POWER-AWARE OPERATING SYSTEMS
FOR INTERACTIVE SYSTEMS

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Yung-Hsiang Lu
December 2001

(© Copyright by Yung-Hsiang Lu 2002
All Rights Reserved

ii

I certify that I have read this dissertation and that, in
my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Giovanni De Micheli
(Principal Adviser)

I certify that I have read this dissertation and that, in
my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Dawson Engler

I certify that I have read this dissertation and that, in
my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Teresa Meng

Approved for the University Committee on Graduate
Studies:

iii

Abstract

Reducing power consumption is increasingly important due to three recent trends:
(1) Battery-powered portable systems are more and more popular. Reducing power
prolongs the operational time between recharging batteries. (2) Power is dissipated
mainly as heat, and excessive heat has become a barrier for future performance im-
provement. Rising temperatures reduce the reliability of electronic components. Heat
also increases the cost of packaging and cooling. (3) The concept of “green comput-
ers” requires better energy efficiency to decrease the demand for more power plants
and to alleviate the impact on our environment.

Many systems use operating systems (OS), such as Linux and Windows, to man-
age resources; these resources include processor time, memory, and input-output (I0)
devices. OS provides interfaces for other programs and makes it easier to port pro-
grams onto different systems. For instance, programs use network protocols without
knowing the details of network interface cards. Programs perform computation, read
files, send network packets, and so on; that is, they request services from hardware.
Reading a file makes a hard disk consume power; sending a packet causes a network
card to consume power. Even though power is consumed by hardware, hardware
consumes power to serve software programs. OS is the interface between hardware
and software; consequently, OS can play a pivotal role in power reduction.

This research focuses on using operating systems to control the power states of
IO devices and processors dynamically. The operating systems estimate future uti-
lization of these devices and processors. When the utilization is low, they are set
to lower-power states. This approach is called dynamic power management. Power

management may degrade performance. One example is to spin down the plates in

v

hard disks to save power. It takes several seconds to spin up the plates before files
can be read from or written to the disks; requests have to wait for the spin-up. Thus,
it is essential to predict utilization accurately in order to save power and maintain
satisfactory performance.

Operating systems can be structured as layers, including device drivers, process
managers, and schedulers. Device drivers are the closest layer to hardware and can
observe requests sent to hardware for services. Unfortunately, device drivers have only
limited information about running programs for predicting future hardware utiliza-
tion. Another approach is to combine power management with process management.
Process managers are closer to application programs than device drivers; hence, pro-
cess managers have more information regarding which programs generate requests.
Process managers also maintain the current states of individual programs. With addi-
tional information, better accuracy for predicting utilization can be achieved. More-
over, process schedulers can collaborate with power managers. Schedulers determine
the execution order of programs and directly control when requests are generated; in
this way, utilization can be calculated accurately.

This thesis investigates how to use the information from different layers in op-
erating systems to improve power management for interactive systems, such as a
laptop computer. First, it describes the principles for designing power-management
policies and a framework for implementing policies. Then, it presents methods that
use process managers and process schedulers to perform power management on 10
devices. The final part of this thesis introduces a software-based method for reducing
the power consumption of processors which have multiple power states. Application
programs are modified to insert data buffers. The buffers are filled when the pro-
cessors run in the states with higher power and performance; then, the buffers are
drained while the processors enter lower-power states. If buffers are inserted, it is
possible to achieve nearly optimal power saving on processors that have only finite
power states. Buffering can also improve the response time of sporadic jobs. A graph
traversal technique is used for efficiently assigning power states to achieve minimum

power consumption.

The methods presented in this thesis have been implemented in Microsoft Win-
dows and Linux on desktop, laptop, and palmtop computers to demonstrate their

effectiveness in power saving.

vi

Acknowledgments

This thesis would not be possible without the inspiration and patient guidance from
my advisor, Professor De Micheli. I am very grateful to my reading committee, Pro-
fessor Dawson Engler and Professor Teresa Meng, for their encouragement and sug-
gestions during my Ph.D. study. I want to thank Professor Luca Benini of Universita
di Bologna, Italy, for the discussion in hundreds of email correspondences.

The support from Stanford CAD group is invaluable. I learned a lot from my
officemates, Eui-Young Chung and Tajana Simunié; they gave immediate feedback
on my ideas. I also want to thank current and past members in our group: Ar-
mita Peymandoust, Terry Ye, Chaiyasit Manovit, Davide Bertozzi, Luc Semeria, Jim
Smith, and Vincent Mooney. The administrative and technical staff made Computer
Systems Laboratory an enjoyable working environment. Credits belong to Evelyn
Ubhoff, Charles Origish, Kathleen DiTommaso, and Patrick Burke.

I am deeply in debt to my family, especially my sister Yung-Ling Lu in California.
I want to thank my friends in Taiwan and USA; they have made my life full of fun.

This research project was sponsored by MARCO/DARPA Gigascale Silicon Re-
search Center and NSF under contract CCR-9901190. Their financial support made

this work possible.

vil

Contents

Abstract

Acknowledgments

1 Introduction
1.1 Motivation o e

1.2 Dynamic Power Management

1.2.1
1.2.2
1.2.3

Power Management Overhead
Policies Predicting Idleness

Policies Predicting Utilization

1.3 Requester Models,

1.3.1
1.3.2
1.3.3
1.3.4
1.3.5

Single-Requester Model L.
Multiple-Requester Model
Requester Creation and Termination
Requesters with Timers

Periodic Requests with Timing Constraints

1.4 Thesis Contributions e e

1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6

Framework to Implement Policies
Process-Based Power Management
Low-Power Scheduling for IO Devices
Frequency Scaling to Reduce Processor Power
Relationship with Previous Work

Limitations

viii

iv

vii

O © O ~J O W W = -

3

1.5 Thesis Organization.o 16
Policy Design Principles 17
2.1 Amortizing Energy Overhead 17
2.2 Power / Performance Tradeoff 19
221 Power Metrics 20
2.2.2 Performance Metrics 21
2.3 Dynamic Voltage / Frequency Scaling 24
2.4 Chapter Summary 27
Implementing Policies 28
3.1 Power Management and System Layers 28
3.1.1 Power Management by Hardware 29
3.1.2 Power Management by Applications 30
3.1.3 Power Management by Operating Systems 30
3.1.4 Advanced Configuration and Power Interface 31
3.2 Implementing Policies in Device Drivers 32
3.3 System-Level Power Management Policies 34
3.3.1 Oracle Power Manager 34
3.3.2 Competitive Timeout Policy 35
3.3.3 Adaptive Timeout Policies 37
3.3.4 Exponential Average Predictive 38
3.3.0 Learning Tree 39
3.3.6 Stationary Discrete-Time Stochastic Policy 39
3.3.7 Non-Stationary Discrete-Time Stochastic Policy 40
3.3.8 Continuous-Time Stochastic Policies 41
3.4 Policy Comparison e 42
3.4.1 Workload Generation 42
3.4.2 Computation for Power Managers 42
3.4.3 Power and Performance 43
3.4.4 Comparing Interactive Performance 44
3.4.5 State Transition Delay 47

X

3.4.6 Learning Period of the Exponential Average Policy 48

3.47 Memory Requirements 49
3.4.8 Workload Characterization 49
3.4.9 Limitation of Driver-Based Policies 50
3.5 Chapter Summary 50
Process-Based Policies 51
4.1 Processeso e e e e 51
4.2 Estimating Device Utilization 52
4.2.1 Device Utilization L. 53
4.2.2 Processor Utilization, 95
4.2.3 Aggregate Device Utilization 56
4.2.4 Shutdown Condition o7
4.3 Experiments o8
4.3.1 Setting Power States oL 58
4.3.2 Workloads 58
4.3.3 Policy Comparison 59
4.3.4 Power Saving and Performance Impact 61
4.3.5 Parameter Setting 63
4.4 Chapter Summary e e 64
Low-Power Scheduling 65
5.1 Motivating Example o 65
5.1.1 ConceptofJobs 65
5.1.2 Jobs Created by Timers 66
5.1.3 Precedence and Timing Constraints 66
5.1.4 Scheduling Jobs for Power Management 67
5.1.5 Scheduling in Inactive Systems 68
5.2 Off-line Scheduling 68
5.2.1 Problem Formulation 70
5.3 On-Line Scheduling 73
5.3.1 Schedulingin Linux 73

5.3.2 Predictive Wakeup Lo 74

5.3.3 Flexible Timers 76
5.3.4 Scheduling Jobs for Power Reduction 76
5.3.5 Meeting Timing Constraints 80
5.3.6 Handling Requests from Other Programs 80
5.4 Experiments L e 81
5.5 Chapter Summary 83
Frequency Scaling on Processors 86
6.1 Buffer Insertion o o Lo 87
6.1.1 Buffersin a Pipeline 87
6.1.2 Energy Reduction with Buffers 88
6.1.3 Reducing Response Time 89
6.1.4 Memory Requirements of Buffers 90
6.2 Related Work oo 90
6.3 Assumptions e e 91
6.4 Analytical Model by Integer Programming 92
6.4.1 Two Frequencies and Two Jobs 93
6.4.2 MultipleJobso 98
6.4.3 Multiple Frequencies 100
6.4.4 Scaling Overhead 102
6.4.5 Summary e e e 104
6.5 Frequency Scaling by Graph Walking 105
6.5.1 Assignment Graph 0oL 105
6.5.2 Energy Minimization by Assignment Graphs 114
6.5.3 Efficient Assignments oL 116
6.6 Respone Time of Sporadic Jobs 122
6.6.1 Unused Operations 123
6.6.2 Effectsof Buffers 124
6.6.3 Timing Constraints of Sporadic Jobs 127
6.7 Experiments e 131

xi

6.7.1 Synthesized Workload 131

6.7.2 Reducing Power for Playing MPEG Video 135

6.73 BufferSize. 136

6.74 JobSize 137

6.7.5 Arrival Rate of Sporadic Jobs 139

6.7.6 Timing Constraints and Maximum Operations of Sporadic Jobs 140

6.7.7 Summary e e e 142

6.8 Chapter Summary oo 142

7 Conclusion 143
7.1 Thesis Summary 144
7.2 Future Worko 145

A Measuring Power 147
A1l Power of IO Devices 147
A.1.1 Hardware Connection 147

A.1.2 Device Variations 151

A.2 Power of a Frequency-Scalable System 152
A.2.1 Experimental Setup. 152

B Complexity of Low-Energy Scheduling 156
B.1 Simplification Assumptions 157
B.2 State Switches Lo oo 157
B.3 Problem Statement o oo 158
B.4 Distance Between Jobs o o oo 158
B.5 Scheduling Jobs 159

C Long and Finite Walks 161
Bibliography 166

xi1i

List of Tables

2.1 device parameters e e e e e 18
2.2 parameters of a Hitachi disk and an IBM disk 19
2.3 performance parameters 21
3.1 summary of policiescompared 41
3.2 compare policies for 3.5” disk 44
3.3 compare policies for 2.5” disk 45
4.1 symbols and their meanings in this chapter 52
4.2 power and performance of a 2.5” harddisk 60
4.3 power and performance for a network card 60
5.1 devices required by each job 0oL, 70
5.2 symbols and their meanings in this chapter 71
5.3 device parameters for Figure 54 oL 72
5.4 devices requirements for Example6 000 78
5.5 power and performance of a 2.5” harddisk 82
5.6 power and performance for a network card 82
6.1 symbols and meanings Lo 94
6.2 execution time at different frequencies for Example4 101
6.3 symbols and meanings for assignment graphs 107
A.1 specifications of two hard disks 151
B.1 job-device relationship 159

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

An interactive system is busy or idle depending on user requests. . . .
power consumption of 2.5 inch hard disk during state transitions . . .
timeout policy L
predictive policyo
stochasticmodel
slow down a processor during low utilization
schedule workload to keep low utilization
single-request model Lo

process lifetimeo o Lo

Programs that generate intensive requests usually have short lifetimes.

compute the break-even time of adevice
total energy and dischargerate
calculate total waiting time in an observation window of size wd . . .

calculate the length of a delay sequence

Power managers can be implemented at different layers in a system. .
ACPI structure e
Filter drivers encrypts and compresses data.
connect a monitoring computer through the serial port
flow of a filter driver for power management
worst case power consumption for 2-competitive policy
basic stochastic model L. o o o Lo

state transition probabilities of a device

Xiv

© 00 0 ~J O O Ot

—_ =
o O

17
20
22
23

29
31
32
33
34
39
39
40

3.9 normalized comparison of power and performance 45

3.10 worst-case waiting time on 3.5” (left) and 2.5” (right) disks 46
3.11 maximum length of shutdown sequences 47
3.12 wakeup delay (millisecond) for 2.5” (top) and 3.5” disks 48
4.1 processstates L e 52
4.2 time between requests of two processes 53
4.3 a process with four phases L. 54
4.4 three examples of device utilization 56
4.5 misprediction rates, top: hard disk, bottom: network card 61

4.6 power and overhead for workload 1, hard disk (top) and network card

(bottom) 62
5.1 precedence of three independent processes 67
5.2 three types of deadlines 67
5.3 two schedules of three independent processes 68
5.4 three processes using two devices 69
5.5 steps of a Linux scheduler 74
5.6 predictive wakeup Lo 75
5.7 flexible timer Lo 76
5.8 group jobs according to their device requirements 7
5.9 low-power scheduling 78
5.10 scheduling jobs by their RDS groups 79
5.11 group jobs according to their device requirements 81
5.12 power and overhead, hard disk (top) and network card (bottom) . . . 83
5.13 Low-power scheduling reduces medium-length idle periods (60 to 180

SECONAS). « . . 84
5.14 Power management increases the battery lifetime. 84
6.1 Processing and displaying form a pipeline. 87
6.2 Inserting buffers changes the precedence relationship. 88

XV

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20

6.21
6.22
6.23
6.24

6.25

(a) constant output rate for display (b) scaling frequency to avoid slack
time (c) discrete frequencies cause idleness and waste energy (d) scale
to a lower frequency and miss the outputrate 89
process more than one frame at the higher frequency then scale to the
lower frequency L L 89

(a) no buffer (b) buffer additional frames to reduce the response time

of a sporadicjob 90
The processor changes frequencies every period. 97
precedence of multiplejobs L. 99
lowest-energy solution for Exampled 101
another feasible solution for Exampled 102
encoding of a vertex Lo L 106
assignment graph for Example2 00000 111
examplesof walks o L oL oo 112
divide W, (v;) into two subwalks L. 115
find minimum-cost walks by formula (6.37) 117
find minimum-cost walks between two vertices 119
find closed walks of minimum average costs 120
A walk of infinite length must repeat a closed walk indefinitely. 121
the walk for four jobs with 80% processor utilization 122
find the response time of a sporadicjob 126

A sporadic job finishes in two periods if it arrives at v; (left). It takes

three periods if it arrives at vg (right). 127
@p(v) decreases as more buffers become empty. 129
fill the buffers from a starting vertex 130
schedules for five and six jobs with 60% processor utilization 131

no frequency scaling (top), scale down during idleness (middle), and
using graph walking technique with buffer insertion (bottom). Our
method saves 40% power in the scalable range. 133
estimated, measured, and optimal power for three (top) and four jobs
(bottom) 134

xvi

6.26
6.27
6.28
6.29

6.30
6.31

6.32

Al
A2
A3

A4
Ab
A6
AT

A8

A9

B.1

C.1
C.2
C.J3

power consumption with different buffer sizes. 137
different ways to divide operations into four jobs 138
power consumption of job sizes in Figure 6.27 139
closed walk for five jobs with 60% processor utilization, redraw of Fig-

ure 6.23 L e e e e e 139
process a sporadic job that arrives at the period represented by vy . . 140
average power consumption for different intervals between two sporadic

JObS L e e e 141

maximum number of operations of a sporadic job: n is the timing

constraint and BM is the total buffer memory sizes. 141
connect DAQ to measure the power of a PCMCIA card 148
measure the power of a 2.5” harddisk 148
top: PCMCIA extender; middle: PCMCIA-IDE converter and a 2.5”

hard disk; bottom: a hard disk connected to the extender 149
power consumption in three conditions: idle, writing, and sleeping . . 150
state transitions of two 2.5” disks 152
setup for our experiments 153

top: Assabet and Neponset; middle: Assabet and Neponset connected;

bottom: connected to a laptop computer through a serial cable 154
power consumption at different frequencies 155
performance at different frequencies oL 155
graph of jobs and their distances 160
a walk with one closed walk 162
a walk with multiple closed walks 163
find minimum-cost walks L. L. 165

xvii

Chapter 1

Introduction

1.1 Motivation

Reducing power consumption is a major design goal for electronic systems, from
portable computers to servers. Portable systems, such as notebook computers and
personal digital assistants (PDA), are increasingly popular in recent years. These sys-
tems may obtain power from batteries. Batteries have only limited capacity; therefore,
it is essential to reduce power consumption in order to prolong the operational time
before recharging batteries. For systems that obtain power from power grids, reduc-
ing power consumption lowers electric bills, saves cooling costs, and lessens fan noise.
Lately, the power consumption of high-performance processors has been rapidly in-
creasing due to advanced architectural techniques, such as parallel and speculative
execution. These processors consume more than thirty Watts of power; within five
years, high-performance processors may consume hundreds of Watts. Today, a typical
Internet server center has hundreds of servers and consumes hundreds of thousands
of Watts to operate these servers and the air conditioners. Power-related expense is
a major portion in the operating cost of a server center. Furthermore, power is dissi-
pated mainly as heat; the heat raises temperatures and lessens reliability. Excessive
heat has become a major barrier for future performance improvement. In a nutshell,
reducing power consumption is critical for all types of electronic systems.

Power is consumed by hardware; however, hardware consumes power to serve

CHAPTER 1. INTRODUCTION 2

software. For example, when a program sends network packets, it causes a network
card to consume power. Similarly, when a program writes to a file, it causes a hard
disk to consume power. Software generates requests; network packets and file writes
are instances of requests, which make hardware consume power. The collaboration
between software and hardware can reduce power.

An operating system (OS) is a special program as the interface between hardware
and other software programs. Many interactive systems use operating systems; for
example, iPAQ is a PDA supporting both Microsoft Windows and Linux. The OS
makes it easier to support the same user interfaces like web browsers. If the same
OS is supported by a platform, application programs can be ported more easily. As
hardware advances, systems become increasingly complex; they use OS to manage
resources such as CPU time and memory allocation. Power is a precious resource; it
should be properly managed by the OS. Because OS is the interface between software
and hardware, it can observe requests generated from software and predict future
utilization of hardware. When a hardware component is predicted to have low uti-
lization (or is even idle), this component can be set to a lower-power state to reduce
power consumption.

Operating systems are structured into layers, including device drivers, process
managers, and process schedulers. These layers provide distinct advantages and dis-
advantages for saving power. Device drivers are the layer closest to hardware and
can observe requests sent to hardware for services; power management can be im-
plemented in device drivers. Unfortunately, device drivers have limited information
about running programs for predicting future utilization. Alternatively, we can com-
bine power management with process management. Process managers are closer to
application programs than device drivers; hence, process managers have more infor-
mation regarding which programs generate requests. Process managers also main-
tain the current states of individual programs. With additional information, we can
improve the prediction accuracy for power management. Moreover, we can integrate
power management with schedulers. Process schedulers determine the execution order
of programs and directly control when requests are generated; in this way, utilization

can be calculated accurately.

CHAPTER 1. INTRODUCTION 3

In this thesis, we will discuss how to use the information from different parts
of operating systems to facilitate power reduction. We will also explain the advan-
tages and disadvantages in each part of operating systems for implementing power

management.

1.2 Dynamic Power Management

A typical system does not have to operate at its peak performance continuously;
instead, its workloads change from time to time. In particular, an interactive system
is idle when there are no requests from a user, as illustrated in Figure 1.1. When
the system is idle, it should enter a low-power sleeping state to save energy [31].
Dynamic power management puts an idle system (or subsystem) into its sleeping
state to reduce power consumption [13] [58]. A commonly seen example is to spin
down the plates of a hard disk drive (HDD) when it is not used.

A subsystem is in an active state if it can serve requests from a workload. For
example, a hard disk is in an active state when its plates are spinning. In contrast,
a subsystem is in an inactive state if it cannot serve requests. When the plates stop
spinning, the hard disk is in an inactive state. This thesis uses inactive and sleeping
states interchangeably.

Some processors have multiple active states; these processors consume different
amounts of power and provide different performance in distinct active states. For
CMOS-based processors, slowing down their clock speeds, namely lowering their fre-
quencies, reduces their power consumption and their performance. This method is
also called frequency scaling; we consider frequency scaling as a special case of power
management. This thesis treats processors as devices with multiple active states,

unless it is necessary to distinguish IO devices from processors.

1.2.1 Power Management Overhead

When a device is in a sleeping state, it consumes less power, but it cannot serve

requests. Hence, when a new request arrives, the device has to wake up and enter a

CHAPTER 1. INTRODUCTION 4

Figure 1.1: An interactive system is busy or idle depending on user requests.

higher-power working state to serve requests. The transition from working to sleeping
states is called shutdown; the transition from sleeping to working states is called
wakeup. State transitions have overhead, including delay and additional energy.

Figure 1.2 shows the measured power consumption of a 2.5” HDD (Hitachi DK23AA-
60) during state transitions. The top of this figure shows the shutdown transition and
the bottom shows the wakeup transition. Transitions have long delays and consume
large amounts of energy. The details of this measurement are presented in Section
A.1. For processors, the time to wake up is shorter: dozens of milliseconds [11]; this
is equivalent to many thousands of clock cycles. Even if a processor remains active, it
still takes thousands of cycles to change frequencies [36]. The overhead of frequency
scaling cannot be ignored.

If there were no state-transition overhead, power management would be a trivial
problem: shut down a device whenever it is idle. In reality, the overhead has to be
amortized by keeping the device in a low-power state long enough. Because of the
transition overhead, it is undesirable to shut down a device every time it becomes idle.
Otherwise, it can actually increase energy consumption and substantially degrade
performance. Power management is challenging because it has to predict the future
utilization of a hardware device and to determine the power states.

When a device is idle, it may sleep to save power. If a device has multiple active
states, it can enter a lower-power active state when the utilization is low. Power
management policies (or more simply, policies) are the rules of determining when to
change power states and which states to enter. In order to make such a decision, a

policy has to predict idleness and utilization.

CHAPTER 1. INTRODUCTION

35

25 M\

W)

power (W)

0.5

shutdown

. . - hll Aa AN AR
0 0.5 1 15 2 25 3

time (sec)

35

25 N

power (w)

15

1 U

0.5

wakeup

0 1 2 3 4 5 6

time (sec)

Figure 1.2: power consumption of 2.5 inch hard disk during state transitions

CHAPTER 1. INTRODUCTION 6

workload | requests

ﬂ shut down

<>
timeout

time

Figure 1.3: timeout policy

ﬂ shut down

Figure 1.4: predictive policy

1.2.2 Policies Predicting Idleness

These policies predict when a device becomes idle so it can sleep. The policies are

classified into three categories: timeout, predictive, and stochastic [20].

Timeout Policies

A timeout policy shuts down a device after it has been idle longer than the “timeout”
value. These policies assume that if a device is idle longer the timeout length, the
device will remain idle. Figure 1.3 illustrates this concept; #,4 is the time required
to shut down the device. Timeout policies are widely used in today’s commercial
products because of their simplicity. For example, Microsoft Windows allow users to
set the values for both hard disks and monitors from several minutes to a few hours
through the Control Panel.

Predictive Policies

A predictive policy assumes that the lengths of idle periods follow a pattern; the length
of a future idle period can be accurately predicted by the recent history of requests.

This concept is illustrated in Figure 1.4. In this figure, each idle period is indicated

CHAPTER 1. INTRODUCTION 7

by a black rectangle. The lengths of these idle periods become longer and longer.
When an idle period is long enough to amortize the overhead, the power manager
shuts down the device. Predictive policies capture such a pattern; its advantage is to

save the energy during the timeout period.

Stochastic Policies

These policies model request generation as stochastic processes and solve stochastic
optimization problems. Figure 1.5 is one simple stochastic model. When a device
is busy, it has 90% probability to remain busy and 10% probability to become idle.
When it is idle, the probability to remain idle is 95% and the probability to be-
come busy is 5%. Stochastic policies formulate power management as constrained
optimization problems; they provide the flexibility to trade off between power and
performance explicitly. Some stochastic policies require solving complex optimization
problems; hence, they need the characteristics of typical workloads in advance to do

off-line analysis before a power manager can be applied at run time.

1.2.3 Policies Predicting Utilization

If a device has multiple active states, we can reduce its power consumption when the
utilization is lower. Many policies have been proposed to manage processor power;
these policies can be classified into two categories depending on their capability of ob-
taining priori knowledge or even affecting the workloads. If a policy has no knowledge
about future workloads, it can use recent utilization to predict future utilization. If a
policy can control workloads, it can schedule them to make the utilization at desirable

levels.

0.1

0.9 C 3 0.95

0.05

Figure 1.5: stochastic model

CHAPTER 1. INTRODUCTION 8

utilization

_\/\/\’\/\

slow down

threshold

time
Figure 1.6: slow down a processor during low utilization

utilization

N_-~

- . new

~____original

time

Figure 1.7: schedule workload to keep low utilization

History-Based Policies

Figure 1.6 shows that the utilization of a processor is decreasing. When the utilization
is below a threshold, the power manager slows down the processor. In [82], the
authors use the utilization in the previous interval to predict the utilization of the
next interval. In [64], the authors compare several variations of similar approaches.
StrongARM is a commercial processor that support multiple power states; power

management is implemented on StrongARM to investigate its effectiveness [36].

Scheduling-Based Polices

These policies arrange the execution of the workloads so that the utilization remains
low enough and the processor can slow down. This concept is illustrated in Figure
1.7. In order words, the policies do not simply predict future utilization; instead, they
control the utilization by scheduling the execution of workloads. In [43], the authors
prove that a processor consumes less power if it stays in a constant lower speed than
varying between high and low speeds. Scheduling techniques have been applied to

reduce power on various systems [15] [40] [47] [70].

CHAPTER 1. INTRODUCTION 9

power manager |-, Power-state
commands

A
observe |

requester | requests | device

Figure 1.8: single-request model

1.3 Requester Models

Up until now, we have implicitly assume the existence of a special entity called “re-
quester” that generates workloads, including IO requests and computation needs.
Request modeling is one essential part of power management because policies predict
future workloads based on their requester models. We consider four requester models
for designing policies: single requester, multiple requesters, multiple requesters with
creation and termination, and multiple requesters with timers. These models are
increasingly complex and closer to the programs running on realistic interactive sys-
tems like a laptop computer. Additionally, periodic requests with timing constraints
attract researchers’ attention in recent years; such models consider multimedia work-

loads that require constant video and audio output rates.

1.3.1 Single-Requester Model

Figure 1.8 depicts the concept of the single-request model. The requester generates
requests for the device; meanwhile, the power manager observes the requests. Based
on this observation, the power manager issues commands to change the power states
of the device. Some policies explicitly use this model in determining their rules to
change power states [12] [19] [20] [66] [81]; some other policies implicitly assume
a single requester [41] [48] [52] [73].

1.3.2 Multiple-Requester Model

In complex systems, there may be more than one entities that generate requests.

For example, in a multiprogramming system, several processes may generate requests

CHAPTER 1. INTRODUCTION 10

100%

o 98% +/—
g
e 96%
3
5 94%
o
2 9%
8
S 90%
E
© 88% T T T T T)
0 10 20 30 40 50 60
process lifetime (sec)
Figure 1.9: process lifetime
request
generation

ftp
emacs

gcc
acroread i
lifetime

Figure 1.10: Programs that generate intensive requests usually have short lifetimes.

to the same device. In [28] [23], the authors demonstrate that different processes
consume different energy; in particular, one study finds that an X server consumes

large energy on both a network card and a hard disk.

1.3.3 Requester Creation and Termination

A more general model considers the creation and the termination of requesters. When
a requester terminates, it can no longer generate any requests. One measurement
shows that most processes have very short lifetime [50], as illustrated in Figure 1.9.
While these numbers may change for different workloads, most processes are still
likely to have short lifetimes because most activities in computers are bursty.

We also observe that a program which generates many IO requests within short
time periods often have short lifetimes; examples are file writes from ftp and gcc.
Some other programs, such as emacs, generate requests less frequently and have longer

lifetimes. Daemons like syslogd have long lifetimes, possibly since the computer is

CHAPTER 1. INTRODUCTION 11

powered on; they infrequently generate IO requests. This observation is illustrated
in Figure 1.10.

Even though process termination is important in predicting future requests, it
is hard to predict requests based on process creation. This is because interactive
systems have few processes running the same code. When a process is created, it
usually executes code different from its parents. In UNIX, new processes often call
execl right after they are created by fork. Therefore, predicting future requests

based on process creation is much more challenging.

1.3.4 Requesters with Timers

A process may create requesters “in the future” when a specific event occurs. For
example, a text editor saves the content every five minutes. In UNIX, this process
creates a timer that expires in five minutes. When the timer expires, a signal is
sent to the process. This process captures the signal and saves the content into the
hard disk. Existing UNIX timer mechanism does not consider power management;
power managers cannot predict future requests based on timer information. Making
application programs “power-aware” has been suggested lately [26] [51] [65]. One
approach is to allow processes to specify which device will be used in the future.
Such information helps power managers to make correct decisions for changing power

states.

1.3.5 Periodic Requests with Timing Constraints

Multimedia workloads are now supported on palm-size battery-powered computers
[38]. These workloads have distinct requirements: constant video and audio output
to provide satisfactory user experience. A typical timing constraint is to display one
video frame every 33 milliseconds to maintain 30 frames per second. Reducing power

consumption for this type of workloads is an active research topic [5] [42] [59].

CHAPTER 1. INTRODUCTION 12

1.4 Thesis Contributions

This thesis focuses on dynamically adjusting the power states of IO devices and pro-
cessors in interactive systems; examples of such systems include desktop, laptop, and
PDA-like palm-size computers. The thesis has four major contributions: a frame-
work to implement policies, a process-based power management policy, a low-power
scheduling procedure for IO devices, and an efficient frequency scaling algorithm to

reduce processor power.

1.4.1 Framework to Implement Policies

While many system-level power management policies have been proposed, few of
them have been implemented in real systems. Most of the policies were evaluated by
simulations. It was unclear how to implement these policies on real systems and the
overhead of the implementation.

This thesis presents a framework in Windows 2000 for implementing policies. It is
built using filter drivers and provides a template for experimenting new policies. This
approach has two major advantages: (1) a human user can interact with the system
while a policy is running (2) there is no need to modify OS kernel or application
programs. This implementation allows users to judge the performance impact of a
policy. Based on this framework, we implemented and compared nearly a dozen poli-
cies representing the three categories of policies (timeout, predictive, and stochastic)
and pointed out their strength and drawbacks. This is the first time these policies
were compared in the same environment for the same workloads while interacting
with users. Two metrics are proposed to quantify the performance degradation of
policies in an interactive system.

This study reveals a few important findings. First, most power-management poli-
cies do not need substantial computation. Second, it is important to maintain short
response time and to avoid frequently shutting down a device. Third, some policies
are inapplicable to certain devices whose state-transition delays are too long; hence,

it is important to understand the limitation of policies.

CHAPTER 1. INTRODUCTION 13

1.4.2 Process-Based Power Management

The majority of existing policies were designed based on the single-requester model,
explained in Section 1.3.1. While this model is simpler, it does not capture the
essence of program execution in a computer: multiple programs are running concur-
rently. These programs may have different priorities. Some programs execute more
frequently than the others; furthermore, sometimes a program terminates. A program
can be computation-intensive, IO-intensive, or change between computation and 10
intensive. The single-requester model ignores all the differences among programs.
We propose a policy using a more realistic requester model, explained in Section
1.3.3. This policy distinguishes requesters as individual processes and considers the
execution time of these processes. It is called “process-based” power management. It
also considers the creation and termination of processes as well as as how often these
processes execute. Because it uses additional information from OS kernel, it predicts
future utilization more accurately. This policy is implemented in Linux running on a
laptop computer; experimental results show that our new policy can improve power

reduction while maintaining satisfactory performance.

1.4.3 Low-Power Scheduling for IO Devices

Even though process-based policy enhances power saving, it still estimates future uti-
lization based on history. In a computer, many requests can be accurately predicted
through process schedulers. An example of such requests is to periodically download
information from the Internet. Power managers can obtain information about fu-
ture requests from process schedulers; power managers can also affect scheduling to
rearrange the idle periods of devices.

The third part of this thesis explains how to combine process scheduling with
power management. Schedulers determine when a process executes, so they directly
control the generation of requests. Using the information from schedulers, the idle
times of devices are predicted accurately. In order to allow programs to specify their
device requirements and when requests are generated, we created an application pro-

gramming interface (API) that allows programs to collaborate with power managers.

CHAPTER 1. INTRODUCTION 14

This method brings the awareness of power management to application programs.
Because finding a minimum-power schedule is computationally expensive, heuristics
are used. The basic idea is to classify jobs by the devices needed. If two jobs need the
same devices, they execute together. Experimental results show better power saving

and performance when power management is integrated into process schedulers.

1.4.4 Frequency Scaling to Reduce Processor Power

Many portable systems can execute multimedia programs, such as playing MPEG
movies. Multimedia programs need to update images periodically, namely a constant
frame rate, to provide satisfactory quality of service. It is desirable to maintain the
output rates while reducing power consumption. Many modern processors have mul-
tiple power states; they provides lower performance in a lower-power state. Ideally, a
processor should run at a low-power state while keeping the output rates. Meanwhile,
it is important that the systems respond promptly to sporadic user inputs. Such a
mixture of periodic and sporadic workloads creates new challenges in power saving.

The last part of this thesis addresses the issues to control finite power states of a
processor for running mixed workloads. We modify a multimedia program and divide
it into multiple stages; buffers are inserted between stages. When the processor runs
at a higher-power state, it uses the slack time to fill buffers. Later, the processor
enters a lower-power state while draining the data stored in the buffers. If a sporadic
user input arrives, the buffered data are drained so that the processor can spend more
time to handle this input without disrupting the output rate.

This problem can be formulated as integer linear programming (ILP). While ILP
is flexible, it is often computationally expensive. We develop a graph-based method to
find the assignments of power states efficiently. It builds a space-search graph whose
vertices represent the current states of buffers, the power state, and how buffers are
filled (or drained). The time complexity of this method depends on the number of
vertices and is independent of the workloads; hence, it is able to handle multimedia
workloads that have very large numbers of frames. Our experimental results suggest

that buffering is effective without occupying large memory. We also show that only

CHAPTER 1. INTRODUCTION 15

a few power states are sufficient to achieve nearly optimal power saving.

1.4.5 Relationship with Previous Work

This thesis differs from previous work in four ways. First, it is not “yet another
policy”. Most previous work surveyed in Section 1.2.2 adopts the single-requester
model. In contrast, our work emphasizes the importance of using a better and realistic
requester model. Second, this study stresses on the importance of implementation. It
is essential to demonstrate the applicability of our schemes on real systems. Third, we
consider both power saving and performance degradation due to power management.
We propose metrics to quantify performance in interactive systems. Finally, we reduce
the computation needed for power managers. Assigning power states to processors
was previously formulated as integer linear programming (ILP) and suffered from
the computation needed to solve ILP. We reformulate the problem and present a
polynomial-time solution. In summary, this thesis emphasizes a practical requester
model, the performance impact of power management, and the efficiency of power

managers.

1.4.6 Limitations

This study takes a “macro view” of computers and ignores most details inside both
software and hardware. One goal is to avoid rewriting application programs by con-
fining most of the modification in operating systems. More power reduction may
be achieved by optimizing application programs for power saving. Similarly, we use
commercially available hardware components and treat them as “black-boxes” even
though it is possible to improve power saving by modifying these components such
as adding more power states.

Operating systems can affect power consumption in different ways. For example,
page-replacement policies affect when page faults occur and the idle time of hard
disks. In addition, some daemons periodically write memory contents to hard disks.
While this maintains system consistency in case of crashes, it also reduces the idle

time. This thesis does not discuss how to design power-efficient page-replacement

CHAPTER 1. INTRODUCTION 16

policies or daemons.

This study assumes that performance degradation is tolerable on interactive sys-
tems. Some other types of systems may be timing-critical; missing their timing con-
straints can lead to catastrophic results. Reducing power on such systems is beyond

the scope of this thesis.

1.5 Thesis Organization

Chapter 2 explains the criteria to design policies; these criteria are based on saving
power and maintaining performance. This chapter proposes two performance metrics
and discusses the relationship between frequencies and power consumption. Chapter
3 presents a framework for implementing policies to control the power states of 10O
devices. Using this framework, this chapter compares the power saving and perfor-
mance impact of a dozen policies. Chapter 4 describes a policy that incorporates
information from the process manager in OS kernel. With the additional informa-
tion, the power manager can predict idle time more accurately and save more energy.
Chapter 5 explains how to schedule processes to facilitate power management. By
properly scheduling processes, power managers can control the lengths of idle periods
to enhance power saving. Chapter 6 proposes a method that inserts data buffers in
programs and adopts a graph-based algorithm to find optimal assignments of power
states on a processor. This method greatly reduces the time complexity for workloads
with very long time horizons. Finally, Chapter 7 concludes this thesis and discusses

directions for future work.

Chapter 2
Policy Design Principles

This chapter discusses quantitative criteria for designing policies. An ideal policy

achieves the maximum power saving with the minimum performance degradation.

2.1 Amortizing Energy Overhead

In order to amortize the energy overhead, a device has to stay in a low-power state
long enough. The break-even time (tpe) is the criterion to determine whether a device
should enter a low-power state [11]. The following explanation considers one active
(working) and one inactive (sleeping) state. If a device has more power states, the
break-even time between any two states can be calculated in the same way.

Figure 2.1 demonstrates how to compute the break-even time of a device. There

power [
<>
tsd

e Pu

wu
Ps | € Pw 'tbe

time
tbe

Figure 2.1: compute the break-even time of a device

17

CHAPTER 2. POLICY DESIGN PRINCIPLES 18

tye break-even time

ts¢ shutdown delay

t, transition delay, t, = tsq + twe

twe Wwakeup delay

esq Sshutdown energy

ewy Wakeup energy

€, transition energy, e, = €54 + €yy

tms shortest sleeping time to save power

Table 2.1: device parameters

are two cases: on the left, the device is shut down and consumes e 4 and e, during
state transitions. On the right, the device stays in the working state and consumes
constant power p,,. The length of #;, makes the two cases “break-even”. When the

two cases consume the same energy, then

Dy the = €44 + ps - (tbe —lsqg — twu) + ey (21)

therefore, the break-even time of this device is

—ps X1
the = €o ™ Ps X bo (2_2)
DPw — Ds
Since £y, includes the transition delays, it must be larger than .4 + £,,. Conse-

quently,

€o — Ps Xto

tbe = max(to,
Pw — Ps

) (2.3)

The break-even time is a parameter of each device; it is independent of requests.
We can also define the minimum time in the sleeping state to save energy. Let i,
be this minimum sleeping time. It is computed by subtracting transition delays from

the break-even time:

CHAPTER 2. POLICY DESIGN PRINCIPLES 19

Hitachi (2.5”) IBM (3.5”)
teq 0.97 sec 0.52 sec
tww 3.71 sec 6.97 sec
esq 1.98] 1.08 J
€wy (-46] 52.5]

Py 0.67 W 3.48 W
p, 0.03 W 0.7 W
tre 14.5 sec 17.6 sec

Table 2.2: parameters of a Hitachi disk and an IBM disk

€o— Py X1
tms = Toe — sqg — twu = -2 (24)

DPw — Ps
The parameters of the disk shown in Figure 1.2 is summarized in Table 2.1. The
table also lists the parameters of an IBM 3.5-inch disk (IBM DTTA 350640). The

3.5” disk consumes substantially more power than the 2.5-inch disk.

2.2 Power / Performance Tradeoff

In addition to saving power, power managers have to consider the impact on per-
formance. Power management degrades performance because some requests have to
wait for power-state transitions. This delay may be substantial: several seconds for
a typical hard disk. Power management trades off performance for power reduction.
On one hand, a device can remain in the working state and is always ready to serve
requests; this wastes energy when the device is idle. On the other hand, the device
can sleep to save power but this degrades performance. In addition to degrading
performance, power management may also affect reliability. One study reports that

a shutdown-wakeup cycle is equivalent to four hours of continuous usage of a hard
disk [34].

CHAPTER 2. POLICY DESIGN PRINCIPLES 20

total energy
available

—

Figure 2.2: total energy and discharge rate

discharge rate

2.2.1 Power Metrics

The main purpose of power management is to reduce average power. Average power

is defined as energy divided by time:

energy

average power = (2.5)

time

For portable systems, reducing power consumption increases operational time of
batteries. In fact, the energy retrievable from a battery before the next recharging
is not constant. When the discharge rate (i.e. current) is too large, the total en-
ergy (VAH, volt-amper-hour) available from a battery decreases [10] [63]; Figure
2.2 illustrates this situation. Lower power consumption has two effects: (1) the bat-
tery can provide more overall energy (2) the energy is consumed at a smaller rate.
Consequently, the operational time is longer when the power consumption is lower.

In addition to average power, some other power metrics are considered, such as

transient power. The transient power is the derivative of energy over time:

d energy

transition power = (2.6)

d time

The maximum power is the largest transient power. Restricting the maximum
power is important because all power supplies have limits on the maximum transient
power. Power managers should avoid waking up multiple devices simultaneously if

the total wakeup power may exceed the limits of the power supplies.

CHAPTER 2. POLICY DESIGN PRINCIPLES 21

ws; starting time of the i waiting period
we; ending time of the i waiting period
wd size of the observation window

wt starting time of an observation window
ml length of user memory

Table 2.3: performance parameters

2.2.2 Performance Metrics

Performance is commonly defined as the total time needed to perform specific tasks,
such as running SPEC benchmarks [39]. These metrics measure the throughput
of “batch” or transaction-based systems. They do not directly apply to interactive
systems. For most users, response time is as important as throughput. When a device
is power-managed, its performance degrades due to the delays when changing power
states. It is essential to quantify the performance perceived by users.

Users have limited memory; they remember an event that just occurred more
clearly than another event that had occurred long time ago. In other words, the
negative effect of a delay decreases monotonically as time goes by. Also, users tend to
“forgive” and forget delays if they do not happen often. Based on this observation,
we propose two types of performance metrics: (1) how much waiting time is perceived
(2) how often delays occur. Both metrics are measured in small observation windows
(several minutes) that reflect limited user memory. In this section, “delay” and

“waiting period” are used interchangeably.

Total Delay in a Small Window

Suppose ws; and we; are the starting and ending times of the i** waiting period due to
power management. Consider an observation window of size wd. If this window starts
at wt, the total waiting time is the sum of all waiting periods enclosed by this window.
Namely, the starting time (ws;) is after the beginning of the window (ws; > wt) and
the ending time (we;) is before the end of the window (we; < wt + wd). Figure 2.3

displays how to calculate the total waiting time in this window. The following is a

CHAPTER 2. POLICY DESIGN PRINCIPLES 22

wd
e >
delay delay delay
WS; W, WSip Wey WS, W€, time

Figure 2.3: calculate total waiting time in an observation window of size wd

formula for calculating the total delay starting at wt with window size wd:

td(wt, wd) = Z (we; — ws;) (2.7)
1 such that
ws; > wi

we; < wt + wd

We want to find the worst-case total waiting time by adjusting the beginning of

this window:

d= max td(wt, wd) = max Z (we; — ws;) (2.8)
i such that
ws; > wi

we; < wt + wd

A desirable policy has a short worst-case waiting time, i.e. small value of d.

Frequency of Delays

The second metric quantifies the number of waiting periods a user remembers. We
assume the user has memory duration ml. If one delay occurs more than ml before
the next delay, the user forgets the first. However, if the time between two consecutive
delays is shorter than ml, the user will remember both. In Figure 2.4, the user forgets
the (7 — 1) delay when the i occurs. Since the following two delays are close, the

user will perceive three consecutive waiting periods. The user remembers a sequence

CHAPTER 2. POLICY DESIGN PRINCIPLES 23

>ml <ml <ml

delay [> delay delay delay

time
WS, W€y WS; W€ wsj,, We,; Wws,, We,,

Figure 2.4: calculate the length of a delay sequence

of waiting periods if the sequence satisfies three conditions:

e The time between the first delay and its previous delay is longer than ml.
e The time between two consecutive delays in this sequence is shorter than mil.

e The time between the last delay and its next delay is longer than mil.

The user perceives a sequence of nw + 1 delays if there is a sequence formed by

the i" to the (i + nw)®™ delays that meet the three conditions:

wWS; - we;_1 > ml
(e - we_1 < mil, Vk € [i+ 1,7 + nw] (2.9)
WSitnw+1 — Wejtnyw > Ml

We are interested in finding the worst-case performance degradation; i.e. the

longest delay sequence. It is represented by the largest value of nw:

s(ml) = max nw (2.10)

Its value is affected by users’ memory duration, ml. A good policy should have
smaller s(ml) for a reasonable range of ml. For human being, m! can be up to about
one hour. Any delay that occurs more than one hour ago is likely to be tolerated and

“forgiven” by users.

CHAPTER 2. POLICY DESIGN PRINCIPLES 24

2.3 Dynamic Voltage / Frequency Scaling

Many processors support multiple active states differentiated by their frequencies.
For these processors, performance is proportional to power. CMOS-based processors
consume power primarily during switching: from logic true to false or vice versa. The

dynamic power of a CMOS gate can be approximated by
p=c-vgg-sw-f (2.11)

here ¢ is the load capacitance, vy4q is the supply voltage, sw is the switching activity,

and f is the clock frequency [83]. The energy consumption during [0,7) is

T
ez/ pdt (2.12)
0

If we replace the load capacitance and the switching activity by their averages,

the energy is proportional to

T
e oc/ vag” * fdt (2.13)
0

Power can be reduced by lowering vgy and/or f; this is called voltage scaling and
frequency scaling [16] [29] [67]. The delay of a gate, as first-order approximation,
is inversely proportional to vgy. Clock frequencies are determined by gate delays;
thus, frequencies are affected by the supply voltage. When a circuit operates at a
lower frequency, the voltage can be reduced accordingly. Voltage is a monotonically
increasing function of frequencies. Let v(f) be the supply voltage at frequency f. If
frequencies f; > fa, then v(f1) > v(f2). Frequencies and voltages are always positive.
The following theorem proves that minimizing frequencies is equivalent to minimizing

total energy.

Theorem 1 Suppose function f(t) is the frequency at time t over an interval [0,T);

f(t) may vary within a finite range. If f(e) minimizes

CHAPTER 2. POLICY DESIGN PRINCIPLES 25

/ " by (2.14)

then, the pair f(e) and v(f(e)) will minimize the total energy e, where

e o /0 o) - floye (2.15)

Proof
We prove it by contradiction. Let f*(e) be a frequency assignment that minimizes
fOT f(t)dt. Suppose f(e) is another frequency assignment over the interval [0, T]. We

assume the following is true:

STyt < [F()de and
(2.16)

Jo (@) @t > [o(f() F()de

Namely, f*() can cause more energy consumption even though fOT fx(t)dt is
smaller. In order to satisfy both inequalities in (2.16), there must be 7 € [0,T]
such that

) <f(r) and o(fH0)) (1) > u(f(7)) f(7) (2.17)

The second inequality can be written as

o(f* ()2 (1) = o(FH () F(7) > w(F(7) F(7) = w(F*(7)*f(7) (2.18)

CHAPTER 2. POLICY DESIGN PRINCIPLES 26

This is equivalent to

~

o(F(O)1F (1) = FO)] > FO(F() = o(f* ()] (2.19)

Since f*(1) < f(r) and v(f) is a monotonically increasing function, v(f*(7))* <
o(f (7'))2. The left hand side (LHS) of the above inequality is negative while the
right hand side (RHS) is positive or zero. It is impossible that LHS is larger than
RHS. Therefore, the assumption is false; we cannot find f*(t) and f(¢) such that
both inequalities in (2.16) hold. In other words, it is impossible to minimize energy
consumption without minimizing the integration of frequencies.

If frequencies change only at time 4, g, ..., t,, the frequency during [t;,¢; + 1) is
fi,1€{1,2,...,n—1}. We can rewrite (2.14) as

/0 f(t)dt = if (tip1 — ti) (2.20)

Thus, selecting f; to minimize the following function minimizes the total energy.

> filtisr — t:) (2.21)

Frequency scaling has two effects on performance. First, the processor has a slower
clock rate, hence lower performance; second, it takes time to change frequencies. In
[36], the authors report 200 microseconds for changing frequencies on a StrongARM
processor. Even though this delay is too small to perceive by human users, it is more
than ten thousand clock cycles and cannot be ignored in some cases. Some commercial
processors provide software interfaces for dynamic frequency scaling. For example,
StrongARM processors have special registers to indicate the current clock frequencies
[2]. Modifying the values in these registers changes the frequencies. StrongARM
SA1110 has eleven frequencies available, between 59 MHz and 206 MHz.

CHAPTER 2. POLICY DESIGN PRINCIPLES 27

2.4 Chapter Summary

This chapter explains the criteria to design power-management policies. A desirable
policy shuts down a device only when it can sleep long enough to justify the overhead
in state-transition energy and delay. We also prove that, in CMOS circuits, choosing
the lowest possible frequencies over time (according to the performance constraints)

corresponds to minimizing total energy used over the same time interval.

Chapter 3
Implementing Policies

This chapter presents a framework to implement and compare policies. Most power-
management policies were evaluated by simulations only; many policies have never
been implemented on realistic systems. There are potential drawbacks in simulations.
First, simulations often use simplified models of hardware devices and ignore details.
In [25] [31] [49] [52] [68], simplified hard disk models are used to evaluate policies.
Second, simulations often ignore the overhead of power managers even though some
policies require substantial computation like traversing trees [20]. Third, simulations
do not support direct interaction with users; hence, it is impossible to evaluate per-
formance degradation perceived by users. This chapter explains how to implement
policies as filter drivers in Microsoft Windows; experimental data by measurement
will be presented to compare different policies. The experimental setup is described

in Appendix A.

3.1 Power Management and System Layers

Before a policy is implemented, several issues have to be clarified: (1) where to
implement power management (2) what information is available for power managers
(3) how much overhead is added.

A complex system is usually structured in layers such as the one shown in Figure

3.1. Hardware is at the bottom of the layers and operating systems lie between

28

CHAPTER 3. IMPLEMENTING POLICIES 29

application programs

operating system

scheduler

process manager

device driver

hardware devices

Figure 3.1: Power managers can be implemented at different layers in a system.

hardware and application programs. Each layer provides unique advantages and
disadvantages for power management. A power manager that is implemented at
a lower layer has less information about application programs and it provides less
flexibility. On the other hand, a higher layer may incur unnecessary overhead; for
example, if a power manager is implemented in the scheduler, then all processes are

affected regardless whether they generate requests.

3.1.1 Power Management by Hardware

Power is consumed by hardware; thus, implementing policies directly in hardware
is an intuitive approach. This has two advantages: independent of software and
small overhead. On the other hand, hardware has limited information: it can detect
only the arrival of requests. Due to the lack of higher level information, it is diffi-
cult for hardware-implemented power managers to predict the lengths of idle periods
accurately. Furthermore, it is sometimes objectionable to implement “policies” in
hardware. Instead, a lower layer should provide “mechanism” so that higher layers
can determine the policies [72].

If a policy is directly implemented in hardware, there is no flexibility to adjust
policies by software for different requirements. For example, a hard disk may be
installed in a mission-critical data center where performance is much more important

than power saving. The same disk can also be install on a home computer whose user

CHAPTER 3. IMPLEMENTING POLICIES 30

wants to balance performance and power saving. Because hardware should provide

mechanism only, it is preferred to implemented policies in software.

3.1.2 Power Management by Applications

Even in software, power management can be implemented in different layers. Ap-
plication programs generate requests; therefore, they have the best knowledge about
when requests are generated. Microsoft’s OnNow allows application programs to set
hardware power states [61]. This approach also has limitations. First, different ap-
plications may set the same device to different power states. Second, it is complicated
to write application programs that determine power states. Third, it is impractical

to rewrite all legacy programs and add power management features.

3.1.3 Power Management by Operating Systems

We think power managers should be implemented in operating systems to conquer
the problems mentioned above. Operating systems have the flexibility to adjust
policies for different environments and serve requests from all application programs.
Operating systems can be structured into different layers, including device drivers,
process managers, schedulers, and so on. Each layer corresponds to a requester model
explained in Section 1.3. Device drivers can detect request arrival; this assumes
the single-requester model. Process managers consider multiple requesters with their
creation and termination. The information about process states and priorities improve
prediction accuracy. Moreover, process schedulers determine the time when a process
executes and when they generate requests. Schedulers affect the arrival of requests
and thus the length of idle periods. Power management by process managers and
schedulers will be discussed in more details in the next two chapters. This chapter

concentrates on power management by device drivers.

CHAPTER 3. IMPLEMENTING POLICIES 31

applications OS dependent API

kernel OSPM system code
i \ . OS specific
] . ACPI driver/
device driver AML interpreter

OS independent

ACPI register ACPI BIOS ACPI table
interface interface interface i
| ACPIregisters | [AcPiBios || AcPltables | |
L’""""""""f&["””’”’$”"’”"""’/""""”f”f———f——f——l‘
‘ platform hardware ‘H‘ BIOS ‘

,,,,,,,,,,,,,,,

covered by ACPI specification

- OS specific, not covered by ACPI
hardware specific, not covered by ACPI

Figure 3.2: ACPI structure

3.1.4 Advanced Configuration and Power Interface

Using software to control power states requires collaboration with the hardware. In
particular, hardware has to support programming interfaces and allow software to
change the power states. Two standards are widely used for power management:
advanced power management (APM) [1] [6] and advanced configuration and power
interface (ACPI) [3].

ACPI is an open specification of the interface between hardware and software for
power management. Its sponsors include major computer vendors, both hardware
and software, such as Intel, Microsoft, Compaqg, and Toshiba. Before ACPI was
developed, APM was widely used. APM was mostly implemented in basic inpui-
output systems (BIOS); it was unable to adapt for fast changing hardware devices,
such as plug-and-play features. ACPI was proposed after APM and was intended to
replace APM.

ACPI enables operating-system directed configuration and power management

CHAPTER 3. IMPLEMENTING POLICIES 32

‘ OS kernel ‘

,,,,,,,,,,,,,,,,,,

e === ———

‘ original driver ‘

‘ device ‘

Figure 3.3: Filter drivers encrypts and compresses data.

(OSPM). Migrating power management from BIOS to software has multiple advan-
tages: (1) it can implement advanced and sophisticated policies (2) it is easier to
upgrade for better policies (3) it has more information about application programs
(4) it avoids conflicts from different device vendors. ACPI requires collaboration be-
tween hardware and software to manage power. Figure 3.2 shows the structure of
ACPI. Hardware resides at the bottom of this figure; above the hardware, there is
a layer of ACPI registers and BIOS as the interface to operating systems. At the
top, there are applications that generate requests. Microsoft’s OnNow [61] provides
an application programming interface (API) to manager power on ACPI-compliant

systems. ACPI has been recently ported to Linux kernel V2.4 [4].

3.2 Implementing Policies in Device Drivers

ACPI does not specify where to implement power management. Many policies use the
single-requester model and need to distinguish only busy and idle periods. Such infor-
mation is available at device drivers; consequently, these policies can be implemented
in device drivers. Device drivers are structured as layers so that new functionality can
be easily added; this is similar to network protocol layers. In Windows, a filter driver
can enhance or add features to the original device driver; for example, a filter driver
can compress or encrypt all data sent to the device [76]. Figure 3.3 depicts the struc-
ture of these filter drivers. Using filter drivers for system-level power management
was first proposed in [54].

When a filter driver is loaded into Windows, it first creates a driver object by

CHAPTER 3. IMPLEMENTING POLICIES 33

monitoring
power-managed computer

computer

Figure 3.4: connect a monitoring computer through the serial port

calling ToCreateDevice; IoCreateDevice is a function provided by Windows. Then,
it calls ToAttachDeviceToDeviceStack to attach itself on the top of the original
driver. The communication between the original driver and OS kernel is intercepted
by the filter driver. The following assignment will intercept read commands from

Windows kernel
DriverObject->MajorFunction[IRP_MJ_READ] = FilterRead;

DriverObject->MajorFunction[IRP_MJ_READ] is a function pointer; FilterRead
is a function to handle the read commands from kernel. A typical structure of
FilterRead is to perform necessary processing, such as compression, and then pass
the command to the lower-layer driver. If the filter driver implements a policy, power
manager can calculate the length of the previous idle period when FilterRead is
invoked.

Communication between a driver and OS kernel is performed by creating an 10
request packet (IRP). The filter receives an IRP, performs necessary operations, and
then passes it to the original driver by calling ToCallDriver. The filter driver can
also create a new IRP by calling ToAllocateIrp and pass it to the lower driver. In
Windows, power management commands require special IRP’s; hence, they have to
be created by calling PoRequestPowerIrp. This function specifies the device, the
new power state, and a callback function that is invoked after this power IRP is
processed. In Windows, device drivers can “print” through a serial port; Figure 3.4
shows such a connection. Using a monitoring computer, we can record information
without writing it to the hard disk on the power-managed computer. This method

reduces the interference of power management on the original workloads.

CHAPTER 3. IMPLEMENTING POLICIES 34

idle | busy
request
arrival
yes
l no device yes
sleeping
yes shut down
device

l no
shut down l no serve Q

requests
es

Ino

Figure 3.5: flow of a filter driver for power management

Figure 3.5 shows the flow of a typical filter driver that implements power manage-
ment. When the device is idle, it stays on the the left side of the figure. Some policies
reevaluate shutdown decisions periodically and require timers. Request arrival is an
event issued by the kernel; hence, the filter driver is invoked only when requests arrive
or triggered by the timer. In Windows, users can specify the timeout values for hard
disks and monitors; the minimum value is one minute. When a policy is implemented
as a filter driver, this limitation does not exist. A power manager can shut down a

device immediately after it becomes idle.

3.3 System-Level Power Management Policies

This section explains the policies compared later in this chapter. General comparisons

of system-level power management policies are available in [11] [53].

3.3.1 Oracle Power Manager

Before comparing policies, it is important to understand the baseline. Power manage-
ment is a prediction problem; a perfect power manager knows exactly when requests

arrive. Such a manager is called an oracle power manager. This manager shuts down

CHAPTER 3. IMPLEMENTING POLICIES 39

shut down wake up

<> <>

t t, t

e req

Figure 3.6: worst case power consumption for 2-competitive policy

a device when an idle period is longer than the break-even time of this device; it keeps
the device in the working state during short idle periods. This is the best power sav-
ing achievable by power management. In reality, such an oracle does not exist; it can

be simulated off-line by analyzing a trace that records requests.

3.3.2 Competitive Timeout Policy

Suppose a device consumes average power p when it is managed by an oracle manager.
A “c-competitive” policy causes at most ¢ - p average power, here ¢ > 1. Competitive
policies make shutdown decisions at run-time without knowing when future requests

will arrive; in other words, competitive policies are “on-line”.

Theorem 2 Assume that shutdown and wekeup commands are atomic: once a shut-
down command 1is issued, the device has to take tsq time (defined in Table 2.1) and
consume egq energy even if it receives a wakeup command immediately. If a time-
out policy sets the timeout value to the break-even time of a device, it can achieve

2-competitiveness'.

Proof

Consider a timeout policy whose timeout value is the break-even time of the device
being managed. Figure 3.6 depicts an “adverse” scenario that causes the most power
consumption. In this figure, white blocks indicates that the device is busy; black
blocks indicate that the device is idle. Gray blocks show when the device changes

power states. This policy shuts down the device after it is idle for %;., the break-even

1This result was shown in [45] for a different setting. We adjust the proof in the context of power
management.

CHAPTER 3. IMPLEMENTING POLICIES 36

time of the device. The worst case occurs if requests arrive right after the device is
shut down. Namely, the lengths of the idle periods are ty. + ¢ where € is a very short
duration. The device cannot save energy because it does not have a chance to stay in
the low-power sleeping state. Moreover, it has to consume the state-transition energy.

An oracle policy has two choices: either keeps the device in the working state,
or shuts down the device immediately after it becomes idle. Because the length of
the idle period is very close to the break-even time of the device, the two choices
will “break-even” and have the same power consumption. In both cases the average
power consumption is py,.

Since the timeout policy cannot foresee future requests, it shuts down the device
after the device has been idle for ;.. However, the device has to wake up immediately
to serve requests. Because the device is kept in the working state during idleness, its
energy consumption is p, X t5.. It also consumes state-transition energy: egq + €y
during tsq + twy. Let t,¢q be the time to serve requests before the device becomes idle

again. The energy between #; and %, is

€ = Py X (tbe + 6) + €sq + €y + P X treq (31)

Remember that e, and ¢, are the transition energy and time overhead: e, =

€sq + ewy and t, = t,q + 1. The average energy is

€ :pw X (tbe+6)+eo +pw ><treq (3 2)
tbe +e+ tsd + twu + treq tbe +e+ to + treq .
Suppose € and ¢, are very small. The average energy can be simplified to
Pw X tbe + e, (33)
tbe + to

According to (2.2), we can replace t, by % and compute the energy during
[t1, a]:

CHAPTER 3. IMPLEMENTING POLICIES 37

2py€o — PuwPsto — €oPs

(3.4)
€o + pwto - 2psto
Since p,, > ps > 0, we can find an upper bound of the numerator
2Pwes — PuwPsto — €oPs
< 2pweo - pwpsto (35)
< 2pweo - 2pwpsto
= 2pw(eo - psto)
Similarly, we can find a lower bound for the denominator:
€o + pwto - 2psto
=€ — psto + (pw - ps)to (36)
> €5 — psto
Now, we can find an upper bound of the average power:
2pweo - pwpsto — €oPs < 2pw(eo - psto) — 2pw (37)

€o + pwto - 2psto € — psto

The power is less than 2p, in the worst case. This is less than twice of the
power consumption if the device is managed by the oracle manager. Consequently,
this timeout policy achieves 2-competitiveness by setting the timeout value to the

break-even time of the managed device. {

3.3.3 Adaptive Timeout Policies

These policies adjusts timeout values dynamically. Let’s call the value 7. The policy
presented in [25] considers the length of the previous idle period. If it is short,

T increases; otherwise, 7 decreases. In our comparison, the parameters were set to

CHAPTER 3. IMPLEMENTING POLICIES 38

(s B, p) = (1.5,0.5,0.1) ? and 7 was thirty seconds initially.

Another approach considers the length of a busy period instead [52]. If a busy
period is short, 7 decreases; otherwise, it increases. The initial value of T was two
minutes and the sampling rate was one Hz with two seconds for the adjustment factor.

The third policy updates 7 asymmetrically: increasing 7 by one second or decreas-
ing it by half [31]. Our experiments limited 7 of this policy between one second and

two minutes.

3.3.4 Exponential Average Predictive

In [41], the authors observe that the length of a future idle period can be accurately
predicted by the length of the previous idle period and the prediction of this period.
Mathematically, let tpredictea|] and foctuar[i] be the predicted and the actual lengths of
the " idle period. The length of the (i + 1)% idle period can be approximated by

tpredicted[i + 1] =a- tactual [Z] + (1 - a)) tpredicted[i] 0 S a S 1 (38)

This is “discounted average” because the effect of the most recent idle period is
discounted by factor a while the previous prediction is discounted by 1 — a. Since

tpredicted|t] 1s calculated in the same way, we can expand the equation as follows:

tpredicted[i + 1] =a- tactual [Z] + (1 - a) : tpredicted[i]
=a- tactual [Z] + (1 - a) : (a : tactual[i - 1] + (1 - a) : t;m"edicted[i - 1])
=a- tactual [Z] + (1 - a)a : tactual[i - 1] + (1 - a)2 : tpredicted[i - 1]
i

= (1 - a)i+1tpredicted[0] + Za(l - a)ktactual [Z - k]
k=0

(3.9)

This is an average of previous idle periods with exponential weights; hence, it is

2Please refer to the paper for the definitions of these parameters.

CHAPTER 3. IMPLEMENTING POLICIES 39

1-py
pb_}bpl_'l
1_pia|

Figure 3.7: basic stochastic model

also called “exponential average”. If ¢, cqicted 15 larger than the break-even time, the
device is shut down. This policy restrains fpregicteat + 1] such that it cannot exceed
¢ - tige|t] where c is a constant greater than one. In our experiments, we use 0.5 for
a and 2 for c as suggested in [41]. All idle periods shorter than one tenth second
are ignored so that tyredicteq is not affected by these very short idle periods. They are

discarded at run-time because t,.uq(] is known before computing ¢, egictea[t + 1)-

3.3.5 Learning Tree

Adaptive learning trees (LT) transform sequences of idle periods into discrete events
and store them into tree nodes [20]. This algorithm predicts idle periods using
finite-state machines similar to branch prediction used in microprocessors and selects
a path which resembles previous idle periods. At the beginning of an idle period,
it determines an appropriate sleeping state; this algorithm is capable of controlling

multiple sleeping states.

3.3.6 Stationary Discrete-Time Stochastic Policy

In [62], the authors suggest using stationary stochastic processes to model request
arrival and power-state transitions. This discrete-time policy slices time into discrete
units: ¢, 2¢, 3t ... A simple stationary model of a requester is illustrated in Figure
3.7. In this figure, if the device is busy at nt, there is p,_,; probability that the device
will remain busy at (n + 1)¢; the device will become idle at (n + 1)¢ with probability

1 — pp_yp- Similarly, the power-manageable device has p;_,; probability to remain idle

CHAPTER 3. IMPLEMENTING POLICIES 40

1_pw_>w
o Cworking) ~ (sleeping)), _,
1_psas

Figure 3.8: state transition probabilities of a device

if it is originally idle. This policy uses a stationary model by assuming that p,_;, and
Pi—s; are constants. The transitions of power states are also modeled as a stochastic
process, like the example shown in Figure 3.8. When the device is in the working
state at nt, it will remain in the working state at (n + 1)t with probability py_suw;
it has 1 — p,_,, probability to enter the sleeping state. If the device is originally
sleeping, it has probability p,_,, to remain sleeping.

We can compute the optimal state-transition probabilities, p,,_., and p,_,,, based
on the values of py,, and p;,; and the device parameters, including p,,, ps, and
tye. This approach differs from previous policies into two major aspects. First, it
builds mathematical models for request generation and power-state transitions; they
are represented by stochastic processes. Second, the state-transition probabilities are
optimal solutions, not heuristics. One disadvantage of this approach is the need of
priori knowledge about request characteristics. This policy has to know p,_,; and p;_,;

in advance for computing p,,_.,, and p,_,,.

3.3.7 Non-Stationary Discrete-Time Stochastic Policy

The previous policy has one major shortcoming: it cannot adjust p,_,, and p,_,, if
the probability of request arrival changes. This was remedied in [19]. The policy
first performs off-line optimization for a set of arrival probabilities. For each arrival
probability, there is a corresponding shutdown probability. At run-time, the policy
maintains a sliding window that encloses recent requests; these requests are used
to predict the future arrival rate. There are two possible scenarios. First, if this

probability has been optimized off-line, the power manager uses the pre-computed

CHAPTER 3. IMPLEMENTING POLICIES 41

policy features target devices

[45] (CA) competitive spin-block
[25] (ATO1) adaptive timeout hard disk
[31] (ATO2) adaptive timeout hard disk
[52] (ATO3) adaptive timeout hard disk
[41] (EA) exponential average telnet

[20] (LT) learning tree hard disk
[62] (DM) discrete-time Markov hard disk
[19] (NS) non-stationary stochastic hard disk
[78] (SM) time-index semi-Markov ~ hard disk

Table 3.1: summary of policies compared

shutdown probability. Second, if this probability does not occur in the off-line op-
timization, the policy linearly interpolates pre-computed shutdown probabilities to

obtain the shutdown probability for the current arrival rate.

3.3.8 Continuous-Time Stochastic Policies

Discrete-time stochastic policies have one common drawback: they have to periodi-
cally reevaluate whether to shut down or wake up devices even when the devices are
sleeping and there are no requests. They create timers in the control flow of filter
driver in Figure 3.5. To eliminate such unnecessary computation, continuous-time
stochastic models are used [66] [79] [80]. This model was later extended as a time-
indexed semi-Markov model [78]. It uses two types of probability distributions: (1)
Pareto distributions to model the probability that a device becomes busy from idle-
ness: the probability 1 — p;—; (2) exponential distributions for the device to remain
busy (py—s). In this policy, if the power manager initially decides to keep a device
in the working state and the idle period is actually long, the algorithm reevaluates
the decision so that the power manager can still shut down the device. If the device
is already sleeping, no extra computation is needed. Therefore, this algorithm saves

power and has low computation overhead.

CHAPTER 3. IMPLEMENTING POLICIES 42

3.4 Policy Comparison

We use a desktop and a laptop computers to conduct our experiments. On the desktop
computer, we connect current meters to the power cores (12V and 5V) of a 3.5” hard
disk. The setup of the laptop computer is explained with details in Appendix A.1;

the same environment is also used for Chapter 4 and Chapter 5.

3.4.1 Workload Generation

We did not use performance benchmarks such as SPEC [74] because they measure
peak performance and no device should sleep. Instead, a filter driver was used to
collect user traces as the workloads. It recorded disk access traces of two users by
using the serial-link connection shown in Figure 3.4. The users were developing C
programs and making presentation slides. If the time between two requests was less
than one millisecond, they were considered as a single long request. Each request
was recorded by its time and duration. These traces include disk accesses from user
requests and operating system activities. Then the traces were replayed; they took

approximately eleven hours.

3.4.2 Computation for Power Managers

The amount of computation was quantified by recording the time spent in power

managers in the following way:

PowerManager
{
/* before doing anything */
find the starting time;
/* perform necessary operations */
find the ending time;
this time in power manager = ending time - starting time;

total time in power manager += this time in power manager;

CHAPTER 3. IMPLEMENTING POLICIES 43

We used the performance counter provided by the processor; it could measure
time at a high precision (less than one tenth of a microsecond). Our analyses show
that all policies spend less than 1% of processor time in power managers; hence, the
computation overhead of power managers is not a concern for personal computers,

either desktops or laptops.

3.4.3 Power and Performance

This section presents the average power of each policy. The performance measures
the total number of shutdowns. Interactive performance will be presented in the next
section. Device parameters were summarized in Table 2.1. Five terms are used to

compare policies:

e power consumption (p), unit: Watt. In this comparison, we ignore the power
to serve requests; instead, we consider only the power in the working state and
the sleeping state. When the power of a device is larger than its working state
power, p,,, we replace it with p,,. This is because power management does not
affect the power while serving requests; power management reduces power only

when a device is idle.
e number of shutdowns (nq).
e average time in sleeping state for each shutdown (t,,), unit: second.
e average time before shutdown (%), unit: second
e number of wrong shutdowns (n,).

If the device does not sleep longer than its corresponding minimum-sleeping time
(tms), the shutdown is defined as a wrong shutdown. Wrong shutdowns actually waste
energy. The time before shutdown is defined as the time when a device is idle and
before a shutdown command is issued by the power manager. The device wastes
power in this duration. The time before shutdown () is the duration when the

device is idle but remains in the working state; the device wastes power during this

CHAPTER 3. IMPLEMENTING POLICIES 44

pOliCy P Ngg Nuyd lss Tps
off-line 1.64 164 0 166 0

SM 1.92 156 25 147 18.2

CA 1.94 160 15 142 17.6

NS 1.97 168 26 134 18.7
timeout 30 seconds 2.05 147 18 142 30.0
LT 2.07 379 232 62 5.7

ATO3 2.09 147 26 138 29.9
ATO1 2.19 141 37 135 27.6
ATO2 2.22 595 430 41 4.1
timeout 120 seconds 2.52 55 3 238 120.0
DM 2.60 105 39 130 48.9

EA 2.99 595 503 30 7.6
always-on 3.48 - - - -

Table 3.2: compare policies for 3.5” disk

period. For a timeout policy, t,s equals the timeout value. Among the five quantities,
it is preferred to have larger ¢,, and smaller values for the other four quantities.
Tables 3.2 and 3.3 compare these policies. The first row contains the minimum
power consumption without performance degradation; it is generated off-line with full
knowledge about future requests (oracle). The last row shows the power consumption
if no power management is applied. This table shows that policies SM, CA and NS
can save nearly 50% of power on both platforms. Even though they have close power
consumption on the mobile disk, they differ significantly in performance. CA and SM
have more than twice wrong shutdowns (n,4) compared with NS. For policies with
similar power consumption, performance is an important factor for evaluation. Figure
3.9 compares the power, number of shutdowns, and percentages of wrong shutdowns
of the 2.5” disk. The power and number of shutdowns are normalized relative to the

oracle power manager.

3.4.4 Comparing Interactive Performance

For a policy, the total waiting time is proportional to the total number of shutdowns

(nsq). However, even for two policies with similar values of ny, a user may notice

CHAPTER 3. IMPLEMENTING POLICIES

pOliCy D Ngd Nyd Lss Lps
off-line 0.33 250 0 118 0

SM 0.40 326 76 81 8.0

NS 0.43 191 28 127 134

CA 0.44 323 64 79 5.4

LT 0.46 437 217 56 6.1

ATO1 0.47 273 73 88 124

EA 0.50 623 427 37 3.0
timeout 30 seconds 0.51 139 7 157 30.0
ATO3 0.52 196 48 109 245

DM 0.62 173 54 102 35.2

ATO2 0.64 881 644 19 2.3
timeout 120 seconds 0.67 55 0 255 120.0
always-on 0.95 - - - -

Table 3.3: compare policies for 2.5” disk

1 power [shutdowns

. o, wrong shutdowns

power and performance
(normalized)
I

NS SM DDT LT ATO1 EA DM
policy

Figure 3.9: normalized comparison of power and performance

CHAPTER 3. IMPLEMENTING POLICIES 46

180

80 [EA]

135

longest wait (sec)
©
o
waiting (sec)

IS
5}

60 240 420 600 60 240 420 600
window size (sec) window size (sec)

100% 40%
_KEA] EA]
75% 3 30%

[LT]
o 2 N
£ 50% £ 20%
g [g - \\N“L
25% 1 1006 FAL “snas e o —
=120 TTTTTTeeesmeseeeesetoeee
0% T T 1 0% T T 1
60 240 420 600 60 240 420 600
window size (sec) window size (sec)

Figure 3.10: worst-case waiting time on 3.5” (left) and 2.5” (right) disks

substantial difference in their performance. Some polices make delays concentrated
within short time periods. Such periods are frustrating to users.

Figure 3.10 draws the worst-case waiting time, defined in (2.8), for wd between
one to ten minutes. It shows that, in the worst case, CA requires users to wait for 98
seconds in a 10-minute duration on the desktop hard disk. The bottom of the figure
is the waiting time by percentage. When the window size increases the percentage
of waiting time decreases for all algorithms. When the window size is small, such
as one minute, some algorithms may require users to wait for more than 50% of the
time. This demonstrates the importance to measure the worst-case performance for
small wd. Traditional performance metrics using the total waiting time cannot pro-
vide enough information for determining user perception of performance degradation.

Figure 3.10 has several “jumps” as wd increases because the worst-case waiting time

CHAPTER 3. IMPLEMENTING POLICIES 47

35

30 ‘!, 7 [EA]
2 25 /
3 /_/
8 20
g / [LT]
o
& 15 / -
g rﬂ—-—-—/ .
E 10 i
=V / R (o7
é 5 [[[]

- - /_/ [SW]
0 T T 1
30 60 90 120

maximum time between adjacent shutdowns (sec)

Figure 3.11: maximum length of shutdown sequences

may change from one window to another. This figure also shows that the waiting
time is considerably shorter on the 2.5” hard disk.

Figure 3.11 plots the longest shutdown sequence defined in (2.9). In this figure, the
horizontal axis is the threshold value and the vertical axis is the lengths of sequences.
The arrow indicates that EA has a sequence of 27 waiting periods with less than one
minute between two shutdowns. Users perceive delays every minute or even more

frequently for 27 times.

3.4.5 State Transition Delay

For a hard disk, the wakeup delay is not a constant; instead, it distributes widely.
Figure 3.12 are histograms of the distributions of wakeup delays. For the 3.5” disk,
the average is 6.97 seconds and the standard deviation is 0.65 second or 9.25%. For
the 2.5” disk, it is even more widely distributed. Such variation may be attributed
to the arm positions when a wakeup command is issued. The measurement results
show that transition delays are not exponentially distributed as modeled by some

stochastic policies.

CHAPTER 3. IMPLEMENTING POLICIES 48

30

0
1000 1200 1400 1600 1800 2000 2200

0
4500 5000 5500 6000 6500 7000 7500 8000 8500 9000

Figure 3.12: wakeup delay (millisecond) for 2.5” (top) and 3.5” disks

3.4.6 Learning Period of the Exponential Average Policy

The exponential average policy was not designed for a device with long break-even
time; it is understandable that it does not perform well in our experiments. The policy
makes several wrong shutdowns within a short time period after a long idle period.
This policy predicts the length of an idle period based on the actual length of the
previous idle period. If the previous idle period is exceptionally long, the predicted
length is also long. Suppose toeruq[i] is very large, then ¢, cgicteq|t + 1] is large because
toredicted[1+1] = @ tactuar[i]+(1—0) tpregicted|t]- Even if toepya [i+1] is small, Lpredicteali+2]
is still large because tpregicted[t + 2] = @ * toctuar[t + 1] + (1 — @) - tpredictea[t + 1] =
(1 — a) - tpredictealt + 1]-

Let a be 0.5, tyetuqi[t] be ten minutes, and the break-even time be ten seconds;
tpredictea 0+ 1] 1s at least five minutes. Since ¢y egictea[t+1] is larger than the break-even
time, the power manager shuts down the device. Suppose tactuar[i + 1] is very short.
The predicted length for the next idle period, fpregictea]t + 2], is two and half minutes
and still larger than the break-even time. The device will be shut down again. In

fact, it will be shut down in the first five idle periods regardless of the actual lengths

CHAPTER 3. IMPLEMENTING POLICIES 49

of them. This policy takes logarithmic idle periods to “learn” that recent idle periods
are short and to correct its prediction. In order to remedy this problem, a desirable
algorithm should change its prediction sooner once successive wrong shutdowns hap-
pen. We do not use predictive wakeup suggested in [41] because it consumes 96%

more energy on the disk without significant performance improvement.

3.4.7 Memory Requirements

The non-stationary stochastic policy computes in advance the shutdown probabilities
for different request arrival rates [19]. It is a tradeoff how many arrival rates are
computed. On one extremes, it can compute the optimal probability for all possible
arrival rates. At run-time, the power manager only needs to look up a table to find
the optimal shutdown probability for a given request arrival rate. However, this
generates a large table and the power manager has to store the table in memory.
On the other extreme, it can compute only a few rates and linearly interpolates the
shutdown probability. While this reduces the memory requirements, it has two other
problems. First, it needs more computation at run time. Second, the interpolated
probability is only an approximation of the optimal probability. In our experiments,
the manager uses more than 50KB memory to store the pre-computed probability to
achieve satisfactory power saving. While this is not a problem on personal computers
with several megabytes of memory, it can be a concern for systems with tighter
memory constraints. The learning tree policy may also grow the tree arbitrarily large
at run time. Our experiments limited the tree depth to ten levels so it had at most
210 — 1 = 1023 tree nodes.

3.4.8 Workload Characterization

Some policies characterize workloads in advance. Specifically, SM and DM have two
steps: in the first step, they analyze request patterns and find optimal state transition
probabilities; in the second step, they control the power states of a device. The first
step is performed off-line so they must have prior knowledge about request patterns.

SM improves DM by using continuous-time request arrival model and adopting a

CHAPTER 3. IMPLEMENTING POLICIES 90

better overhead model. Other policies do not need to analyze requests in advance.
For example, NS analyzes request characteristics on-line in the sliding window; con-

sequently, this method is more robust when request patterns change.

3.4.9 Limitation of Driver-Based Policies

The policies studied in this chapter require only information about request arrival.
In order to save more power, power managers need to incorporate more information.
The next chapter will discuss how to use process information to predict idle periods

more accurately.

3.5 Chapter Summary

This chapter presents a framework to implement power-management policies as filter
drivers in Microsoft Windows. We used filter drivers to implement various policies.
These policies observe request arrival and determine the power states of the device.
We quantitatively compare the power saving and performance impact of these policies

and point out their advantages and limitations.

Chapter 4
Process-Based Policies

A recent trend in power management is to provide higher-level information to power
managers, for example, bringing the awareness of power consumption to application
programs [26] [51]. Some methods modify application programs to trade off quality
of service for power [27]. The previous chapter showed how to perform power man-
agement in a device driver; this is the bottom layer in an operating system, as shown
in Figure 3.1. Alternatively, power management can be implemented at a higher
layer. At a higher layer, the power manager is closer to application programs and can
obtain more information to predict the lengths of idle periods. This chapter explains

how to incorporate process information to improve power management.

4.1 Processes

When a program executes, a process is created. This process occupies memory and
takes CPU time; it may also generate IO requests. A process is an instantiation of a
program. Figure 4.1 shows the states of a process [72]. It is created, runs, and finally
terminates. Most operating systems support multiprogramming: many processes can
execute concurrently and share resources. Two processes are concurrent if one starts
before the other terminates; namely, their execution times overlap. When a process
is alive (between its creation and termination), operating systems manage when it

occupies a processor, how much memory it possesses, which files it opens, and which

o1

CHAPTER 4. PROCESS-BASED POLICIES 52

«—
Sé:_hedtulre]r
ispatc
1O or evm Aor even
completion wait

Figure 4.1: process states

pC; a Process
d; a device

u; utilization of d; by all processes
¢; CPU utilization by process pc;
tbr time between requests

Table 4.1: symbols and their meanings in this chapter

hardware devices it uses. OS kernel has the information about process execution and
request generation; such additional information improves the prediction accuracy of

power managers.

4.2 Estimating Device Utilization

Because a process can generate requests when it is running, the relationship between
a process and a device can be estimated by two factors: (1) how often the process
generates requests when it is running (2) how often the process runs. They are
represented by the device utilization and processor utilization. We use u; ; to indicate
how often process pc; uses device d; and c¢; as how often this process runs. The range
of 7 is the number of devices; this is determined by system configuration. The range of
j is the number of processes currently under consideration; it is changed at run time
due to process creation and termination. All quantities are computed at run time

without any modification in application programs. Because it is difficult to model

CHAPTER 4. PROCESS-BASED POLICIES 33

requests

T
1 B PRI

time when pgis running

| - i

time when pgis running

Figure 4.2: time between requests of two processes

request generations mathematically, we use heuristics to estimate device utilization
based on per-process information. We will use examples to explain why the heuristics

are robust in different scenarios.

4.2.1 Device Utilization

Some processes are “CPU-burst”, using CPU mostly; some processes are “IO-burst”,
using 10 devices mostly [72]. Some other processes change between CPU-burst and
IO-burst. We explain how to estimate device utilization for either CPU-burst or 10-
burst processes; then we explain how to handle processes that change between two
kinds of bursts. The device utilization by a process, u; j, is computed as the reciprocal

of time between requests, tbr.

Example 1 Figure 4.2 shows an example of two processes. The first process is 10-
burst and generates many requests while it is running; its tbr is shorter and its device
utilization is higher. In contrast, the second process is CPU-burst; it rarely generates
requests and its tbr s larger.

Different programs have distinct request patterns. For example, o file transfer
program (£tp) creates bursty 10 requests on a hard disk while a text editor (such as
emacs) creates scattered requests. In one of our measurements, the average thr for
ftp on a hard disk is much shorter than one second; the average tbr for emacs s

approzimately 29 seconds. &

There are various ways to use tbr for estimating u; ;, for example using the tbr

between the last two requests or using the running average of the tbr’s among all

CHAPTER 4. PROCESS-BASED POLICIES 54

computation |disk 10

tO tl t2 t3 t4 fime

Figure 4.3: a process with four phases

requests. The former considers only one tbr while the latter consider all tbr’s; neither
is appropriate. Using only the last tbr may make u;; change quickly and possibly
unstable; using the running average causes u;; to update too slowly when the run-
time behavior of a process changes. We use discounted average as a balance between
these two methods. Discounted average puts more weight on the latest tbr but also
considers previous tbr’s. Suppose n requests have been generated by this process and
tbr,, is the estimated time between requests after these n requests and tbr is the latest
time between requests (between the (n — 1)™ and the n'* requests). We compute u; ;

by this formula:

thrn =a-thr + (1 —a) - thrp—
(4.1)

1

uivj = tbry,

Next, we explain how to estimate device utilization if a process changes from 10-
burst to CPU-burst. When a process changes from IO-burst to CPU-burst, its device
utilization is overestimated during the CPU-burst period. This can be illustrated in

the following example.

Example 2 Consider an example of a spreadsheet program with four stages illus-
trated in Figure 4.8. It reads data from a hard disk (10-burst during ty to t1), gets
user inputs, computes the results (CPU-burst during ta to t3), and writes the results
back to the disk (10-burst during t3 to ts). Since updating thr’s is triggered by requests,

the device utilization is overestimated during t; to t3 because tbr is not updated. &

The above example suggests the need to adjust the estimation of device utilization

when the process changes from IO-burst to CPU-burst. We define /; ; as the time since

CHAPTER 4. PROCESS-BASED POLICIES 5%)

process pc; generated the last request for device d;. The adjusted estimation should
be the same as u; ; when [; ; is small; the estimation should be zero when [; ; is large.
This “small” and “large” are relative to the parameters of this device. We choose the

break-even time of the device as the reference and use an adjustment function as

I

Y

ai,j =e tbe,i (42)

When a process changes from IO-burst to CPU-burst, /; ; is large and a;; < 1.
When a process changes from CPU-burst to IO-burst, the utilization estimation in
(4.1) is not adjusted because /; ; is small and a; ; &= 1. After the adjustment, Equation

4.1 is replaced by the new utilization estimation:

Wij = Uij X Qi (4.3)

4.2.2 Processor Utilization

While w; ; considers the interaction between a device and a process, it ignores other
processes. A process may generate many requests while it is running. However,
this process may rarely execute because, for example, it has a low priority or it is
triggered by infrequent events. From the device’s point of view, this process rarely
generates requests. This effect is considered by including the processor utilization of
the process.

Processor utilization of process pc; is represented by c;. It is the percentage of
CPU time occupied by this process in a sliding window because discounted average
does not reflect processor utilization. Discounted average underestimates processor
utilization for an IO-bounded process. When a process is IO-bounded, it uses CPU
only momentarily each time it is selected by the process scheduler. While w; ; correctly
indicates that this process has short tbr and high utilization on this device, the same
method does not indicate how often and how long this process executes. Consequently,

we use the percentage of CPU spent on this process to compute c;.

CHAPTER 4. PROCESS-BASED POLICIES 96

requests

time

Figure 4.4: three examples of device utilization

C PUTime(pc;)
> CPUTime(pc;)

all process pc;

Cj =

(4.4)

This formula uses a sliding window; only processes running in this window are
considered. The window size should be large enough to include most processes; on
the other hand, it should be sufficiently small to quickly reflect changes in process
behavior. Based on experimental data, we choose one minute as a balance of the two

requirements.

4.2.3 Aggregate Device Utilization

The aggregate utilization for device d; is u;; it can be computed as the summation of

device utilization and processor utilization from all processes:
U; = E Wi 5 X Cj (45)
all process pc;

Example 3 Figure 4.4 shows three examples to compute the device utilization. In the

first example, only process pcy is running; it generates requests every t. In the second

CHAPTER 4. PROCESS-BASED POLICIES a7

example, two processes, pc; and pce, are running; each generates requests every t.
In the third example, only pc, generates request. The time between requests for each
process in the three examples s t. In the first example, ¢, is one; in the second and
third example, ¢, = co = 0.5. The aggregate utilization for each example is % -1 = %,
% -0.5 + % -0.5 = %, and % - 0.5 = 2% respectively. This reflects accurately how often
the device receives a request.

4.2.4 Shutdown Condition

A device is shut down when its aggregate utilization is small. Since #j; is the min-
imum length of an idle period to save power of device d;, the shutdown condition is

determined based on #. ;. The shutdown condition is

U; <

4.6
tpe,i (4.6)

where k is the “aggressiveness factor”. If k£ is one, a device is shutdown when

1
tbe,i ’

longer than %, ;. When k is smaller than one, the power manager is “conservative”

the utilization is smaller than or the time between requests from all processes is
because it shuts down the device when the time between requests is longer than %, ;.
This may lose opportunities to save power. In contrast, when & is larger than one, the
power manager is “aggressive” because it “takes chances” to save power by shutting
down the device even when the time between requests is shorter than #.;. When k
is too large, however, the power manager shuts down the device too often. State-
transition delays can significantly degrade performance; furthermore, state-transition
energy may make the average power actually higher. Hence, we suggest a k value
equal to or slightly larger than one.

Emphasis should be stressed that our approach is fundamentally different from
previous policies that are based on the single-requester model; they do not consider
how requests are generated. Our method uses high-level (software) information by

distinguishing individual processes.

CHAPTER 4. PROCESS-BASED POLICIES 58

4.3 Experiments

We modified the Linux kernel and device drivers to evaluate this new approach on
two IO devices: a hard disk and a network card. The detail of our experimental setup

is available in Appendix A.1.

4.3.1 Setting Power States

In our implementation, the operating system controls the power states of IO devices
using PCMCIA interfaces. PCMCIA has suspend and resume commands to control
devices. These commands can shut down and wake up any PCMICA devices. When a
device is suspended, its power consumption is virtually zero. We modified the device

drivers so that they exported the commands to the power manager inside the kernel.

4.3.2 Workloads

Two types of workloads are considered. The first is a trace of user activities by
recording idle periods longer than two seconds. The trace is then replayed while a
policy is running. The second workload uses probability models for transition from
idleness to busyness. In [78], the authors discover that Pareto distributions closely
approximate the probability that a device changes from idleness to busyness. A
Pareto distribution is expressed by its cumulative function: 1 — at=#, where ¢ is time
and « and (3 are constants. We use 0.7/sec for a and 0.5 for 3 because they reside
in the range presented in [78]. In addition to Pareto distributions, we also consider
uniform distributions for comparison. The range of the uniform distribution is zero
to ten minutes. There are up to six requesters at any time. A requester may generate
three types of requests: ping for the network card, fput for the hard disk, and ftp
for both devices. After a requester generates a request, it has 10% probability to
terminate. Once a requester terminates, another requester is created two minutes

later. Each workload runs for two hours.

CHAPTER 4. PROCESS-BASED POLICIES 39

4.3.3 Policy Comparison
We compared out methods with four other policies:
1. no power management
2. three-minute timeout policy
3. 2-competitive policy [45]
4. exponential average policy [41]

5. process-based policy (presented in this chapter)

We compare them by five criteria, including power and performance. Power is
determined by the time in the working state and the number of state transitions.

Performance is affected by the time spent during state transitions.

1. p: average power, unit: Watt. The measurements include the energy for serving
requests; therefore, p could be higher than p,,. Including the power for serving
requests provides a clearer comparison when we consider the effect on battery

lives in portable systems.
2. 4, average time in the sleeping state for each shutdown, unit: second
3. t;: total time during state transitions, unit: second
4. ngq: number of shutdowns

5. Nyq: number of wrong shutdowns.

It is desirable to have low power (p), overhead (t; and ngq), low error rate (nyq),

and long sleeping time (%s,).

CHAPTER 4. PROCESS-BASED POLICIES

workload policy p it t Tsd Tawd
1 091 0 - - -

0.89 44 53 5 0
1 user 0.58 68 435 41 19
trace 074 19 774 73 42
0.50 42 647 61 17
090 0 - - -
0.88 16 74 7 4
2 Pareto 0.57 43 721 68 25

0.51 28 1113 105 30
045 41 954 90 11
084 0 -
0.81 46 106 10 2
042 80 551 52)
044 45 837 79 17
039 88 530 50 4

2 uniform

U W N O W N O W N

Table 4.2: power and performance of a 2.5” hard disk

workload policy p tes bt Ned Nud

1 077 0 - - -

0.58 352 14 5 0

1 user 0.26 93 149 54 8
trace 0.57 17 262 95 21

0.27 136 94 34 1

077 0 - - -

0.77 24 19 7 0
2 Pareto 043 40 283 103 12

042 14 605 220 46
041 66 157 &7 7
0.76 0 - - -
0.73 89 11 4 0
036 45 206 75 0
043 16 497 181 29
0.35 46 190 69 6

2 uniform

U W N R OU R WN PO W

Table 4.3: power and performance for a network card

CHAPTER 4. PROCESS-BASED POLICIES 61

O workload 1 @ workload 2 (Pareto) B workload 2 (uniform)

60%

g 45% —
< |
§ 30% —
e}
(9]
s 15% _'
kY]
€
"] =
2 3 4 5
policy

O workload 1 @ workload 2 (Pareto) m workload 2 (uniform)

25%

20%

15%

10%

misprediction rate

5%

0% : : L

policy

Figure 4.5: misprediction rates, top: hard disk, bottom: network card

4.3.4 Power Saving and Performance Impact

Tables 4.2 and 4.3 compare power and performance of different policies; several im-
portant facts can be observed.

If a policy saves more power (small p), it usually has more shutdowns (large 7n4);
the device spends more time on state transition (large ¢;). The misprediction rate
(%) is higher for the disk because it has a longer break-even time. The timeout policy
(policy 2) has very low misprediction rates in the network card because it rarely shuts
down the device (small ny). Even though the misprediction rate is low, the overall
power is high. The 2-competitive method (policy 3) has comparable power saving
with our method (policy 5) for the network card. However, the 2-competitive policy
has higher misprediction rates. Even though power saving depends on workloads and
devices, our method consistently achieves nearly 50% power saving for both devices
on all workloads. Other policies have large variations in their power saving. For

example, policy 4 saves 20% to 48% power.

CHAPTER 4. PROCESS-BASED POLICIES

power and overhead

power and overhead

300%

200%

100% -+

0%

300%

200% -

100% -+

0%

O power consumption @ transition time

2 3 4 5
policy

O power consumption @ transition time

2 3 4 5
policy

62

Figure 4.6: power and overhead for workload 1, hard disk (top) and network card

(bottom)

CHAPTER 4. PROCESS-BASED POLICIES 63

Figures 4.6 is the power (p) and transition time (¢;) of different policies; shorter
bars (less power and transition overhead) are preferred. This figure is normalized

related to our method.

4.3.5 Parameter Setting

Three parameters affect power and performance: discount factor a in Equation (4.1),
window size in Equation (4.4), and aggressiveness k in Equation (4.6). In general,
if a power manager responds to a potentially long idle period more quickly, it may
save more power. Meanwhile, it can cause more shutdowns and degrade performance
more seriously. Consequently, these parameters trade off power with performance. A

power manager responds more quickly under the following conditions:

e large a. When a is large, more weight is put on the latest tbr and u; ; changes

more quickly.

e small window size. When the window is smaller, the denominator is smaller

and c¢; changes more quickly.

e large k. When £ is large, the power manager shuts down a device quickly when

its utilization drops.

Our experiments show that when a increases from 0.1 to 0.9, average power reduces
by nearly 17%; however, the number of shutdowns increases by 20%. When the
window size decreases from sixty seconds to ten seconds, power reduces by 18% and
the number of shutdowns increases by 29%. When k increases from 0.5 to 1, power
reduces by 17% and the number of shutdowns increases by 21%. When k increases
from 0.5 to 2, the percentage of wrong shutdowns increases by more than 25%. All
measurements are conducted on the hard disk for the second workload with Pareto
distributions. We chose 0.5 for a, one minute for the window size, and 1 for £ in

generating Tables 4.2 and 4.3.

CHAPTER 4. PROCESS-BASED POLICIES 64

4.4 Chapter Summary

This chapter proposes a new approach for power management by exploiting the in-
formation available from operating system kernel. It distinguishes requesters as indi-
vidual processes and considers the processor utilization of each process for estimating
device utilization. Experimental results demonstrate that, with the additional infor-

mation, this method is more effective in power reduction with better performance.

Chapter 5
Low-Power Scheduling

Process schedulers determine when a process executes and directly affects the lengths
of idle periods. In this chapter, we will demonstrate how process scheduling can

facilitate power management.

5.1 Motivating Example

5.1.1 Concept of Jobs

Each process can be divided into smaller units, called jobs [17]. In a computer,
processes are well-defined by the operating system [75]. Unlike “process”, there is
no widely accepted definition for “job”. In this thesis, a job is defined as a unit to

finish a specific task and its starting time can be specified by the program.

Example 1 When a user executes £tp, a process is created to execute this program.
Downloading o file 1s a job. Since this process may download multiple files, £tp can
have more than one jobs. Another example is an email reader that downloads email

from a server. Downloading is a job because it can be scheduled to occur periodically.

¢

65

CHAPTER 5. LOW-POWER SCHEDULING 66

5.1.2 Jobs Created by Timers

In Section 1.3.4, we explain that requests can be created by timers. If a request is
created by a timer, its arrival time is known in advance. Namely, we can predict
precisely when the device will become busy again and determine whether to shut
down the device for power management.

In UNIX, creating a job by a timer needs three steps: (1) calling setitimer to
create a timer (2) registering a callback function for the SIGALRM signal (3) executing
the callback function when this signal is issued. The task performed by the callback
function is considered as a job because it is scheduled by the timer. Requests gener-
ated by this job is predictable. If a power manager knows when a job executes and
which devices are used by this job, the additional information helps the manager save

power more effectively.

5.1.3 Precedence and Timing Constraints

Consider three independent processes pci, pce, and pecs. Suppose each process has
three jobs: pc; has jobs j;1, ji2, and j; 5 here ¢ € [1, 3]. There are totally nine jobs to
schedule.

Because j;; and j; o belong to the same process, j;; must execute before j; o.
Similarly, jo,; must execute before jo 3. These orders are called precedence constraints
[17]. Precedence constraints are expressed as directed acyclic graphs (DAG) G = (J,
&) where J is a subset of jobs and £ are directed edges connecting jobs. If two jobs,
Jz and jy,, are connected by an edge (j,, j,) € £, then j, (predecessor) must execute
before j, (successor). The precedence graph of the nine jobs is shown in Figure 5.1.

Another type of constraints is timing constraints. The timing constraint of a job
is a deadline; the job has to finish before the deadline. Deadlines can be classified into
three categories: firm, soft, and on-time [17]. Figure 5.2 illustrates the differences
between them. Suppose there is a “value” if a job finishes before the deadline. For a
firm deadline, the value drops sharply if the job finishes after the deadline. Examples
of firm deadlines are flight control systems; finishing a job after the deadline can lead

to severe damages or even loss of lives. For a soft deadline, the value decreases more

CHAPTER 5. LOW-POWER SCHEDULING 67

pe; Guo—GiD—Grp)
pe, o) — o — o)
pes Ga—Ga— G

Figure 5.1: precedence of three independent processes

value

firm /T soft

! \
! \

on-time /' | \

deadline time

Figure 5.2: three types of deadlines

smoothly after the deadline. If a job has an on-time constraint, it should finish near
the deadline, neither too early nor too late. As explained earlier, a timer is used to
create a request in the future. When the timer expires, a callback function in invoked.

A timer is an “on-time” constraint; it should expire precisely at the specified time.

5.1.4 Scheduling Jobs for Power Management

Suppose only three jobs, ji i, ji,2, and jo3 need a specific device. For simplicity, we
assume that it takes £ to execute each job. Figure 5.3 shows two possible execution
orders. A black rectangle indicates that this job needs the device. One major differ-
ence between the two schedules is the lengths of idle periods. In the first schedule,
the device is idle three times, each of length 2¢; in the the second schedule, the device
is idle for 6. The idle period in the second schedule is “continuous and long”. If
the break-even time of this device is between 2¢{ and 6%, power management saves
power only in the second schedule. Even if the break-even time is shorter than 2¢, the

second schedule is still preferred because state-transition overhead occurs only once.

CHAPTER 5. LOW-POWER SCHEDULING 68

! J13

PG, i2a J22

PG Ja1 I32 Ia3 -
de -t idle idle time

PC NEREEEP I3

PG Jo1 | J22

PG Ja1 I3z J33 -
| idle tir,ne

Figure 5.3: two schedules of three independent processes

5.1.5 Scheduling in Inactive Systems

In personal computers, some future IO requests are predictable. For example, text
editors (such as Word) often have “autosavers” that save the contents periodically. An
email reader (such as Netscape) retrieves email from a mail server and store these
mails on a local hard disk. Both Word and Netscape generate periodic requests for
a local hard disk. If their requests are not arranged properly, the disk has more and
shorter idle periods. If the requests generated by these two programs are arranged so
they arrive at approximately the same time, the disk can remain idle and sleep for

longer durations.

5.2 Off-line Scheduling

Our method is based on on-line scheduling. Before explaining our method, we start
with off-line scheduling as the background. Off-line scheduling is performed before
the execution of any job; it is possible if complete knowledge of all jobs is available
in advance. In contrast, on-line scheduling is performed at run time. When the
behavior of a process changes or new jobs are created according to run-time conditions,
scheduling must be performed on-line. In particular, interactive systems must use on-

line scheduling because it is impossible to predict user behavior. We analyze off-line

CHAPTER 5. LOW-POWER SCHEDULING 69

e
PG,
3 —

didle “djidle both idle

T
PCS
pe; e

" djidle d, idle "both idle
E need d : need d need neither

Figure 5.4: three processes using two devices

scheduling first because it sets the basis for understanding on-line scheduling. When
there are multiple devices, even off-line scheduling is a complex problem. This can

be best illustrated by an example.

Example 2 Consider three independent processes (pc, pce, and pcs) using two de-
vices (dy and dy). Each process has three jobs; each job may use di, ds, both, or
neither. The job-device relationship is expressed by a required device set (RDS).
Suppose the RDS of each job is expressed in Table 5.1 and each job takes t to exe-
cute. Figure 5.4 shows two schedules of these nine jobs. In the first schedule, dy is
wdle for 5t first, busy for 2t, and idle again for another 2t; in the second schedule,
do s tdle for Tt continuously. In contrast, d, is idle continuously for 4t in the first
schedule. In the second schedule, this idle period is divided into two periods, each of
2t. It is unclear which schedule saves more power. In fact, it depends on the hardware
parameters. For exzample, the first schedule is better if (tpe1, toe2) = (3t, 8t) because
di can sleep and save power. On the other hand, the second schedule is better if (tpe,

tre,2) = (5t, 6t) because do can sleep and save power. $

CHAPTER 5. LOW-POWER SCHEDULING 70

1 J1,2 J1,3 J2.1 J2,2 J2,3 31 J3,2 733

{di} {di} {di} {di} {di} ¢ {do} {do} ¢

Table 5.1: devices required by each job

5.2.1 Problem Formulation

Consider a set of n jobs: J = {j1, jo, .- -, jn} O a single-processor system with m
devices: D = {di, da, ..., dy,}. It takes ex; to execute job j;. Jobs share devices
but no two jobs can use the same device simultaneously. Each job may use some of
these devices. We use 7, for such relationship: if job j, uses device dj, 7,4 is one;
otherwise, it is zero. A schedule, 8§ = (Js,, Jsy> -+ -» Js,), 18 @ linear order of these
jobs; js,,, executes immediately after j,, for ¢ € [1,n — 1]. A schedule has to satisfy
all constraints (timing and precedence). Low-energy scheduling is the problem of
finding a schedule to minimize energy through power management. We define ¢; as
the time when j,, starts execution; js, executes during [¢;, £;11). The total energy of
one schedule is the sum of the energy of all devices: d;, + = 1,2,... ,m. The energy

of device dy, is divided into three parts:

1. epysy When dy is busy
2. €sieepry When dj, is idle and sleeping

3. €idler When dy, is idle but remain in the working state.

We use p,, ; as the power consumption of device dj when it is in the working state;
Ds i 1s the power when dj, is sleeping. To compute epysy , We have to find the time
when dy, is busy. It is busy if j,, executes and r,, ; = 1. Since j,, executes during [¢;,

tit1), di is busy during [t;, t;11).

Chusy,k = Z Pwk * (tit1 — ti) (5.1)

i€[1,n]
such that rg, p=1

CHAPTER 5. LOW-POWER SCHEDULING 71

Jx ajob, one process has one or many (possibly infinite) jobs
ex; execution time of job j;
Tey jOb jo uses device dy
€0 state-transition energy overhead of device d;
D aset of devices being power managed
J aset of jobs
S a schedule of jobs
RDS required device set

Table 5.2: symbols and their meanings in this chapter

Then, we find the time when dj is idle. An idle period of dj is a period when it
is not used but it is used before and after this period. In other words, an idle period
of dj, is defined as

e a sequence of jobs, j,,, Jsyi1s ---1 Js., that do not use di; namely, r, , =

T5w+17k = ..., = Tsw,k = 0
e dj, is used before this sequence: r,,_, =1

e d; is used after this sequence: r,,,, ;=1

where w — 1, w, ..., x + 1, are between 1 and n.

Let’s now compute €geep z. Suppose idley is an idle period of dy; the length of this
period is | idley | (| idle |= tg11 — tw). When | idley | is larger than tye s, di sleeps
to save power. In order to compute €gyep, We find all idle periods that are longer
than ty. . Let ZSy be the set of idle periods that are longer than ¢y, ;: ZSy, = { idley,
: | idleg |> toer }. The energy egeepr is the energy during these long idle periods.

Because dj, changes power states, €seepr includes the state-transition energy, e .

€sleep,k = Z (ps,k' | (] | +eo,k) (52)
is€ISy

where | is | is the length of the corresponding idle period.

CHAPTER 5. LOW-POWER SCHEDULING 72

device py, ps to €, Tpe
di 5 1 2t 22t b5t
da 3 2 t 8t 6t

Table 5.3: device parameters for Figure 5.4

Finally, we consider e;q for idle periods shorter than the break-even time. The
device stays in the working state even though it is idle. Let ZW, be the set of these
idle periods: ZWy, = { idley, : | idley |< toes }-

Cilek = Y, Pk | iw | (5.3)

TweTIWy

where | jw | is the length of the corresponding idle period.

The energy of device dj, 1S €pusy,k + €sicep,k + €idiery and the energy of all devices is

m

e= Zebusy,k + €sieep,k T Cidiek (5.4)

k=1

Example 3 Let’s revisit the two schedules in Figure 5.4. Suppose the parameters of
these two devices are shown in Table 5.3. We can compute the energy for the two
schedules. It is easier to computer the energy for the first schedule because all idle
periods of each device are shorter than the corresponding break-even time; neither
device enters the sleeping state. The energy is (5 + 3) - 9t = 72t. For the second
schedule, the energy for dy is 5 -9t = 45t; the energy for do is 3 - 2t = 6t for the
first 2t. Since the idle period is longer than the break-even time of do, it enters the
sleeping state. The energy is e, o+ s 2 (idle time —t,2) = 8t +2- (7t —t) = 20t. The
total energy is 45t + 6t + 20t = 714, this is less than the energy of the first schedule.

Therefore, the second schedule is more energy-efficient.

Finding a schedule with the minimum power is an NP-complete problem even

without any timing or precedence constraints; its proof is available in Appendix B.

CHAPTER 5. LOW-POWER SCHEDULING 73

5.3 On-Line Scheduling

Off-line scheduling is NP-complete even with no timing or precedence constraints.
Since our target is interactive systems, on-line scheduling is necessary. This section

presents heuristics for low-power scheduling on interactive systems.

5.3.1 Scheduling in Linux

On-line scheduling algorithms are often “priority-based”; at any moment, the sched-
uler selects a ready job with the highest priority. A ready job can start execution
immediately; a job is ready after all its predecessors have completed. Priorities can
be determined in different ways. For example, fixed-priority scheduling statically as-
signs priorities to jobs based on their urgency. Figure 5.5 shows the flow of a Linux
scheduler [9]. When the scheduler is invoked, it first checks whether there is a job
in a task queue. A task queue is a method to inform OS kernel that a job is ready
to execute. For instance, a device driver can put a job into a task queue for data
retrieval after the device is ready to transfer data. Additionally, interrupts are used
to inform OS of new events. Because interrupts can “interrupt” a running job, they
are used for urgent events. If there is no interrupt, the scheduler checks whether any
timer expires. A timer is used to execute a job at a specific time. After checking task
queues, interrupts, and timers, the scheduler chooses a user process to execute. If no
user process is ready to execute, the schedule selects a special low-priority process
called “idle” process; this process is essentially an infinite loop.

We extend the Linux scheduler for power management. In order to maintain inter-
activity and reduce the impact on existing programs, power reduction is considered
after the steps in Figure 5.5. The extension is divided into two parts: (1) it wakes
up a sleeping device before scheduling a job that requires this device. (2) it arranges

execution orders to facilitate power management.

CHAPTER 5. LOW-POWER SCHEDULING 74

check task queue

v

handle interrupt

\’

issue timer

v
find highest priority

Figure 5.5: steps of a Linux scheduler

5.3.2 Predictive Wakeup

If a job generates requests for a sleeping device, this job has to wait for the wakeup
delay. Ideally, the device should wake up before the job starts execution to eliminate
waiting; this is called “predictive wakeup” [84]. A device should wake up just before
requests arrive. Waking up too early wastes energy; waking up too late does not
eliminate waiting. Traditional methods for predictive wakeup have low prediction
accuracy because they adopt the single-requester model and mix requests from all
processes. Our experiments show that the method proposed in [41] actually increase
energy due to low prediction accuracy.

In order to perform predictive wakeup, the scheduler has to know which devices
are used by a job. This can be achieved in two ways. The first is to predict using
the history of a process. If a process used a device during its last execution, the
scheduler predicts that the process will use the same device. The advantage is that
no user program needs to be modified; the disadvantage is that the prediction may be
wrong, especially when a process changes its behavior from computation-intensive to
IO-intensive or vice versa. An alternative is to provide an interface for processes to
specify their device requirements. The advantage is that only specified devices wake
up; no device is woken up if there is no request. The disadvantage is that programs
need to be modified to specify their device requirements.

We take the second approach because it provides precise information about de-

vice requirements. A system call is added so that programmers can provide explicit

CHAPTER 5. LOW-POWER SCHEDULING 75

PredictiveWakeup (J := jobs to schedule)
begin
sort J by their timer values;
j = a job in J with the earliest timer;
for each dj in RDS(j)
if (dy, is sleeping) and
(timer(j) - now < tyuk)
wake up dj;
end

Figure 5.6: predictive wakeup

information for predictive wakeup [51]. We propose a method to augment the timer
interface for predictive wakeup. When a program creates a timer, it can also specify

which device will be used when the timer expires.

RequireDevice(device, time, callback)
device: hardware device
time: when to start

callback: a callback function

Example 4 In Section 5.1.5, an editor saves contents onto a hard disk every five
minutes. This can be specified by RequireDevice (HardDisk, five minutes, save
file). A mail reader needs both the hard disk and the network card; therefore,
Netscape issues two system calls: RequireDevice (HardDisk, five minutes, download)

and RequireDevice (NetworkCard, five minutes, download). {

If the timer expires at tm and this job uses device dg, then our scheduler informs
the power manager at ¢m — ., to check the power state of d. If dj, is sleeping, it
is woken up so that this job does not have to wait for the wakeup delay. If there are
multiple jobs, the scheduler finds the job with the earliest timer and wakes up devices
needed by this job. Figure 5.6 shows a pseudocode of predictive wakeup.

If a program does not specify which device are used, the device will wake up “on

demand”: only when a request actually arrives. This increases the response time of

CHAPTER 5. LOW-POWER SCHEDULING 76

value
L] flexible
i i timer
toletance
start time time

Figure 5.7: flexible timer

the request. Predictive wakeup improves performance but does not save power. The

real benefit will be clearer after we explain how to schedule jobs in Section 5.3.4.

5.3.3 Flexible Timers

Some jobs have the flexibility to start execution before or after their timer expires
(such as the situation in 5.1.5). We enhance the previous system call so that a program

can specify its flexibility:

RequireDevice(device, tolerance, time, callback)
device: hardware device

tolerance: acceptable variation

time: when to start

callback: a callback function

The concept of flexible is illustrated by modifying Figure 5.2. In Figure 5.7, the
original (i.e. inflexible) timer is shown by the solid line; its value drops quickly before
and after the specified start time. In contrast, the flexible timer uses the dashed line.
It is acceptable to execute the timer’s callback function earlier or later, as long as the

difference is less than the tolerance.

5.3.4 Scheduling Jobs for Power Reduction

The callback function of a timer creates a job; RequireDevice also specifies which

devices will be used. Together, they specify a set of jobs and the required devices. The

CHAPTER 5. LOW-POWER SCHEDULING 7

™™™
U

e

time

Figure 5.8: group jobs according to their device requirements

system call RequireDevice is further enhance to include an estimated execution time

of a job. Based on this information, we can schedule the jobs for power management.

RequireDevice(device, execution, tolerance, time, callback)
device: hardware device

execution: execution time

tolerance: acceptable variation

time: when to start

callback: a callback function
We use an example to convey the basic idea before explaining our method.

Example 5 Figure 5.8 is an example of scheduling for power management on two
devices. The meaning of each rectangle is explained earlier in Figure 5.4. At the top
of Figure 5.8, the jobs are arranged by the order of their timers. The idle periods are
short and scattered. At the bottom of the figure, the execution order is rearranged to

make idle periods continuous and long.

Figure 5.9 outlines the heuristic of our low-power scheduler. First, it groups jobs
according to their device requirements and calculates the length of each group; jobs
in the same group execute together. Suppose there are ¢ groups: Ji, Jo, ..., Jq-
The devices used by jobs in J; (i € [1,¢]) is represented as RDS(J;). The length of

a group, say J;, is the sum of execution time of all jobs in this group:

CHAPTER 5. LOW-POWER SCHEDULING 78

group jobs by their RDS

I}

calculate the lengths of groups

v

find a schedule of minimum-energy

J

execute jobs in a group
in their timer order

Figure 5.9: low-power scheduling

job Ju J2 Js Ja Js Je Jr Js Jo
RDS dy di di di di ¢ dy do ¢

Table 5.4: devices requirements for Example 6

| Jil= D ez (5.5)
Viz€T;

Here ex, is the execution time of j,. Let LPGS be a schedule of these groups:
LPGS = (Tsyy Tsgr -+-r Js,). Then, the scheduler computes the energy of this
schedule by treating a group of jobs as a single job and applying formulae (5.1) -
(5.4). For example, | J; | corresponds to the execution time of one job (t;4; — ;) in

(5.1); epusy, is calculated by

Chusy,k = Z Puw i+ | t7z | (56)

dyERDS(T;)

Energy egeep r and €;gex can be computed in a similar way. After computing the
energy of each schedule, the scheduler finds one schedule with the minimum energy.

Figure 5.10 shows a pseudocode of the scheduler.

Example 6 Consider nine jobs waiting for execution. The devices required by each

CHAPTER 5. LOW-POWER SCHEDULING 79

/* initialization */
LPGS := empty; /* low-power group schedule */
/* end of initialization */

...... /* the steps in Figure 5.5; extension starts below */
if (new jobs are created)
group jobs by their RDS’s;
calculate the length of each group;
/* find one schedule first */
S := one schedule of these groups;
eng := energy of S;
LPGS :=S;
/* check whether there are better schedule */
for each schedule of these groups
ethis := the energy of this schedule;
if (ethis < eng) /* a better schedule */
eng = ethis;
LPGS := this schedule;

Figure 5.10: scheduling jobs by their RDS groups

job is shown in Table 5.4. These nine jobs belong to three RDS’s: {d.}, {da2}, and ¢.
The first group, RDS, = {di}, has five jobs: {j1, j2, js, ja, js}. The second group,
RDS, = {ds}, has two jobs {j7, js}. The third group, RDSs = ¢, has two jobs:
{Js, jo}- Suppose the execution time of each job is t. The length of these groups are
5t, 2t, and 2t, respectively. Let’s assume that the devices have parameters shown in
Table 5.35.

There are six ways to schedule these three groups:
1. {RDS,, RDS,, RDS3},
2. {RDS,, RDS3, RDS,},
3. {RDS,y, RDS,, RDSs},
4. {RDS,, RDS;3, RDS:},

5. {RDS; RDS,, RDS,},

CHAPTER 5. LOW-POWER SCHEDULING 80

6. {RDS;, RDS,, RDS,}

Four schedules cause ds to be idle longer than its break-even time and save power.
They are schedules 3 to 6.

All possible RDS groups form a power set of the power-managed devices; this is
determined by the number of power-managed devices in the system, and is independent

of the number of jobs. In this example, there are at most four groups. {

Although it seems that Figure 5.10 requires large amount of computation to com-
pare all possible schedules, this does not happen in practice due to two reasons: (1)
The number of groups is small for a system with only a few power-managed 10O de-
vices. (2) The scheduler considers only ready jobs and there are small number of

ready jobs at each moment.

5.3.5 Meeting Timing Constraints

Because jobs are not executed strictly by their timer values, it is possible that a job
is executed after its timer expires. The scheduler has to guarantee the job executes
within the interval specified by the flexible timer RequireDevice. Suppose a job
is created by RequireDevice(, t., t;, ts,) where ., t;, and {, are the execution
time, tolerance, and starting time. The scheduler will start the job no later than
ts + 1 — L.

5.3.6 Handling Requests from Other Programs

The low-power scheduler does not change a request if it is not created by RequireDevice.
This is necessary to run all legacy programs. Such requests come from two types of
sources: from a program invoked by the user or from the original UNIX (inflexible)
timer. Sometimes, these requests wake up a sleeping device. When the power state

of a device changes, the scheduler reevaluates the energy of different schedules.

Example 7 Figure 5.11 is an example how the schedule changes. Suppose four jobs
are created by RequireDevice. At 10, both devices are sleeping and a preferred sched-

ule is shown at the top of the figure. At time t1, a request (enclosed by dotted circle)

CHAPTER 5. LOW-POWER SCHEDULING 81

|

{0 ﬂ time
- —
t1 ﬂ time

t2 time

Figure 5.11: group jobs according to their device requirements

arrives and it requires device do. If this request is not created by RequireDevice,
dy has to wake up immediately. At t2, after serving this request, do is still in the
working state. Because the power state of dy has changed, the original schedule is

now inferior. The scheduler changes the execution order as shown at the bottom of
the figure. &

As this example demonstrates, our method can still improve power management

even if there are requests from other programs.

5.4 Experiments

Recall the system layers in Figure 3.1: scheduling provides more information for power
management. We enhanced the power manager presented in 4.3 to include scheduling
information.

A workload is used for comparison; it generates periodic requests with timers. We
consider both fixed timers (created by setitimer) and flexible timers (created by
RequireDevice). There are six processes; three use setitimer and the other three

use RequireDevice. Timers expire between one to five minutes. The tolerance is

CHAPTER 5. LOW-POWER SCHEDULING 82

pOliCy Y4 lss 1y Nsd Thyd
1 088 0 - - -
087 0 0 0 0
045 105 392 37 13
0.64 14 1198 113 65
037 72 583 55 9
0.35 85 530 50 0
0.25 220 265 25 0

~I O O = W N

Table 5.5: power and performance of a 2.5” hard disk

one minute. In addition to the policies used in 4.3.3, we added two policies: (6)
process-based with predictive wakeup (7) process-based with scheduling.

Tables 5.5 and 5.6 compare the power and performance of these policies. Policy
6 does not change the time when requests are generated but it reduces misprediction
(sdy). Policy 7 changes the time when requests are generated and significantly reduces
power, up to 72% on the network card.

Figure 5.13 shows the distributions of idle periods with and without low-power
scheduling. Circles represent the lengths of idle periods without low-power scheduling;
squares represent the lengths with low-power scheduling. This figure shows that circles
are more widely spread. In particular, the circles show some “medium-length” idle
periods between 60 seconds to 180 seconds. In contrast, low-power scheduling makes
requests bursty and prevents these medium-length idle periods. Idle periods are either

very short (the far left outside this figure) or very long (longer than 180 seconds);

pOliCy Y4 lss 1y Nsg Thyd
1 0.76 0 - - -
0.76 0 0 0 0
031 33 302 110 9
039 41 225 82 22
0.30 104 96 35
0.29 80 140 51
0.19 228 73 25

~N O O = W N
O = W

Table 5.6: power and performance for a network card

CHAPTER 5. LOW-POWER SCHEDULING 83

O power consumption @ transition time

500%

400%

300% -

200% | __
- { ul B
0% =

policy

power and overhead

O power consumption @ transition time

500%

400% 1

300% -+ 1

200% -+ —

0% T T)

1 2 3 4 5 6 7
policy

power and overhead

Figure 5.12: power and overhead, hard disk (top) and network card (bottom)

power managers use long idle periods to save power.

When power management is applied to a notebook computer, the battery life in-
creases. Figure 5.14 compares the battery capacity. Power management increases the
battery lifetime by approximately four minutes; this is 8.5% of the original lifetime.
The increase is limited due to a large baseline power consumption of the rest of the

computer, including the processor and other electronic components.

5.5 Chapter Summary

This chapter explains how process schedulers can collaborate with power managers.
Since schedulers determine when processes execute, schedulers control the durations
of idle periods. Schedulers cluster idle periods to make them continuous and long so
that power management is applicable. Combining power management with scheduling

requires additional information from application programs. We present a new system

CHAPTER 5. LOW-POWER SCHEDULING 84

40
é) original workload
30

] low-power scheduling

20

occurrence

10 60 110 160 210 260 310

idle time (sec)

Figure 5.13: Low-power scheduling reduces medium-length idle periods (60 to 180
seconds).

30% -

e
Smaon

20% -

.
.

Pttt S

10% +

battery capacity

without power management

0% T T)
40 45 50 55

operation time (min)

Figure 5.14: Power management increases the battery lifetime.

CHAPTER 5. LOW-POWER SCHEDULING 85

call that allows application programs to specify device requirements, the time these

devices are needed, and the acceptable variations of the actual starting time.

Chapter 6
Frequency Scaling on Processors

Previous chapters consider 10 devices with only two power states. This chapter
discusses managing processor power with multiple active states; different techniques
are required to manage multiple power states. The states are differentiated by their
performance and power. The processors have better performance when they consume
more power. Processors can slow down when their utilization is low even though these
processors are not idle. This is different from the shutdown techniques explained in
earlier chapters. When a device is shut down, it cannot serve any request. When a
processor is slowed down, it can still execute instructions at a lower speed. Instead
of predicting idleness, power managers estimate the utilization of processors. This
chapter focuses on reducing power consumption for “mixed workloads”: multimedia
applications that require constant output rates and sporadic jobs that need prompt
responses.

Section 2.3 explains how frequency scaling can reduce power consumption. Scaling
may have negative impact on timing-sensitive programs, for example, failing to meet
the output rate for a multimedia program. Scaling frequencies and voltages while
meeting timing constraints is an active research topic in recent years [5] [40] [47]
[55] [57] [56] [60] [64] [71] [77].

Our method divides multimedia programs into stages and inserts buffers between
them. Data buffering has three purposes: (1) to support constant output rates (2)

to allow frequency scaling for energy reduction (3) to shorten the response times of

86

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 87

D-E-E-E-O
Figure 6.1: Processing and displaying form a pipeline.

sporadic jobs.

This chapter constructs frequency-assignment graphs; each vertex represents the
current state of the buffers and the frequencies of the processor. We develop an
efficient graph-walk algorithm that assigns frequencies. In this graph, each vertex
represents the current state of the buffers, the processor frequencies, and how the
buffers are filled (or drained). We present an efficient method to compute optimal
solutions by graph walking. This method was implemented on a StrongARM-based
hand-held computer. Our experimental results show that inserting buffers can achieve

nearly optimal power saving with only a few discrete frequencies.

6.1 Buffer Insertion

6.1.1 Buffers in a Pipeline

An MPEG player can be divided into stages, such as decoding and displaying. These
stages form a pipeline. Let j;, and j; 4 be the jobs to process (i.e. decode) and to
display the ** frame. A frame has to be decoded before being displayed; this is
a precedence constraint: j;, — j;q4. If there is no additional storage between the
two stages, no frame can be processed before the previous frame is displayed. This
requires ji_i,4 — jip- Figure 6.1 is the precedence relationship for such a pipeline.

If there is additional storage space (buffers) between the two stages, a frame
can be processed even if the previous frame has not been displayed. Hence, j;_1 4
does not have to precede j;,. The precedence relationship is changed, as shown in
Figure 6.2. This figure assumes that the video data have to be processed sequentially;
consequently, job j; , precedes job j;i1,. Also, frames should be output sequentially
SO Jig — Jit1,4. After buffers are inserted between the stages, there are multiple

options to arrange the execution order of these jobs. For example, j2, can execute

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 88

‘_9‘ ‘_9‘
‘_9‘ ‘_é‘

Figure 6.2: Inserting buffers changes the precedence relationship.

before j 4.

6.1.2 Energy Reduction with Buffers

A MPEG player has to maintain a constant output rate: displaying a frame every
t unit of time; ¢ is called a period. For a movie with 30 frames per second, £ is 33
milliseconds. Figure 6.3 (a) shows this requirement: j; executes once every period.
If a processor’s frequency can be set to any value, it consumes the minimum energy
when the processor takes exactly ¢ to process and display one frame [43]. There is
no slack time as shown in Figure 6.3 (b).

However, if a processor has only finite frequencies and this optimal frequency is
unavailable, the processor has to run at a higher frequency. Since this frequency is
higher than necessary, the processor consumes more power; the processor is idle after
processing and displaying one frame as shown in Figure 6.3 (c). The processor cannot
enter a lower frequency because it will fail to provide the required output rate; Figure
6.3 (d) illustrates this situation.

One solution is to insert buffers between jobs so that the processor can process
more frames at a higher frequency while maintaining the same output rate. When
enough frames have been processed and stored in the buffers, the processor retrieves
processed frames from the buffer to maintain the output rate. Since the processor does
not have to process images, it can enter a lower frequency and still meet the output
rate requirement. Figure 6.4 depicts this approach. In this figure, the height means
the processor frequency. Four frames are processed in the first two and half periods;
then, the processor is scaled down to a lower frequency. Before the buffers become

empty, the processor enters the higher frequency and refills the buffers. Buffers are

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 89

SO 1 R 1 T

I [
t t t

(b) p I Ip i p Ja

(c) Ip m p m p m

] I I

@ gy | g |

"time

Figure 6.3: (a) constant output rate for display (b) scaling frequency to avoid slack
time (c) discrete frequencies cause idleness and waste energy (d) scale to a lower
frequency and miss the output rate

scale down frequency

jl,p jl,d j2,p j3,p jZ,d j4,p j3,d | jS‘p | j4,d |
T T | |
t t t t L

Figure 6.4: process more than one frame at the higher frequency then scale to the
lower frequency

used to reduce the power in pipelines [37] [15] [18], or to smoothen run-time varia-
tions [42]. Previous studies do not consider the advantages of buffers on processors

with finite frequencies.

6.1.3 Reducing Response Time

Other than reducing power, buffer insertion can also improve the performance for
sporadic jobs without disrupting other jobs. Imagine that a user moves the mouse
cursor and clicks one button at the end of the 12" period as shown in Figure 6.5.
This command can be divided into two jobs: j,; and j,o. The first job draws the
movement of the mouse cursor; the second job processes the command invoked by
the click.

Figure 6.5 shows two scenarios: with and without a buffer. In (a), no additional

frame is buffered; j, has to execute once every period. Consequently, only j.; can

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 90

sporadic jobs arrive
v

(a) """ j12,p j12,0 j13,p J13d

v time

Jiep |J12d J13d

T T time

Figure 6.5: (a) no buffer (b) buffer additional frames to reduce the response time of
a sporadic job

execute during the 13%" period; j,. o has to wait until the 14" period. In contrast, (b)
buffers four additional frames (ji5, executes at the 12" period); both j.; and j.o
can execute during the 13%* period. As a result, the user can see the response of this
command in the 13%* period in (b). Buffering reduces the response time of a sporadic

command.

6.1.4 Memory Requirements of Buffers

Even though buffering images requires additional memory, a typical computer has
enough memory to buffer multiple frames. For example, palm-size computers often
have more than 8MB memory. A frame of 240 x 160 pixels with 256 colors per pixel
requires 240 x 160 bytes, or 38KB. Four hundred kilobytes are enough to buffer ten

frames; this is only five percent of the available memory.

6.2 Related Work

Scaling techniques can be classified into two categories according to whether they con-
sider timing constraints. The first category does not guarantee meeting constraints.
In [82], the authors propose several methods that periodically estimate process uti-
lization and adjust the power states. Simulations of various techniques are presented
in [32] and [64]. In [77], the authors model the arrival of jobs as random processes.
While this approach can meet timing constraints statistically, it does not guarantee

to always meet the constraints.

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 91

The second category considers timing constraints. In [40], the authors use off-
line analysis to determine whether it is possible to meet hard deadlines and to assign
the power states. Linear programming methods are proposed in [43] [56] to find
optimal voltages / frequencies for processors with discrete power states while meeting
deadlines.

Some techniques have been implemented on real systems. In [5] [36] [65], the
authors use StrongARM-based systems to demonstrate the effectiveness of scaling
and point out some limitations in implementation.

Our work differs from existing approaches in the following ways
1. It assigns frequencies to processors that have finite power states.
2. Data buffers are inserted into the program that needs a constant output rate.

3. An efficient graph-based method is presented to assign frequencies for reducing

energy.
4. This method can handle workloads with very long time horizons.

5. The response times of sporadic jobs are shortened without affecting the output

rate.

6. It calculates the minimum buffer sizes to meet the timing constraints of sporadic

jobs.

6.3 Assumptions
We make the following assumptions to simplify the formulation of the problem.

e The processor has only discrete and finite frequencies.

e Data processing is sequential on a single processor; there is no forward data
dependence. For example, we do not consider B frames in MPEG. One example

of video without forward dependence is motion JPEG.

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 92

e The processor changes frequencies only at the beginning of a period of length .

e The total energy is determined by frequencies only; we will use formula (2.21) as
the goal to represent energy. We consider the average power for a given duration.
Since the integration of power over time is the energy, minimizing energy is
equivalent to minimizing power. We use energy and power interchangeably

unless it is necessary to distinguish them.

e The jobs in the multimedia program are atomic and their execution cannot cross

period boundaries.

e The computational work of a job is measured by the number of operations. One
operation takes one time unit at unit frequency. Hence, the execution time of

the same job increases linearly to the reciprocal of the frequency.
e The number of operations for a specific job is constant.
e Jobs can be scheduled at the highest frequency.

o It takes no time to start executing a jobs; there is no context switching overhead.

Buffers are not shared among jobs.

These assumptions may be removed as extensions of the work presented in this

chapter.

6.4 Analytical Model by Integer Programming

With the assumptions stated above, the power reduction problem can be modeled
as an nteger linear programming problem. For complete comparison, we show the
details of such modeling before transforming it into a graph walking problem in the
next section. This section derives an analytical model for energy minimization under
performance and resource constraints. The formulation becomes more general (and

more complex) in each subsection by considering additional factors.

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 93

6.4.1 Two Frequencies and Two Jobs

This section assumes (1) there are two jobs (2) the processor has only two frequencies
(3) it takes no time to change frequencies. We will remove these assumptions later.

The processor has two frequencies: ¢y and ¢;. An MPEG movie has n frames
to display in n periods. The length of a period is . For each frame, there are two
jobs: processing (j,) and displaying (j4). Each frame has to be processed before being
displayed (j, — ja)-

The " period is during (i — 1,4)t. Let N = {1,2,3,....,n}. We use z; € {0,1},
i € N, to indicate the frequency during the i period. If z; = 0, the processor runs
at ¢g; if z; = 1, the processor runs at ¢;. The frequency during the i** period is
é1 - x; + ¢+ (1 — ;). Let a; be the number of frames processed during the i period.
If a; = 1, one frame is processed during this period; a; is a non-negative integer.
Suppose w, and wy are the number of operations for processing and displaying one
frame. It takes % to process one frame at frequency ¢q.

During the " period, the total number of operations is a; - w, for processing and

wq for displaying. They have to finish within a period; therefore

a; * Wy + Wy

< Vi 6.1
¢o+$i'(¢1—¢o)_t PN (6.1)

It can be rewritten as
ai'wp-i-wdft'(¢0+$i'(¢1—¢0)) Vie N (6.2)

The number of frames processed up to kt (k € N) is the sum of frames processed
in each period: Zle a;. At least k frames have to be processed before k¢ because k&

frames have been displayed at k. This can be expressed by the following constraint:

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 94

system parameters
s integer number of frequencies
S set {1,2,...,s}
g integer index of frequency, g € S

bq one of the available frequencies, ¢, > @9, ..., > ¢
A time to change frequencies
b; size of the buffer between j; and 7,

workload parameters

t length of a period, such as 33 ms for an MPEG frame
n integer number of frames

N set {1,2,..,n}

i integer index of period, i € N
m integer number of jobs
M
[
wy

set {1,2,...,m}
integer index of job, [€ M
number of operations of job j
decision variables

a;; integer number of executions of j; in the ™ period, a;; > 0
yiy, binary frequency in the " period

determined by decision variables
8; Dbinary frequency changed in the i* period
yi vector frequency in the " period, y; =< i1, ¥i2, -, Yis >

Table 6.1: symbols and meanings

k
> e >k VE e N (6.3)
i=1

At kt, (Zle a;) frames have been processed but only k frames are displayed;
the additional frames are stored in a buffer. Suppose one frame takes one unit of
space and the buffer size is b. The following constraint restricts the number of frames

processed so that they do not overflow the buffer at kt.

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 95

(Xk:ai) —k<b Vk e N (6.4)

i=1

As explained in Section 2.3, the total energy for NV frames is proportional to

N

Z(% + ;- (1 — o)) (6.5)
i=1
This is the cost function for minimization. The problem of energy minimization is
to find a policy that assigns frequencies (i.e. the value of z; for ¢ € A') and execution
orders (i.e. the value of a;) in order to minimize the total energy, while meeting
all constraints. The performance constraint is expressed by (6.2). The resource
constraint is the limited buffer shown in (6.4). Finally, the precedence constraint
requires that (6.3) be satisfied.
In summary, this is an integer linear programming problem (ILP). The parameters
depend on the processor (¢ and ¢;), the system (b), and the workload (w,, wq, n,

and t). Our goal is to minimize

min Z(% + i - (¢1 — ¢0o)) (6.6)

under the following constraints:

ai'wp+wd—t'(¢0+$i'(¢1—¢0))SO V’LEN

Sai— k>0 vk e N 6.7)
i=1 ’
(Ekiai)—k—bso Vk e N

i=1

While this formulation may appear as an overkill for minimizing the energy for

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 96

a processor running two jobs at one of two possible frequencies, we use it as the

foundation for handling more complex and realistic situations.

Example 1 Supposet =6, ¢g =2, 91 =1, n=4,b=1, w, =4, and wg = 2.

There are four inequalities from (6.2):

da; +2<6(2— 14
das +2 < 6(2— x4
4az + 2 < 6(

das+2<6(2— 14

)
) (6.8)
2— IE3)
)
In order to ascertain that one frame is available for display in each period, equation

(6.3) requires

a > 1

aL+ag > 2
a,+as+az >3

a1 +as+az+as >4

Since the buffer can accommodate only one frame, equation (6.4) restricts

a—1<1
aL+a,—2<1
aL+as+a3—3<1
a1+ ay+as+a,—4<1

(6.10)

The cost function by equation (6.6) is

min6[(2 — 1) + (2 — z2) + (2 — z3) + (2 — z4)]

. (6.11)
= min[8 — (1 + Z9 + T3 + 24)]

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 97

scale down scale up scale down
v A v
jl,p jl,d j2,p j2,d j3,p j3‘d jA,p j4 d time

|

T T T T
buffer

f | — T
a 2 0 2 0
X 0 1 0 1

Figure 6.6: The processor changes frequencies every period.

The minimum enerqgy can be obtained by setting x1 = o = 3 = x4 = 1. The
processor always stays in the lower frequency, ¢1. One frame is processed each period:

a1=a2=a3=a4=1.<>

Example 2 Consider w, = 5. In this case, T1 = 2 = 3 = 24 = 1 s no longer
a valid solution because the constraints (6.8) and (6.9) are violated. The minimum
energy can be obtained by setting 1 = 23 = 0 and 2o = 24 = 1. Two frames are
processed in the first and third periods and no frame is processed in the second and
fourth periods: a1 = a3 = 2, as = a4 = 0. The processor changes frequencies every
period as shown in Figure 6.6.

Note that it is prohibited to process four frames in the first two periods by setting
21 =29=0,235 =24 =1, a1 = a9 = 2, and az = a4 = 0, because this violates the
second inequality of the buffer size constraint in (6.10).

As a comparison, consider a processor that can continuously scale its frequencies.
In this case, the minimum enerqgy is obtained by finding a single frequency f, such
that it takes t to finish the operations needed for exactly one frame [43]. The value
of fo can be calculated by the following equation.

T fo=wp+wy (6.12)

¢

Example 3 If w, =5 and wq = 3, equation (6.8) is rewritten as

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 98

S5a1 +3<6(2—1
Sas +3 < 6(2— x4
5a3+3§6(
(

Bas + 3 <6(2— 124

2—IE3

)
)
| (6.13)
)

The processor has to stay at ¢g for all four frames because the only integer solution

W =To=23=xz4=0and gy =ax =a3 =a4 = 1.
3 3

6.4.2 Multiple Jobs

We can generalize the formulation to handle multiple jobs. In the simplified exam-
ple of an MPEG player, multiple jobs are generated by partitioning j, into smaller
jobs, such as reading and decoding. These jobs follow precedence constraints: for any
frame, reading must execute first, then decoding, and finally displaying. However, a
frame can be decoded before the previous frame is displayed. The formulation devel-
oped in this section can be applied to any program with periodic on-time constraints.
The program is divided into multiple jobs and each job executes multiple times. The
precedence constraints are determined by the program.

Suppose there are m jobs: J = (ji1,72, -, Jm); Jm has to execute once every
period. Let M be {1,2,...,m}. We use j;; for the i"* execution of j;, | € M. For
any [€ {1,2,3,...,m — 1}, job j;; has to execute before j;;,1, where i € N. Figure
6.7 shows the precedence relationship between these jobs. Let w; be the number of
operations performed by j;. Let a;; be the number of executions of j; during the ™
period; a;; = 1 means that j; executes once in this period. Since j,, executes exactly
once each period, a;,, = 1 for any value of i € N. The total number of operations
performed in the ™ period is >)", a;; - w;. All operations have to finish within the

period, therefore

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 99

different
jObS

number of executions

.9.9‘9‘

th i
S
D —

Figure 6.7: precedence of multiple jobs

> aig-w <t (do+ i - (61 — o)) VieN (6.14)

=1

The number of frames processed by job j; up to kt is Zle a;;. The following

constraint allows one frame to be displayed each period.

k k k
dain>=) aip> > am=k Vke N (6.15)
i=1 i=1 i=1

At time kt, job j; has executed Zle a;; times and job j;;, has executed Zle Qi1
times. If the former is larger, the additionally processed data are stored in a buffer.
Let b; be the size of the buffer between j; and ;1. The following constraint avoids

buffer overflow:

k k
Zai,l — Zai,lﬂ <l Vke NandVlie M — {m} (616)

The goal is finding z; and @;; to minimize energy (6.6) under the timing, prece-

dence, and resource constraints (6.14) to (6.16).

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 100

6.4.3 Multiple Frequencies

Consider a processor with s discrete frequencies: {¢1, ¢a, ... ,¢5}. Let Sbe {1,2,...,s}.
There are two ways to express the frequency during a period: (1) an integer whose
value is between 1 and s (2) a vector of s binary elements and the ¢** element is one
if and only if the frequency is ¢,. We choose the second method because it simplifies
the formulation when we consider scaling overhead later. Suppose f; is the frequency
during the ™ period. Let y; be a vector with s elements: y; =< y; 1, Yi2, .., ¥i,s > t0
represent f;. Each element is a binary variable (y; , € {0,1}). If the frequency is ¢y,
Yi,g = 1; otherwise, y; = 0, here ¢ € S. The value of f; can be expressed by

fi = Zyi,q : ¢q (617)
g=1

The following constraint allows the processor to be in one and only one frequency

during any period.

D wig=1 ieN (6.18)
g=1

The execution time constraint in (6.14) is rewritten as

Zai,l * Wy S fz t=1- (Zyi,q . ¢q) 1€ N (619)
=1 g=1

The cost function in (6.6) is rewritten as

N N s
min Zfz = Zzyiﬂ - g (6.20)
i=1

i=1 g=1

Example 4 Consider a processor with three frequencies: {4, 2, 1} for three jobs: ji,

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 101

§ca|edown
Jux [z fag] J21 |22 | ja1 || j23 | iz | | jas | time
: >
T T T
buffer betweer
f jpand
|:| buffer betweer
' ' j,and s
a <2,2,1> <1,0,>> <0,1,>
y <1,0,0> <0,1,0> <0,1,0>

Figure 6.8: lowest-energy solution for Example4

frequency | execution time | total
J1 | J2 J3
4 312 1 6
2 6 | 4 2 12
1 12| 8 4 24

Table 6.2: execution time at different frequencies for Example4

j2, and j3. Their numbers of operations are wy = 12, we = 8, and ws = 4. The
length of a period is 11. There are two buffers, by and by; each can accommodate one
frame. There are three frames, n = 3. Table 6.2 shows the execution time of each
job at different frequencies. Since t = 11 and it takes 12 time units to execute three
jobs at frequency 2, the processor must run at the highest frequency in the first period;
therefore, y11 =1, y12=1y13=0.

Figure 6.8 shows the solution for the lowest energy. In this figure, a is the sequence
of a;; for the i™ period; similarly, y is the sequence of yi 4. For ezample, in the first
period, a =< 2,2,1 >; this means a11 = @12 = 2 and a1 3 = 1. Also in the first
period, y = {1,0,0}; this indicates that y11 =1 and y1 2 = a1 5 = 0. The frequency is
4-14+2-041-0=4. In this figure, the frequencies at the three periods are 4, 2, and
2 respectively.

Figure 6.9 shows another solution; in this solution, the frequencies are 4, 1, and
4. The first solution requires less energy because 4 +2 + 2 < 4+ 1+ 4. Notice that

these two solutions have different requirements for buffers. &

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 102

scale down scale up
v A
j1.1 j1,2 j1,3 j2,1 jz,z j23 j3,1 j3,2 j3,3 time
| |
T T T
buffer between
i * jand
a <2,2,> <0,0,2> <1,1,1>
y <1,0,6¢ <0,0,2> <1,0,6>

Figure 6.9: another feasible solution for Example4

6.4.4 Scaling Overhead

Suppose changing frequencies takes A time regardless of the original and new fre-
quencies; the processor cannot execute any job while scaling frequencies. In [36],
the authors report 200 microsecond for changing frequencies on a StrongARM pro-
cessor. This is less than 1% of a period (33 millisecond); consequently, we assume
that frequency change can finish within one period.

We refine the definition of y; ,: y;4 = 1 if the frequency is ¢, at the end of the
it" period. Remember that y; is a vector with s binary elements to represent f;.
If, and only if, y; # y;_1, the processor changes frequencies at the beginning of the
it" period. We use a binary variable, &§; € {0,1}, to indicate whether the processor
changes frequencies at (i — 1)¢. If the frequency is changed, §; is one; otherwise, §; is
zero. When the first period starts, the processor does not change frequencies; thus,
we set yg to be y;.

The value of §; is computed through a vector of s elements: d;1,9;9,...,d;s. Each
element is a binary variable. The value of §; 4 is the exclusive or of y;_1 4 and y; 4. It
can be computed by the following four linear inequalities. The first two inequalities
make ¢; , one if y;_, , and y; , are different. The third inequality makes ¢;, zero if
both y;_1, and y; 4 are one. Finally, the fourth inequality make 6; 4 zero if both y;_; 4

and y; , are zero.

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 103

(
Oig = Yig — Yi-1q
< 6i,q Z Yi—1,9 — Yig
5i,q + Yig + Yi—1,4 S 2

Vie N,Vge S (6.21)

\ 6Z7q S yz,q + yi_lyq

The value of §; is the sum of these s elements. If y; is different from y,_;, two

elements of the vector are one. Consequently, &; needs the coefficient %

1 L
& = 5;% (6.22)

Example 5 Suppose the frequency of the first three periods are < 4,2,2 > in Example
4. The three frequencies are represented by three 'y vectors: y1 =< 1,0,0 >, yo =<
0,1,0 >, andy3 =< 0,1,0 >. The exclusive or of y1 andyy is < 1,1,0 >. Therefore,
0y = %(1 + 1) = 1. The frequency is changed in the second period. The exclusive or
of yo and ys is < 0,0,0 >; 03 is zero and the frequency does not change in the third
period.

During the i period, §;A is used for frequency scaling and ¢ — §; - A is left for
processing jobs. All operations have to finish in this period as expressed by the

following inequality,
> aig-wr < (t =6 - A) (X Yig - bo) VieN (6.23)
=1 q:l

The cost function is the same as (6.20).
In summary, the problem is to minimize energy for a processor with s frequencies

for m jobs:

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 104

min ZZyi,q ‘g (6.24)

i=1 g=1
under the following constraints:
l_in:lai,z cwp— (-9 A)(qi:lyi,q cg) <0 Vie N
(éai,l - éai,Hl) -0 <0 Vk e N,Vlie M — {m}
ijlam > Zk:lam > > Zk:lai,m =k Vb e N
;: = %igq) Vie N
1 (6.25)

q:
Oig = Yig — Yi-1,4

6. Z y._ — y.
Q7= T g Vie N.Vge S

5i,q + Yig + Yi—1,4 S 2

(0ig < Yig + Y14

Example 6 Consider Fxample 2 again with n = 4. If A = 0, the minimum energy
is 10 by setting the frequencies to < 4,1,4,1 >. When A is nonzero, this assignment
18 tnvalid because there is insufficient time to execute both j; and jo twice in the third
period after the frequency. If A =1, the minimum enerqy is 11 when the frequencies

are < 4,1,4,2 >.

6.4.5 Summary

This section formulates the power reduction problem as integer linear programming.
This is a general formulation to minimize the energy of a processor with finite fre-

quencies for running a program that has timing and resource constraints. As we have

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 105

shown, the formulation can consider different variations of the same problem, includ-
ing multiple frequencies and scaling overhead. We can also formulate the problem
to find the buffer requirements when the available energy is fixed. A large volume
of literature has been devoted to solving integer programming more efficiently [14]
[44] [46] [69] [85]. In the next section, we present a different approach to solve the
problem based on graph-walking techniques. Our method can significantly reduce the
computation for finding optimal solutions; in particular, it efficiently finds frequency
assignment for many periods (large n). Furthermore, our method can handle sporadic

jobs more easily.

6.5 Frequency Scaling by Graph Walking

The energy-minimization problem has additional structures that allow us to solve it
more efficiently. In fact, there are only finite choices in each period; eventually, the as-
signments of y and a in (6.25) will be cyclic when 7 is large. In this section, we explain
how to find such a cycle. This section is divided into three parts. First, we construct
a finite directed graph to represent all frequency assignments. Second, we show that
there is a repeating subwalk in any long walk of the graph. Finally, we demonstrate

how to use the graph to find frequency assignments for energy minimization.

6.5.1 Assignment Graph

An assignment graph contains all possible choices for frequency assignments. Each
vertex encodes the current state; it contains the frequency of the processor, the
amount of data stored in buffers, and how the data will be consumed or refilled.

In other words, the graph represents the state space of frequency assignments.

Vertices

Let G = (V,£) be a directed graph: V is the set of vertices and £ is the set of edges.
Each vertex encodes the states of the buffers, the frequency, and the execution of each

job. A vertex is identified by a vector of 2m—1 elements: (51, Ba, .-+, Bm1, [, @1, Qo oy Q1)

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 106

frequency in this period

(Bll BZ! Bm-l’ f' al' GZ' - a m-l)

buffer contents number of execution
before this period corresponding ta

Figure 6.10: encoding of a vertex

here m is the number of jobs. Figure 6.10 illustrates the encoding of a vertex. In
this encoding, G (I € {1,2,...,m — 1}) indicates the amount of data stored in buffer
by before the period; f is the frequency in this period (or the frequency after a fre-
quency change). The value of ¢4 indicates how many times j; executes; it corresponds
to a;; defined in the previous section. All #’s and «’s are integers. The value of i is
calculated by traversing vertices, as explained later. Each vertex v has a cost c¢(v).
The cost is the frequency of the vertex, or ¢(v) = f; all costs are positive. Since a

vertex represents a period, we can use “vertex” and “period” interchangeably.

Example 7 For Example 2, the processor has two frequencies so f can be 1 or 2.
The buffer can be filled or empty, so B is 0 or 1. If the processor is at frequency
1, j1 and jo cannot execute within one period; consequently, « is zero when f is 1.
The assignment graph includes five vertices: (1,2,0), (1,1,0) (0,2,1), (1,2,1), and
0,2,2). &

Now, we compute an upper bound of the number of vertices. First, we consider
the possible values of 3;. Before entering a period, the buffer between j; and j, may
have zero, one, two, ..., up to b; items; there are b; +1 possible values for 3;. Similarly,
(B2 has by + 1 possible values and 3; has b; 4+ 1 possible values. The processor has s

frequencies so f has s choices. At frequency ¢;, job j; can execute at most

Lt'¢1_me

w

(6.26)

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 107

c(v) cost of vertex v, the frequency of v
vy = vy v and ve are connected, or (vy,ve) € £
W a walk, general format: < vy, v,, v, >

c(W) cost of walk W
W,(v) a minimum-cost walk from v and visits n vertices
W(v,,vp) & minimum-cost walk between vertices v, and v,
* concatenate two walks
©(v) unused operation of vertex v

Table 6.3: symbols and meanings for assignment graphs

times. This is an upper bound for o;'; we call it ag. The value of ¢ is between
zero and o so there are ag + 1 options. We can find upper bounds for other o’s in
the same way. The following formula is an upper bound of the size of an assignment

graph.

(b +1) X (be +1) X ... X (byy, xsx(@+1)x(@+1)..x (@n1+1)

(b +1)(@@ + 1)

141
m—1
=sx []
=1

(6.27)

This is a loose upper bound because we have not removed invalid vertices. There
are three types of invalid vertices; they violate timing, resource, or precedence con-

straints.

Example 8 For Example 4, at frequency 1, j1 and jo cannot execute in a single period
because this violates the timing constraint specified by (6.19). The vertex (o,0,1,1,1)
is invalid regardless of the value for e. For the same example, vertex (0,1,4,2,2)
starts with one frame in buffer by and executes jo twice. Since only one frame is
consumed by jz, two frames have to be stored in buffer by at the end of this period.
However, by can store only one frame; therefore, (0,1,4,2,2) overflows the buffer and
is an invalid vertex. Vertez (0,0,4,0,2) violates the precedence constraint because ja

executes twice but the buffer between j, and jo is empty and j; does not execute.

Tt is an upper bound because the range for a; may reduce at a lower frequency.

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 108

Timing constraints require the processor to operate at a frequency high enough to
finish all scheduled jobs. The timing constraint of vertex (81, B2, ..., Bm—1, f, @1, @2, ..., 1)

is specified below; this is equivalent to the constraint specified in (6.19).

Zal Wy S f o (628)
=1

Resource constraints state that buffers cannot overflow. Before entering this pe-
riod, there are ; items (or frames) in the buffer between j; and j;,;. In this period, j;
executes g; times and j;,, executes q;, times. Before leaving this period, 8+ —ay11
items must be stored in this buffer and it cannot exceed the buffer size. This it is

equivalent to the constraint specified in (6.16):

G+ o — o < by le M — {m} (6.29)

We define «,,, as one because one frame is displayed each period. Finally, prece-
dence constraints prevent buffer underflow. Since j;,, executes ¢ times, there must
be enough data either from the buffer or produced by j;. We rewrite the constraint

in (6.15) for the vertices in the assignment graph:

B+a>apn leM-—{m} (6.30)

Removing invalid vertices takes linear time, O(V), because each vertex has to be

examined only once.

Example 9 In Ezample 4, either buffer can accommodate one item, so (by + 1) =

11x4—4 =3

(ba + 1) = 2. There are three frequencies. Job j, can ezecule at most 33

11x4—4
¢ 8

2 X 2% 3 x4 x6=288 vertices by equation (6.27). After removing invalid vertices,

times and jo can execute at mos = b5 times. Therefore, the graph has at most

there are only 21 valid vertices. The graph for Example 2 has at most 2 X 2 x 3 =12

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 109

vertices by (6.27); it actually has 5 valid vertices. {

Starting Vertices

Since all buffers are empty at the beginning, the first m — 1 elements in the encoding
must be zero. Let (0,0,...,0, f, a1, g, ..., am—1) be the first vertex; job j; executes oy
times. The values for f and o’s have to satisfy the following conditions; these are

conditions in (6.25) except that ¢ is always zero for the first period.

m—1
ft2wn+ Y 0wy
=1
a — g1 < by le{1,2,.,m—2} (6.31)

Q202 .. 20y 21

Any vertex that satisfies these conditions can be a starting vertex. After removing
invalid vertices, any vertex with the (0,0,...,0, f, a1, @, ..., @y 1) format is a valid
starting vertex.. We will use v* as one starting vertex. If a vertex cannot be reached

from any starting vertices, this vertex is eliminated from the assignment graph.

Edges

An edge (v1,v9) € € connects two vertices v; and ve; it indicates a possible transition
from state v; to another state v, after one period. A transition from v; to vy is
represented as v; = vo. We call vy a precedessor of vy and ve a successor of v;. There
is at most one edge between two vertices.

Some transitions are prohibited. There are two types of invalid transitions. The
first type violates continuity conditions. Suppose vy = (81, B2, ..y Bim—1, f, @1, @2, ooy Up—1),
ve = (01, By s Brn_1, [y, &y .y,), and v = vg. The continuity conditions re-
quire that the data stored in the buffers remain the same after leaving v; and before
entering vy,. Before entering v;, there are (; items in the {** buffer. During v, oy
more items are added to the buffer and o4, of these items are consumed by job jji1.
Consequently, there are § + oy — g1 items left before entering v. The following

formula expresses this continuity condition:

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 110

Bi=B+a—an le{l,2,.,m-1} (6.32)

The second type violates timing constraints. Consider Example 6 that includes
scaling overhead. It takes one time unit to change the frequencies; therefore, j; and
jo2 cannot execute twice at frequency 4 if the previous frequency is different from 4.
In other words, (0,1,1,0,0) = (0,0,4,2,2) is an invalid transition.

Example 10 In Ezample 4, (0,0,4,2,2) = (1,0,2,0,1) is an invalid transition.
Before wisiting the first vertex, buffer by is empty. The first vertex executes both j;
and jo twice so by is still empty. However, the following vertex starts with non-empty
buffer by. This violates continuity principle.

The assignment graph for Example 4 has 21 vertices and 106 edges. Each vertex
has 5 edges in average. For Example 6, the graph has 21 vertices and 100 edges.
The second example has fewer edges due to the scaling overhead. For Example 4,
(1,0,2,0,1) = (0,0,4,2,2) is a valid transition, but it is invalid in Example 6. <

Merging Vertices

After constructing the graph, we can further reduce its size by merging vertices. Two
vertices can merge if they have identical predecessors and successors. This happens
when two vertices differ only in their frequencies; the merged vertex uses the lower
frequency because it suffices to use the lower frequency. For example, (0,1,2,0,0) can
merge with (0,1,1,0,0) in Example 4. Since they have the same inward and outward
edges, they perform identical operations. Consequently, it is unnecessary to use a

higher frequency if a lower frequency is sufficient.

Example 11 The assignment graph for Example 4 has 14 vertices and 50 edges after
merging equivalent vertices. In this example, vertex merging reduces the number of
vertices by one third and the number of edges by more than a half. The graph for
Example 6 has 21 vertices and 100 edges before the merge and 18 vertices and 77
edges after the merge. &

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 111

Figure 6.11: assignment graph for Example 2

Example 12 Figure 6.11 shows the assignment graph for Example 2 after remov-
ing tnvalid vertices and merging equivalent vertices. This graph has one vertexr with
frequency 1 and three vertices with frequency 2. Vertex (0,2,1) can reach itself; this
means the processor can keep running at frequency 2 and ezecuting j, once every pe-
riod. All successors of (1,1,0) have frequency 2. This means that the processor can
run at frequency 1 for only one period; then, it has to run at frequency 2 for at least

one period before entering (1,1,0) again. &

Walks

A walk W of a graph is a sequence of vertices W =< wvy,vs,....,U, > such that
(viyvip1) € € for any @ € {1,2,...,n — 1}. A walk is a sequence of assignments of
frequencies (f) and executions («) by the vertices. Walk W wisits a vertex v if v
appears in the sequence. Vertices vg, vs, ... , Un_1 are intermediate vertices in the
walk. We define the length of a walk as the number of vertices in the sequence?,
or n. A closed walk of v; starts and ends at the same vertex: v; = v, [8] [24].
If (v;,v;) € &, the walk < v;,v; > is called a loop. A subwalk is a walk contained
in a longer walk; for example, < v;, viy1,...,v; > is a subwalk of < vy, vy,....,v, >
if 1 <4 < j < n. This subwalk starts from v;, ends at v;, and visits j — 7 + 1
vertices. A walk is a path if all vertices are distinct [8] [24]. Graph walking has
been applied to a wide range of problems, such as finding the resistance in an electric
network and the locations for servers [21] [86]. Two walks can be concatenated.
We use x as the concatenation operator: walk W, =< vy, v, ..., v, > is concatenated

with walk Wy =< uq, us, ..., Uy, >, written as Wy x Wy. The result is a longer walk,

2Some texts use the number of edges as the length of a walk.

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 112

Figure 6.12: examples of walks

Wi x Wy =< vy, Vg, ..., Up, U1, Usg, ..., Uy, >. They can concatenate if (vy,u) € £.

Example 13 Figure 6.12 are three examples of walks. The first is a walk from vy to
vs. The second walk, < v1,v9,v3,v4, V2, U5 > contains a closed walk, < vg,vs, vq, Vo >.
The third walk < vy, v, v3,v4,v0,v5,01 > contains two closed walks®, one starting

from vy and the other starting from vy.

Figure 6.11 has a loop of vertex (0,2,1). This is not incidental. Because we
assume jobs can be scheduled at the highest frequency, there is always a loop of
vertex (0,0,,¢1,1,1,...) here ¢, is the highest frequency. This is equivalent to the
pipeline without a buffer as shown in Figure 6.1. This loop means executing each job

once per period and storing no additional data in the buffers.

Cost of a Walk

The cost of a walk is the sum of the cost of each vertex. If a vertex is visited twice,
the cost is added twice. The cost of W is

3We assume the walk stops after visiting v; twice

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 113

n

c(W) = Zc(vi) (6.33)

i=1

The average cost of a walk is defined as

C(ZV) _ %Zc(vi) (6.34)

A minimum-cost walk can be defined for two different conditions:

1. a walk starting from a given vertex (v;) and visiting a given number (n) of
vertices. This walk is represented as W, (v;) =< v1,va,...,v, >. The ending

vertex (v,) is not specified.

2. a walk starting from a given vertex (v,) and ending at another given vertex (vy).
We use W(v,,v;) =< g, U1, ..., Un, Up > to represent such a walk. The number

of visited vertices is not specified.

The costs of these two types of walks are written as ¢(W,(v1)) and c(W(vq, vs))-

Example 14 Figure 6.11 has several walks, including
e two loops: (0,2,1) = (0,2,1) and (1,2,1) = (1,2,1)
e (1,1,0) = (0,2,2) = (1,1,0)
e (1,1,0) = (0,2,1) = (0,2,2)
e (1,1,0) = (0,2,2) = (1,2,1)

Among these walks, (1,1,0) = (0,2,2) = (1,1,0) has the minimum average cost. {

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 114

6.5.2 Energy Minimization by Assignment Graphs
Minimum-Cost Subwalks

Because a walk is an assignment of frequencies, a minimum-cost walk is equivalent to
an assignment that minimizes the energy consumption. This section finds a minimum-

cost walk for n periods, namely visiting n vertices.

Theorem 1 Suppose W, (v1) =< vy, v, ..., Up > is a minimum-cost walk from v, and
visits n vertices. A subwalk < v, vit1,...,v5 > of Wy(v1) is a minimum-cost walk
from v; to v; and visits j — i + 1 vertices.
n i—1
This can be proven by contradiction. The cost of W, (v1) is > c(vk), or D c(vg) +
; i k=1 k=1
dre(vk)+ Y. c(vg). If the walk < v;, vi41, ..., v; > is not minimum-cost, then we can
];i;d anothke_r]xalk < W3, Vi1, Vi1, U5 > that starts from v;, ends at vj, visits the
same number of vertices, and has a lower cost:]E_:l c(vy,) < Ji c(vr). Replacing
< Wiy Vig1y 5 V5 > by < 03,0044, 0, 051,05 > will 1I:e_cZ1J1r11ce the cogt_zoJrflthe original walk

W, (v1); this contradicts the premise that W, (v1) is a minimum-cost walk. Therefore,
< V4, Vig1, ..., Vj > is @ minimum-cost walk from v; to v; and visits j — ¢ + 1 vertices.
¢

This theorem is similar to shortest subpaths for computing a shortest path between
two vertices in a graph [22]. A minimum-cost walk differs from a shortest path in

three ways:
o It specifies the number of vertices, not the ending vertex
e The cost is determined by vertices in formula (6.33), not the weights on edges.
e It allows visiting the same vertex multiple time.

The methods presented in [22] compute shortest paths between two given ver-
tices. Because the power-reduction problem is different, we approach this problem by

modifying the methods in [22].

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 115

@ W, (v,) @
(D@ ()

Figure 6.13: divide W, (v1) into two subwalks

Finding Subwalk Recursively

Suppose W, (v1) is < vy, Vg, ..., vy >, then c(W,,(v1)) = ¢(v1) + ¢(v2) + ... + ¢(vy,). By
definition, Wi (v1) is < vy > and ¢(Wi(v1)) is ¢(v1). For Wy(v;), the minimum cost

is to find vertex vq such that (vi,ve) € £ and c(vy) + ¢(ve) is the minimum:

min ¢(Ws(v1)) = wevrailnw)egc(vl) + c(vg) (6.35)

Similarly, the minimum cost for Wj(v;)) can be found by

min ¢(Wjs(v1)) = min gz;zz%ggc(vl) + c(v2) + c(vs) (6.36)

We can divide W, (v1) =< vy, Vg, ..., Uy, > into two walks: < vy > and < vy, v3, ..., Uy >,

here (vy,v2) € €. The cost of W, (v1) can be computed by

CWalor)) = Yc(vy)

i=1

= c(v1) + éc(vi) (6.37)

= o(01) + c(Wy_1 (v3)) (v1,09) € E

Figure 6.13 illustrates this concept. This is a recursive relation; each time, we
reduce the length of the walk by one vertex. In this recursion, v, is used to reduce the
length of walk W, (v;). Equation (6.37) computes ¢(W,(v1)) by reducing the length

of the walk through the recursive relation. Since there may be multiple choices for

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 116

vg, it takes exponential time to find a minimum-cost walk by equation (6.37) [35]:
O(c"), c is the average number of successors of each vertex and ¢ > 1. We need a

more efficient method.

Memorization of Subwalks

We can reduce the time complexity by memorizing shorter walks to construct long
walks. In other words, if we already know the minimum-cost walk W, _;(vp), there
is no need to compute it again, based on the principle of optimal subwalks proved
in Section 6.5.2. Memorization eliminates computing the same subwalks multiple
times. The algorithm in Figure 6.14 computes a minimum-cost walk of W, (v;) by
memorizing shorter walks. For each iteration of wlength, at most |V|? vertices are
visited; the execution time is O(n|V|?). Memorization reduces the complexity from

exponential of n to linear of n.

6.5.3 Efficient Assignments

Even though MinimumCostWalk has complexity O(n|V|?), there are still two prob-
lems. First, the time is linear of n even though the graph size is independent of
n. Second, it computes W;(v) for every value of i while we are interested in i = n
only. Because assignment graphs are finite, we can compute minimum-cost walks
even more efficiently for large n. This section explains how to find minimum-cost

walks efficiently when n > |V)|.

Minimum-Cost Walks between Two Vertices

Based on the Floyd-Warshall algorithm for finding shortest paths in a graph [22],
we can find a minimum-cost walk between vertex v, and vertex v,. The algorithm is
called MinimumCostWalk2V as shown in Figure 6.15. This algorithm has complexity

O([V]3) because of the nested iteration.

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 117

MinimumCostWalk(input graph: G = (V, £), integer: n)
/* W;(v): minimum-cost walk from v with length 4
weost(v,1): cost of W;(v)
n: maximum length of walks */
begin
/* initialization */
for each v € V
weost(v,1) := c(v);
Wi(v) = < v >

for (wlength = 2; wlength < n; wlength ++)
for each v, € V

wcost(vy, wlength) := oo; /* initialize */

for each v, € V and (vq,v9) € €

newcost := c(v1) + wcost(ve, wlength — 1);

if (wcost(vi, wlength) > newcost)
wcost(vy, wlength) := newcost;
leength(vl) =< > *leength—l(v2);
/* *: concatenation of two walks */

end

Figure 6.14: find minimum-cost walks by formula (6.37)

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 118

Pigeonhole Principle

Suppose there are n pigeons and m holes. We want to assign these pigeons to the
holes. If there are more pigeons than holes (n > m), at least one hole must have two
or more pigeons. This is called the pigeonhole principle [33].

Suppose there are m balls labeled as 1,2, ..., m stored in a box. Every minute, we
select one ball from the box, record its number, and put it back to the box. After n
minutes, we have seen n balls. If n > m, one number between 1 and m must occur
two or more times, according to the pigeonhole principle.

If a walk visits n vertices and n is larger than the number of vertices in the graph
(n > |V|), at least one vertex must be visited twice or more: there is at least one

closed walk.

Redefining Closed Walk

A closed walk has the format < vy, vs,...,v, > where v, = v;. In the rest of this
chapter, we restrict closed walks so that v; is visited exactly twice and no other
vertex is visited twice or more: v; #v;if 1 <¢ < j <nexcepti=1and j =n. We
call such closed walks CW.ALKs. According to the pigeonhole principle, any closed

walk in G = (V,) visits at most [V| + 1 vertices (v; is counted twice).

Example 15 In Figure 6.12, the third walk contains two closed walks; specifically,
< v1,Vg, V3,4, V2, Us, U1 > S 6 closed walk and it contains another closed walk <
Ug, U3, Vg, Ug >. With the new restriction, no closed walk may contain another closed
walk. Consequently, the closed walk < vy, v, vs, 04, V0, 05,v1 > 15 no longer a valid
closed walk. &

Figure 6.16 is an algorithm for finding all CW.ALKs that have minimum average
costs. The average cost of a walk is defined by Equation (6.34). If two closed walk
have the same average cost, the algorithm keeps the shorter one. This algorithm first
finds all minimum-cost walks of lengths up to |V| + 1. Then, it determines whether
the walk is closed and computes the average cost; finally, it keeps only closed walks

with minimum average costs. Since the jobs can be scheduled, there is at least one

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 119

MinimumCostWalk2V (input graph: G = (V,£))
/¥ W(v,,vp): minimum-cost walk from v, to v,
W (vg, vp): W(v,,v,) without visiting the last vertex, v,
if W(v,,vp) =< Vg, V1, U2, ..., Uy, Up > then
W™ (vq, Up) =< Vg, U1, V2, ey Up, >
mcost(v,, vy): cost of W(vg,)
nW(v,, vp): number of vertices in W(v,, vy) */
begin
for each v, € V
for each v, € V
if (vg,vp) €
W(vg, Up): = < g, Up >;
meost(vg, vp): = ¢(vg) + c(vp);
nW(Vg, Up): = 2
else
W(vg, vp): = <>
mcost(v,, vp): = 00;
W (vg, 1p): = 00;
for each v, € V /* intermediate vertex */
for each v, € V
for each v, € V
costpassc = mcost(v,, v.) + meost(ve, vp) — ¢(ve);
/* subtract ¢(v.) because it is counted twice */
if (mcost(v,,vp) > costpassc)
mcost(v,, vy) = costpassc;
W (Va, Ub) = nW(Va, ve) + nW(ve,) — 1;
W(Va, vp): = W (g, ve) * W(ve, 0p);
end

Figure 6.15: find minimum-cost walks between two vertices

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 120

FindClosedWalk(input graph: G = (V,£))
/¥ CWALK(v): closed walk of v with minimum average cost
cwcost(v): the cost of CWALK (v)
nwalk(v): the length of CWALK (v) */
begin
MinimumCostWalk(G, |V| + 1);
for each v € V
/* initialization */
CWALK(v) := empty;
cwcost(v) = oo;

for (wlength = 2; wlength < |V| + 1; wlength ++)
v' := last vertex of Wiiengtn(v);
if (Zu;cglf((g)) > wwsz](l”e :glff gth)) /* smaller average cost */
if (v =1") /* a closed walk */ and
(Wtengtn (v) Visits v exactly twice) and
(no other vertex is visited more than once)
CWALK(v) 1= Wayiengtn(v);
cwcost(v) = weost(v, wlength);
nwalk(v) := wlength;
else
CWALK(v) := empty;
cwcost(v) = oo;

end

Figure 6.16: find closed walks of minimum average costs

trivial solution: a loop of vertex (0,0,,¢1,1,1,...), here ¢, is the highest frequency.
Since n = |V| + 1, it takes O(|V|?) for calling Minimum-Cost Walk. For each vertex,
wlength changes from 2 to |V| + 1 and it takes wlength to compute the average cost
of Waiengtn(v). It takes O(|V|?) time for each vertex. Hence, this algorithm takes
O(|V[?) time.

Walks of Infinite Length

After finding the minimum-cost CW.ALK:s, it is easy to find an infinite-length walk

with the minimum average cost. When n approaches infinity, a minimum-cost walk

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 121

OO,
Q)
) (e

Figure 6.17: A walk of infinite length must repeat a closed walk indefinitely.

starts from one starting vertex, defined in Section 6.5.1, reaches a closed walk and
repeats this closed walk. Figure 6.17 illustrates such a walk. This closed walk is

chosen because it has the minimum average cost, defined as

. cwcost(v
min Wk((v)) (6.38)
If the vertex v is not a starting vertex, we can find a minimum-cost walk that
connect one v* to v by MinimumCostWalk2V. Since FindClosedWalk takes O(|V]?),
it takes O(|V]?) to find a walk of infinite length with the minimum average cost.
Because the walk is infinite, the “initial cost” from v* to v can be ignored. A natural
question is whether this closed walk is reachable from a starting vertex. Since the
jobs can be scheduled at the highest frequency, there must be an infinite walk avail-
able. In particular, there exists one trivial solution by taking the loop of the vertex
(0,0,....,¢1,1,1,...), here ¢; is the highest frequency. There may be other solutions
that satisfy all constraints and require lower power consumptions. Our method finds
these solutions with time complexity O(|V|?); this is independent of n.
From the pigeonhole principle, frequency assignments must form a closed walk for
a workload with an infinite time horizon. We need to emphasize that our method
does not have to know the length of the closed walk in advance. In contrast, using
integer linear programming (ILP) has to determine this length in advance and select
n large enough for the equations and inequalities in (6.25).

Since a typical MPEG movie contains thousands of frames, it is reasonable to

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 122

v,=(1,1,1,3,0,0,0)

Figure 6.18: the walk for four jobs with 80% processor utilization

approximate it with infinite frames. In reality, no movie can have infinite frames.
Appendix C explains how to find a long but finite walk that has the minimum cost.
A finite walk is different in three ways: (1) the initial cost needs to be considered (2)
it has a “tail” that may not be a complete closed walk (3) the cost of the tail needs

to be considered.

Example 16 A processor has five frequencies: 10, 7, 5, 4, and 3; a program keeps
the processor 80% utilized at frequency 10. There are four jobs with equal numbers of
operations: each job takes 20% time in a period. Without any buffer, the processor
is idle 20% time in each period. If there is one buffer between two jobs, a low-power
schedule is presented in Figure 6.18. In each period at frequency 10, one of the
buffers is filled; then, the processor runs at frequency 3 to reduce energy. The average
frequency is 8.25, or 8% above optimal. This walk also shows that some frequencies
(7,5, and 4) are not used. <

6.6 Respone Time of Sporadic Jobs

The previous section considered periodic jobs and showed how frequency scaling and
data buffering can reduce the energy consumption. The optimal assignments of fre-
quencies are determined by a graph-based algorithm. In this section, we explain how
to compute the response time of a sporadic job in the presence of periodic jobs. We
show how to calculate the response time of a sporadic job if it arrives at a period rep-
resented by a vertex in a walk. For simplicity, this section ignores scaling overhead.
We also assume that a sporadic job completes before another sporadic job arrives.

The following scenario is an example to illustrate the mixture of periodic and

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 123

sporadic jobs. When a user is watching an MPEG movie, the movie creates periodic
jobs. Occasionally, the user may move the mouse to a slider and adjust the volume;
this movement creates a sporadic job. A desirable outcome consists of three parts
(1) the sporadic job is processed promptly (2) the frame rate of the MPEG movie
remains constant (3) the power consumption is minimized.

When a sporadic job arrives, the processor has to execute additional operations.
These operations can be executed in two ways. First, the sporadic job is executed with
only the “spare” operations in each period. Alternatively, if buffers are nonempty,
data can be retrieved from the buffers and some jobs do not have to execute. By

draining the buffers, the sporadic job can finish earlier.

6.6.1 Unused Operations

Some time periods may have “unused” operations because these operations are not
used to execute any of job j; to j,,_1. We use ¢(v) as the number of unused operations
of vertex v. For vertex v = (81, B2y -y Bn1, [, @1, Qa, ..y 1), ©(v) can be found by

the following formula

p(v) =t f— (wm+ Z_Oél - wy) (6.39)

m—1
In this formula, ¢- f is the total number of allowed operations and (w,, + > a;-w;)

I=1
is the number of operations needed to execute the jobs required in this period. Their

difference determines how many additional operations can be conducted in this period.

Example 17 In this example, we represent unused operations as the percentage of a
period at the highest frequency. If the processor is completely idle while running at
the highest frequency, the unused operation is 100%. If the processor is idle but runs
at half of the highest frequency, the unused operation is 50%.

Let’s reconsider Fxample 16. If there is no sporadic job, the minimum energy s

achieved by repeating a closed walk with four vertices. This solution is shown in Figure

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 124

6.18. In the period represented by vertex vo = (1,0,1,10,1,2,1), j1 and j3 execute
once because oy = a3 = 1. In the same period, jo executes twice because oy = 2.
The fourth job always executes once each period. Since each job takes 20% time, the
total time required to execute these four jobs is 20% + (1 + 2 + 1) x 20% = 100%.
Consequently, p(ve) =0 and no additional operation can be executed.

For the period represented by v4, only j4 executes because oy = as = az = 0.
Notice that the frequency is only 30% of the highest frequency; ¢(v4) = 30% — 20% =
10%. Because this is insufficient for any of ji, ja, or js, it is unused. However, this

period can execute a sporadic job if it needs half of operations of j4. &

Consider a sporadic job that needs w, operations. Suppose the MPEG player still
maintains the same output rate; then, the sporadic job can execute only by the unused
operations in each vertex. The sporadic job can finish in one period if the amount of
unused operations is larger than this job’s number of operations, or ¢(v) > w,.

Suppose the sporadic job arrives at the beginning of a walk of n vertices: W =<
v1, V2,, U, >. The sporadic job can finish within n periods if there are enough
unused operations in these vertices. This condition can be expressed by the following

inequality:

>_elv) 2w, (6.40)

6.6.2 Effects of Buffers

Equation (6.39) does not consider how data buffering reduces the response time of a
sporadic job. To maintain the constant output rate, namely j,, executes once each
period, the data required by j,, may be obtained in one of the two ways: (1) from
the buffer between j,, and j,,_; or (2) generated by job j,,_; in the same period. In
other words, j,,—1 does not have to execute in this period if the buffer between j,, and
Jm—1 is nonempty. Let v be a vertex representing this period. Condition (1) means
Bm—1 > 0 and condition (2) means a,,—; > 0. Consequently, G,—1 + @m—1 must be at

least one so that j,, can execute in this period. This requirement can be written as

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 125

ﬂm—l + o1 > 0.
We can generalize this relationship. Suppose job j; executes in a period. Job j;_;
must execute in the same period if the buffer between j; and j;_; is empty (G_1 = 0).

We define an indicator function «; to determine whether job j; has to execute:

1 if =1land 5;=0
M= T o le M—{m} (6.41)

0 otherwise

We define +,, = 1 since job j,, executes once every period. Because ¥’s are the
minimum requirements to keep the output rate, v must be smaller or equal to «,
or v; < ¢. During this period, the minimum number of operations to sustain the

constant output rate is

m—1
Wy + Zwl e (6.42)
=1

Let ¢p(v) be the maximum number of operations available for a sporadic job when

the effects of buffers are considered.

op(v) =t f = (wm + Z_wz X0 (6.43)

Since v, < oy, wp(v) must be larger than or equal to ¢(v). In order words, buffering
allows the processor to spend more time on the sporadic job. for The response time
can be computed using the procedure presented in Figure 6.19. It first checks whether
there are enough unused operations (p(v)) in one period. Then, it checks whether this
job can finish in one period by draining the buffers (¢y(v)). If neither is successful,

it recursively computes the response time by adding one period each time.

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 126

ResponseTime(input vertex: v = (84, ..., Bm-1, f, 01, ..., 1), job: wy)
/* find how many periods (t) are needed to finish the sporadic
job that needs w, operations */
begin
compute p(v) by equation (6.39);
if p(v) > w, /* enough unused operations */
return i;
compute ,(v) by equation (6.43);
if gob(fu) > Wy
find one next vertex v’ by the continuity condition (6.32);
return i;
/* the job will take more than ¢ to execute */
/* find the response time recursively */
find one next vertex v’ by the continuity condition (6.32);
return ¢ + ResponseTime(v', w, — ¢,(v));
end

Figure 6.19: find the response time of a sporadic job

Example 18 Consider Example 16 again for computing the response time of a spo-
radic job. Suppose a sporadic job needs one period at frequency 10 to complete. With-
out buffers, it takes five periods to complete this job because the processor can spend
only 20% of time in each period on this job.

Now, let’s consider how buffering reduces the response time. For vertexr v, in
Figure 6.18, 3 is one but v1 and v equal zero. Since only js and js have to erecute,
the processor can spend 60% time in this period for a sporadic job. Because j; and jo
do not execute, the next vertex is different from vy. Using the continuity conditions,
we find one vertex to follow vy; it is (1,0,0,10,0,1,1) as shown in Figure 6.20. This
vertexr can spend 40% time executing the sporadic job. The sporadic job finishes in
two periods; this is 60% reduction from five periods. Similarly, we can compute the
response time of the sporadic job if it arrives at vy. It takes three periods as shown in
Figure 6.20; this is 40% improvement from the original five periods.

It takes two periods to finish the sporadic job if it arrives at vy or vs. On average,

2x343
4

the response time of the sporadic job is = 2.25 periods; this is 55 % improvement

from the original five periods.

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 127

sporadic job sporadic job

(1,1,0,10,0,0,1) (1,1,1,3,0,0,0)

|
iy

(1,0,0,10,0,1,1) (1,1,0,10,0,0,1)

(1,0,0,10,0,1,1)

Figure 6.20: A sporadic job finishes in two periods if it arrives at v; (left). It takes
three periods if it arrives at vy (right).

6.6.3 Timing Constraints of Sporadic Jobs

The previous section analyzed the average response time of a sporadic job. Using the
same technique, we can determine whether it is possible to meet the timing constraint
of a sporadic job. The timing constraint is the maximum acceptable execution time

after a sporadic job arrives.

Example 19 For Fzample 18, if the timing constraint is four periods, the assignment
in Figure 6.18 can meet this constraint. On the other hand, if it is two periods, this

assignment cannot satisfy the constraint.

In order to decide whether it is possible to finish a sporadic job, j,, within n time
periods, we have to find the shortest response time of j.. The response time is the
shortest when all buffers are full and the processor is running at the highest frequency.
Thus, we assume all buffers are full and the frequency is the highest when j,. arrives.
We also assume that no sporadic job arrives before another sporadic job completes
(because they are “sporadic”).

In Equation (6.43), the maximum number of operations occurs when v; = vo =

e = Y1 = 0:

max gp(v) =t ¢1 — Wy, (6.44)

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 128

Here ? is the length of a period, ¢, is the highest frequency, and w,, is the number
of operations executed by job j,.

If ©= > - ¢1 — Wy, then it is impossible to meet the timing constraint because
there are insufficient operations in each period. Allocating more memory for buffers
will not solve the problem; the only solution is to find a faster processor with higher
1.

The value of ¢y(v) is t - ¢y — wy, only if the buffer between j,,—1 and j,, has data.
Since the buffer size is b,,_1, the buffer will become empty in b,,_; periods after j,
arrives. If n < by,—; and = <t - @) — wy, then j, can finish in n periods. Job jn, 1
does not have to execute during these n periods and j,, can still execute once each
period.

When n > b,,_:, the buffer between j,,_; and j,, becomes empty before j, com-
pletes. Thus, j,,_; must execute n — b,,_; times so that j,, can execute once each
period. The maximum value of ¢ (v) drops to t-¢1 — (W, +wm—1) after b,,_, periods.

Consequently, when n < b,,_1 4 by_2, jr can finish in n periods if

Wy < bm—l X (t . ¢1 - ’U)m) + (TL - bm—l) X (t . ¢1 — Wy — ’Ll)m_l) (645)

As n becomes larger, more and more buffers become empty and the values of ¢, (v)
decrease; this condition is illustrated in Figure 6.21. Following this analysis, we can

derive the condition to finish j, within n periods after j, arrives:

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 129

¢b(V) =tf- Wi ¢b(v) =tf- Win = W1 ¢h(v) =tf- Wi = Win1™ W2
| |

I I
<— by, —><«<— b,—><«— bys— 5 ... time(period)

Figure 6.21: ¢(v) decreases as more buffers become empty.

if n < bm—l wy < ’I’L(t : ¢1 - wm)
if bm—l <n S bm—l + bm—2 Wy S bm(t) ¢1 - wm) + (TL - bm—l) X (t) ¢1 — Wy — wm—l)

m—1 m—1 m—1 m m—1 m

if Y h<n< X b wy < Y b(t-di— Y wp)+(n— D b))t P — D wp)
I=k I=k—1 I=k p=I+1 I=k =k
m—1 m—1 m m—1 m

if n> 3 b wy < Yo b(t-di— Y wp)+(n— D b))t — D w)
=1 =1 p=I+1 =1 =1

(6.46)

where 1 < k < m.

The conditions in (6.46) indicate that enlarging the last buffer (larger b,,_1) is
most effective because it is multiplied by the largest coefficient, ¢ - ¢; — w,,. This
analysis further suggests how to calculate the minimum number of items stored in
each buffer. In fact, buffers do not have to always remain full. As long as these
conditions are satisfied, j, is guaranteed to finish within n periods. This sets the
lower limits of the buffer sizes. So far, we have been assuming that the items stored
in different buffers takes the same memory size. When they require different memory
sizes, it is necessary to consider how to allocate memory for different buffers. For
example, suppose the same amount of memory can increase b; by one or b,,_» by two.
From the conditions above, we know that increasing b,,_o is more effective in reducing
the the response time of a sporadic job. In contrast, if the same memory can increase
b1 by two or b,,_» by one, we need to compare their coefficients in (6.46) to decide
which is more effective for guaranteeing the response time of j.. No existing scaling
technique is able to analyze the relationship between buffer sizes and the response

time of a sporadic job. After the buffer sizes change, the method presented in Section

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 130

v'=(0,0,0,10,2,1,1
(1,0,0,10,1,2,1)

(0,1,0,10,2,1,1)

Figure 6.22: fill the buffers from a starting vertex

6.5 efficiently finds a minimum-power frequency assignment when the buffer sizes
change.

In the assignment graph, the 3 values of a vertex represent the numbers of items
stored in buffers. Since (6.46) specifies the minimum number for each buffer, a vertex
should be removed if its B values are too small. After excluding these vertices, a
minimum-cost walk can meet all constraints of the mixed workloads and also achieves
the minimum energy consumption.

There is, however, an initial walk after the system starts and the buffers are being

filled; during this period the timing constraint of a sporadic job cannot be met.

Example 20 In Fzample 16, when the processor runs at the highest frequency, it can
execute one job twice and the other jobs once in each period. Figure 6.22 shows the

walk that represents how buffers are filled from a starting vertex. {

The minimum time period to fill all buffers can be calculated by finding a shortest
path from one starting vertex v* to a vertex whose encoding is (b1, b, ..., by _1, @, @, ..., ®).
Algorithms for finding shortest paths between vertices can be found in [22].

In summary, this section describes how to compute the response times of sporadic
jobs based on the assignment graphs developed in Section 6.5. We explain how to
take advantages of the buffered data to reduce the response times without affecting
the on-time constraints of periodic jobs. We also analyze whether it is possible to

satisfy the timing constraint of a sporadic job.

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 131

(0,0,1,0,103,1,1,0,1) (0,1,0,0,103,1,0,1,1)
(1,0,1,0,103,0,1,1,1) (1,0,0,0,206,2,2,2,1)

(1,0,0,0,0,206,2,3,2,1,1)
(0,1,0,0,0,103,1,0,1,1,1) (0,1,1,0,0,103,1,0,1,1,1)

(0,0,1,0,0,103,1,1,0,1,1) (1,0,1,0,0,103,0,1,1,1,1)

Figure 6.23: schedules for five and six jobs with 60% processor utilization

6.7 Experiments

The details of our experimental setup are described in Appendix A.2.

6.7.1 Synthesized Workload

A synthesized workload is used to compare the power consumption in the following
scenarios. We use the procedures presented in Section 6.5 to find a minimum-cost

walk for each scenario.

e 3 to 6 jobs. The last job has to execute once every period.

e 2 to 5 frequencies. We start with 206 and 103 MHz; then, we add 59, 147, and
89 MHz.

e 40% to 70% processor utilization at the highest frequency. In this chapter,
utilization always means the utilization at the highest frequency (206MHz in

our setup).

Each period is one second and one buffer is inserted between two jobs. Figure

6.23 shows the schedules for five and six jobs with three frequencies (206, 103, and

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 132

59 MHz) when the processor utilization is 60%. Since the processor is 60% busy,
it cannot stay at 103 MHz or 59 MHz indefinitely; otherwise, it would violate the
timing constraints. The frequency in each period is written in boldface. Notice that
59 MHz is not used even though it is available.

Figure 6.24 depicts the measured power consumption in three cases: no frequency
scaling, scaling down during idleness, and scaling using our method. These data were
obtained with 70% processor utilization. As can be seen at the top of the figure, the
system consumes less power when the processor is idle. The boundaries of periods are
clearly visible. If we scale down the frequency during idleness, period boundaries are
also distinguishable. The power consumption in the “valleys” are deeper, indicating
lower consumption during idleness. However, the power remains virtually unchanged
when the processor is busy. Finally, the bottom of this figure is the power consumption
of our method. We can see that the period boundaries are now blurred; this is because
our method rearranges the execution order of jobs. Some jobs execute at a higher
frequency; some other jobs execute at a lower frequency. This figure shows clearly
that our method has lower average power; it is approximately 1.6 W. This is nearly
40% reduction among the scalable range (-:22=1% = 40%).

1.89—1.17
Because Figure A.8 and Figure A.9 show almost linear scaling in power and per-

formance, we can predict the power consumption accurately for different scenarios.
The average error is 2.5% and the maximum error is 8%. Figure 6.25 depicts the
predicted and measured power with four and five frequencies. The horizontal axes
are the processor utilization at 206 MHz and the vertical axes are the power con-
sumption. The squares and diamonds represent the predicted power consumption.
The lines connect the measurement results. The triangles are the optimal solutions
(minimum power) if the processor’s frequency can be continuously scaled. Squares,
diamonds and triangles almost overlap on each other in the figure because their values
are very close.

The minimum power is computed as follows. Let psg (1.167W) and pogg (1.886W)
be the power at 59 and 206 MHz respectively. The power is a linear interpolation

using the following formula:

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 133

no frequency scaling

power (W)
= N
[(&3} N (53] w

o
3

3 4 5 6

time (period)

o
-
N

scaling down during idleness

25

power (W)

15

0.5 + T T T T T)
0 1 2 3 4 5 6

time (period)

scaling by graph walking

power (W)

0 1 2 3 4 5 6
time (period)
Figure 6.24: no frequency scaling (top), scale down during idleness (middle), and

using graph walking technique with buffer insertion (bottom). Our method saves
40% power in the scalable range.

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 134

o 4freq, predicted ------- 4 freq, measured ¢ 5 freq, predicted
5freq, measured A optimal

power (W)

40 50 60 70

processor utilization (%)

o 4freq, predicted ------- 4 freq, measured ¢ 5 freq, predicted
5freq, measured A optimal

power (W)

40 50 60 70

processor utilization (%)

Figure 6.25: estimated, measured, and optimal power for three (top) and four jobs
(bottom)

utilization — 2%
Pso + (D206 — Pso) R (6.47)

206

Figure 6.25 shows that four frequencies (206, 147, 103, and 59 MHz) are sufficient
to achieve almost the minimum power, computed by (6.47).

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 135

6.7.2 Reducing Power for Playing MPEG Video

An MPEG player differs from the previous synthesized workload in two major ways:
the execution time varies from frame to frame and it has many IO operations. We
characterize an MPEG player ported to Assabet. At 206MHz, the program can
display approximately 20 frames. We divided the program into three stages: reading
data, decoding data, and displaying images. To conquer the variation of execution
time, we assign fixed duration to each stage: (1) 10 milliseconds to reading one frame
(2) 25 milliseconds to decode one frame (3) 10 milliseconds to display one frame.
Together, they take 45 milliseconds. Our target frame rate is 15 frames per second
so the processor utilization is 68% (67 milliseconds for one frame, 2 = 68%). We
compared the power consumption in the following scenarios. The measurement is
obtained using the same setup illustrated in Figure A.6; all values include the power

of a network card.

e no frequency scaling, frame rate controlled by busy waiting. The system con-
sumes 2.45 W.

e 1o frequency scaling, frame rate controlled by calling usleep . The power

consumption is 2.30W.

e frequency scaling with 2 frequencies: 206 and 103 MHz. A buffer with three

slots is inserted between stages. The power consumption is 2.16W.

e frequency scaling with 3 frequencies: 206, 103, and 59 MHz. The power con-
sumption is 2.16 W. Frequency 59MHz is not used because it does not help

reduce the power consumption.

e frequency scaling with 4 frequencies: 206, 147, 103, and 59 MHz. The processor
stays at 147MHz and the power is 2.12W. This is 46% reduction in the scalable

range (35=r17 = 46%).

The first case keeps the processor busy while waiting for the beginning of the next

period. The following code illustrates such busy waiting to control the frame rate:

4This function suspends the execution of the calling process; the unit is microsecond.

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 136

..... after finish one frame
while (target finish time > current time)
{ update current time; }

target finish time += one period;
In contrast, the second scenario calls usleep if there is slack time:

..... after finish one frame
slack time = target finish time - current time;
if (slack time > 0)

{ usleep(slack time); }

target finish time += one period;

When a process calls usleep, this process voluntarily suspends its execution. If
no process needs the processor, the processor becomes idle and consumes less power.
In our measurement, approximately 0.15W power is saved by calling usleep. We call
this intra-period power saving because it saves power inside each period. In contrast,
our method uses buffers across the boundaries of periods to save power; this can be
considered as an inter-period power-saving technique. Combining our method with
the intra-period technique saves 0.33W, 46% in the scalable range or 14% (232 = 14%)
of the original power. This is very close to 0.33W predicted by formula (6.47). Notice
that after inserting buffers, the power is reduced by 0.29W even when there are only
two frequencies. This example shows that adding buffers is more effective than adding

available frequencies to the processor.

6.7.3 Buffer Size

Figure 6.25 shows that our predicted power consumption is very close to the measured
values. In the rest of this section, we use the same method to estimate the power
consumption for different buffer sizes, job sizes, and arrival rates of sporadic jobs.
The experimental results in Section 6.7.1 show that after inserting buffers, a few
frequencies are sufficient to save significant amount of power. We use the same work-
load to study the effect of buffer sizes. We consider five frequencies (206, 147, 103,

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 137

—o— 75% utilization ---m---65% —-a--55% — e —45%

power (W)
I

buffer size

Figure 6.26: power consumption with different buffer sizes

89, 59 MHz), four jobs with equal number of operations, and 45% to 75% processor
utilization at 206 MHz. Figure 6.26 compares the power consumption with differ-
ent buffer sizes. In all cases, inserting one or two buffers between two jobs have
identical effects. For 55%, 65%, and 75% utilization, adding one buffer between two
jobs reduces the power because the processor can switch to low frequencies. When
the utilization is 45%, adding buffers has no effect because the system consumes the
minimum power if the processor stays at 103 MHz. This figure shows that adding
one buffer between two jobs is very effective; adding two buffers has no additional
advantages. This example suggests that buffer insertion does not need substantial

amount of memory.

6.7.4 Job Size

The synthesized workload in Section 6.7.1 assumes all jobs need the same number of
operations. Dividing a program into equal-size stages can be difficult; for example,
the MPEG player in 6.7.2 is naturally divided into three stages and they take different
amounts of time. Suppose the amount of operations from all jobs (iwl) is a constant.
Dividing these operations to different ways may cause different plgéver consumption.
Consider the following ways to divide the operations. We are interested in finding

the best one for power saving.
1. wy = Twy, we = ws = Wy

2. wy = 4wy, wo = 3wy, w3 = 2wy

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 138

3. 4wy = wy, 3wy = wq, 2w = W;
4. W1 = W9 = W3 = Wy

9. wy = wq = 4wy, Wy = W3

6. wo = w3z = 4wy, w1 = wy

Figure 6.27 depicts the relationship of these cases. The widths indicate the relative
numbers of operations in each case. We consider five frequencies of the processor; one
buffer is inserted between two jobs. Figure 6.28 is ratio of power consumption related
to the first case. For 60% utilization (white bars), the first case consumes more power
than the other cases. This is because w; is so large that the processor cannot execute
j1 twice in one period to fill the first buffer. Because the first buffer is not filled,
the processor cannot scale down the frequency. This case causes the most power
consumption. The other cases can fill the buffers and reduce the power. For 80%,
however, only case 3 and case 4 can use the buffers to save power. This example
suggests the following rule: it is preferred that earlier jobs, such as j; and j,, need
fewer operations so that the buffers can be filled. If j; needs too many operations,
then the first buffer cannot be filled and all the other buffers are unused. If the buffers

are unused, they cannot facilitate power saving.

‘ w_1 ‘ Ww_2 ‘ W_3 ‘ W_4 ‘
| w1 | w2 | ws |wa
‘ Ww_1 ‘ Ww_2 ‘ W_3 ‘ W_4 ‘
‘ w_1 ‘ w_2 ‘ W_3 ‘ W_4 ‘
‘ w_1 ‘ Ww_2 ‘ Ww_3 ‘ wW_4 ‘
‘ Ww_1 ‘ w_2 ‘ W_3 ‘ W_4 ‘

Figure 6.27: different ways to divide operations into four jobs

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 139

0 60% utilization & 80%

0.95 4

power (ratio)

0.9

cases

Figure 6.28: power consumption of job sizes in Figure 6.27

6.7.5 Arrival Rate of Sporadic Jobs

If sporadic jobs arrive frequently, the average power consumption is higher. This
section discusses how the arrival rate of sporadic jobs affects the average power.

Figure 6.29 is a redraw of the five-job case in the top of Figure 6.23. Consider
a sporadic job that takes one period at the peak frequency (206 MHz) to complete.
Suppose this sporadic job arrives at the period represented by v,. We can follow the
procedure explained in Example 18 to compute the response time of the sporadic job.
The result is shown in Figure 6.30. After running at 206 MHz for three periods, the
sporadic job completes and the processors returns the closed walk shown in Figure 6.29
starting from v;. Even though the closed walk was “interrupted” by the sporadic job
at vq, the frequency assignment does not necessarily continue from v after processing
the job. If there is no sporadic job, the average power in the next four period from
vg is 1.51W. In contrast, the sporadic job causes the average power in the same time
interval to rise to 1.76W.

The same method can be applied to compute the response time of the sporadic job

v,=(0,0,1,0,103,1,1,0,1) v,=(0,1,0,0,103,1,0,1,1)
v,=(1,0,1,0,103,0,1,1,1) v5=(1,0,0,0,206,2,2,2,1)

Figure 6.29: closed walk for five jobs with 60% processor utilization, redraw of Figure
6.23

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 140

sporadic job
v,=(0,1,0,0,103,0,0,1,1)
(0,0,0,0,206,1,1,1,1)

(0,0,0,0,206,1,1,1,1)

= sporadic job

(0,0,0,0,206,2,2,2,1) finished

(0,0,1,0,103,1,1,0,1)= v,
Figure 6.30: process a sporadic job that arrives at the period represented by v,

if it arrives at the period represented by vy, vs, or v4. We can also find the additional
energy required to process this sporadic job. After processing the sporadic job, the
frequency assignment will eventually return to the closed walk in Figure 6.29, but it
does not always starts from v;.

Let’s assume that the time interval between two sporadic jobs is long enough
so that the processor can return to the original closed walk in Figure 6.29. Figure
6.31 shows the power consumption for different arrival rates of the sporadic job.
The horizontal axis is the average number of periods between two sporadic jobs; the
vertical axis is the average power consumption. This figure shows that the average
power reduces rapidly as the time between two sporadic jobs increases. Since sporadic
jobs are “sporadic” and the time interval between them should generally be large, their

effects on power is insignificant.

6.7.6 Timing Constraints and Maximum Operations of Spo-
radic Jobs
Section 6.6.3 derives the relationship between buffer sizes and the response time of a

sporadic job. We use a synthesized workload described in Section 6.7.1 to pictorially

illustrate the conditions. There are four jobs and each takes 20% time in a period

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 141

| el

[S w g

A ©®© o
| ,

average power (W)

=
a
N

=
o

20 40 60 80 100
time between sporadic jobs (periods)

o

Figure 6.31: average power consumption for different intervals between two sporadic
jobs

=1

0 andn

MW, normalized based on BM

Figure 6.32: maximum number of operations of a sporadic job: n is the timing
constraint and BM is the total buffer memory sizes.

when the processor runs at the highest frequency. Without any buffers, there is 20%

processor time unused in each period.
m—1
Let BM be the total memory allocated for buffers: BM = > b;. Let MW (n) be
i=1

the maximum number of operations a sporadic job can compl(;ce within n periods.
If BM is zero, there is no buffer so MW (1) is 20% of a period. We use 20% of
a period as the normalization base. Figure 6.32 shows MW for different n’s and
BM’s. In this figure, we can observe that W M is the largest when BM and n have
compatible values. This can be understood by examining the conditions of (6.46) in

Section 6.6.3. When n is small and BM is sufliciently large, adding more buffers will

CHAPTER 6. FREQUENCY SCALING ON PROCESSORS 142

not increase MW this corresponds to the first condition in (6.46) and the lower left
side of the surface in Figure 6.32. In contrast, when BM is too small, MW increases
linearly with n because buffers become empty before the sporadic job completes. This
situation corresponds to the last condition in (6.46) and the lower right side of the

surface.

6.7.7 Summary

We use the graph-based algorithm presented in Section 6.5 to find frequency assign-
ments for different scenarios. Our experiments show that inserting buffers effectively
reduces power consumption even for a processor with only a few frequencies. Insert-
ing buffers can achieve nearly the minimum power with four frequencies. We also
demonstrate that adding one buffer between two jobs is sufficient in many cases; con-
sequently, buffers do not need substantial amount of memory. We provide a guideline
for dividing operations into multiple jobs. Finally, we show that sporadic jobs have

negligible effects on power increases.

6.8 Chapter Summary

This chapter addresses power reduction by frequency scaling for mixed workloads. We
explain existing methods based on integer linear programming and point out the need
for efficient solutions. Our method inserts buffers between jobs and builds an assign-
ment graph; each vertex encodes the current states of the buffers and the frequency
of the processor. We develop a graph-based method that has complexity O(|V|?)
where |V| is the number of vertices of the state-space graph. We use a frequency-
scalable system to demonstrate the effectiveness of our method. By inserting buffers,
we can achieve nearly optimal power saving using only four frequencies. Furthermore,
this method is able to dramatically reduce the response time of sporadic jobs. This
method saves approximately 46% power of an MPEG player, after excluding the non-
scaleable base power. We also analyze the effects of buffer sizes and how to divide

programs into multiple jobs.

Chapter 7
Conclusion

Reducing power consumption has become a major design goal in all types of electronic
systems. Most of these systems do not have to operate at their peak performance
continuously. The run-time variation of workloads provides opportunities to reduce
power consumption by power management. Power managers predict future utilization
of hardware components and determine their power states. Because of state-transition
overhead, power management reduces energy only when the overhead can be com-
pensated by the saved energy. For an IO device, this condition is expressed by its
break-even time.

Operating systems can be structured into layers. In each layer, different informa-
tion is available to power managers. When power managers have additional infor-
mation, they can predict utilization more accurately with better power saving and
performance. Furthermore, process schedulers can arrange the execution orders of
processes to create long and continuous idle periods during which devices can be shut
down to save energy. In addition to saving power, it is also important to reduce the
execution time of power managers. An efficient graph-based method can significantly

reduce the time required to find optimal frequency assignments.

143

CHAPTER 7. CONCLUSION 144

7.1 Thesis Summary

Operating systems provide important information for power management. When
power managers has more information about the processes that generate requests,
power managers can improve energy saving while maintaining satisfactory perfor-
mance.

A Windows-based framework is presented for implementing policies to control the
power states of IO devices. Because device drivers have enough information for most
previously proposed policies, these policies can be implemented in our framework.
We compare the power saving, computation requirements, and performance impact of
these policies. Since device drivers do not have detailed information about individual
processes, these policies are not taking the full advantages of the information available
from operating systems.

A process-based policy is proposed to distinguish individual processes for predict-
ing the idleness of IO devices. Different processes have different device utilization and
create requests only when they execute. Hence, it is essential to separate processes
and to estimate how often they execute. By collaborating with process managers,
power managers predict idleness more accurately and save more power with smaller
performance degradation.

The third part of this thesis explains how to further improve power saving by
combining process scheduling and power management. Process schedulers determine
the execution order of processes and affect the lengths of idle periods. We propose an
application programming interface (API) that allows application programs to indicate
their future device requirements. A heuristic is presented to group processes and
create idle periods longer than the break-even time of the power-managed device.

Finally, a graph-based method is used to assign processor frequencies efficiently
after inserting data buffers in multimedia programs. This method constructs a space-
search graph; each vertex indicates the states of the buffers and the frequency of the
processor. Data buffering has three purposes: maintaining constant output frame
rates, saving energy by frequency scaling, and reducing the response time of sporadic

jobs. An algorithm is proposed to find optimal solutions efficiently and to estimate

CHAPTER 7. CONCLUSION 145

the response time of sporadic jobs.
The methods presented in this thesis have been implemented on different interac-

tive systems. Experimental results demonstrate better power saving and performance.

7.2 Future Work

This work can be extended in several directions. First, some parameters are chosen
statically, for example, a in Section 4.2.1 and % in Section 4.2.4. Further investigation
is needed to determine whether dynamically adjusting their values can provide more
power saving and better performance. Second, the policies presented in this thesis
manage the power states of distinct IO devices independently. It is possible that
the idle periods of some devices are highly correlated so the power state of one de-
vice provides better indication of future idleness of another device. Third, compilers
can analyze programs and provide valuable information for dynamic power manage-
ment. It is not yet well understood how to effectively combine power-aware operating
systems and compilers.

This thesis focuses on reducing the power of 10 devices and processors. In a
complete system, there are other components that consumer large portions of power;
examples are memory and display. They have unique characteristics and require
different techniques for energy reduction. Specifically, memory has short wakeup
delays but requires “warm-up” time. After a block of memory is woken up, it has
empty contents and data need to be filled. Filling data into the newly awaken memory
units may consume even more energy. Furthermore, before shutting down a memory
unit, its contents have to be written back to the next level in the memory hierarchy
and this consumes energy. Thus, different sets of rules are needed to manage the
power states of memory. Managing the power of display also has unique challenges
because display cannot be shut down while the system is interacting with a user.

Many portable systems use wireless networks to connect to the Internet; this
provides opportunities for energy reduction. Most network servers are connected
to power grids and are not constrained by battery lifetimes. Migrating tasks from

battery-powered portable systems to servers may lengthen the battery lifetimes on

CHAPTER 7. CONCLUSION 146

portable systems. It remains a research area to design widely-acceptable protocols
that can migrate tasks for energy efficiency.

Multiple-processor systems have appeared in today’s desktop computers. As hard-
ware technology improves, it is possible to have multiple processors on a laptop com-
puter in the near future. The policies presented in this thesis are not designed to
manage multiple identical devices or processors. For those systems, power managers
have to collaborate with load-balancing managers, namely “power-aware load balanc-
ing”, to achieve the best power efficiency and desirable performance.

Finally, there is a need to design policies that consider overall systems and multiple
heterogeneous devices simultaneously. In order to facilitate the exploration of design
choices, we foresee the necessity to develop system-level tools for policy design and

tuning.

Appendix A

Measuring Power

A.1 Power of 1O Devices

Measuring the power of IO devices can be challenging. In notebook computers, many
devices are directly plugged into the main boards to obtain power as well as signals.
Some other devices acquire power through very short cables. For example, inside a
Sony VAIO notebook computer, the power cables for the hard disk is shorter than one
inch. On a desktop computer, most IO cards are connected through PCI or similar
interfaces. Measuring their power requires cutting the wires on the mother boards or

the contacts of these cards.

A.1.1 Hardware Connection

In order to reflect the current technology, it is essential to measure the power of
commercially available devices, instead of proprietary devices. Devices were chosen
for four reasons: (1) they consume large power (2) they are not always used when
a computer is operating (3) they have large break-even times (4) it is possible to
measure the power fed into the device only.

Unfortunately, commercial devices do not have probing points to measure power;
therefore, it is necessary to “cut the wires”. To conquer these difficulties, we measured

the two types of devices: a device with power cables or a device with PCMCIA

147

APPENDIX A. MEASURING POWER 148

P 9

power jumper

PCMCIA - PCMCIA - notebook
card extender computer

Figure A.1: connect DAQ to measure the power of a PCMCIA card

TDAQT

power jumper

25" IDE disk mp| PCMCIA-IDE | PCMCIA | notebook
converter E extender Computer

Figure A.2: measure the power of a 2.5” hard disk

interfaces. A typical 3.5” hard disk needs two power sources: 12V and 5V. Their
power cables are usually more than five inches long and can be connected to meters.

In order to measure the power of a PCMCIA-based device, we used a PCMCIA
extender manufactured by Accurite. The extender is designed for developing and
debugging PCMCIA devices; it has jumpers for measuring the signals as well as the
power of a PCMCIA device. We connected the power jumpers to a data acquisition
card (DAQ) by National Instruments to measure the power flowing into a PCMCIA
device; this DAQ can take up to one million readings per second. Figure A.1 illustrates
this connection. This method can measure the power of any PCMCIA device. Two
PCMCIA devices were considered: a network interface card (NIC) and a 2.5” hard
disk. To measure the power of a 2.5” hard disk, we used a PCMCIA-IDE converter
produced by Appicorn to connect the disk to to a laptop computer, as shown in Figure
A.2. Figure A.3 is the photos of the experimental setup.

Figure A.4 shows the steady-state power of the Hitachi hard disk. Since the disk is
controlled through the PCMCIA interface, it is completely turned off in the sleeping
state. Consequently, it consumes virtual no power even though it consumes 0.125W

in the sleeping state by the vendor’s specification.

APPENDIX A. MEASURING POWER 149

card N

POMCARIINRY AR

power ~
jumpers
Jump laptop
computer
PCMCIA
Interface

25" IDE | g
Hard Disk

|

PCMCIAIDE N

converter

Figure A.3: top: PCMCIA extender; middle: PCMCIA-IDE converter and a 2.5”
hard disk; bottom: a hard disk connected to the extender

APPENDIX A. MEASURING POWER

12

power (W)

0.2

10 15 20 25 30

time (sec)

35

25

power (W)

15

05

10 15 20 25 30

time (sec)

power (W)

time (sec)

150

Figure A.4: power consumption in three conditions: idle, writing, and sleeping

APPENDIX A. MEASURING POWER 151

vendor Hitachi IBM
model DK23AA-12 DARA-212000
capacity 12 GB 12 GB
peak power 4.5W 4.7 W
seek 23 W 2.3W
read 2.15 W 20W
write 21 W 21 W
sleep 0.125 W 0.1 W
standby 0.25 W 0.25
performance idle NA 1.85 W
active idle NA 0.85 W
low-power idle NA 0.6 W

Table A.1: specifications of two hard disks

A.1.2 Device Variations

Devices of the same functionality may have wide variations in their power consump-
tion. Table A.1.2 compares the specifications of two 2.5” hard disk drives; one disk
has three additional power states. Because ACPI supports at most five power states,
some of these additional states are not software controllable. Furthermore, the power
in the “sleeping” state is not always the same as the “sleep power” specified by the
manufacturer.

Figure A.5 is the transitions of two 2.5” disks; one is Hitachi DK23A A-60 disk and
the other is Fujitsu MHF2043AT disk. The Hitachi disk takes longer and consumes
more energy during transitions. From this figure, we can see even the same type of
devices have large variations in their transition overhead. The Hitachi disk was used

to generate the experimental data in this thesis.

APPENDIX A. MEASURING POWER 152

wake up Hitachi disk shut down Hitachi disk

2

L
08 [s
0 T T

T

power (W)

power (W)

R

0 2 4 6 8 10

wake up Fuijitsu disk shut down Fujitsu disk

25 12
< 0.
15 B 8 |
5 0.6
! 3 04 L Neielihdtviiaviiod
Q
0.5 1 0.2

0 T T T T 1 0
0 2 4 6 8 10 0 2 4 6 8 10

time (sec) time (sec)

power (W)

Figure A.5: state transitions of two 2.5” disks

A.2 Power of a Frequency-Scalable System

In this section, we first describe our experimental environment. Then, we measure
the power saving of a synthesized workload. We modify an MPEG player to scale
frequencies for power reduction. We also discuss how buffer sizes and job sizes affect

power saving.

A.2.1 Experimental Setup

We set up a system to measure power saving by frequency scaling. The system is
composed of a palm-size computer using Intel’s StrongARM processor [2] (also called
Assabet). The processor has eleven frequencies, between 59 and 206 MHz. It has a
320% 240 touchscreen, 16MB SDRAM, and a Compact Flash interface; this interface
can be used for networking. This system runs Linux ported for ARM processor [7].
We used a National Instrument Data Acquisition Card (DAQ) to measured the DC
current from the AC/DC adapter; this is the total power consumption of the whole
system and directly affects battery lifetime. Figure A.6 illustrates the setup for our

experiments. Assabet supports frequency scaling but it does not support voltage

APPENDIX A. MEASURING POWER 153

DAQ
LCD Display - DC/AC (]

Assabet

Processor

Figure A.6: setup for our experiments

scaling. It takes approximately 2 microseconds to change frequencies'. Assabet can
also connect to a companion board, called Neponset, that provides interfaces for
PCMCIA, USB, a serial port, and audio input/output.

Figure A.8 is the power consumption at different frequencies. We kept the pro-
cessor busy by running an infinite loop. When the processor is busy, the system
consumes 1.89W at 206 MHz and 1.17W at 59MHz; this is 0.72 W or 38% reduction
of power consumption. When the processor is idle, it consumes 1.22W at 206 MHz
and 0.97W at 59MHz; the power reduction is 0.25W. There is a baseline power that
cannot be reduced by frequency scaling, such as the power for the LCD display. Fig-
ure A.9 compares the performance at different frequencies. The performance scales

up almost linearly with frequencies.

!The implementation in Linux 2.4.1 recalibrates a software timer each time the clock frequency
changes. This recalibration takes up to 150 milliseconds. However, such recalibration is not always
necessary.

APPENDIX A. MEASURING POWER 154

Neponset . R——teS W
Assabet

Neponset

Figure A.7: top: Assabet and Neponset; middle: Assabet and Neponset connected;
bottom: connected to a laptop computer through a serial cable

APPENDIX A. MEASURING POWER 155

2.1
1.8 ot
= e
g 15 R
g e
1.2 W
0.9 + T T T 1
50 100 150 200 250
frequency (MHz)

Figure A.8: power consumption at different frequencies

IS
)

w
w0
.

performance (ratio)

= N
, N U W
. . . .

15 2 25 3 35 4

[u

clock frequency (ratio)

Figure A.9: performance at different frequencies

Appendix B

Complexity of Low-Energy
Scheduling

Suppose there are n jobs: J = {ji, J2, - .-, jn} OD a single-processor system with m
devices: D = {dy, dy, ..., dn}. Let S be a schedule: S = (Js,, Jsyy - -+ Jon); Jsipn
executes immediately after j,, for i € [1,n—1]. The energy of a schedule is computed
using formula (5.4). The low-energy scheduling problem can be transformed into a
decision problem: given a bound k, is there a schedule that makes energy lower than
k?

For an off-line scheduling problem with timing and precedence constraints, it is
NP-complete to answer whether a schedule exists [30]. Since low-energy scheduling
considers energy in addition to the constraints, its complexity is at least NP-hard.
On the other hand, when a schedule is known, it takes polynomial time to find the
energy consumption using formula (5.4) and to answer whether the energy is lower
than k. The low-energy scheduling problem is in NP; therefore, it is an NP-complete
problem. Even without timing and precedence constraints, low-energy scheduling is

still an NP-complete problem as proved below.

156

APPENDIX B. COMPLEXITY OF LOW-ENERGY SCHEDULING 157

B.1 Simplification Assumptions

It is NP-complete to answer whether a schedule exists. We simplify the problem so

that there always exist schedules.

1. There is no timing or precedence constraints. Jobs can execute in any order

and any schedule is a valid schedule.

2. All devices have the same parameters, such as the power, and their break-even

time. Devices have equal importance in power reduction.

3. All jobs have the same execution time. Each job causes the same duration of

busyness of a device that is used by this job.

For a device, its total idle time is the same, regardless of the schedule. How-
ever, the idle time may be composed of many short idle periods or few long idle
periods. Only idle periods longer than the break-even time can save power using
power management. Long idle periods are preferred; an idle period is “wasted” if it is
short. Under the three assumptions, low-energy scheduling is equivalent to reducing
the number of idle periods and to enlarging the length of each idle period. In order
words, the scheduler intends to reduce the “switches” between idleness and busyness

of devices.

B.2 State Switches

A device switches from idleness to busyness if a job does not need this device while
the following job does. Specifically, device d; switches from idleness to busyness if
rsk = 0 and 7y, = 1 for any 4 € [1,n — 1]. Similarly, dj switches from busyness
to idleness if r,,;, = 1 and 7,,,, x = 0. When 7, = r,,,, 1, the device remains either
idle or busy with no switch. Therefore, dj switches if and only if ry, x # 7,,,, k- We

define sw;, as the number of switches of d in this schedule; it can be computed by

APPENDIX B. COMPLEXITY OF LOW-ENERGY SCHEDULING 158

n—1
sSwy = g Tsik © Toipr (B.1)
i=1

here @ this is the exzclusive-or function. The total number of switches of all devices,

sw, 18

sw = stk (B.2)
k=1

B.3 Problem Statement

Under the simplification in B.1, the low-energy scheduling problem is equivalent to

finding a schedule such that the total number of switches is the minimum.

m n—1

min ersi’k D o1k (B.3)

k=1 i=1
B.4 Distance Between Jobs

We define the “distance” between two jobs as the the number of switches when these

jobs execute consecutively. For jobs j, and j,, their distance is

dizy =D Tok ® Typ (B.4)
k=1

Example 4 Consider an example of three jobs and two devices. The required device
set (RDS) of ji is {d1}, RDS(jo) = {do}, RDS(js) = {d1, d2}. These relationships
are expressed in Table B.1.

If jo executes after 7, di becomes idle while do becomes busy; two devices change

between idleness and busyness. The distance between j; and jo is two. If j3 executes

APPENDIX B. COMPLEXITY OF LOW-ENERGY SCHEDULING 159

device j1 j2 j3
dq 1 0 1
do 0 1 1

Table B.1: job-device relationship

after ji, di remains busy while dy becomes busy. Only one device changes from idleness
to busyness; the distance between j, and jz is one. We can construct a matriz Msys
to encodes these distances; my, s the distance between j, and j,. The distance matriz

of these three jobs is

(B.5)

=)
— O N
o = o~

M s a symmetric matriz. Since a job cannot execute after itself, the elements

along the diagonal are not used. We assign zeros to the diagonal for simplicity.

B.5 Scheduling Jobs

Without loss of generality, we assume there is a starting job (jo) that must execute
first and there is a terminating job (j,+1) that must execute last. It takes no time
to execute these two jobs. A matrix M, 9)x(nt2) Tepresents the distances between
jobs; mg, is the distance between j, and j,. Since jy and j,4; are not real jobs, the
distance between any job and j, or j,i1 is zero. Zeros are assigned to the diagonal,
the first and the last rows, and the first and the last column: Vz € [0,n + 1], m,, =
Moz = Mg = Myy1,e = Mgpt1 = 0.

The matrix M can be treated as the distance matriz for a graph, G = (J, £). In
this graph, the vertices are jobs and they are connected by edges. Each edge has a
weight; the weight for edge (jg, jy) s My y-

Example 5 Figure B.1 shows the distance graph of the jobs the previous example.

APPENDIX B. COMPLEXITY OF LOW-ENERGY SCHEDULING 160

Cons

Figure B.1: graph of jobs and their distances

In this figure, dashed lines have zero weights.

Finding a schedule to execute all jobs is to find a “tour” that visits each vertex
exactly once. The tour starts at j; and ends at j,,1. Finding the minimum number of
switches is to find a tour with the minimum total weight starting from j, and ending
at jni1. We can merge jp and j,.1 without changing the total weight. The problem
is transformed to find a tour starting from jg, visiting all jobs, and ending at jy. This
is equivalent to the traveling salesperson problem (TSP). It has been shown that TSP
is an NP-complete problem ([ND22, p.211] in [30]). Consequently, the simplified
scheduling problem is NP-complete.

Appendix C

Long and Finite Walks

Section 6.5 explained how to find a minimum-cost walk for a workload that has infinite
time horizon. Because an MPEG movie usually has thousands of frames, it is valid to
approximate the movie as infinite frames. When a workload is infinite, we can ignore
the initial cost in the walk that determines frequency assignment; this initial cost is
the cost of the walk from a starting vertex to a minimum-cost closed walk. In reality,
no workload can have infinite time horizon. For a finite-length workload the initial
cost cannot be ignored; also, there may be a “tail” that does not form a complete
closed walk.

Recall that G = (V,€) is an assignment graph for frequency scaling. When the
number of vertices in a walk exceeds the number of vertices in G, the walk must
contain at least one closed walk, according to the pigeonhole principle. Figure C.1
illustrates such a long walk.

Even though a long walk WW must contain one closed walk, the pigeonhole does not
explain whether W may contain multiple non-overlapping closed walks. In fact, it is
possible that a minimum-cost long walk contains multiple closed walks. However, we
can always find another walk whose cost is also minimum but has a special format.
This special format divides W into three parts as shown Figure C.1. The first part
starts from one starting vertex v* and ends at the beginning of the first closed walk;
the second part repeats this closed walk; the third part leaves this closed walk and

finishes WW. We can prove that the length of the third part is always less than the

161

APPENDIX C. LONG AND FINITE WALKS 162

Figure C.1: a walk with one closed walk

length of the closed walk.

Theorem 2 If a finite walk contains a closed walk constructed by FindClosed Walk,
there is a walk of equal or smaller cost such that the subwalk after leaving the closed
walk is shorter than the length of the closed walk. Suppose the walk in Figure C.1 is
a minimum-cost walk of a finite length and it contains a closed walk of v with length
ny. There is a minimum-cost walk such that the subwalk after leaving the closed walk

s shorter, namely, no < n;.

Proof
We prove it by contradiction. If ng > n;, there is a walk from v of length n,

Wp() - cwcost(v) -~ (y4horwise, this
ng ni))

with a lower average cost than the closed walk, or
minimum-cost walk should repeat the closed walk more times until n, is less than n;.
However, this is impossible because FindClosedWalk finds only closed walks that have
the minimum average cost among all walks from v. Since the original walk contains a
closed walk of v, the walk must have a lower (or equal) average cost than W, (v). If
ng > ny, the original walk is not minimum cost and this violates the premise. Hence,
ng cannot be larger than n;. {

Notice that this theorem does not claim that all minimum-cost walks have such
a format; instead, it guarantees that among all same-length walks of the minimum
cost, there is one walk with this format. It is possible that a walk has a different

format with the same cost.

APPENDIX C. LONG AND FINITE WALKS 163

Figure C.2: a walk with multiple closed walks

Corollary 3 If a minimum-cost walk has multiple closed walk, there is a walk of the
same cost such that the length of the subwalk after leaving the first closed walk is
shorter than the length of the first closed walk.

For example, a minimum-cost walk has two closed walks as shown in Figure C.2.
Let ny and ns be the lengths of the first and second closed walks. If this walk repeats
the second walk [y times, then Iy X (ng—1)4+mn3—1 < n;. Here we need to subtract one
from ny because the length of a closed walk counts the starting and ending vertices
(ve) twice. When this closed walk repeats multiple times, the same vertex should be
counted only once.

The above theorem states that the “tail” after leaving the closed walk is shorter
than the length of the closed walk. We can find a minimum-cost walk by dividing it
into three subwalks: before entering a closed walk, the closed walk, and after leaving
the closed walk as illustrated in Figure C.1. The lengths of the first and the third
subwalks (ng and 7n,) must be less than |V| by the pigeonhole principle.

In order to find a minimum-cost finite-length walk, our algorithm first checks
whether n is small. For a small n, a minimum-cost walk does not necessarily contain
a closed walk. Such a walk can be found directly by MinimumCostWalk. For a larger
n, the algorithm finds a closed walk that has a minimum cost. Since the first and the
third subwalks are shorter than |V|, they can be found by MinimumCostWalk. Figure
C.3 shows the algorithm; it compares which closed walks produce the minimum cost.
For each vertex that has a closed walk, it finds a minimum-cost walk from a starting
vertex. The length of this walk is nW(v*,v); this is ng in Figure C.1. Then, it

APPENDIX C. LONG AND FINITE WALKS 164

computes [r; this is the number of times the closed walk repeats.

Finally, it computes the length of the walk after leaving the closed walk.

ne = (n—mng) mod (ng — 1) (C.2)

The cost of this walk is

mecost(v*,v) + Ir X (cwcost(v) — ¢(v)) + weost(v,ng — 1) (C.3)

The complexity of this algorithm is O(|V[?). When n is small, LongFinite-
Walk takes O(|V|*n), the same as MinimumCostWalk. When n is larger than |V,
LongFiniteWalk calls MinimumCostWalk, MinimumCostWalk2V, and FindClosed-
Walk; their complexity is O(|V|®). Then, LongFiniteWalk considers every closed
walk reachable from a starting vertex; this takes O(|V|?) iterations. Consequently,
LongFiniteWalk takes O(|V|?); this is independent of n. The minimum-cost walk
can be constructed by applying repeated squaring of the closed walk [22]; this takes
O(loglr).

APPENDIX C. LONG AND FINITE WALKS 165

LongFiniteWalk(input graph: G = (V, £), integer: n)
/¥ mincost: minimum cost of a walk visiting n vertices */
begin
mcost 1= o0;
/* if n is small, find a minimum-cost walk directly */
if (n < |V|+1)
MinimumCostWalk(G, n);
for each v* /* starting vertex */
if mincost > wcost(v*,n)
mincost := wecost(v*,n);
return mincost;

/* n is large */
MinimumCostWalk(G, |V| + 1);
MinimumCostWalk2V(G);
FindClosedWalk(G);
for each v*
for eachv €V
if (Cwalk(v) not empty)

| n—=nW(v*w) |,
Ir = I—nwalk((v)—l)J’

ng := (n — nW(v*,v)) mod (nwalk(v) — 1);
newcost := mcost(v*,v) + Ir X (cwcost(v) — ¢(v)) + weost(v,ng — 1);
if (mincost > newcost)
mincost := newcost;
return mincost;
end

Figure C.3: find minimum-cost walks

Bibliography

[1] Advanced Power Management Overview. devel-

oper.intel.com/IAL/powermgm /apmovr.htm.
[2] StrongARM Development Kit. http://developer.intel.com/design/strong/.
[3] ACPIL. www.teleport.com/ acpi.
[4] ACPI4Linux. phobos.fs.tum.de/acpi/index.html.

[5] Andrea Acquaviva, Luca Benini, and Bruno Riccé. An Adaptive Algorithm for
Low-Power Streaming Multimedia Processing. In Design Automation and Test
in Europe, pages 273-279, 2001.

[6] APM 1.2. www.microsoft.com/HWDEYV /busbios/amp_12.htm.
[7] ARM Linux. http://www.arm.linux.org.uk/.

[8] R. Balakrishnan and K. Ranganathan. A Textbook of Graph Theory. Springer,
2000.

[9] Michael Beck, Harald Bohme, Mirko Dziadzka, Ulrich Kunitz, Robert Magnus,
and Dirk Verworner. Linuz Kernel Internals. Addison-Wesley, 2 edition, 1997.

[10] L. Benini, G. Castelli, A. Macii, M. Poncino, and R. Scarsi. A Discrete-Time
Battery Model for High-Level Power Estimation. In Design Automation and Test
in Europe, pages 35-39, 2000.

166

BIBLIOGRAPHY 167

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. A Survey of Design
Techniques for System-Level Dynamic Power Management. IEEE Transactions
on VLSI Systems, 8(3), June 2000.

Luca Benini, Alessandro Bogliolo, Giuseppe Andrea Paleologo, and Giovanni De
Micheli. Policy Optimization for Dynamic Power Management. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 16(6):813—
833, June 1999.

Luca Benini and Giovanni De Micheli. Dynamic Power Management: Design
Techniques and CAD Tools. Kluwer, 1997.

John R. Birge and Francois Louveaux. Introduction to Stochastic Programming.

Springer, 1997.

Jason J. Brown, Danny Z. Chen, Garrison W. Greenwood, Xiaobo Hu, and
Richard W. Taylor. Scheduling for Power Reduction in a Real-Time System. In
International Symposium on Low Power Electronics and Design, pages 84-87,
1997.

Thomas D. Burd and Robert W. Brodersen. Design Issues for Dynamic Voltage
Scaling. In International Symposium on Low Power Electronics and Design,
pages 9-14, 2000.

Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications. Kluwer, 1997.

Lama H. Chandrasena and Michael J. Liebelt. A Rate Selection Algorithm
for Quantized Undithered Dynamic Supply Voltage Scaling. In International
Symposium on Low Power Electronics and Design, pages 213-215, 2000.

Eui-Young Chung, Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli.
Dynamic Power Management for Non-Stationary Service Requests. In Design

Automation and Test in Furope, pages 77-81, 1999.

BIBLIOGRAPHY 168

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Eui-Young Chung, Luca Benini, and Giovanni De Micheli. Dynamic Power
Management Using Adaptive Learning Tree. In International Conference on
Computer-Aided Design, pages 274-279, 1999.

Don Coppersmith, Peter Doyle, Prahaka Raghavan, and Marc Snir. Random
Walks on Weighted Graphs and Applications to On-Line Algorithms. Journal of
the Association for Computing Machinery, 40(3):421-453, July 1993.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. McGraw-Hill, 1990.

Robert P. Dick, Ganesh Lakshminarayana, Anand Raghunathan, and Niraj K.
Jha. Power Analysis of Embedded Operating Systems. In Design Automation
Conference, pages 312-315. 2000.

Reinhard Diestel. Graph Theory. Springer, 1997.

Fred Douglis, P. Krishnan, and Brian Bershad. Adaptive Disk Spin-Down Policies
for Mobile Computers. In Computing Systems, volume 8, pages 381-413, 1995.

Carla Schlatter Ellis. The Case for Higher-Level Power Management. In Work-
shop on Hot Topics in Operating Systems, pages 162-167, 1999.

Jason Flinn and M. Satyanarayanan. Energy-Aware Adaptation for Mobile Ap-
plications. In ACM Symposium on Operating Systems Principles, pages 48-63,
1999.

Jason Flinn and M. Satyanarayanan. PowerScope: A Tool for Profiling the
Energy Usage of Mobile Applications. In IEEE Workshop on Mobile Computing
Systems and Applications, pages 2-10, 1999.

Arnaud Forestier and Mircea R. Stan. Limits to Voltage Scaling from the Low

Power Perspectiv. In Symposium on Integrated Circuits and Systems Design,
pages 365370, 2000.

BIBLIOGRAPHY 169

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Michael R. Garey and Deavid S. Johnson. Computers and Intractibility: A Guide
to the Theory of NP-Complteness. W.H. Freeman and Company, 1979.

Richard Golding, Peter Bosch, and John Wilkes. Idleness is not Sloth. In
USENIX Winter Conference, pages 201-212, 1995.

Kinshuk Govil, Edwin Chan, and Hal Wasserman. Comparing Algorithms for
Dynamic Speed-Setting of a Low-Power CPU. In ACM International Conference
on Mobile Computing and Networking, pages 13-25, 1995.

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathe-
matics. Addison-Wesley, 1989.

Paul Greenawalt. Modeling Power Management for Hard Disks. In International
Workshop on Modeling, Analysis and Simulation of Computer and Telecommu-

nication Systems, pages 62-6, 1994.

Ralph P. Grimaldi. Discrete and Combinatorial Mathematics. Addison-Wesley,
2 edition, 1989.

Dirk Grunwald, Philip Levis, Keith I. Farkas, Charles B. Morrey I1I, and Michael
Neufeld. Policies for Dynamic Clock Scheduling. In Symposium on Operating
system Design and Implementation, pages 73-86, 2000.

Vadim Gutnik and Anantha P. Chandrakasan. Embedded Power Supply for
Low-Power DSP. IEEE Transactions on VLSI Systems, 5(4):425-435, 1997.

Willian R. Hamburgen, Deborah A. Wallach, Marc A. Viredaz, Lawrence S.
Brakmo, Carl A. Waldspurger, Joel F. Bartlett, Timonthy Mann, and Keith I.
Farkas. Itsy: Stretching the Bounds of Mobile Computing. Computer, 34(4):28—
36, April 2001.

John Hennessy and David A. Patterson. Computer Architecture: A Quantitative

Approach. Morgan Kaufmann, 2 edition, 1996.

BIBLIOGRAPHY 170

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Inki Hong, Miodrag Potkonjak, and Mani B. Srivastava. On-Line Scheduling of
Hard Real-Time Tasks on Variable Voltage Processor. In International Confer-

ence on Computer-Aided Design, pages 653656, 1998.

Chi-Hong Hwang and Allen CH Wu. A Predictive System Shutdown Method
for Energy Saving of Event Driven Computation. ACM Transactions on Design
Automation of Electronic Systems, 5(2):226-241, 2000.

Chaeseok Im, Huiseok Kim, and Soonhoi Ha. Dynamic Voltage Scheduling Tech-
niques for Low Power Multimedia Applications using Buffers. In International

Symposium on Low Power Electronics and Design, pages 34-39, 2001.

Tohru Ishihara and Hiroto Yasuura. Voltage Scheduling Problem for Dynami-
cally Variable Voltage Processors. In International Symposium on Low Power
Electronics and Design, pages 197-202, 1998.

Peter Kall and Stein W. Wallace. Stochastic Programming. John Wiley & Sons,
1997.

A.R. Karlin, M.S. Manasse, L.A. McGeoch, and S. Owicki. Competitive Ran-
domized Algorithms for Nonuniform Problems. Algorithmica, 11(6):542-571,
June 1994.

Andrey 1. Kibzun and Yuri S. Kan. Stochastic Programming Problems. John
Wiley & Sons, 1996.

C.M. Krishna and Yann-Hang Lee. Voltage-Clock-Scaling Adaptive Scheduling
Techniques for Low Power in Hard Real-Time Systems. In Real- Time Technology

and Applications Symposium, pages 156-165, 2000.

P. Krishnan, P.M. Long, and J.S. Vitter. Adaptive Disk Spindown via Optimal
Rent-to-Buy in Probabilistic Environments. Algorithmica, 23(1):31-56, January
1999.

BIBLIOGRAPHY 171

[49] Kester Li, Roger Kumpf, Paul Horton, and Thomas Anderson. A Quantitative
Analysis of Disk Drive Power Management in Portable Computers. In USENIX
Winter Conference, pages 279-292, 1994.

[50] Yung-Hsiang Lu, Luca Benini, and Giovanni De Micheli. Power-Aware OS for
Interactive Systems. IEEE Transactions on VLSI Systems, page to appear.

[51] Yung-Hsiang Lu, Luca Benini, and Giovanni De Micheli. Requester-Aware Power

Reduction. In International Symposium on System Synthesis, pages 18-24, 2000.

[52] Yung-Hsiang Lu and Giovanni De Micheli. Adaptive Hard Disk Power Manage-
ment on Personal Computers. In Great Lakes Symposium on VLSI, pages 50-53,
1999.

[53] Yung-Hsiang Lu and Giovanni De Micheli. Comparing System-Level Power Man-
agement Policies. IEEFE Design & Teest of Computers, 18(2):10-19, March-April
2001.

[54] Yung-Hsiang Lu, Tajana Simuni¢, and Giovanni De Micheli. Software Controlled
Power Management. In International Workshop on Hardware/Software Codesign,
pages 157-161, 1999.

[55] Jiong Luo and Niraj K. Jha. Power-Conscious Joint Scheduling of Periodic Task
Graphs and Aperiodic Tasks in Distributed Real-Time Embedded Systems. In
International Conference on Computer-Aided Design, pages 357-364, 2000.

[56] A.Manzak and C. Chakrabarti. Variable Voltage Task Scheduling for Minimizing
Energy or Minimizing Power. In International Conference on Acoustics, Speech,
and Signal Processing, pages 3239-3242, 2000.

[57] Thomas L. Martin and Daniel P. Siewiorek. The Impact of Battery Capacity
and Memory Bandwidth on CPU Speed-Setting: A Case Study. In International
Symposium on Low Power Electronics and Design, pages 200-205, 1999.

BIBLIOGRAPHY 172

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Giovanni De Micheli and Luca Benini. System Level Power Optimization: Tech-
niques and Tools. ACM Transactions on Design Automation of Electronic Sys-
tems, 5(2):115-192, April 2000.

Lode Nachtergaele, Vivek Tiwari, and Nikil Dutt. System and Architecture-
Level Power Reduction of Microprocessor-Based Communication and Multimedia,

Applications. In International Conference on Computer-Aided Design, 2000.

Takanori Okuma, Tohru Ishihara, and Hiroto Yasuura. Real-Time Task Schedul-
ing for a Variable Voltage Processor. In International Symposium on System
Synthesis, pages 24-29, 1999.

OnNow. www.microsoft.com/hwdev/onnow/.

Giuseppe Andrea Paleologo, Luca Benini, Alessandro Bogliolo, and Giovanni De
Micheli. Policy Optimization for Dynamic Power Management. In Design Au-

tomation Conference, pages 182-187, 1998.

Massoud Pedram and Qing Wu. Design Considerations for Battery-Powered
Electronics. In Design Automation Conference, pages 861-866, 1999.

Trevor Pering, Tom Burd, and Robert Brodersen. The Simulation and Evaluation
of Dynamic Voltage Scaling Algorithms. In International Symposium on Low

Power Electronics and Design, pages 76-81, 1998.

Johan Pouwelse, Koen Langendoen, and Henk Sips. Energy Priority Scheduling
for Variable Voltage Processors. In International Symposium on Low Power

Electronics and Design, pages 28-33, 2001.

Qinru Qiu and Massoud Pedram. Dynamic Power Management Based on
Continuous-Time Markov Decision Processes. In Design Automation Confer-
ence, pages 555-561, 1999.

Jan M. Rabaey and Massoud Pedram, editors. Low Power Design Methodologies.
Kluwer, 1996.

BIBLIOGRAPHY 173

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

Dinesh Ramanathan and Rajesh Gupta. System Level Online Power Manage-
ment Algorithms. In Design Automation and Test in Furope, pages 606611,
2000.

Sheldon Ross. Introduction to Stochastic Dynamic Programming. Academic
Press, 1983.

Youngsoo Shin and Kiyoung Choi. Power Conscious Fixed Priority Scheduling
for Hard Real-Time Systems. In Design Automation Conference, pages 134-139,
1999.

Youngsoo Shin, Kiyoung Choi, and Takayasu Sakurai. Power Optimization of
Real-Time Embedded Systems on Variable Speed Processors. In International
Conference on Computer-Aided Design, pages 365-368, 2000.

Abraham Silberschatz and Peter B Galvin. Operating System Concepts. Addison-
Wesley, 4 edition, 1994.

Mani B. Srivastava, Anantha P. Chandrakasan, and Robert W. Brodersen. Pre-
dictive System Shutdown and Other Architecture Techniques for Energy Efficient
Programmable Computation. IEEE Transactions on VLSI Systems, 4(1):42-55,
March 1996.

Standard Performance Evaluation Corporation. www.spec.org.

W. Richard Stevens. Advanced Programming in the UNIX Enuvironment.
Addison-Wesley, 1992.

Peter G. Viscarola and W. Anthony Mason. Windows NT Device Driver Devel-
opment. Macmillan Technical Publishing, 1999.

Tajana Simuni¢, Luca Benini, Andrea Acquaviva, Peter Glynn, and Giovanni De
Michel. Dynamic Voltage Scaling for Portable Systems. In Design Automation
Conference, pages 524-529, 2001.

BIBLIOGRAPHY 174

[78]

[79]

[80]

[81]

[82]

[84]

[85]

[86]

Tajana Simuni¢, Luca Benini, Peter W Glynn, and Giovanni De Micheli. Dy-
namic Power Management for Portable Systems. In International Conference on

Mobile Computing and Networking, pages 11-19, 2000.

Tajana Simunié, Luca Benini, and Giovanni De Micheli. Event-Driven Power
Management of Portable Systems. In International Symposium on System Syn-
thesis, pages 18-23, 1999.

Tajana Simuni¢, Haris Vikalo, Peter W Glynn, and Giovanni De Micheli. Dy-
namic Power Management of Laptop Hard Disk. In Design Automation and Test
in Furope, 2000.

Tajana Simuni¢, Haris Vikalo, Peter W Glynn, and Giovanni De Micheli. Energy
Efficient Design of Portable Wireless Systems. In International Symposium on

Low Power Electronics and Design, pages 49-54, 2000.

Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling for
Reduced CPU Energy. In Symposium on Operating Systems Design and Imple-
mentation, pages 1323, 1994.

Neil H.E. Weste and Kamran Eshraghian. Principles of CMOS VLSI Design.
Addison Wesley, 1993.

John Wilkes. Predictive power conservation. Technical report, Hewlett-Packard,
HPL-CSP-92-5, 1992.

Laurence A. Wolsey. Integer Programming. John Wiley& Sons, 1998.

A.H. Zemanian. Wandering Through Infinity. In IEEFE International Symposium
on Chircuits and Systems, pages 1749-1750, 1992.

