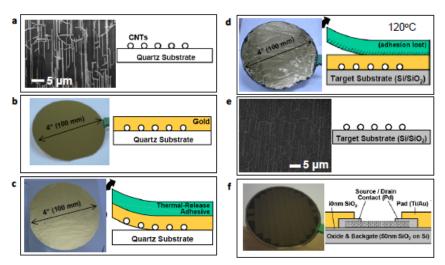


FPGA Design with Double-Gate Carbon Nanotube Transistors

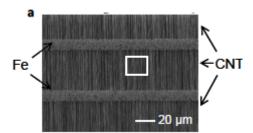
M. H. Ben Jamaa^a, M. De Marchi^b, P.-E. Gaillardon^b, I. O'Connor^c, F. Clermidy^a and G. De Micheli^b

- ^a Commissariat à l'Energie Atomique (LETI), Grenoble, France
- ^b Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- ^c Institut des Nanotechnologies de Lyon (INL), Ecully, France

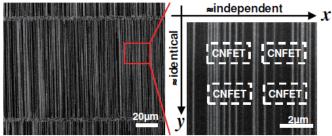
Seminar – Integrated Systems Centre October 20th, 2011 – EPFL, Switzerland


Outline

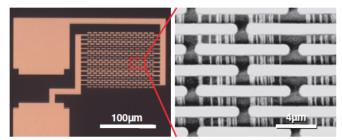
- Introduction
- Technology and Modeling of DG-CNTFETs
- Fine-Grain Reconfigurable Architecture
- Simulation Results


Conclusions

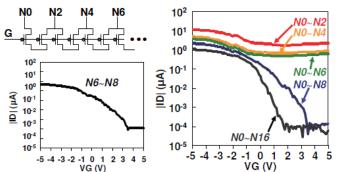
Large Scale Directional Carbon Nanotubes



Large scale CNT technology

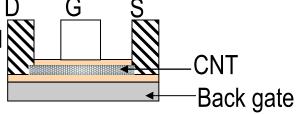


Large scale directional CNT transfer


N. Patil et al., Sym. VLSI Tech. '08

Asymetrical Correlation of CNTs

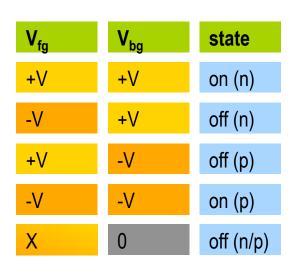
Metallic-CNT-aware CNTFET technique

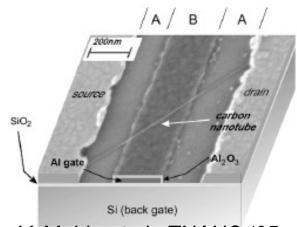

Fault tolerance of large scale CNTFETs

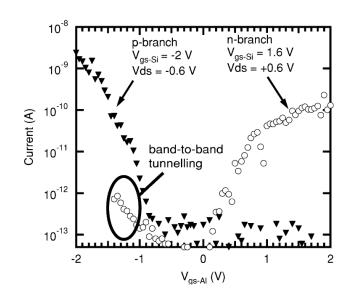
A. Lin et al., Sym. VLSI Tech. '09

Ambipolar CNT Technology

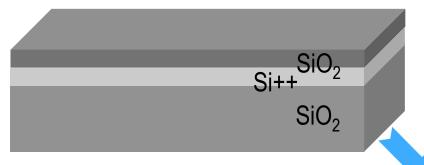
- Ambipolar behavior reported on CNTFETs:
 - Conduction under both low and high gate voltage
- Technology demonstration with:
 - Undoped channel
 - Mid-gap D/S contact metal
- Polarity control with a double gate:
 - Double gate ambipolar CNTFET [Lin et al., TNANO'05]
 - P-type if low bias on back gate
 - N-type if high bias on back gate




- Ultimate goal:
 - Leveraging electrical benefits of CNTFETs: energy-delay-product (EDP) of CNTFET: 13x better vs. CMOS [Deng et al, ISSCC'07]
 - Controlling device operation (n- or p-type) during circuit operation


Fabrication of Ambipolar CNTFETs (1/2)

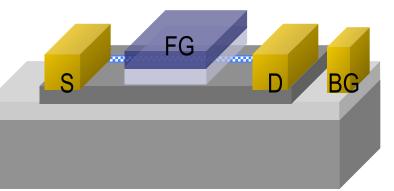
Demonstration of polarity tuning of double-gate carbon nanotube transistors (DG-CNTFET)



Y.-M. Lin et al., TNANO '05

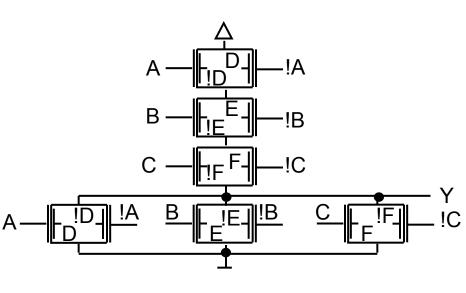
Fabrication of Ambipolar CNTFETs (2/2)

SOI substrate (only BOX and Si visible)
P++ doping of Si
Dry Si oxidation (top SiO₂)

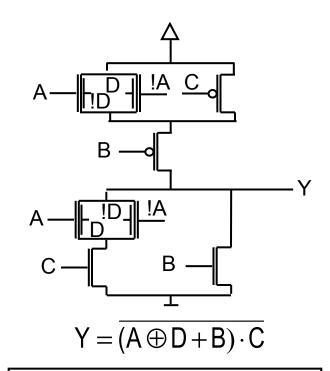

CNT deposition or transfer

Si++SiO₂SiO₂SiO₂

Al₂O₃ (or HfO₂) sputtering Al sputtering (top gate)


Gate etch
Eventually SiO₂ etch (via opening)
Metallization (eventually different metals)

Double-Gate Channel Control



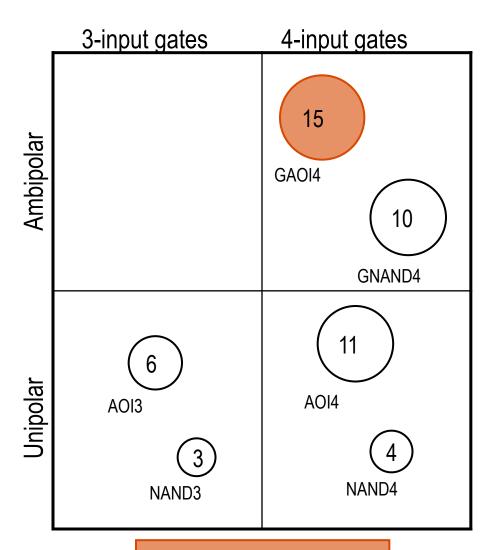
Design of Static Ambipolar Logic Gates

 $Y = \overline{A \oplus D + B \oplus E + C \oplus F}$

GNAND-style structure

GAOI-style structure

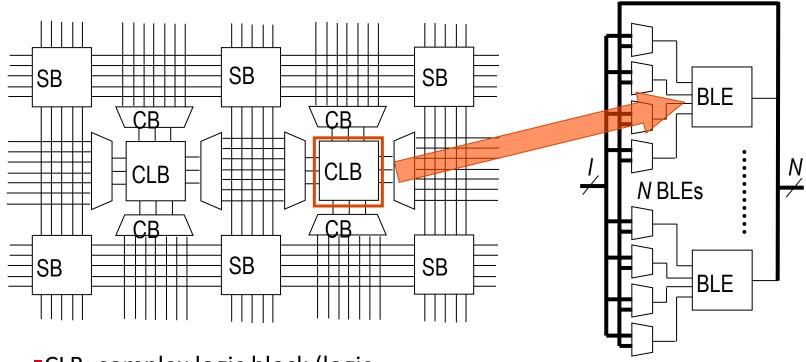
De Marchi et al., Nanoarch '10 Ben Jamaa et al., DATE '09



High Configurability of Ambipolar Logic

Gates

!A
A
!A + A·(!B)
(!A)·(!B)+A
(!A)·(!B)
A·(!B)
(!A)·(!B)+A·B
$(!A)\cdot(!C)+A\cdot(!B)+A\cdot B\cdot(!C)$
$(!A)\cdot(!B)+(!A)\cdot B\cdot(!C)+A\cdot(!B)$
$(!A)\cdot(!B)+(!A)\cdot B\cdot(!C)+A\cdot(!B)\cdot(!C)+A\cdot B$
$(!A)\cdot(!B)\cdot(!C)+A\cdot B\cdot(!C)$
$(!A)\cdot(!C)+A\cdot(!B)\cdot(!C)$
$(!A)\cdot(!B)\cdot(!C)+A\cdot(!B)$
$ \begin{array}{l} (!A)\cdot(!B)\cdot(!C)+(!A)\cdot(!B)\cdot C\cdot(!D)+(!A)\cdot B\cdot(!D) \\ +A\cdot(!B)\cdot(!D)+A\cdot B\cdot(!C)+A\cdot B\cdot C\cdot(!D) \end{array}$
(!A)·(!B)·(!D)+(!A)·B·(!C)·(!D)+ A·(!B)·(! C)·(!D)+A·B·(!D)

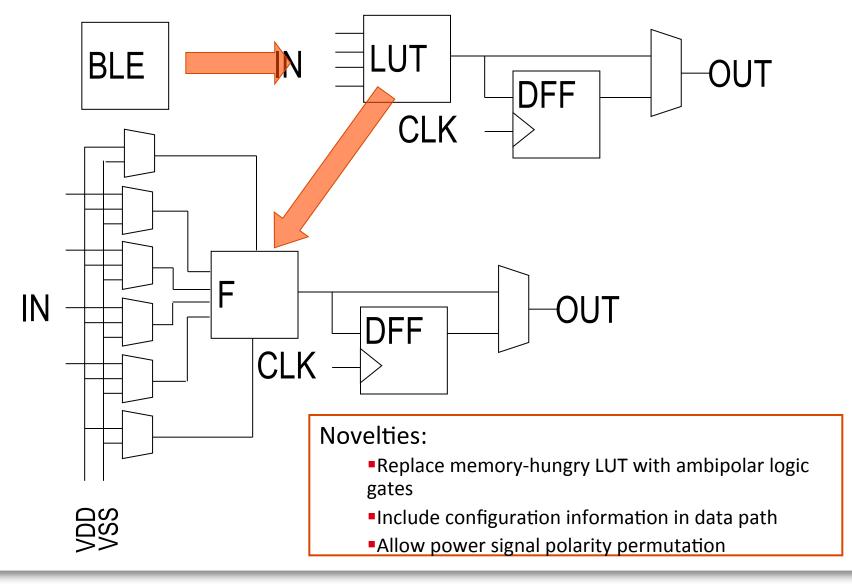

Functionality of GAOI4

Benchmark of functionalities

Reconfigurable FPGA Architecture

CLB: complex logic block (logic macro-cell) with I inputs and N outputs

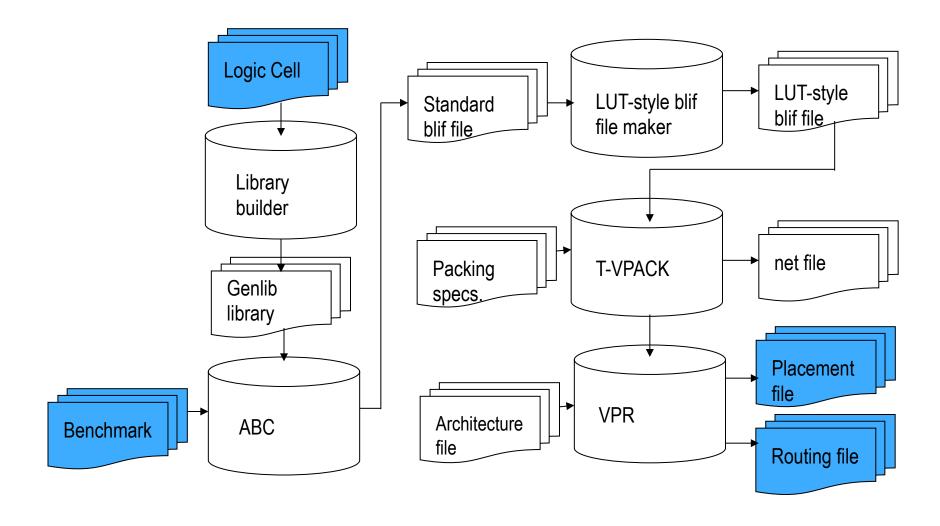
CB: connection block (routing)


SB: switch block (routing)

BLE: basic logic element

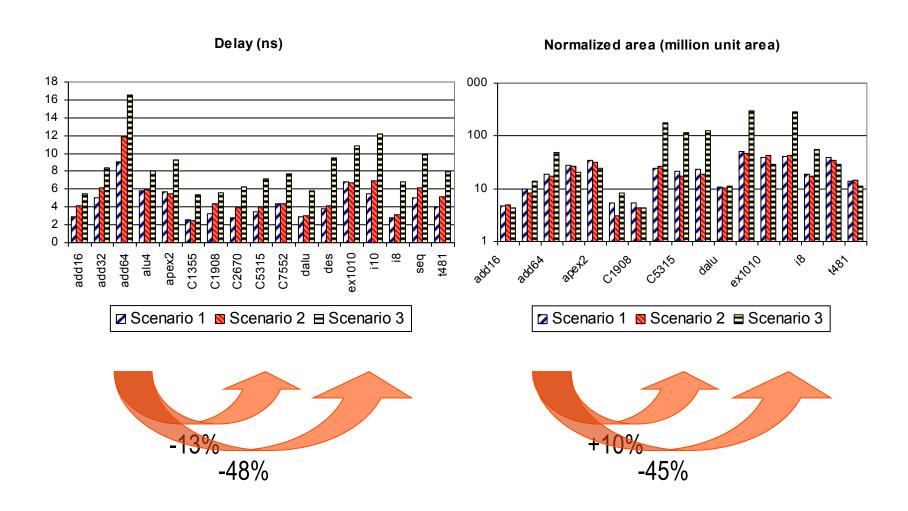
V. Betz et al., "Architecture and CAD for Deep-Submicron FPGAs", Kluwer Academic Publishers '99

Enhanced FPGA Architecture


Simulation Scenarios

Scenario	Logic type	N	I	Norm. CLB area	Intra-CLB delay (ps)	Inter-CLB delay (ps)
S1	Reconf. ambipolar gates	1	4	2419	47	25
S2	LUT	1	4	2560	50	25
S3	Reconf. ambipolar gates	10	22	17167	200	423

- •Fine-grain architectures have smaller area- and intra-CLB delay.
- ■They have a lower inter-CLB delay because of lower load on CLB in- and outputs.
- •Gate-based architectures are more compact because of a lower need for memory and the compact gate design.



Synthesis Flow

Simulation Results

Conclusions

- Double-gate carbon nanotubes FETs offer the opportunity to tune the device polarity.
- Reconfigurable FETs can be used in fine-grain reconfigurable logic circuits, such as FPGAs.
- These devices have a higher functionality that we leveraged in FPGAs design:
 - Compact logic, polarity permutation, configuration through the data path
- The approach offers faster FPGAs especially for fine-grain systems

Thank you for your attention

Questions?

Integrated Systems Laboratory
LSI-EPFL
Station 14
CH-1015 Lausanne, Switzerland