International Publishing, Cham, 2014.

Mark Fingerhuth, Tomas Babej, and Peter Wittek. Open source software in quan-
tum computing. PLOS ONE, 13(12):e0208561, December 2018.

Austin G. Fowler, Ashley M. Stephens, and Peter Groszkowski. High-threshold uni-
versal quantum computation on the surface code. Physical Review A, 80(5):052312,
November 2009.

Carsten Fuhs and Peter Schneider-Kamp. Synthesizing Shortest Linear Straight-
Line Programs over GF(2) Using SAT. In Ofer Strichman and Stefan Szeider,
editors, Theory and Applications of Satisfiability Testing — SAT 2010, volume 6175,
pages 71-84. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster Zero-
Knowledge for boolean circuits. In 25th USENIX Security Symposium (USENIX
Security 16), pages 1069-1083, Austin, TX, August 2016. USENIX Association.

Craig Gidney. Halving the cost of quantum addition. Quantum, 2:74, June 2018.

BIBLIOGRAPHY 113

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

Dahmun Goudarzi and Matthieu Rivain. On the Multiplicative Complexity of
Boolean Functions and Bitsliced Higher-Order Masking. In Benedikt Gierlichs
and Axel Y. Poschmann, editors, Cryptographic Hardware and Embedded Systems
— CHES 2016, volume 9813, pages 457-478. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2016.

Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and
Benoit Valiron. Quipper: A scalable quantum programming language. In Proceed-
ings of the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation - PLDI ’13, page 333, Seattle, Washington, USA, 2013. ACM
Press.

Lov K. Grover. A fast quantum mechanical algorithm for database search. In Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing -
STOC ’96, pages 212219, Philadelphia, Pennsylvania, United States, 1996. ACM
Press.

Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum Algorithm for
Linear Systems of Equations. Physical Review Letters, 103(15):150502, October
2009.

Peter Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems Science
and Cybernetics, 4(2):100-107, 1968.

Wakaki Hattori and Shigeru Yamashita. Quantum Circuit Optimization by Chang-
ing the Gate Order for 2D Nearest Neighbor Architectures. In Jarkko Kari and Irek
Ulidowski, editors, Reversible Computation, volume 11106, pages 228—-243. Springer
International Publishing, Cham, 2018.

Grace Murray Hopper. The education of a computer. In Proceedings of the 1952
ACM National Meeting (Pittsburgh) on - ACM ’52, pages 243-249, Pittsburgh,
Pennsylvania, 1952. ACM Press.

Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Fred-
eric T Chong, and Margaret Martonosi. ScaffCC: A framework for compilation
and analysis of quantum computing programs. In Proceedings of the 11th ACM
Conference on Computing Frontiers, pages 1-10, 2014.

Cody Jones. Low-overhead constructions for the fault-tolerant Toffoli gate. Physical
Review A, 87(2):022328, February 2013.

Stephen Jordan. Quantum Algorithm Zoo. https://quantumalgorithmzoo.org,
2011.

114

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[83]

[89]

BIBLIOGRAPHY

Richard M. Karp. Reducibility among Combinatorial Problems. In Raymond E.
Miller, James W. Thatcher, and Jean D. Bohlinger, editors, Complexity of Com-
puter Computations, pages 85-103. Springer US, Boston, MA, 1972.

Nathan Killoran, Josh Izaac, Nicolds Quesada, Ville Bergholm, Matthew Amy,
and Christian Weedbrook. Strawberry fields: A software platform for photonic
quantum computing. Quantum, 3:129, 2019.

Aleks Kissinger and Arianne Meijer-van de Griend. CNOT circuit extraction for
topologically-constrained quantum memories. arXiv:1904.00633 [quant-ph], May
2019.

Donald E. Knuth. Combinatorial Algorithms, volume 4A of The Art of Computer
Programming. Addison-Wesley, Boston Columbus Indianapolis, 2011.

Donald E. Knuth. Satisfiablility, volume 4, fascicle 6 of The Art of Computer
Programming. Addison-Wesley, Boston Columbus Indianapolis, printing with cor-
rections edition, 2018.

A. Kuehlmann, V. Paruthi, F. Krohm, and M.K. Ganai. Robust Boolean reasoning
for equivalence checking and functional property verification. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 21(12):1377-1394,
December 2002.

Samuel A. Kutin, David Petrie Moulton, and Lawren M. Smithline. Computation
at a distance. arXiv:quant-ph/0701194, January 2007.

Ryan LaRose. Overview and Comparison of Gate Level Quantum Software Plat-
forms. Quantum, 3:130, March 2019.

C. Y. Lee. Representation of Switching Circuits by Binary-Decision Programs. Bell
System Technical Journal, 38(4):985-999, July 1959.

Gushu Li, Yufei Ding, and Yuan Xie. Tackling the Qubit Mapping Problem for
NISQ-Era Quantum Devices. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 1001-1014, Providence RI USA, April 2019. ACM.

Gai Liu and Zhiru Zhang. PIMap: A Flexible Framework for Improving LUT-Based
Technology Mapping via Parallelized Iterative Optimization. ACM Transactions
on Reconfigurable Technology and Systems, 11(4):1-23, December 2018.

Guang Hao Low and Isaac L. Chuang. Hamiltonian Simulation by Qubitization.
Quantum, 3:163, July 2019.

Yuri Manin. Vychislimoe i nevychislimoe [Computable and Noncomputable] (in
Russian). Sovetskoye Radio, Moscow, 1980.

BIBLIOGRAPHY 115

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

D. Maslov, G. W. Dueck, and D. M. Miller. Techniques for the synthesis of re-
versible Toffoli networks. ACM Transactions on Design Automation of Electronic
Systems, 12(4):42, September 2007.

Dmitri Maslov. Reversible logic synthesis benchmarks page.
http://webhome.cs.uvic.ca/~dmaslov/, 2005.

Dmitri Maslov. Advantages of using relative-phase Toffoli gates with an application
to multiple control Toffoli optimization. Physical Review A, 93(2):022311, February
2016.

Giulia Meuli, Bruno Schmitt, Riidiger Ehlers, Heinz Riener, and Giovanni
De Micheli. Evaluating ESOP Optimization Methods in Quantum Compilation
Flows. In Michael Kirkedal Thomsen and Mathias Soeken, editors, Reversible Com-
putation, volume 11497, pages 191-206. Springer International Publishing, Cham,
2019.

Giulia Meuli, Mathias Soeken, Earl Campbell, Martin Roetteler, and Giovanni
de Micheli. The Role of Multiplicative Complexity in Compiling Low T-count
Oracle Circuits. In 2019 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 1-8, Westminster, CO, USA, November 2019. IEEE.

Giulia Meuli, Mathias Soeken, and Giovanni De Micheli. SAT-based {CNOT, T}
Quantum Circuit Synthesis. In Jarkko Kari and Irek Ulidowski, editors, Reversible
Computation, volume 11106, pages 175-188. Springer International Publishing,
Cham, 2018.

Giulia Meuli, Mathias Soeken, Martin Roetteler, Nikolaj Bjorner, and Giovanni De
Micheli. Reversible Pebbling Game for Quantum Memory Management. In 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE), pages
288-291, Florence, Italy, March 2019. IEEE.

D. M. Miller, D. Maslov, and G. W. Dueck. A transformation based algorithm
for reversible logic synthesis. In Proceedings 2003. Design Automation Conference
(IEEE Cat. No.03CH37451), pages 318-323, 2003.

D. Michael Miller, Robert Wille, and Rolf Drechsler. Reducing Reversible Circuit
Cost by Adding Lines. In 2010 40th IEEE International Symposium on Multiple-
Valued Logic, pages 217-222, Barcelona, Spain, 2010. IEEE.

D.M. Miller and M.A. Thornton. QMDD: A Decision Diagram Structure for Re-
versible and Quantum Circuits. In 36th International Symposium on Multiple-
Valued Logic (ISMVL’06), pages 3030, Singapore, 2006. IEEE.

Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combinatorial
problems. In Proceedings of the 30th International on Design Automation Confer-
ence - DAC 938, pages 272-277, Dallas, Texas, United States, 1993. ACM Press.

116 BIBLIOGRAPHY

[101] Shin-ichi Minato. 7DD: A New Decision Diagram for Efficient Problem Solving
in Permutation Space. In Karem A. Sakallah and Laurent Simon, editors, Theory
and Applications of Satisfiability Testing - SAT 2011, volume 6695, pages 90-104.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[102] Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. DAG-aware AIG
rewriting a fresh look at combinational logic synthesis. In Proceedings of the 43rd

Annual Conference on Design Automation - DAC ’06, page 532, San Francisco,
CA, USA, 2006. ACM Press.

[103] Alan Mishchenko and Marek Perkowski. Fast Heuristic Minimization of Exclusive-
Sums-of-Products. In Proceedings of RM’2001 Workshop, pages 242-250, August
2001.

[104] Beatrice Nash, Vlad Gheorghiu, and Michele Mosca. Quantum circuit optimiza-
tions for NISQ architectures. Quantum Science and Technology, 5(2):025010, March
2020.

[105] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, Cambridge ; New York, 10th anniversary
ed edition, 2010.

[106] Philipp Niemann, Robert Wille, David Michael Miller, Mitchell A. Thornton, and
Rolf Drechsler. QMDDs: Efficient Quantum Function Representation and Manip-

ulation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 35(1):86-99, January 2016.

[107] C. Paar. Optimized arithmetic for Reed-Solomon encoders. In Proceedings of IEEE
International Symposium on Information Theory, page 250, Ulm, Germany, 1997.
IEEE.

[108] Ketan N. Patel, Igor L. Markov, and John P. Hayes. Optimal Synthesis of Linear
Reversible Circuits. Quantum Info. Comput., 8(3):282-294, March 2008.

[109] Emil L. Post. The Two- Valued Iterative Systems of Mathematical Logic. (AM-5).
Princeton University Press, December 1942.

[110] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79,
August 2018.

[111] S. Ray, A. Mishchenko, N. Een, R. Brayton, S. Jang, and Chao Chen. Mapping
into LUT structures. In 2012 Design, Automation & Test in Furope Conference &
Ezhibition (DATE), pages 1579-1584, Dresden, March 2012. IEEE.

[112] M. Sadegh Riazi, Mojan Javaheripi, Siam U. Hussain, and Farinaz Koushanfar.
MPCircuits: Optimized Circuit Generation for Secure Multi-Party Computation.
In 2019 IEEFE International Symposium on Hardware Oriented Security and Trust
(HOST), pages 198-207, McLean, VA, USA, May 2019. IEEE.

BIBLIOGRAPHY 117

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

Heinz Riener, Riidiger Ehlers, Bruno de O. Schmitt, and Giovanni De Micheli.
Exact Synthesis of ESOP Forms. In Rolf Drechsler and Mathias Soeken, editors,

Advanced Boolean Techniques, pages 177-194. Springer International Publishing,
Cham, 2020.

Vadim Ryvchin and Alexander Nadel. Maple LCM _Dist ChronoBT: Featuring
chronological backtracking. Proceedings of SAT Competition 2018, page 29, 2018.

Mehdi Saeedi, Morteza Saheb Zamani, Mehdi Sedighi, and Zahra Sasanian. Re-
versible circuit synthesis using a cycle-based approach. ACM Journal on Emerging
Technologies in Computing Systems, 6(4):1-26, December 2010.

Sean Safarpour, Andreas Veneris, Gregg Baeckler, and Richard Yuan. Efficient
SAT-based Boolean matching for FPGA technology mapping. In Proceedings of
the 43rd Annual Conference on Design Automation - DAC ’06, page 466, San
Francisco, CA, USA, 2006. ACM Press.

Tsutomu Sasao, editor. Logic Synthesis and Optimization, volume 212 of The
Kluwer International Series in Engineering and Computer Science. Springer US,
Boston, MA, 1993.

Artur Scherer, Benoit Valiron, Siun-Chuon Mau, Scott Alexander, Eric van den
Berg, and Thomas E. Chapuran. Concrete resource analysis of the quantum linear
system algorithm used to compute the electromagnetic scattering cross section of
a 2D target. Quantum Information Processing, 16(3):60, March 2017.

Bruno Schmitt and Giovanni De Micheli. tweedledum: A Compiler Companion for
Quantum Computing. In 2022 Design, Automation & Test in Europe Conference
& Ezhibition (DATE), Antwerp, Belgium, March 2022. IEEE.

Bruno Schmitt, Ali Javadi-Abhari, and Giovanni De Micheli. Compilation flow
for classically defined quantum operations. In 2021 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pages 964-967, Grenoble, France,
February 2021. IEEE.

Bruno Schmitt, Alan Mishchenko, and Robert Brayton. SAT-based area recovery
in structural technology mapping. In 2018 23rd Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 586-591, Jeju, January 2018. IEEE.

Bruno Schmitt, Fereshte Mozafari, Giulia Meuli, Heinz Riener, and Giovanni
De Micheli. From Boolean functions to quantum circuits: A scalable quantum
compilation flow in C++. In 2021 Design, Automation & Test in Europe Con-
ference & Ezxhibition (DATE), pages 1044-1049, Grenoble, France, February 2021.
IEEE.

118 BIBLIOGRAPHY

[123] Bruno Schmitt, Mathias Soeken, Giovanni De Micheli, and Alan Mishchenko.
Scaling-up ESOP Synthesis for Quantum Compilation. In 2019 IEEE /9th Inter-
national Symposium on Multiple- Valued Logic (ISMVL), pages 13-18, Fredericton,
NB, Canada, May 2019. IEEE.

[124] Bruno Schmitt, Mathias Soeken, and Giovanni De Micheli. Symbolic Algorithms
for Token Swapping. In 2020 IEEE 50th International Symposium on Multiple-
Valued Logic (ISMVL), pages 28-33, Miyazaki, Japan, November 2020. IEEE.

[125] Norbert Schuch and Jens Siewert. Programmable Networks for Quantum Algo-
rithms. Physical Review Letters, 91(2):027902, July 2003.

[126] Robert W. Sebesta. Concepts of Programming Languages. Always Learning. Pear-
son, Boston Munich, eleventh edition, global edition edition, 2016.

[127] V.V. Shende, A.K. Prasad, I.L. Markov, and J.P. Hayes. Synthesis of reversible
logic circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 22(6):710-722, June 2003.

[128] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Review, 41(2):303—-332, January 1999.

[129] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington,
and Ross Duncan. T| ket>: A retargetable compiler for NISQ devices. Quantum
Science and Technology, 6(1):014003, 2020.

[130] Kaitlin Smith, Mathias Soeken, Bruno Schmitt, Giovanni De Micheli, and Mitchell
Thornton. Using ZDDs in the Mapping of Quantum Circuits. 2019.

[131] Robert S. Smith, Michael J. Curtis, and William J. Zeng. A Practical Quantum
Instruction Set Architecture. arXiv:1608.03355 [quant-ph], February 2017.

[132] Robert S Smith, Eric C Peterson, Mark G Skilbeck, and Erik J Davis. An open-
source, industrial-strength optimizing compiler for quantum programs. Quantum
Science and Technology, 5(4):044001, 2020.

[133] Mathias Soeken, Gerhard W. Dueck, and D. Michael Miller. A Fast Symbolic
Transformation Based Algorithm for Reversible Logic Synthesis. In Simon Devitt
and Ivan Lanese, editors, Reversible Computation, volume 9720, pages 307-321.
Springer International Publishing, Cham, 2016.

[134] Mathias Soeken, Giulia Meuli, Bruno Schmitt, Fereshte Mozafari, Heinz Riener,
and Giovanni De Micheli. Boolean satisfiability in quantum compilation. Philosoph-

ical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 378(2164):20190161, February 2020.

BIBLIOGRAPHY 119

[135] Mathias Soeken, Fereshte Mozafari, Bruno Schmitt, and Giovanni De Micheli.
Compiling Permutations for Superconducting QPUs. In 2019 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 1349-1354, Florence,
Italy, March 2019. IEEE.

[136] Mathias Soeken, Heinz Riener, Winston Haaswijk, Eleonora Testa, Bruno Schmitt,
Giulia Meuli, Fereshte Mozafari, and Giovanni De Micheli. The EPFL logic syn-
thesis libraries. preprint arXiv:1805.05121, 2018.

[137] Mathias Soeken, Martin Roetteler, Nathan Wiebe, and Giovanni De Micheli. Logic
Synthesis for Quantum Computing. arXiv:1706.02721 [quant-ph], June 2017.

[138] Mathias Soeken, Martin Roetteler, Nathan Wiebe, and Giovanni De Micheli. LUT-
Based Hierarchical Reversible Logic Synthesis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 38(9):1675-1688, September 2019.

[139] Mathias Soeken, Laura Tague, Gerhard W. Dueck, and Rolf Drechsler. Ancilla-free
synthesis of large reversible functions using binary decision diagrams. Journal of
Symbolic Computation, 73:1-26, March 2016.

[140] Mathias Soeken, Robert Wille, Christoph Hilken, Nils Przigoda, and Rolf Drech-
sler. Synthesis of reversible circuits with minimal lines for large functions. In
17th Asia and South Pacific Design Automation Conference, pages 85-92, Sydney,
Australia, January 2012. IEEE.

[141] Fabio Somenzi. CUDD: Colorado university decision diagram package, 1996.

[142] Damian S Steiger, Thomas Héner, and Matthias Troyer. ProjectQ: An open source
software framework for quantum computing. Quantum, 2:49, 2018.

[143] Adrien Suau, Gabriel Staffelbach, and Henri Calandra. Practical Quantum Com-
puting: Solving the Wave Equation Using a Quantum Approach. ACM Transac-
tions on Quantum Computing, 2(1):1-35, April 2021.

[144] Pavel Surynek. Finding Optimal Solutions to Token Swapping by Conflict-Based
Search and Reduction to SAT. In 2018 IEEE 30th International Conference on
Tools with Artificial Intelligence (ICTAI), pages 592-599, Volos, Greece, November
2018. IEEE.

[145] Krysta Svore, Martin Roetteler, Alan Geller, Matthias Troyer, John Azariah,
Christopher Granade, Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, and
Andres Paz. Q#: Enabling Scalable Quantum Computing and Development with
a High-level DSL. In Proceedings of the Real World Domain Specific Languages
Workshop 2018 on - RWDSL2018, pages 1-10, Vienna, Austria, 2018. ACM Press.

[146] Bochen Tan and Jason Cong. Optimality Study of Existing Quantum Computing
Layout Synthesis Tools. IEEE Transactions on Computers, pages 1-1, 2020.

120

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

BIBLIOGRAPHY

Eleonora Testa, Mathias Soeken, Luca Amari, and Giovanni De Micheli. Reducing
the multiplicative complexity in logic networks for cryptography and security ap-
plications. In 2019 56th ACM/IEEE Design Automation Conference (DAC), pages
1-6, 2019.

Eleonora Testa, Mathias Soeken, Heinz Riener, Luca Amaru, and Giovanni De
Micheli. A Logic Synthesis Toolbox for Reducing the Multiplicative Complexity
in Logic Networks. In 2020 Design, Automation & Test in Europe Conference &
Ezhibition (DATE), pages 568-573, Grenoble, France, March 2020. IEEE.

Tommaso Toffoli. Bicontinuous extensions of invertible combinatorial functions.
Mathematical Systems Theory, 14(1):13-23, December 1981.

Matthew Treinish, Jay Gambetta, Paul Nation, Paul Kassebaum, Qiskit-Bot,
Diego M. Rodriguez, Salvador De La Puente Gonzalez, Shaohan Hu, Kevin Kr-
sulich, Laura Zdanski, Jessie Yu, Jim Garrison, Julien Gacon, David McKay, Juan
Gomez, Lauren Capelluto, Travis-S-IBM, Manoel Marques, Ashish Panigrahi, Jake
Lishman, Lerongil, Rafey Igbal Rahman, Steve Wood, Luciano Bello, Divyan-
shu Singh, Drew, Eli Arbel, Joachim Schwarm, Jonathan Daniel, and MELVIN
GEORGE. Qiskit/qiskit: Qiskit 0.34.2. Zenodo, February 2022.

Meltem Turan Sénmez and René Peralta. The Multiplicative Complexity of
Boolean Functions on Four and Five Variables. In Thomas Eisenbarth and Erding
Oztiirk, editors, Lightweight Cryptography for Security and Privacy, volume 8898,
pages 21-33. Springer International Publishing, Cham, 2015.

Robert Wille, Daniel Gro, Lisa Teuber, Gerhard W. Dueck, and Rolf Drechsler.
RevLib: An Online Resource for Reversible Functions and Reversible Circuits. In
38th International Symposium on Multiple Valued Logic (Ismvl 2008), pages 220~
225, Dallas, TX, USA, May 2008. IEEE.

W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature,
299(5886):802-803, October 1982.

Bujiao Wu, Xiaoyu He, Shuai Yang, Lifu Shou, Guojing Tian, Jialin Zhang, and
Xiaoming Sun. Optimization of CNOT circuits under topological constraints.
arXiw:1910.14478 [quant-ph/, August 2021.

Katsuhisa Yamanaka, Erik D. Demaine, Takehiro Ito, Jun Kawahara, Masashi
Kiyomi, Yoshio Okamoto, Toshiki Saitoh, Akira Suzuki, Kei Uchizawa, and Takeaki
Uno. Swapping labeled tokens on graphs. Theoretical Computer Science, 586:81-94,
June 2015.

Louxin Zhang. Optimal Bounds for Matching Routing on Trees. SIAM Journal on
Discrete Mathematics, 12(1):64-77, January 1999.

BIBLIOGRAPHY 121

[157] Alwin Zulehner, Alexandru Paler, and Robert Wille. An Efficient Methodology for
Mapping Quantum Circuits to the IBM QX Architectures. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 38(7):1226-1236, July
2019.

Bruno Schmitt

PH.D CANDIDATE
Avenue de la Harpe 30, Lausanne, 1007, Switzerland
0+41797432499 | &bruno.schmi pfl.ch | @boschmitt | @ bo-schmitt

With more than 11 years of working experience in both academia and industry, | have strong software development skills, specifically in C/C++ as
well as Python and basic Rust. As part of my research, | am the main developer and maintainer of an open-source full-stack library for quantum
compilation, tweedledum, and active contributor for the EPFL logic synthesis libraries. My primary research interests include quantum computing,

logic synthesis, formal verification, design automation tools (CAD) and SAT solvers.

Education

Ecole Polytechnique Fédérale de Lausanne (EPFL)
PH.D IN COMPUTER SCIENCE

« Title: Practical Compilation of Quantum Programs
« Advisor: Giovanni De Micheli
« Co-Advisor: Mathias Soeken

Universidade Federal do Rio Grande do Sul (UFRGS)

B.S. IN COMPUTER ENGINEERING

« Title: Fast Extract with Cube Hashing

« Advisor: André Inacio Reis

+ Co-Advisor: Alan Mishchenko, UC Berkeley, CA, USA
ENSEIR-MATMECA, IPB

1 YEAR EXCHANGE ELECTRICAL ENGINEERING

« | was selected to participate in the BRAFITEC—sandwich degree program with French engineering schools.

Publications

Lausanne, Switzerland

Sep. 2017 - June. 2022 (Expected)

Porto Alegre, Brazil
Aug. 2011 - Dec. 2016

Bordeausx, France
Aug. 2013 - Jul. 2014

Optimizing Quantum Circuit Synthesis for Permutations using Recursive Methods

C. CHEN, H. ZHANG, B. SCHMITT, L. S. BISHOP AND A. JAVADI-ABHARI

Optimizing Quantum Circuit Synthesis for Permutations on Limited Connectivity
Topologies
C. CHEN, H. ZHANG, B. SCHMITT, L. S. BISHOP AND A. JAVADI-ABHARI

tweedledum: A Compiler Companion for Quantum Computing
B. SCHMITT, G. DE MICHELI

Compilation flow for classically defined quantum operations

B. SCHMITT, A. JAVADI-ABHARI, G. DE MICHELI
From Boolean functions to quantum circuits: A scalable quantum compilation flow in
C++

B. SCHMITT, F. MOZAFARI, G. MEULI, H. RIENER, G. DE MICHELI

Symbolic Algorithms for Token Swapping
B. SCHMITT, M. SOEKEN, G. DE MICHELI

Evaluating ESOP Optimization Methods in Quantum Compilation Flows
G. MEULI, B. SCHMITT, R. EHLERS, H. RIENER, G. DE MICHELI

Using ZDDs in the mapping of quantum circuits
K. SMITH, M. SOEKEN, B. SCHMITT, G. DE MICHELI

APRIL 12,2022 BRUNO SCHMITT + CURRICULUM VITAE

DAC’22

San Francisco, United States

APS March’22

Chicago, United States

DATE’22

Antwerp, Belgium

DATE21

Grenoble, France

DATE21

Grenoble, France

ISMVL’20
Miyazaki, Japan

RC’19

Lausanne, Switzerland

QPL’I9
Orange, United States

Scaling-up ESOP Synthesis for Quantum Compilation

B. SCHMITT, M. SOEKEN, A. MISHCHENKO, G. DE MICHELI

Compiling permutations for superconducting QPUs
M. SOEKEN, F. MOZAFARI, B. SCHMITT, G. DE MICHELI

Exact Synthesis of ESOP Forms

H. RIENER, R. EHLERS, B. SCHMITT, G. DE MICHELI

SAT-Based Area Recovery in Structural Technology Mapping

B. SCHMITT, A. MISHCHENKO, R. BRAYTON

Fast Extract with Cube Hashing

B. SCHMITT, A. MISHCHENKO, V. KRAVETS, R. BRAYTON, A. REIS

Honors & Awards

ISMVL’19

Fredericton, Canada

DATE’19

Florence, Italy

IWSBP’18

Bremen, Germany

ASP-DAC’18

Jeju Island, South Korea

Extra Scientific Work

Conference on Reversible Computation

PROGRAM COMMITTEE

ASP-DAC’17
Chiba, Japan
2017 1€ School Ph.D Fellowship, Ecole Polytechnique Fédérale de Lausanne (EPFL)
2015 A.Richard Newton Young Student Fellow, Design Automation Conference (DAC)
RC22
Urbino, Italy
APLOS’22

Architectural Support for Programming Languages and Operating Systems

REVIEWER

Transactions on Computer-Aided Design of Integrated Circuits and Systems
REVIEWER
« 2% in2022.

Workshop on Open-Source EDA Technology

PROGRAM COMMITTEE

IEEE Internet Computing
REVIEWER

International Conference on Quantum Computing and Engineering
REVIEWER

Journal on Emerging Technologies in Computing Systems
REVIEWER

Transactions on Very Large Scale Integration Systems
REVIEWER

International Conference on Tools with Artificial Intelligence

REVIEWER

International Symposium on Multiple-Valued Logic
REVIEWER

APRIL 12,2022 BRUNO SCHMITT + CURRICULUM VITAE

Lausanne, Switzerland

TCAD’22

WOSET21

Munich, Germany

1C21

QCE?21

JETC20

TVLSI'19

ICTAI'19

Portland, United States

ISMVL’18

Linz, Austria

Work Experience

Ph.D Research Assistant Lausanne, Switzerland
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL) Sep. 2017 - Present

+ Development and implementation of algorithms for quantum compilation.
+ Maintainer of tweedledum—an open source library for writing, manipulating, and optimizing quantum circuits.

Research Intern - Quantum Computing Redmond, United States
MICROSOFT June. - Sep. 2019 | July. - Oct. 2021
« | have been twice to Microsoft as a research intern.

Research Intern - Quantum Computing Zurich, Switzerland
IBM May. 2020 - Aug. 2020

« lworked in the giskit-terra core development team.

« Integrated tweedledum into giskit-terra—adding oracle synthesis capabilities.

+ Implemented many performance improvements across the stack.

« Collaborated closely with the research-only teams in implementing algorithms for synthesis and optimization of quantum circuits.
+ Mentored other interns.

Visiting Researcher Lausanne, Switzerland
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL) May. 2017 - Sep. 2017
« lworked on reversible logic synthesis and optimization.

Visiting Researcher Berkeley, United States
UNIVERSITY OF CALIFORNIA, BERKELEY Jan. 2016 - May. 2017

+ | worked for the logic synthesis and verification group of Prof. Robert K. Brayton at UC Berkeley contributing to the development of ABC.
+ Development and implementation of algorithms for logic synthesis and optimization.

« Improving ABC SAT solver.

« Implementation of a new SAT solver for ABC (satoko).

« Improving ABC area recovering heuristics during technology mapping (satlut).

Hardware Engineer Intern Porto Alegre, Brazil

AEL SISTEMAS Jan. 2012 - Jun. 2013
Requirements capture based on client’s specification.

Collaborated with the specification of a FPGA design to be used in aerospace applications.

Wrote documentation. (Design specification, implementation details and user manual).

Implemented different parts of the design using VHDL.

Conceived testbenches and test vectors for verification.

.

« Simulation.
Software Engineer Intern Cachoeirinha, Brazil
PARKS S/A COMUNICAGOES DIGITAIS Mar. 2011 - Jul. 2011

+ Developed software for embedded systems used in telecommunication equipment.

+ Developed drivers for devices implemented in FPGA.

« Conceived new functions and features to meet the customer’s needs and specifications.
« Linux kernel development.

Extracurricular Activity

Part of the organization committee of the Quantum Computing Hard- and Software Summer School (QCHS) 2021 at EFPL.

Founding member and Vice-president (2019-2021) of EPFL Quantum Computing Association.

Chair of IEEE Circuit and Systems Society (CASS) Student Branch (2012)

High school exchange: 6 months, Bayfield HighSchool - Dunedin, New Zealand. (2006)

Traveled as a backpacker in several countries. In 2008, a month in Western Europe. In 2011, a month in the United States. In 2014, one month
in countries of Central and Eastern Europe followed by a month in Japan. In 2017 traveled one month in Canada.

One of the selected Brazilian students to participate in the 2nd Advanced Microsystems Technologies for Sensor Applications Summer School.
Summer school, winter for the southern hemisphere, sponsored by the German government (DAAD)

.

.

APRIL 12,2022 BRUNO SCHMITT - CURRICULUM VITAE 3

