

Modularity study of ultra-fine grain FPGA based on DG-CNTFET

Fabien Clermidy

www.cea.fr

leti & li/t

FPGA versus Von Neumann architectures

Technology Push

Architecture Pull

Moore's Law

Development Costs ↑

Reliability ↓

Emerging Technologies

Efficiency ↑

Power consumption \

Reliability

Von Neumann Architectures

Complexity ↑

Power consumption ↑

- FPGA & NANOGRAIN project
- DG-CNTFET reconfigurable cell
- Solving the interconnect issue
- Conclusion

Field Programmable Gate Array

Logic element = CLB

Lin et al., 2007

Low computing efficiency

NANOGRAIN Project

 Ultra-fine grain reconfigurable architectures based on nano-components

Outline

- FPGA & NANOGRAIN project
- DG-CNTFET reconfigurable cell
- Solving the interconnect issue
- Conclusion

Objective

- Increase computing density for FPGA
- Leveraging on Ambipolar property of CNTFET
- (Questions on reconfigurable cell are for INL...)

DG-CNTFET logic cell

• Cell:

Layout: Extrapolation to 22nm Consider NT alignement

DG-CNTFET Model

- Physical model
- Quasi-ballistic approach
- => Landauer equations
- Charges modeling
- Electrostatic modeling: front and back gates capacities
- Schottky and PN **Junctions Capacities** modeling (DIBL)

[2] S. Frégonèse, C. Maneux, T. Zimmer, IEEE ISDRS, Washington DC, December 2009

[3] S. Frégonèse, C. Maneux, T. Zimmer, SSE, accepted with revision

[1] S. Frégonèse, C. Maneux, T. Zimmer, IEEE TED, October 2009.

	CMOS (ASIC)	DG-CNTFET	CB-NWFET
Functionality	1	0.875	1
Density	1	25.5	114,9
Performances	1	2,1	1,6
Power reduction	1	243.2	9.5

- Different choices possible depending on tradeoff: density versus power
 - DG-CNTFET → Power gain thanks to carbon electronic
 - CB-NWFET → Density gain thanks to sublithographic process

Outline

- FPGA & NANOGRAIN project
- DG-CNTFET reconfigurable cell
- Solving the interconnect issue
- Conclusion

Main idea: modifying FPGA hierarchy

Benchmarking flow

Results: Mcluster granularity

4-input LUTs, 10BLEs, 22 inputs

Results: gains versus CMOS

Conclusion

- Reconfigurable logic well suited for taking advantage of emerging technologies
- But need to re-think classical architectures
- ... and now prototyping for convincing

Questions?

list Centre de Saclay Nano-Innov PC 172 91191 Gif sur Yvette Cedex 38054 Grenoble Cedex