
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Data Structures and Algorithms for Logic Synthesis in
Advanced Technologies

Eleonora TESTA

Thèse n° 8164

2020

Présentée le 7 septembre 2020

Prof. P. Ienne, président du jury
Prof. G. De Micheli, Dr M. Soeken, directeurs de thèse
Prof. P.-E. Gaillardon, rapporteur
Prof. J.-H. R. Jiang, rapporteur
Prof. A. P. Burg, rapporteur

à la Faculté informatique et communications
Laboratoire des systèmes intégrés (IC/STI)
Programme doctoral en informatique et communications

“Brilliant,” said Hermione. “This isn’t magic – it’s logic – a puzzle. A lot of the greatest

wizards haven’t got an ounce of logic, they’d be stuck in here forever.”

— Harry Potter and the Philosopher’s Stone

To my beloved family

Acknowledgements
PhD is universally recognized as a very stressful and demanding period, but, for me, it has

also been rewarding and full of good memories. I am grateful to many people for help and

assistance in these five years.

First, I would like to express my sincere gratitude to my advisor Prof. Giovanni De Micheli

(Nanni), for his constant motivation, guidance, and immense knowledge of logic synthesis.

During these last years, Nanni demanded a lot, but he was also fair and understanding towards

me and my colleagues. I could not have hoped for a better advisor and laboratory environment.

I wish to extend my deepest appreciation to my PhD co-advisor Dr. Mathias Soeken for his

bits of advice and support throughout my PhD. Thank you, Mathias. This thesis would not

have been possible without your valued help and limitless patience.

Besides my advisors, I would like to recognize the invaluable assistance of Dr. Luca Amarù

for allowing me to be as Synopsys Inc. and for his guidance and constant motivation. Thanks

for sharing your bright ideas with me and for your trust in my abilities. I wish to extend my

special thanks to Prof. Pierre-Emmanuel Gaillardon, for giving me the opportunity to start

my PhD within the LSI and for all our collaborations. I would also like to express my deepest

appreciation to Dr. Alan Mishchenko, Dr. Heinz Riener, and Dr. Patrick Vuillod for the great

research collaborations we had. My special thanks go to Prof. Francky Catthoor, Dr. Odysseas

Zografos and Dr. Julien Ryckaert for their assistance of my PhD at IMEC. I also would like to

extend my gratitude to the members of my oral committee Prof. P. Ienne and Prof. A. P. Burg

from EPFL, and Prof. J.-H. R. Jiang from the National Taiwan University.

My sincere thanks also go to my colleagues at the LSI. Not only you provided me with a stim-

ulating research environment, but you have also made these five years more cheerful and

carefree. I would like to recognize the invaluable assistance that you all provided during my

study. A special thanks also to Francesca, Giulia, Ivan, and Simone for being not only great

colleagues but dear friends. In particular, thanks to Winston, Bruno, and Giulia for putting up

with me during long months of TA. I recognize that it is not always easy. I wish to show my

gratitude also to Aya, Fereshte, Nadja, and Tugba, and to all the people that stopped at LSI,

even for a little while: Eleonora, Lucia, and Sofia. I would like to express my deepest gratitude

to Dewmini, for all her invaluable work, and in general to all my students for teaching me

more than I thought them. I wish also to acknowledge the help provided by the technical IT

staff, and the invaluable assistance of Carole, Chantal, and Christina. I would like to thank all

my other friends in Lausanne, Leuven, and Sunnyvale; in particular, Elisa, Enrico, Martina,

v

Acknowledgements

Mattia, Michela, and Mish. Finally, I would like to extend my deepest and sincere gratitude to

Francesca and Giovanni. You have made my PhD life easier and happier since the first day.

Thank you for your priceless friendship.

Special grazie to my italian friends. For your visits to Lausanne, the holidays together, and for

distracting me from my PhD life. Thanks to Carlo, Chiara, Eleonora, Luca, Marco, and Mattia.

My sincere thanks also go to my lifelong friends Allegra, Elisa, Marta, and Serena. “Grazie per

esserci sempre”.

I would like to thank my family, in particular, Beatrice, Enrico, Milda, and Silvia. “Grazie a

tutti per il costante supporto e affetto. Grazie mamma per il coraggio”. Thanks also to Fabio,

who makes my sister Silvia much happier and nicer. Last, but not least, my biggest thanks

to the person who most of all helped, comforted, and supported me in the past five years.

Thanks, Enrico, for being close to me even at 9000 km and 9 hours away.

April 3, 2020

vi

Abstract
Logic synthesis is a key component of digital design and modern electronic design automation

(EDA) tools; it is thus an essential instrument for the design of leading-edge chips, and to

push the limits of performance (upwards) and power consumption (downwards). In the last

two decades, the electronic circuits and digital systems community has evolved dramati-

cally, facing many architectural and technological changes. Consequently, EDA and logic

synthesis have adapted and changed to be able to accurately design the new generation

of digital systems. In the present day, logic synthesis is an important area of research for

two main reasons: (i) Many and diverse ways of computation, alternative to complementary

metal–oxide–semiconductor (CMOS), have been presented in the last years. Post-silicon tech-

nologies (called emerging technologies) have been shown to be feasible and may provide us

with better – more efficient – electronic devices. In a similar way, novel areas of applications

of logic synthesis are emerging, ranging from deep learning to cryptography and security

applications. (ii) The current computing and storage means make it possible to solve exactly

problems that were only approximated before. Moreover, new reasoning engines, covering

from deep learning to new SAT-solvers, can be used as a mean of computation, thus possibly

unlocking novel optimization opportunities and enabling hardware of higher-quality.

The objective of this thesis is to advance state-of-the-art logic synthesis and present

a variety of novel data structures and algorithms, addressing diverse types of applications

in modern logic synthesis flows, considering standard CMOS design as well as emerging

technology and cryptography.

Motivated by the many emerging technologies that implement majority gates, we first

focus on majority-based logic synthesis. We present novel algorithms over the recently intro-

duced majority-inverter graphs (MIGs). First, a novel optimization flow based on Boolean

transformations is proposed. Then, we demonstrate how technology-dependent logic syn-

thesis is an essential step for the abstraction and manipulation of novel and diverse majority-

based emerging technologies and, more important, their technological constraints. Moreover,

we advance state-of-the-art theoretical results on majority logic. In particular, we mainly

focus on the problem of “how best can the n-argument majority function (majority-n) be

realized with a network of 3-input majority gates?”. For this purpose, we present novel general

upper bounds and decompositions, together with optimum results for majority-5 and -7

and best-known results for the majority-9 function. In the second part, we shift into more

pragmatic results and show practical aspects of logic synthesis, designed to be successful in

modern logic synthesis flows. We focus here on XOR-based logic synthesis. Motivated by the

vii

Abstract

novel computing capabilities, we propose a novel optimization flow based on the Boolean

difference for area optimization of standard CMOS technologies (for application specific inte-

grated circuits (ASICs) design). Moreover, we establish a novel application of logic synthesis to

cryptography and security applications. It has been demonstrated that the number of AND

gates in a xor-and graph (XAG) correlates with the degree of vulnerability (security) of cryptog-

raphy benchmarks and plays an important role in high-level cryptography protocols such as

multi-party computation (MPC) and fully homomorphic encryption (FHE). We introduce a

complete and automatic synthesis flow which consists of the main transformations involved

in logic synthesis but aims instead at minimization of the number of AND gates over XAGs.

Our tool and methods obtain significant results over both EPFL and cryptography and security

benchmarks.

We argue that given the progress and novel opportunities of technology, logic synthesis has

to be revisited while considering the plurality of primitives and novel engines that can be of

interest, and, consequently, the corresponding objective functions and optimization problems.

Keywords Electronic design automation, logic synthesis, majority logic, emerging technolo-

gies

viii

Sommario
La sintesi logica è una componente chiave del design di circuiti elettronici digitali e dei moder-

ni strumenti per electronic design automation (EDA); è quindi uno strumento essenziale per

la progettazione di chip all’avanguardia e per spingere i limiti delle prestazioni (verso l’alto)

e del consumo di energia (verso il basso). Negli ultimi due decenni, i circuiti elettronici e i

sistemi digitali si sono evoluti notevolmente, affrontando molti cambiamenti architettonici

e tecnologici. Di conseguenza, l’EDA e la sintesi logica si sono adattate e modificate per

poter progettare con precisione questa nuova generazione di circuiti digitali. Al giorno d’oggi,

la sintesi logica è un’importante area di ricerca per due motivi principali: (i) Negli ultimi

anni sono state presentate molte e diverse technologie alternative al complementary me-

tal–oxide–semiconductor (CMOS). Le tecnologie post-silicio (chiamate emerging technologies)

hanno dimostrato di essere non solo realizzabili, ma potrebbero fornire dispositivi elettronici

migliori e più efficienti. Allo stesso modo, stanno emergendo nuove aree di applicazione della

sintesi logica, che vanno dal deep learning alla crittografia e alla sicurezza. (ii) Gli attuali mezzi

di computazione e memorizzazione consentono di risolvere in maniera esatta problemi che

sono stati finora risolti solo euristicamente. Inoltre, nuovi approcci come deep learning e

SAT-solvers, possono essere utilizzati come mezzo di calcolo, potenzialmente sbloccando

nuove opportunità di ottimizzazione e consentendo hardware di qualità superiore.

L’obiettivo di questa tesi è far avanzare la sintesi logica e presentare una varietà di nuove

strutture dati e algoritmi, dedicandosi a diversi tipi di applicazioni nella sintesi logica moderna.

Consideriamo quindi sia il design di circuiti elettronici basati su CMOS, nonché emerging

technologies e applicazioni per la crittografia.

Motivati dalle molte emerging technologies che implementano la funzione logica del

majority (funzione logica di maggioranza), ci concentriamo in primo luogo sulla sintesi

logica basata sul majority e presentiamo nuovi algoritmi per majority-inverter graphs (MIGs).

Innanzitutto, viene proposto un nuovo metodo di ottimizzazione dell’area degli MIG basato

su trasformazioni Booleane. Quindi, dimostriamo come la sintesi logica debba dipendere

dalla tecnologia e come questa sia un passo essenziale per l’astrazione e la manipolazione

di nuove e diversificate emerging technologies e, più importante, dei loro limiti e vincoli

tecnologici. Inoltre, avanziamo i risultati teorici sulle proprietá della logica a majority. In

particolare, ci concentriamo principalmente sul problema di “come può essere realizzata al

meglio la funzione majority con n ingressi (majority- n) con un grafo di porte a majority-3?”. A

tale scopo, presentiamo nuovi limiti superiori sulla loro realizzazione e nuove scomposizioni,

insieme a risultati ottimi per il majority-5 e -7 e risultati migliori (conosciuti finora) per la

ix

Sommario

funzione del majority-9. Nella seconda parte, passiamo a risultati più pragmatici e mostriamo

aspetti pratici della sintesi logica, progettati per avere successo nei sistemi di sintesi logica

industriali e moderni. Ci concentriamo qui sulla sintesi logica basata su OR esclusivo (XOR).

Motivati dalle moderne capacità di computazione ed elaborazione, proponiamo un nuovo

flusso di sintesi basato sulla differenza Booleana per l’ottimizzazione dell’area di circuiti

basati su tecnologia CMOS (circuiti application specific integrated circuits (ASICs)). Inoltre,

stabiliamo una nuova applicazione della sintesi logica nel campo della crittografia e della

sicurezza. È stato dimostrato che il numero di porte AND in xor-and graph (XAG) è correlato al

grado di vulnerabilità (sicurezza) dei circuiti e protocolli di crittografia e ha un ruolo centrale

in applicazioni come multi-party computation (MPC) e fully homomorphic encryption (FHE).

Introduciamo un nuovo metodo di sintesi completo e automatico che consiste nelle principali

trasformazioni coinvolte nella sintesi logica, ma mira invece a minimizzare il numero di porte

AND su XAGs. Il nostro tool e i nostri metodi ottengono risultati significativi sia sui circuiti

proposti dall’EPFL che su quelli per la crittografia e la sicurezza.

Sosteniamo che alla luce dei progressi e delle nuove opportunità date dalla tecnologia,

la sintesi logica debba essere rivisitata tenendo conto della pluralità di primitive Booleane e

nuovi metodi di computazione, e di conseguenza, dei corrispondenti e diversi problemi di

ottimizzazione.

Parole Chiave Electronic design automation, sintesi logica, funzione di maggioranza, nuove

nanotecnologie

x

Contents
Acknowledgements v

Abstract (English/Italian) vii

List of Figures xv

List of Tables xvii

List of Acronyms xix

1 Introduction 1

1.1 Electronic Design Automation . 3

1.2 Research Motivation . 5

1.2.1 Modern CMOS Technologies . 5

1.2.2 Alternative Applications . 6

1.3 Thesis Contributions . 6

1.3.1 Majority-based Logic Syntesis . 7

1.3.2 XOR-based Logic Synthesis . 9

1.4 Thesis Organization . 10

2 Background 13

2.1 Data Structures . 13

2.1.1 Truth Tables . 13

2.1.2 2-level Representations . 14

2.1.3 Binary Decision Diagrams . 15

2.1.4 Multi-level Logic Networks . 16

2.2 Algorithms . 18

2.2.1 Algebraic Methods . 19

2.2.2 Boolean Methods . 22

2.2.3 Exact Methods . 27

2.3 Efficient Circuit Partitioning . 28

2.3.1 Small Scale: Cut Enumeration . 29

2.3.2 Detecting All Reconvergent MFFC . 30

2.3.3 Windowing . 31

2.4 Summary . 32

xi

Contents

3 Majority-based Logic Synthesis 33

3.1 Motivation . 33

3.2 Majority-based Emerging Technologies . 35

3.3 Boolean Resynthesis for MIGs . 39

3.3.1 Functional Reduction . 39

3.3.2 Boolean Resubstitution . 40

3.3.3 Replacement Optimization . 41

3.3.4 Experimental Results . 42

3.4 Inverter Propagation and Fan-out Constraint . 43

3.4.1 Inversion Propagation . 44

3.4.2 Fan-Out Restriction . 46

3.4.3 Experimental Results . 48

3.5 Exact Synthesis with Constraints . 49

3.5.1 Preliminaries . 49

3.5.2 Constraints Encoding . 52

3.5.3 Exact Algorithms . 54

3.5.4 Experimental Results . 57

3.6 Area-Delay-Energy Product for QCA and STMG 60

3.7 Summary . 63

4 Majority-n Logic 65

4.1 Motivation . 66

4.2 Preliminaries . 68

4.2.1 Binary Decision Diagrams . 69

4.2.2 Majority Graphs . 70

4.3 Decomposing Majority-n into Majority-3 . 71

4.3.1 Transforming BDDs into Majority Graphs 71

4.3.2 Mapping Majority-n . 74

4.4 The Complexity of Self-Dual Monotone 7-input Functions 81

4.4.1 Preliminaries . 82

4.4.2 Length and Combinational Complexity . 84

4.4.3 Experimental Results . 87

4.5 Pairs of Majority-Decomposing Functions . 92

4.5.1 Proof of the Main Theorem . 94

4.5.2 Majority-n Decompositions . 94

4.5.3 Application to Find Optimum Majority Networks 97

4.6 Summary . 97

5 XOR-based Logic Synthesis 99

5.1 Motivation . 100

5.2 Boolean Difference Method . 102

5.2.1 Theory . 102

5.2.2 Boolean Difference Optimization . 103

xii

Contents

5.2.3 Experimental Results . 106

5.3 Multiplicative Complexity and Cryptography Applications 110

5.3.1 Preliminaries . 110

5.3.2 General XOR-based Resynthesis Framework 112

5.3.3 Experimental Results . 118

5.4 Summary . 125

6 Conclusions 127

6.1 Summary of Thesis Contributions . 127

6.2 Open Problems . 129

Bibliography 131

Curriculum Vitae 147

xiii

List of Figures
1.1 Novel and standard applications for logic synthesis 2

1.2 Simplified EDA flow . 3

1.3 Typical logic synthesis flow . 4

1.4 Explanation of the majority function . 8

2.1 Example of BDD . 15

2.2 Different logic networks for a 4-bit adder . 17

2.3 Example of various MIG structures . 18

2.4 Example of AIG rewriting . 19

2.5 Example of MIG optimization using the algebraic rewriting 21

2.6 Boolean rewriting in MIGs . 27

2.7 Example of 3-cut over AIG . 29

3.1 Chapter organization . 34

3.2 QCA layout for various gates . 37

3.3 Schematic of STMG and 3 stages plasmonic gate 37

3.4 Example of MIG Boolean resubstitution . 40

3.5 Example of inverter propagation on MIG . 45

3.6 Example of inverter propagation with size increase 45

3.7 Example of fan-out restriction on MIG . 47

3.8 Exact synthesis: 2-input and 3-input Boolean networks example 50

4.1 Chapter organization . 66

4.2 Example of BDD for function clique4,3 . 69

4.3 Example of majority-graph . 71

4.4 Example of leafy majority graph . 73

4.5 Mapping the majority-3 from its optimal BDD . 74

4.6 Decomposing majority-5 into majority-3 . 76

4.7 Decomposing majority-7 into majority-3 . 77

4.8 Optimum majority-7 . 78

4.9 Decomposing majority-9 into majority-3 . 79

5.1 Chapter organization . 100

5.2 Boolean difference example . 103

xv

List of Figures

5.3 Example of XAG . 110

5.4 Rewriting example over XAG . 113

5.5 Resubstitution and refactoring example over XAG 117

xvi

List of Tables
1.1 Correspondance between chapters, contents, and publications 7

3.1 Results for size optimization over MIGs . 43

3.2 Results of inversion propagation and fan-out restriction over MIGs 48

3.3 Comparison of the proposed exact synthesis to state-of-the-art methods 58

3.4 Comparison of quality of results of the proposed exact synthesis algorithms . . 59

3.5 Results of exact synthesis with constraints on LUTs of larger benchmarks 59

3.6 Technology parameters for QCA . 60

3.7 Inversion-free and fan-out restriction on QCA . 61

3.8 Technology parameters for STMG . 62

3.9 Inversion-free and fan-out restriction on STMG 63

3.10 Results for size optimization after QCA and STMG mapping 64

4.1 Upper bounds on the number of majority-3 operations to realize majority-n . 81

4.2 L(f) and C (f) for self-dual monotone 7-input classes 88

4.3 L(f) and C (f) for self-dual monotone 7-input functions from state-of-the-art . 91

4.4 C (f) for self-dual monotone 7-input functions with inverters 91

5.1 Best 6-LUT area results for the EPFL benchmarks 108

5.2 Smallest AIG results for the EPFL benchmarks . 109

5.3 Post Place&Route results on 36 industrial design for ASICs 109

5.4 Experimental results for EPFL benchmarks using rewriting 120

5.5 Experimental results for EPFL benchmarks with complete flow 122

5.6 Experimental results for MPC and FHE benchmarks using the rewriting algorithm 123

5.7 Experimental results for MPC and FHE benchmarks using the complete flow . 123

5.8 Experimental results for MPC benchmarks . 125

xvii

List of Acronyms
ADEP area-delay-energy product

AIG and-inverter graph

AOI and-or-inverter

AOIG and-or-inverter graph

ASICs application specific integrated circuits

BDD binary decision diagram

CEGAR counter-example-guided abstraction refinement

CMOS complementary metal–oxide–semiconductor

CNF conjunctive normal form

EDA electronic design automation

FHE fully homomorphic encryption

FPGAs field-programmable gate arrays

ICs integrated circuits

MFFC maximum fan-out free cone

MIG majority-inverter graph

MPC multi-party computation

MSPF maximum set of permissible functions

MTJ magnetic tunnel junctions

PI primary input

PO primary output

xix

List of Acronyms

QCA quantum-dot cellular automata

QoR quality of results

ReRAMs resistive RAMs

RTL register-tranfer level

SAT satisfiability

SET single-electron transistor

SOP sum-of-product

SPP surface plasmon polaritons

STMG spin torque majority gate

STT spin transfer torque

TFO transitive fan-out

XAG xor-and graph

XMG xor-majority graph

xx

1 Introduction

Electronic circuits are omnipresent and considered an essential part of our everyday life. In

the last decades, they have experienced tremendous growth that has been enabled by a wide

range of tools to abstract, represent, and manipulate digital circuits as well as to optimize their

realization. Such tools are called, all together, electronic design automation (EDA) tools and

are responsible for the fast evolution of electronic circuits. This progress of electronic circuits

was also due to the continuous downscaling of complementary metal–oxide–semiconductor

(CMOS) transistors dimensions that enabled the semiconductor industry to decrease the cost

and area of digital designs while increasing their performance [129]. Nowadays, transistor

scaling is reaching the limit of what is physically achievable; EDA tools are thus left with the

important challenge of further pushing the performances and quality of results (QoR) of digital

circuits.

Logic synthesis is a key component of digital design and modern EDA tools [2, 3, 4]; it

is thus an essential instrument for the design of leading-edge chips, and to push the limits

of performance (upwards) and power consumption (downwards). In the last two decades,

the electronic circuits and digital systems community has evolved dramatically, facing many

architectural and technological changes. Consequently, EDA and logic synthesis have adapted

and changed to be able to accurately design the new generation of digital systems. In the

present days, logic synthesis is an important area of research for two main reasons:

(i) Many and diverse ways of computation, alternative to CMOS, have been presented in the

last years. Post-silicon technologies (also called emerging nanotechnologies) have been shown

to be feasible and may provide us with better – more efficient – electronic devices. In a similar

way, new architectures such as neuromorphic [68] and quantum computing [57] are becoming

more and more practical. Finally, novel areas of applications of logic synthesis are emerging,

ranging from deep learning [53] to cryptography and security applications [149].

(i i) The current computing and storage means make it possible to solve exactly problems

that were only approximated before. Moreover, new reasoning engines, covering from deep

learning to new SAT-solvers, can be used as a means of computation, thus possibly unlocking

novel optimization opportunities and enabling hardware of higher-quality [82, 193].

1

Chapter 1. Introduction

CMOS
Emerging

Technologies
Cryptography
and Security

Abstraction NAND/NOR Majority {AND,XOR,NOT}

Optimization
Goal

Performance-
Power-Area (PPA)

Area-Delay-Energy
Product (ADEP)

in the limit of the
technological constraints

Minimization
of AND gates

Figure 1.1 – Some examples of novel and standard paradigms of computations and applications
for logic synthesis. Standard CMOS-based design uses NAND/NOR, and aims at optimizing
the PPA, while emerging technologies are often based on the majority function. Cryptography
applications are modeled using the basis {AND,XOR,NOT}. In this case, the minimization of
the number of AND gates is desirable for applications such as fully homomorphic encryption
(FHE) and multi-party computation (MPC)

As a result of the novel paradigms of computation, applications, and resources, the circuit

primitives for logic design have increased and changed over the years [174]. Some examples –

relevant to the rest of the thesis – are presented in Figure 1.1. CMOS technology has always

favored circuits based on NORs, NANDs, and their extensions. Thus, today the majority of

state-of-the-art tools handle these primitives and their extensions (e.g., AND-OR-Inverter

gates) to represent and optimize logic circuits. On the other hand, new emerging technologies,

such as some optical technologies [72] and quantum-dot cellular automata (QCA) [106],

leverage majority (MAJ) and inverter (INV) gates as primitives. Neuromorphic architectures

exploit threshold gates, which can be seen as majority gates with weighted inputs, and the

basis {AND, XOR, NOT} [36] is often used in the modeling of cryptography circuits. In a similar

way, novel cost functions and optimization goals have arisen. As an example, logic synthesis

for cryptography considers as optimization goal the number of AND gates, which correlates to

the degree of vulnerability of a function. Emerging technologies such as spin torque majority

gate (STMG) [135], which can efficiently realize the majority operator, are on the contrary

unable to implement an inverter. It follows that inverter-free circuits are desirable.

In view of the progress and novel opportunities of technology, logic synthesis has to be

revisited while considering the plurality of primitives and novel engines that can be of interest,

and, consequently, the corresponding objective functions and optimization problems. The

2

1.1. Electronic Design Automation

Behavioural
description

High-level synthesis

Register-transfer level (RTL) descrip-
tion

Logic Synthesis

Gate-level circuit schematic

Place & Route
(Physical Design)

Figure 1.2 – Simplified EDA flow

goal of this thesis is to present a variety of novel data structures and algorithms, addressing

diverse types of applications in modern logic synthesis. We thus present several logic synthesis

methods and we show their applicability to standard and emerging technology applications.

1.1 Electronic Design Automation

The term EDA refers to the tools, algorithms, and methods used to automatically design

integrated circuits (ICs) and general electronic systems. A typical EDA flow starts from a high-

level description of such electronic system and generates a final implementation in terms of

technology components. This is achieved thanks to several steps of logic abstractions and

algorithms, usually called: high-level synthesis, logic synthesis, and physical design [69].

For the sake of this thesis, we present an oversimplified EDA flow as depicted in Figure 1.2.

In particular, high-level synthesis converts a programming language description (behavioural

description) into a register-tranfer level (RTL) netlist [49]. This step determines the macro-

scopic structure of the circuits, and it is thus also called structural synthesis. On the contrary,

logic synthesis produces the microscopic (in terms of logic gates) structure of the circuit [37, 84].

It optimizes and manipulates RTL netlists into logic models that are interconnections of logic

primitives. The last step of a standard EDA flow (see Figure 1.2) is physical design, which

consists of placement and routing (P&R) [141]. This step is responsible for generating the

final layout of the chip and provides the link with the fabrication process. Placement refers to

the assignment of positions to the cells while routing deals with their interconnections. Note

that, modern EDA flows do not clearly separate between these three steps, but aim at more

integration between them [5, 94].

3

Chapter 1. Introduction

Architectural
Level

Synthesis

Physical
Design

Abstraction Optimization
Technology

Mapping

Figure 1.3 – Typical logic synthesis flow. The circuit is abstracted using and-inverter graphs
(AIGs); the symbols ∨ and ∧ are the logic OR and AND respectively

In conjunction with synthesis, optimization is usually considered. It means, all the three

presented steps are usually constrained to consider a given optimization metric, that could

be for instance area, power, and or delay of the digital circuit. Nowadays, most synthesis

and optimization algorithms are tuned to work on CMOS technology. CMOS technology

provides an efficient realization of NORs, NANDs and and-or-inverters (AOIs) which can be

abstracted as negative unate functions. Consequently, most EDA tools use these primitives to

abstract and optimize circuits. In a similar way, placement and routing algorithms changed

consequently to the technological evolution of CMOS down to the nano-scale.

In this thesis, we focus on logic synthesis. Recall that logic synthesis is the process by which

an abstract form of desired circuit behavior, typically at RTL, is turned into an optimized design

implementation in terms of logic gates (depicted in detail in Figure 1.3). Common examples

of this process include synthesis of hardware description languages (including VHDL and

Verilog), which are specialized computer languages used to program the structure, design,

and operation of digital logic circuits. Broadly speaking, the overall problem of logic synthesis

is one of finding “the best implementation” of a logic function, where the term “best” may

depend on goals and computational methods and it may not be unique. Thus, synthesis

encompasses also logic optimization.

In logic synthesis, the logic circuit is abstracted as a logic network, which is usually defined

over a set of primitive logic gates. The first approaches to logic synthesis addressed two-

level sum-of-product (SOP) representations and attempted to reduce the cardinality of logic

covers (i.e., the number of product-terms also called implicants). For example, the first logic

synthesis algorithm (dated back to 1956) is the Quine-McCluskey algorithm [112], which solves

the minimization of logic covers exactly. Several approaches to heuristic minimization of

two-level forms [69] ended up instead in the program ESPRESSO [37, 154] that had a large

impact on the design automation community of the time. Contemporary logic synthesis and

its successes have risen in the 80s with the establishment of CMOS technology. In modern

industrial flow, efficient multi-level logic representations are involved. Being based on CMOS,

4

1.2. Research Motivation

modern logic synthesis flow mainly use AND/OR primitives to abstract and optimize logic (see

Figure 1.3). Note that most approaches divide synthesis into a technology-independent phase,

where the interconnection of logic blocks is minimized independently of the library, followed

by a technology mapping step where the instances of library elements are chosen. As an

example of technology mapping, in the case of application specific integrated circuits (ASICs),

the logic model is mapped into standard cells, while it is transformed into look-up-tables for

field-programmable gate arrays (FPGAs) [45].

1.2 Research Motivation

In recent years, EDA tools and researches have been facing new and difficult challenges. On

one side, as transistor scaling slows down at advanced technology nodes, e.g., 10nm, 8nm,

7nm, EDA solutions are becoming essential to keeping up with the (expected) QoR. This

motivates EDA researchers (and logic synthesis) to push further the optimization tools and

revisit high-quality and high-computational-complexity optimization methods in light of

modern computing capabilities. On the other hand, novel synthesis tools need to adjust

and reshape to take into account the novel paradigm of computation given by modern and

emerging nanotechnologies, as well as, new fields of application such as quantum computers

and security.

This thesis investigates novel logic synthesis data structures and algorithms that find

application in both these tasks, being thus responsible for designing competitive CMOS

circuits (Section 1.2.1), but also addressing alternative applications (Section 1.2.2) as emerging

technologies and cryptography and security applications.

1.2.1 Modern CMOS Technologies

Modern logic synthesis, together with the EDA community, is challenged every day. Novel logic

synthesis methods and data structures need to be examined, together with a reinvestigation

of already existing methods in light of the modern (and more powerful) computing potential.

As a matter of fact, standard CMOS-based logic synthesis is constrained in using mainly

AND/OR primitives. For this reason, in recent years, the logic synthesis community has

mainly investigated alternative and more expressive data structure and logic functions. This

has resulted for instance in the majority-inverter graphs (MIGs) [14] or xor-majority graphs

(XMGs) [81], which use majority and XOR as the main Boolean function for representing and

optimizing logic. Even though remarkable results have been already demonstrated, much

work is still needed in this regard, to build complete synthesis flows based on these alternative

functions and to investigate theoretical properties and optimization potential. Furthermore,

expensive Boolean methods (that involve expensive runtime tasks) are usually used cautiously

in modern EDA flows, where faster algebraic methods are instead preferred. Boolean methods

usually achieve better results as compared to algebraic methods, as they consider the Boolean

5

Chapter 1. Introduction

nature of the functions. This leaves many possible optimization opportunities still unexplored.

1.2.2 Alternative Applications

In the last years, many and diverse emerging technologies have been presented, based on new

paradigms and ways of computation. Moreover, recently, logic synthesis has been employed

for the optimization of circuits in various domains, ranging from quantum computers to

cryptography circuits.

Even though CMOS technology will be the core of modern digital systems for at least

another decade, logic synthesis and EDA tools need to start revisiting their optimization

methods in order to be able to efficiently abstract and optimize future technologies. Examples

of majority-based nanotechnologies include QCA [106], superconducting electronic devices

(RSFQ [107] and AQFP [169]), STMG [135] and plasmonic-based devices [72]. For example, the

recently proposed plasmonic technology [72] is a promising alternative to CMOS-based design

thanks to the waveguide’s low power consumption and high speed of computation. Besides

these qualities, this novel technology also implements different functionalities uncommon

to traditional CMOS. First, plasmonic devices are intrinsically based on the majority-voter

operation; moreover, they can efficiently implement threshold functions up to 27-input. On

the other hand, this expressive power comes at some costs. Indeed, the 27-input block is

the largest building block that can be implemented today using the mentioned plasmonic

technology. This is due to the fact that the propagation losses put a limitation on the maximum

number of cascaded stages (i.e., the number of levels of the circuits). Currently, it is not efficient

to have more than three stages, which means that, after the third stage, either an amplifier

or a converter to the voltage domain is necessary [72]. Other technologies, as for example

STMG, suffer instead the lack of inverter implementation, thus inverters-free circuits are

needed. QCA technology has unefficient implementation of inverters, thus benefit from their

minimization [176].

Consequently, logic synthesis and EDA tools are even more important. Not only they

need to be able to abstract efficiently such novel functionalities but also to investigate their

design capabilities. They are left with the important task of studying and examining the design

limits of such technologies in circuit implementation, in order to help in deciding for the next

generation of technologies.

1.3 Thesis Contributions

This thesis is centered around logic synthesis, in particular, on novel data structures and algo-

rithms addressing standard CMOS technologies as well as novel applications (i.e., emerging

technologies and cryptography). In the following, our contributions are classified according

the Boolean function involved in the optimization and abstraction. Our contributions are

thus divided into two main categories: majority-logic and XOR-logic. To ease the reading of

6

1.3. Thesis Contributions

Table 1.1 – Correspondance between chapters, contents, and publications

Topic Chapter Reference

Majority-based Logic
Emerging Technologies Chapter 3 [151, 180, 181]

Theoretical Results Chapter 4 [166, 172, 177]

XOR-based Logic
Standard Synthesis Flow Chapter 5 [170, 171]

Cryptography and Security Chapter 5 [175, 178]

the thesis, our achievements are here presented in the same order they will appear in the

chapters of the thesis. Table 1.1 summarizes the topics and their corresponding publications

and chapters.

1.3.1 Majority-based Logic Syntesis

The methods and abstractions presented here are based on the majority function, denoted by

〈x1, x2, . . . , xn〉, where n is the (odd) number of inputs. The achievements and their position

concerning previous works are organized and summarized according to (i) logic synthesis for

emerging technologies, and (ii) theoretical results.

• Emerging Technologies: Motivated by the many emerging technologies that easily im-

plement majority gates, this first part of the thesis presents novel algorithms over MIGs. First,

a novel optimization flow based on Boolean transformations is proposed. The flow aims at

size optimization over MIGs, next mapped into QCA and STMG. Second, novel techniques to

consider constraints of emerging technologies inside MIGs state-of-the-art synthesis flows are

evaluated. First, we deal with inversion and fan-out limitations of majority-based technologies

such as QCA and STMG. Second, we propose an exact synthesis method for circuits with limited

fan-out and constrained depth. Our results in logic synthesis for emerging technologies are

in Chapter 3 and have been published in the following publications [151, 180, 181]. This sec-

tion is the result of our fruitful collaboration with the IMEC research center in Leuven, Belgium.

Relation to Previous Works

Majority logic owes its renewed interest to many emerging nanotechnologies that naturally

implement majority as their primitive building block [18]. Indeed, because Moore’s law [129]

will reach its end in the next decade [195], alternative devices need to be implemented and

designed.

MIGs allow remarkable logic representation and optimization. A logic optimization flow

that employs algebraic and Boolean methods for MIG depth reduction has been recently

7

Chapter 1. Introduction

Figure 1.4 – Explanation of the majority function: the majority function of three inputs evalu-
ates to true if and only if at least two of the three inputs are true. Source http://redpanels.com/36/

presented in [16]. However, these optimization methods are not able to obtain the same results

when considering MIG size. Work on size reduction of MIGs is quite sparse [81, 101, 161]

and suffers from scalability issues when exact synthesis is involved [81, 161]. Our goal is to

present a flow for the size optimization of MIGs. Being Boolean, our flow has a positive effect

on the quality but it is challenging in the implementation. We overcome these limits by using

windowing techniques, truth tables, and Boolean filtering rules.

Many recent works have instead specifically considered logic synthesis for emerging

technologies [18]. As an example, the works in [127, 194] addresses majority-based nanotech-

nologies by mapping the resulting networks into majority based devices such as QCA and

single-electron transistor (SET). The work in [28] considers instead logic synthesis for emerging

memories, as resistive RAMs (ReRAMs), and the one in [32] demonstrates how to implement

the implication function with memristors. Finally, Zografos et al. [198] presented an MIG-

based method for the synthesis of circuits based on spin-wave devices. In our work, we map

majority networks into QCA and STMG by using area, delay, and power estimations obtained

at IMEC research institute. Moreover, we also demonstrate how to integrate the constraints of

such technologies into the synthesis flow. This is achieved by proposing novel algorithms or

by adjusting already existing ones.

• Theoretical Results: This part of the thesis continues our investigation of majority-

based logic synthesis and MIGs, but shifts to theoretical results and new identities. We present

a novel binary decision diagram (BDD)-based method to map monotone majority functions

over n inputs (majority-n) into MIGs. In particular, their optimum-size representations are

discussed and novel upper bounds and decompositions are investigated. Moreover, com-

plexity studies over self-dual monotone functions in terms of majority gates are studied. The

results for these theoretical results are presented in Chapter 4 and published in [166, 172, 177].

Relation to Previous Works

Majority logic was intensively studied in the 1960s [8, 12, 115]. In 1964, Amarel et al. [12]

proposed algorithms to rewrite majority-n into majority-3. At that time, many majority-based

8

1.3. Thesis Contributions

algorithms were proposed but, due to the limited available computational resources, they were

not followed by implementations. Recently, a generalization to the majority operation of n in-

puts has been presented in [13, 55]. In [17], the authors consider majority logic decomposition

based on BDDs. In [17], majority dominator nodes are used to guide the decomposition pro-

cess; these nodes allow the identification of candidate functions that can be used to build the

majority decomposition. Although BDDs are used in the implementation of their algorithm,

it has a very different nature compared to our work, in which we equate BDDs to majority

graphs in the case of monotone Boolean functions. Moreover, our method finds upper bounds

and decompositions rules that put the basis for novel theoretical investigation on majority-n

logic.

Concerning self-dual monotone functions, we make use of exact synthesis to study their

complexity, which is defined as the minimum number of gates to realize a Boolean function

over majority operators or as its shortest formula. Generally, the study of the complexity of

Boolean functions deals with finding some upper bounds [78, 88] or lower bounds [139] over a

set of primitives. In our case, we are instead concerned with finding exact numbers for the

complexity of functions over majority operators. In [97], the complexity for all 4- and 5-input

Boolean functions in terms of 2-input Boolean operators have been studied, while 3-input

Boolean operators have been used in [83]. We deal instead with 7-input functions over 3-input

majority operators, in particular, we investigate the positive effect of the inverters in reducing

the complexity of this class of functions, and the negative impact of some constraints.

1.3.2 XOR-based Logic Synthesis

The methods and abstractions presented are based on the XOR function, denoted in the thesis

with the symbol ⊕. The achievements and their position with respect to previous works are

organized and summarized according to (i) standard logic synthesis, and (ii) logic synthesis

for cryptography and security.

• Standard Logic Synthesis: This part presents a novel optimization flow based on the

Boolean difference. Note that the Boolean difference operation is the XOR of two Boolean

functions. Motivated by the novel computing capabilities, and in contrast to the previous

sections, this part of the thesis shows more practical aspects of logic synthesis, designed to

be successful in modern logic synthesis flows. The flow aims at area optimization addressing

standard CMOS technologies (ASICs design). The results are evaluated after place & route,

maintaining a reasonable runtime budget for the optimization flow. The results are computed

on 36 commercial benchmarks. This section is the result of a 3-months internship at Synopsys

Inc., California, US. This achievement is fully described in Chapter 5 and has resulted in the

publication [171] and submission [170].

Relation to Previous Works

The interest in Boolean methods is due to the continuous need for improvement in QoR faced

9

Chapter 1. Introduction

by the EDA community (as already stressed in the previous sections). Among all Boolean

methods, a central role is played by Boolean resubstitution, which, in practice, is considered

the most powerful method in terms of QoR. It takes advantage of don’t cares [66] and per-

missible functions [131] to express the function of a node using other nodes already present

in the logic network to achieve a more compact implementation. The recent work in [19]

has demonstrated novel resubstitution techniques based on truth tables, and their efficient

scalability in industrial flows. Our work continues this research study, by presenting a novel

Boolean resubstitution method that uses an XOR-based technique together with BDDs to

further decrease the area, but without increasing the runtime.

• Cryptography and Security: The last part of the thesis continues XOR-based logic syn-

thesis, but investigates a novel application of logic synthesis for crythography and security

applications. We introduce a novel complete and automatic synthesis flow which consists

of the main transformations involved in logic synthesis, being rewriting, resubstitution, and

refactoring. The goal is the minimization of the number of AND gates over xor-and graphs

(XAGs), which correlates with the degree of vulnerability (security) of a cryptography bench-

mark. In this scenario, the XOR operation is “for free”. This achievement is fully described in

Chapter 5 and in the publications [175, 178].

Relations to Previous Works

Logic synthesis for cryptography has recently become subject of growing interest. In this

scenario, logic synthesis uses XAGs as data structure to represent and optimize logic. Further,

it aims at the minimization of the number of AND gates. Novel optimization techniques are

thus needed since state-of-the-art tools [40, 190] automatically address size optimization,

without precisely minimizing the number of ANDs. Recently, the works in [33, 60, 149] have

started this new domain of application for logic synthesis. Unfortunately, the methods from

the cryptography community rely heavily on manual decomposition and optimization strate-

gies [33], while the method in [149] implements few changes to a commercial CMOS-based

tool without explicitly designing specific algorithms. Our methods and tool focus on imple-

menting a complete and automatic flow, to address these novel applications. Our algorithms

are instead specifically designed to consider a different abstraction based on AND and XOR,

and to minimize the number of ANDs, which has been demonstrated beneficial for diverse

cryptography applications [64, 100, 183].

1.4 Thesis Organization

This thesis is organized as follows:

• Chapter 2 – Background: This chapter introduces the background needed to under-

stand the rest of the thesis. It provides an overview of the most important data structures

and algorithms involved in classical logic synthesis. It also considers recent advances in

10

1.4. Thesis Organization

exact synthesis methods.

• Chapter 3 – Majority-based Logic Synthesis: In this chapter, we present novel algo-

rithms and techniques that work over MIGs. Specifically, we propose novel Boolean

methods for size optimization, demonstrating an 18% average size reduction. Particular

focus is also given to the synthesis and design of majority-based logic for emerging tech-

nologies, as QCA and STMG. Such emerging technologies use the majority function as

their main building block but suffer from diverse technological constraints that need to

be considered in the synthesis flow. For this purpose, the chapter presents (i) techniques

to limit the fan-out of the majority gates and move inverters on primary inputs; and (ii)

exact synthesis methods to limit both depth and fan-out of MIGs. As already pointed

out, these constraints are due to the physical limitations of the considered emerging

technologies.

• Chapter 4 – Majority-n Logic: This chapter continues the study of majority logic, but

moves to more theoretical aspects. In particular, the chapter mainly addresses the

problem of “how best can the n-argument majority function (majority-n) be realized

with a network of 3-input majority gates?”. For this purpose, we present a novel method

that directly maps BDDs of monotone functions into majority graphs. The proposed

methods allow us to obtain the optimum network for the majority-5 and majority-

7, and the best-known circuit for the majority-9. Novel general upper bounds and

novel decompositions are also presented. The majority function is both self-dual and

monotone; thus, the chapter also focuses on the study of self-dual monotone functions

and their complexity. As an example, it demonstrates how the inverter can help in

reducing the complexity of 7-input functions over majority graphs.

• Chapter 5 – XOR-based Logic Synthesis: In this chapter, we move from the majority

logic to the XOR-based logic synthesis. We present two different applications: (i) CMOS-

based logic synthesis and (ii) logic synthesis addressing cryptography and security

applications. For the CMOS-based design, we developed a novel XOR-based resubstitu-

tion method for the size optimization of digital circuits. Our flow results in a remarkable

area and power reduction after place & route. The latter considers logic synthesis for

an alternative application in cryptography. For this purpose, we developed a novel

framework to minimize the number od AND gates (called multiplicative complexity) of

XAGs, which is a metric that directly correlates to the vulnerability of the circuits. The

new framework is successfully tested on two sets of cryptography benchmarks.

• Chapter 6 – Conclusions: Finally, this chapter concludes the thesis. A summary of

research accomplishments is presented, together with future perspectives.

To summarize, this thesis presents novel logic synthesis algorithms for the optimization

of standard CMOS-based applications. It takes advantage of modern – more advanced –

computing capabilities to push further the optimization results of existing flows. It also

introduces technology-dependent logic synthesis as an essential step for the abstraction

11

Chapter 1. Introduction

and manipulation of novel and diverse majority-based emerging technologies. Moreover, it

advances state-of-the-art theoretical results on majority logic. Finally, this thesis establishes a

novel field of application for logic synthesis, in the cryptography and security field.

12

2 Background

This thesis targets the development of novel data structures and algorithms within logic

synthesis for standard and emerging technologies. This chapter is dedicated to the background

and preliminaries needed through the whole thesis and aims at giving a broad overview of

this field [174]. First, we introduce the data structures involved in logic synthesis to represent

logic. These include truth tables, binary decision diagrams (BDDs), 2-level and multi-level

logic forms. Then, we describe the algorithms for logic function optimization. Both heuristic

algebraic and Boolean methods are described, followed by exact methods and synthesis.

Finally, we overview methods to partition circuits into smaller sub-units for the application of

runtime-expensive methods (e.g., Boolean resubstitution) in a controlled manner.

In the following, we assume that the reader is familiar with the basic concepts of Boolean

algebra and Boolean functions; we refer the reader to [44, 69, 97] for further background.

2.1 Data Structures

We present various data structures that are commonly used by logic synthesis algorithms.

The subsections are ordered according to the scalability of the data structures, starting from

truth tables, which are suitable for functions with a small support (i.e., number of variables),

to multi-level logic networks, which are the data structure (in various forms and shapes) to

represent Boolean functions in almost all modern research and commercial tools.

2.1.1 Truth Tables

A truth table is an explicit representation where the function values are listed for all possible

input combinations. Formally, a truth table for a Boolean function f (x1, . . . , xn) is a bitstring

b2n−1b2n−2 . . .b1b0 of 2n bits, where f (x1, . . . , xn) = bx such that x = (xn . . . x1)2 is the integer

representation of the input assignment. Consequently, we may also consider a truth table as a

number in the half-open interval [0,22n
), for which the truth table representation is the binary

expansion of that number.

13

Chapter 2. Background

Example 2.1 The truth table for a majority-of-three (majority-3) function 〈x1x2x3〉 = (x1 ∨
x2)∧(x1∨x3)∧(x2∨x3) is 11101000, where ∧ and ∨ are the AND and OR, respectively. Since the
binary notation can quickly become very large, it is customary to use a hexadecimal notation,
in which each block of 4 bits is represented by the corresponding hexadecimal digit. For the
majority-of-three function, the hexadecimal truth table is e8. �

A truth table is a canonical (i.e., unique) representation of a function. Consequently, for

small functions, truth tables can be used for a simple equivalence check of two functions, if a

truth table can be efficiently derived from them.

2.1.2 2-level Representations

Logic functions can be represented in disjunctive normal form, also referred to as sum-of-

product (SOP),

f = p1 ∨p2 ∨·· ·∨pk (2.1)

where each

pi = x
qi ,1

1 ∧x
qi ,2

2 ∧·· ·∧x
qi ,n
n (2.2)

is a product of literals with 0 ≤ qi , j ≤ 2R −1 for 1 ≤ i ≤ k and 1 ≤ j ≤ n and where R is a radix.

We have R = 2 for binary Boolean logic, R = 3 for ternary logic, etc. This represents the so called

positional cube notation [69] where usually the qi , j are represented in binary form. Therefore,

for binary-valued logic the negative and positive literals are x1 = x{01} = x̄ and x2 = x{10} = x,

respectively, x3 = x{11} is a don’t care term (i.e., both values of a variable are possible) and

x0 = x{00} =� is the empty set (i.e., no value).

Example 2.2 Let f (x1, x2, x3) = x1 ? x2 : x3, which is also called the if-then-else operator. A

disjunctive normal form is f = x1x2x̄3 ∨x1x2x3 ∨ x̄1x2x3 ∨ x̄1x̄2x3. An alternative, shorter form

is f = x1x2 ∨ x̄1x3. In general, one is interested in finding a disjunctive normal form that

minimizes the number of product terms k.

�

Many algorithms have been presented to find disjunctive normal forms with some mini-

mality properties (see, e.g., [156]). Also, other 2-level representations have been investigated.

Examples are conjunctive normal form (CNF), or product-of-sums (that interchange ‘∨’ and ‘∧’

in (2.1) and (2.2)) or exclusive sum-of-products (which use ‘⊕’ instead of ‘∨’ in (2.1)). Conjunc-

tive normal forms play a central role in Boolean satisfiability solving (see, e.g., [29, 98]) and can

be seen as the dual representation of disjunctive normal forms [44]. Exclusive sum-of-product

representations find extensive use in cryptography applications (see, e.g., [35, 36, 50]) and

quantum computing (see, e.g., [75, 124]).

14

2.1. Data Structures

x1

x2 x2

x3

x4 x4

⊥

0

0

0

0 0

0

1

1

1

11

1

Figure 2.1 – BDD for the function (x1 ⊕x2)∨ (x3 ⊕x4)

2.1.3 Binary Decision Diagrams

Logic functions can be expressed by decision diagrams in many ways. The most common

representation is the BDD [46, 97] which is a directed acyclic graph where internal nodes

are associated with the Shannon expansion of the function, i.e., f = xi fxi ⊕ x̄i fx̄i , where fxi

and fx̄i are the cofactors obtained from f when the variable xi is assigned 1 or 0, respectively.

When referring to BDDs, it is usually implicitly understood that the variables are ordered and

the diagram reduced (i.e., BDD refers to ROBDDs [46]). Moreover BDDs are constructed and

manipulated so that redundancy is avoided, and thus they are canonical representations of

logic functions.

Example 2.3 Figure 2.1 shows the BDD for the function (x1 ⊕x2)∨ (x3 ⊕x4). Solid and dashed

lines represent here positive and negative cofactors respectively. Two terminal nodes labeled ‘⊥’

and ‘
’ represent the constant functions 0 and 1. �

BDDs exploit the fact that for many functions of practical interest, smaller subfunctions

occur repeatedly and need to be represented only once. Combined with an efficient recursive

algorithm that makes use of caching techniques and hash tables to implement elementary

operations, BDDs are a powerful data structure for Boolean function representation and

manipulation. Indeed, algorithms for BDD manipulation have polynomial-time complexity

(usually quadratic or cubic) in the number of nodes, and such a number grows mildly with the

problem size (i.e., variables) in many—but not all—cases, e.g., multipliers are an exception.

The variable order in BDDs affects their size. Improving the variable ordering for BDDs

(i.e., minimizing the BDD graph size) is NP-complete [31]. An exact algorithm [71] and many

heuristics [76] have been presented that aim at finding a good ordering. It is easy to fit a

single BDD node, which contains the variable index and pointers to its two children, into a

single 64-bit unsigned integer [97]. Thus, BDDs can represent a good scalable representation

for logic functions. They can cope with larger functions as compared to truth tables. When

their storage becomes excessive, functions are usually decomposed into blocks forming logic

networks.

15

Chapter 2. Background

2.1.4 Multi-level Logic Networks

A multi-level logic network is an interconnection of blocks, each implementing a logic function

and whose representation style may vary. The interconnection is modeled by a directed

acyclic graph where nodes represent primary inputs and outputs, as well as local functions.

In most cases such functions are restricted to have a single output, by similarity to CMOS

logic gates. For internal nodes, the indegree and outdegree are referred to as fan-in and

fan-out respectively. Note that logic networks can be extended to deal with sequential cyclic

circuits [69], but such cases are not considered here.

We use a formal notation for logic networks, that is also referred to as Boolean chains in the

literature [97]. Given primary inputs x1, . . . , xn , a logic network consisting of r local functions

is a sequence

xi = fi (xi1 , xi2 , . . . , xiar(fi)) for n < i ≤ n + r , (2.3)

where fi is a gate function with ar(fi) inputs and 0 ≤ i j < i for 1 ≤ j ≤ ar(fi) are indexes to

primary inputs or previous gates in the sequence. For convenience, we define x0 = 0. Also, we

define a sequence of primary outputs y1 = xo1 , . . . , ym = xom .

Example 2.4 A full adder with inputs x1, x2, x3 can be realized by the network

x4 = x1 ⊕x2 ⊕x3, x5 = 〈x1x2x3〉

with outputs y1 = x4 for the sum and y2 = x5 for the carry. The network uses the parity function

f4 and the majority function f5. �

Logic networks can be specialized by placing restrictions on the internal nodes. A homoge-

neous logic network is one where the fan-in of each internal node is fixed. Restrictions can be

applied to local functions as well (e.g., networks consisting of NANDs and/or NORs). For ex-

ample, and-inverter graphs (AIGs), [87, 102] employ AND and Inverters (or equivalently apply

AND functions to positive/negative literals). The majority-inverter graphs (MIGs), [14] use

majority and inverter gates and xor-majority graphs (XMGs) [81] use majority and XOR gates.

For FPGA design, bounded input look-up tables k-LUT networks are used, where ar(f) ≤ k.

Example 2.5 Figure 2.2 shows logic networks for a 4-bit full adder, which computes (x4x3x2x1)2+
(x8x7x6x5)2 = (y5 y4 y3 y2 y1)2. Figures 2.2(a), (b), and (c) show an AIG, and MIG, and an XMG,
respectively. Inverted inputs are drawn using dashed edges. Figure 2.2(d) shows a 4-LUT net-
work. The gate functions are f9 = 6, f10 = 936c, f11 = 137f, f12 = 69, f13 = 2b, f14 = 69,and f15 = d4.

�

Combinational logic functions can be represented by many different logic networks. A cen-

tral task in logic synthesis is to optimize some figure of merit that relates to area, performance,

and/or power consumption of the final implementation. Commonly-used cost functions are

the size r of the logic network, measured in the number of nodes, the depth d of the logic

16

2.1. Data Structures

x1 x5 x2 x6

x3 x7

x4 x8

y1

y2

y3

y4 y5

∨ ∧
∧

∨ ∧
∧

∨ ∧
∧

∨ ∧
∧

∨ ∧
∧ ∨

∨ ∧
∧ ∨

∨ ∧
∧ ∨

(a) And-inverter graph

x1 x5

x2 x6

x3 x7

x4 x8y1

y2

y3

y4

y5

∨ ∧

∧ 〈〉 〈〉

〈〉 〈〉 〈〉

〈〉 〈〉 〈〉

〈〉

(b) Majority-inverter graph

x1 x5

x2 x6

x3 x7

x4 x8

y1

y2

y3

y4

y5

⊕ ∧

⊕ 〈〉

⊕ ⊕ 〈〉

⊕ ⊕ 〈〉

⊕

(c) XOR majority graph

x1 x5 x2 x6

x3 x7

x4 x8y1 y2

y3

y4 y5

9 10 11

12 13

14 15

(d) 4-LUT network

Figure 2.2 – Different logic networks for a 4-bit adder: (a) AIG, (b) MIG, (c) XMG, (d) LUT

network, which is the longest path from any primary input to any primary output, and the

switching activity.

In the thesis, we make use of MIGs as main data structure for Chapters 3 and 4. The central

function in MIGs is the majority-of-three function. The majority function of three Boolean

variables x, y , and z, denoted 〈x y z〉, evaluates to true if and only if at least two of the three

inputs are true. The majority function is monotone and self-dual [97] and can be expressed in

disjunctive and conjunctive normal form as

〈x y z〉 = x y ∨xz ∨ y z = (x ∨ y)(x ∨ z)(y ∨ z). (2.4)

Setting any variable to 0 gives the conjunction of the other two variables, and analogously one

obtains the disjunction by setting any variable to 1, i.e.,

〈x0y〉 = x ∧ y and 〈x1y〉 = x ∨ y. (2.5)

17

Chapter 2. Background

f

∧

∧ ∧

x1 x2x3

∧ ∧

∧

(a) AOIG

f

〈〉

0

〈〉〈〉

x1 x2x3

〈〉 〈〉

〈〉

(b) MIG obtained from the
AOIG

f

〈〉

x3

〈〉〈〉

x1x2

(c) Optimized MIG

Figure 2.3 – Example (a) of and-or-inverter graph (AOIG) representation for f = x ⊕ y ⊕ z, and
the MIG derived from its AOIG (b), complement attributes are represented by dashed lines.
3-input nodes are majority operators. Example (c) of optimized (more compact) MIG for f

MIGs are thus universal representation forms and can efficiently represent any Boolean

function thanks to the expressiveness of the majority operator. As a consequence of the

AND/OR inclusion by MAJ, traditional AOIGs are a special case of MIGs, and MIGs ⊃ AOIGs.

It follows that MIGs can be easily derived from AOIGs. In the worst case, AND/OR operators

can be replaced node-wise by majority-3 (MAJ-3) operators with a constant input, however,

even smaller MIG representations arise when fully exploiting the majority functionality, i.e.,

with non-constant inputs. An example of MIG representation derived from its optimal AOIG is

shown in Figure 2.3(b), while the optimized MIG is depicted in Figure 2.3(c). Since MIGs ⊃
AOIGs, and AOIGs ⊃ AIGs, by transitivity MIGs ⊃ AIGs.

Note that the majority function can be generalized for an odd number of n variables to

〈x1 . . . xn〉 = [x1 +·· ·+xn > n
2].

2.2 Algorithms

We present here the underlying techniques for logic optimization algorithms. In particular,

we concentrate on multi-level networks as they will be used in the rest of the thesis, and

we present both algebraic and Boolean methods. We conclude with an overview on exact

synthesis. We preserve here the historical names of approaches for logic network optimization,

namely (i) algebraic methods (based on polynomial algebra) and algebraic rewriting (based on

algebraic axioms, possibly of Boolean algebra) and (ii) Boolean methods (based on Boolean

algebra). Heuristics are employed in these approaches to select the type and sequence of

transformations.

18

2.2. Algorithms

x1 x2 x1 x3

∧ ∧
∧
A

= x1

x2 x3

∧
∧
B

= x2

x1 x3

∧
∧
C

(a) Functionally equivalent AIG structures

x1 x2 x1 x3

x1

x2 x3

∧ ∧
∧

∧
∧

⇒

(b) Rewrite structure A into B

x1 x2

x1

x3 x1 x1 x2 x1 x3

∧ ∧
∧

∧ ∧ ∧
∧

⇒

(c) Rewrite structure B into A

Figure 2.4 – Example of AIG rewriting from [121]

2.2.1 Algebraic Methods

Traditional algebraic methods represent each logic network node in SOP form and treat them

as polynomials [39, 41]. This simplifying abstraction enables fast manipulation of very large

logic networks. Algorithms are designed as operators that iterate one type of transformation

until the logic network reaches a local minimum (w.r.t. the transformation itself). Examples of

transformations are extraction, substitution, decomposition, and algebraic rewriting [39, 69].

We refer the reader to [39, 41, 69] for the details of the first three methods, that will not be

discussed here; while we focus instead on algebraic rewriting as it will be important for future

chapters of the thesis.

Algebraic Rewriting

The purpose of algebraic rewriting is to change and rewrite portions of a logic network in order

to improve, for instance, the number of nodes and/or levels [121]. The general idea consists of

applying transformation rules (based on algebraic axioms) with the objectives of improving

some figure of merit. Rewriting is more effective when logic networks are homogeneous (e.g.,

AIGs, MIGs, and XMGs), because logic transformations can be made specific.

Algebraic rewriting has been used extensively in ABC [121]. For example, a database of

pre-computed circuit structures for a function can be included, and for any subcircuit one can

compute its function and check whether replacing the subcircuit by a pre-computed structure

leads to an improvement. If other nodes in the circuit are reused in the rewriting, it may be

beneficial to replace a smaller structure by a larger one.

Example 2.6 An example for AIG rewriting as implemented in ABC is shown in Figure 2.4. Fig-

ure 2.4(a) shows three functionally equivalent AIGs structures. These equivalences are employed

in Figure 2.4(b) and (c) to reshape the structure of AIGs into functionally equivalent ones. �

Refactoring is a variant of rewriting, in which large cones of logic feeding a node are iteratively

selected with the aim to replace them by a factored form of the function. It resynthesizes

19

Chapter 2. Background

large subnetworks in a logic network from scratch and without using existing nodes in the

logic network. The change is accepted if there is an improvement in the selected cost metric

(usually number of nodes) [119, 121].

Algebraic rewriting is very effective for MIGs. The related majority algebra and axiomatic

system Ω have been described in [14], where it is shown that Ω is sound and complete,

providing reachability in the solution space. This means that for MIGs there exists a sequence

of steps – possibly with polynomial bound – leading to the optimum solution. Such a path

may not exist in other representation frameworks. Indeed, experimental evidence has shown

that the MIGhty program [14] implementing algebraic rewriting has outperformed other tools

on several benchmarks [14].

Regarding algebraic optimization for MIGs, a dedicated Boolean algebra has been intro-

duced in [14, 16]. The MIG Boolean algebra is defined as the axiomatic system (B,〈〉, ¯,0,1),

where 〈〉 is the majority operator and ¯ is the complementation. An axiomatic system for the

MIG Boolean algebra, referred to as Ω, is introduced and defined over five primitive transfor-

mation rules. Some other additional rules can be derived from Ω; three of them, referred to as

Ψ, are presented in [16]:

Ω

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Commutativity – Ω.C

〈x y z〉 = 〈y xz〉 = 〈z y x〉
Majority – Ω.M

〈xx y〉 = x 〈xx̄ y〉 = y

Associativity – Ω.A

〈xu〈yuz〉〉 = 〈zu〈yux〉〉
Distributivity – Ω.D

〈x y〈uv z〉〉 = 〈〈x yu〉〈x y v〉z〉
Inverter Propagation – Ω.I

〈x y z〉 = 〈x̄ ȳ z̄〉

(2.6)

Ψ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Relevance – Ψ.R

〈x y z〉 = 〈x y zx/ȳ 〉
Complementary Associativity – Ψ.C

〈xu〈yūz〉〉 = 〈xu〈y xz〉〉
Substitution – Ψ.S

〈x y z〉 = 〈v〈v̄〈v/u x y z〉u〉〈v̄〈v/ū x y z〉ū〉〉

(2.7)

where the symbol zx/y is a replacement operation; that means, it replaces x with y in all

its appearances in z. Some of these axioms are inspired by median algebra and others from

the properties of the median operator in a distributive lattice. We like to emphasize these

identities of the majority function, as they are essential for the forthcoming chapters. First, all

three arguments to the majority function are commutative, i.e.,

〈x y z〉 = 〈y xz〉 = 〈zx y〉. (2.8)

Also, the majority function evaluates to a single argument if two arguments are equal or

complement to each other, i.e.,

〈xx y〉 = x 〈xx̄ y〉 = y. (2.9)

The associativity rule on the majority function allows us to exchange variables if two operations

20

2.2. Algorithms

f

〈〉

x1

〈〉 〈〉

x0 x2 x3

(a) Original MIG

f

〈〉

x0

x1

〈〉

x2 x3

〈〉

(b) Associativity

f

〈〉

x0

x1

〈〉

x2

x1 x3

〈〉

(c) Relevance

f

x1

(d) Final MIG

Figure 2.5 – Example of MIG optimization using the algebraic rewriting. (a) is the initial MIG;
(b) MIG after associativity rule; (c) relevance transformation; (d) final result after rule Ω.M

are nested and share a common variable, i.e.,

〈xu〈yuz〉〉 = 〈〈xuy〉uz〉. (2.10)

The associativity rule becomes obvious, when replacing u by some operator symbol ‘◦’ and the

angular brackets by parentheses: (x ◦ (y ◦ z)) = ((x ◦ y)◦ z); as pointed out by Schensted [158].

An alternative way to think about its validity, is by setting u to 0 and 1, and noting that ∧ and ∨
are associative [97]. Due to these properties, the set M =B= {0,1} and the ternary operation

〈x y z〉 defined according to (2.4) are a median algebra [30]. A median algebra is defined as a set

and a majority operator satisfying commutativity, associativity, and the first identity in (2.9).

Also a distributivity rule can be derived from these three rules [160]:

〈xu〈y v z〉〉 = 〈〈xuy〉v〈xuz〉〉 (2.11)

To easily memorize this rule, it’s handy to replace u by a symbol ‘◦’ and v by a symbol ‘×’.

Note that in the Boolean case, in which each element has its complement, the median

algebra is a complemented distributive lattice [30] and therefore a Boolean algebra (see,

e.g., [156]). Since the majority function is self-dual, inverters can be propagated from the

inputs to the outputs, i.e.,

〈x̄ ȳ z̄〉 = 〈x y z〉. (2.12)

An MIG can be transformed into another MIG by just using the rules in Ω in either direction

as well as additional rules. Such rules can reduce the number of nodes and depth of a logic

network, or any other metric [16]. This result guarantees that the best MIG, for a given target

metric, can always be reached. The general idea for logic optimization consists of applying

rules and axioms to rewrite the MIG and to obtain a desired configuration. Different metrics

can be optimized; here, we report the example for size optimization.

21

Chapter 2. Background

Example 2.7 The MIG algebraic size optimization can be done by applying a sequence of the

five axioms and rules both from Left to Right (L → R) and from Right to Left (R → L). For

the MIG in Figure 2.5(a) the associativity rule Ω.A is used to rewrite the graph from (a) to (b),

and Ψ.R rewrites from (b) to (c). Figure 2.5(c) can be optimized by applying the majority rule

Ω.ML→R . The size of the graph is reduced from 3 nodes to 0, as shown in Figure 2.5(d). �

These axioms and rules have been employed in [16] to achieve significant depth optimiza-

tion results over both unmapped and LUT-mapped results.

2.2.2 Boolean Methods

Boolean methods consider the true nature of logic functions by considering Boolean identities

and don’t cares [24, 69]. Don’t care conditions relate to the embedding of a Boolean func-

tion into the environment, and are usually called external don’t cares. They consist of both

controllability and observability don’t cares. The former is defined as those input patterns

that are never produced by the environment, while the latter considers situations when a

given output is not observed by the environment. The idea behind Boolean methods is to

use the power of Boolean algebra together with the degree of freedom provided by the don’t

cares to construct local transformations to improve logic networks [38, 39, 69, 126]. For ex-

ample, due to observability don’t cares, the function at a node v may be changed to another

function without changing the behavior at the primary outputs. In the transduction method

proposed by Muroga [130, 131], this new function is called a permissible function for node v ,

and the set of all permissible functions for a node v is its maximum set of permissible functions

(MSPF). Consequently to the use of don’t cares and Boolean identities, Boolean methods

usually achieve better results, but come at higher computational cost and less scalability [38].

Boolean methods evolved through time as different engines became available for detecting

the existence of permissible functions. The MIS/SIS program [41] used program ESPRESSO

to find permissible functions; other tools used BDDs to check if a function is a permissible

replacement of another by checking the tautology of their equivalence. Fast tautology check

can be provided by BDD tools [191] and thus desirable permissible replacements of a local

function can be quickly evaluated. In general, Boolean methods can also be enabled by casting

the search for permissible functions as a satisfiability (SAT) problem, and using an effective

SAT solver for this task (see [118] for more details). As SAT-solvers are out of the scope of this

thesis, they are not detailed in this chapter; more details on SAT-based exact synthesis can be

found in Section 3.5 and in [82, 98].

Overall, Boolean methods leverage a variety of transformations that eventually resort to

an engine for verifying their applicability. Examples of engines are two-level minimizers, BDD,

and SAT packages. Recently, truth tables have also been used as data structure to check for

permissible functions [19]. Here, we explain in detail the scenarios – as presented in [170] – in

which truth tables and BDDs produce, in practice, the best results in driving Boolean methods.

22

2.2. Algorithms

Only truth tables and BDDs are considered as they will be used in the next chapters to detect

don’t cares and permissible functions. Afterwards, we review some Boolean transformations,

while, in Section 2.3, we present various techniques to partition large logic networks into

smaller units, used to apply expensive Boolean methods in an efficient way.

Truth Tables or BDDs?

Boolean methods rely on complete functional properties of a logic circuit, preferably including

don’t care information. In order to gather such functional properties, truth tables or expensive

logic reasoning engines are required, such BDDs and SAT. The choice of the engine deter-

mines the scalability of the Boolean methods. In the last two decades, improvements in SAT

solving made SAT-based methods sensibly more scalable than those based on BDDs. As a

consequence, some Boolean methods based on BDDs or truth tables grew outdated. On the

other hand, it appears in practice that there are still several synthesis scenarios in which BDDs

or truth tables are preferable to SAT, in terms of QoR and/or runtime.

This last part of the section discusses how to automatically identify scenarios, based on

circuit characteristics and optimization scope, where Boolean methods are best driven by

either truth tables or BDDs.

Truth Tables: Truth tables are efficiently stored in computers as a concatenation of words.

Boolean functions with n variables require 2n−k words, where k = log2(word-size). It follows

each 64-bit (32-bit) word can store a 6(5)-input truth table. For circuits or sub-circuits having

fewer than 16 inputs, truth tables are remarkably fast to compute in practice, as they have low

memory footprint and no formulation overhead. Furthermore, truth table computation may

be parallelized w.r.t. words and distributed over different threads. For example, 64-bit words

operating with a 16-input truth table require bit-level operations among 1024 (independent)

words. Distributing such computation over 16 threads, which is common in EDA applications,

reduces the latency bottleneck to just 64 consecutive bit-level word operations.

As of today, functional properties of circuits up to 16 inputs are most efficiently computed

via truth tables. The overhead of formulating and solving a SAT problem, or handling a BDD

manager for the same circuit usually takes considerable amount of runtime.

Example 2.8 Consider an XOR-rich parity circuit over 16 variables, with many functionally

identical nodes originating from partial SOP collapsing during synthesis. Depending on the

depth of XOR collapsing, the circuit size can grow over several thousands of nodes. In our case,

we deal with about 10k AIG nodes. Assume the goal is to merge all functionally equivalent

nodes, up to complementation, in this circuit. If the task is performed using truth tables, it takes

about 1 second of runtime. When using a SAT-based formulation of the problem, instead, it

takes more than 2 minutes to obtain the same result. BDD-based methods take tens of seconds,

ranging between 15 seconds and 30 seconds, depending on the settings for static and dynamic

variable re-ordering. �

23

Chapter 2. Background

BDDs BDDs are a compact canonical representation form. Compared to truth tables,

which are also canonical but always exponential-sized, BDDs allow polynomial-size for many

functions and variable orderings of practical interest [47]. However, other functions, such

as multiplication and hidden-weighted bit [1], have exponential-size BDDs for any variable

order [47].

When dealing with a medium-large function, whose exact properties are unknown, BDDs

construction time can differ sensibly. Empirically, BDDs are always constructed rapidly,

compared to truth tables, for the following circuit cases:

1. Circuits with fewer than 20 primary inputs,

2. Circuits that, if decomposed into an AIG, have depth d < 20 levels,

3. Circuits with a small (usually smaller than 2) internal nodes over primary inputs ratio,

4. Circuits with special properties that facilitate BDD construction, e.g., symmetries.

For the cases above, where the primary inputs are fewer than 16 and truth tables are not

desirable, BDDs are the fastest alternative in the majority of cases. It is worth noting that

corner cases for points 3) and 4) exist, i.e., ripple carry adders whose BDDs are built with

bad variable order, or symmetric functions with many variables, etc. However, these cases

represent a small fraction of the ones encountered in practice and can be detected with some

extra filtering.

Example 2.9 Consider Boolean resubstitution over the MCNC circuit k2 [192]. Note that this

circuit shows 20 levels, 2580 nodes, and 45/45 inputs/outputs1. Building a BDD for this circuit

takes less than 10 ms with a modern BDD package. Using SAT for each resubstitution move,

spanning the whole circuit, would result in notable runtime overhead. �

Resubstitution

Boolean resubstitution (also called substitution [69]) aims at expressing the function of a node

v using other nodes (called divisors) already present in the logic network. A transformation is

accepted if the new implementation is more compact than the current node implementation,

thus leading to size optimization. A k-resubstitution is a generalization of resubstitution,

which adds exactly k new nodes and removes l nodes, where l is the number of nodes in

the maximum fan-out free cone (MFFC) [119, 121] of v . In this case, size improvement is

achieved if l > k. In this last scenario, resubstitution adds k new logic operators to the existing

1After decomposing it into an AIG

24

2.2. Algorithms

logic network. Note that resubstitution techniques are thus usually classified according to

the number k of logic operators additionally added, i.e., 0-resubstitution does not add any

new operator; 1-resubstitution expresses a logic function by adding one logic operator, and

so forth. According to the type of nodes added in the logic network by resubstitution, we

also refer to resubstitution as AND-resubstitution, OR-resubstitution, XOR-resubstitution,

AND-OR resubstitution, etc.

Due to the use of don’t cares, Boolean resubstitution finds more optimization opportunities

as compared to algebraic substitution, but it is inherently more expensive [38]. Consider the

following example, which shows the use of don’t cares for Boolean resubstitution.

Example 2.10 Consider the logic network [69] given by

f = x1 ∨ (x2 ∧x3 ∧x4)∨x5

g = x1 ∨ (x3 ∧x4)
(2.13)

where ∧ and ∨ represent the AND and OR operators, respectively. We can minimize f using g :

f = x1 ∨ (x2 ∧ g)∨x5

g = x1 ∨ (x3 ∧x4)
(2.14)

where x2∧x3∧x4 can be changed into x2∧g because the minterms where x2∧x3∧x4 and x2∧g

differ are in the don’t care set. �

Different representation of don’t cares and varying reasoning engines have been used in

the past years to develop novel and powerful resubstitution methods. For example, in the

transduction method proposed by Muroga [130, 131], resubstitution methods were applied by

computing permissible functions using truth tables. Unfortunately, that tabular description

was not efficient enough to be applicable to logic networks of reasonable size at that time,

while modern resubstitution flows as the ones in [19] and in [151] efficiently use truth tables

as reasoning engine. Permissible functions can also be quickly evaluated using BDDs. The

method in [157] uses BDDs and permissible functions to build fast resubstitution techniques.

More recently, Miyasaka et al. [128] have presented a method that uses a BDD-package without

variable re-ordering to accelerate the computation of permissible functions. Concerning

SAT-based resubstitution methods, the works in [117, 120] consider SAT-based don’t cares

computation aiming at resubstitution frameworks.

Although Boolean resubstitution achieves better results and is more precise than the

algebraic one, it is more expensive at runtime. The right engine selection may improve its

scalability, but its application is still limited to small functions. Partitioning and breaking

logic networks into smaller subnetworks is thus needed to be able to efficiently compute each

node’s functionality and to apply Boolean resubstitution. Even when resubstitution is applied

to small- (∼ 15 inputs) and medium- (∼ 20 inputs) size windows of logic, k-resubstitution

remains intrinsically expensive due to the high amount of required equivalence checking,

25

Chapter 2. Background

which are the primitive operations in all resubstitution algorithms. Consider as an example

1-resubstitution using the 2-input AND gates, applied on a small window of logic with V

internal nodes. The goal is to try to express each internal node in the window as the AND

of two other nodes in the window. In the worst case O(V 2) equivalence checks are needed

for each node, resulting in O(V 3) checks for the whole window. In this scenario, Boolean

filtering techniques are usually employed to strongly reduce the number of candidates for

resubstitution, and at the same time without losing significant optimization opportunities.

Common filtering techniques [19] include, but are not limited to, (i) structural filtering, or

(ii) setting a maximum number m of candidates to be tried. Structural filtering comprises,

for instance, skipping candidates in the transitive fan-out (TFO) cone of the current node, or

skipping nodes whose level is too far away, etc. The best improvement in runtime is although

given by setting a maximum number of candidates m, as the total number of equivalence

checks decreases to O(mV 2).

Rewriting

Rewriting aims at minimizing the size (or other metrics) of a logic network by iteratively

selecting subnetworks and by replacing them with smaller (or better) precomputed subgraphs,

while preserving the functionality. This is achieved by applying a Boolean equivalence check

(modulo the don’t cares).

Example 2.11 Examples of typical precomputed subnetworks are all 4 variables functions, or

the 222 NPN equivalence classes [81, 121, 162]. Here, the idea is to replace 4-input subnetworks

with their optimum precomputed representation. A solution can be size- or depth-optimum

implementation depending on the target metric. �

Redundancy Removal and Rewiring

Redundancy removal is a common technique that uses automatic test pattern generator to

detect untestable stuck-at faults in a logic network and modifies the network at the faulty net

by setting it to a constant value [43, 67]. Rewiring improves on redundancy removal because it

adds new connections in a logic network to create redundancies, that later can be removed. In

practice, it adds and removes nets and it aims at removing nets related to long wires [51].

In a more general scenario, a logic network is optimized by changing a local function (to

improve overall size and/or depth) by introducing errors that are then corrected by chang-

ing the local functionality somewhere else [66]. The following example shows this type of

transformation for MIGs.

Example 2.12 We show an example that makes use of an induced error correction technique

26

2.2. Algorithms

x1 x2 x3

x4 x5 x6

y

〈〉

∧ ∨ 〈〉

〈〉

∨

(a) Initial MIG

x1 x2 x3 x4 x5 x6

y

〈〉 〈〉

〈〉

(b) Optimized MIG

Figure 2.6 – Rewiring based on induced error correction in MIGs

for MIGs, which was first explained in [15]. The technique is based on the property that

y = 〈y1 y2 y3〉 if, and only if

(y ⊕ yi)(y ⊕ y j) = 0 for all 1 ≤ i < j ≤ 3 (2.15)

We can think of each yi , i = 1,2,3 as a convenient (i.e., reduced and thus incorrect) versions

of y. The difference between yi to y is expressed by (y ⊕ yi) is the local error. The condition

on the right-hand side of (2.15) states that all three errors must be pairwise orthogonal, i.e.,

the pairwise differences have an empty intersection. In this condition, the majority operator

restores the correct functionality. Figure 2.6(a) shows an MIG for the function y, which has the

truth table f8f8f8e0f8e0e0e0. One can easily verify that the right-hand side condition in (2.15) is

satisfied for y1 = 〈x1x2x3〉, y2 = x3, and y3 = 〈x4x5x6〉, and therefore, y = 〈〈x1x2x3〉x3〈x4x5x6〉〉,
for which an MIG is shown in Figure 2.6(b). The optimized MIG reduces both size and depth to

half of their original values. More details on this technique including methods to derive valid

fault candidates are described in [15].

�

2.2.3 Exact Methods

After the discussion on heuristic methods, we give here an overview of exact synthesis. Exact

synthesis is the problem of finding the optimum logic representation for a given Boolean

function with respect to some cost criterion. Usually the cost is either the number of gates (or

equivalently nodes and correlated to area) or the depth of the logic network (or equivalently

the critical path and correlated to delay). For example, specific instances of the problem are

finding the SOP representation using the smallest number of implicants, or a 2-input gate level

logic network with the fewest number of gates. For instance, a well-known exact algorithm

is FlowMap that determines a minimum-depth mapping of a logic network into k-LUTs in

polynomial time [62]. Note that an optimum circuit implementation is not necessarily unique.

For example, the majority-5 function can be realized with the minimum number of majority-3

27

Chapter 2. Background

gates in more than one way, e.g.:

〈〈x3x4x5〉x2〈x1x2〈x3x4x5〉〉〉

and

〈x1x2〈〈x3x4x5〉x2〈x3x4x5〉〉〉

For theoretical purposes, one often considers the whole set of Boolean functions for a

fixed number of variables n. This allows to derive lower bounds on the complexity of logic

representations. For example, all 4-variable Boolean functions can be represented using SOPs

with at most 8 implicants [156]. All 5-variable Boolean functions can be represented using

2-input logic networks with at most 12 gates [97]. Since the number of Boolean functions

grows double-exponentially with the support size, it is hard to compute bounds for larger

number of variables.

In this thesis, we are concerned with SAT-based exact synthesis. The first example of

SAT-based exact synthesis can be found in [74], and successive analyses and improvements

have been considered in [98, 99]. Given a Boolean formula f (x1, . . . , xn), a Boolean satisfiability

problem (or SAT problem) asks whether there exist an assignment to the variables x1, . . . , xn

such that f evaluates to true. If this is the case, such an assignment is called a satisfying

assignment and f is called satisfiable (SAT). Otherwise, f is unsatisfiable (UNSAT). SAT solvers

are software programs that receive a Boolean formula f , represented in CNF, and return a

satisfying assignment, if and only if f is satisfiable. The key idea behind SAT-based exact

synthesis is to verify whether it is possible to realize a function f with a logic network of

size r , using a sequence of SAT formulas, i.e., encoding the problem in CNF. The size r is at

first initialize at 0, or at some given value, and at each loop it is increased if a solution is not

found, i.e., the result is UNSAT. If the results is SAT, an optimum size logic network can be

extracted from the obtained solution. It is easy to understand that this formulation can be

used to evaluate lower bounds on the complexity of logic representations. It is necessary to

demonstrate that a given function cannot be realized (UNSAT) with r gates.

We refer the interested reader to [82, 164] for a more detailed review on SAT-based exact

synthesis. Note also that exact synthesis finds application in many and diverse logic synthesis

algorithms. For instance, logic rewriting algorithms optimize logic networks by replacing small

subnetworks with optimimum logic network obtained with exact synthesis as in [81, 161].

2.3 Efficient Circuit Partitioning

Boolean methods achieve better results in average than algebraic methods, but they have

worse scalability. The right data structure selection (as proposed in Section 2.2.2) determines

the scalability of the Boolean methods, but their application is still limited to small functions.

Partitioning and breaking down the logic network into smaller subnetworks is thus needed

28

2.3. Efficient Circuit Partitioning

f

9

7 8

x1 x2x3

4 5

6

Figure 2.7 – Example of 3-cut (highlighted in blue) over AIG

to apply Boolean methods in an efficient way and on large networks. We discuss here some

approaches for circuits partitioning that are usually involved in logic syntehsis flows and that

will also be used in the rest of the thesis.

2.3.1 Small Scale: Cut Enumeration

Cut enumeration identifies subsets of k inputs functions inside a larger network; usually, k is

in the order of 6 or 7 [122], while it is not practical for larger values. A cut c of a node v in the

logic network is a set of nodes, called leaves, such that:

• every path from node v to a terminal node visits at least one leaf,

• each leaf is contained in at least one path.

Node v is called the root of the cut and each cut represents a subgraph that includes the root

v , the leaves, and some internal nodes. A cut is k-feasible (called k-cuts), if it has a number of

leaves ≤ k.

Example 2.13 Figure 2.7 shows an example of 3-cut over an AIG (all nodes are 2-input AND

gates). The root node is node 7, while internal nodes are 4, 5, and 6. Leaves are primary inputs

(PIs) x1, x2, and x3. �

We summarize here two different algorithms for cut computation.

Bottom-up:

All k-feasible cuts can be generated using the recursive algorithm proposed in [63, 138]. This

approach finds all k-feasible non trivial cuts of node v , denoted by cutsk (v), by merging the

29

Chapter 2. Background

cuts of its children:

cut sk (v) = cut sk (v1)⊗k cut sk (v2)⊗k · · ·⊗k cut sk (vu) (2.16)

where v1, v2, . . . , vu are the u children of node v in the logic network. The operation

M1 ⊗k M2 = {m1 ∪m2 | m1 ∈ M1,m2 ∈ M2, | m1 ∪m2 |≤ k} (2.17)

is a saturating union over all combinations of subsets. In this scenario, each primary input has

its trivial cut only and we can enumerate the k-cuts of all nodes using the recursive algorithm

in a depth-first manner. Further details on the merge functions and this cut enumeration can

be found in [63, 138].

Top-Down:

Another approach for cut enumeration is presented in [122]. This algorithm was proposed

in 2007 to overcome runtime and memory issues of classical cut enumeration engines. It

proceeds in a top-down manner, from primary outputs down to primary inputs. It makes use

of cuts factorization using local cuts and global cuts. These are collectively known as factor

cuts. For each node v , the method is based on the expansion of a factor cut with local cuts to

obtain a larger set of cuts. A factor cut of the node v is given by:

cut sk (v) =⋃
i

ci (2.18)

whre c is a factor cut for node v , and ci a local cut of a node i ∈ c. If the new cut is k-feasible,

then it is called one-step expansion of c . The approach allows the enumeration of all k-feasible

cuts, but it can be reduced to partial enumeration for memory saving. All details about local,

global cuts and the top-down approach can be found in [122].

2.3.2 Detecting All Reconvergent MFFC

For the sake of completeness, we report here a re-implemented version of the state-of-the-art

algorithm for MFFC computation from [121]. This algorithm will be used in the methods

and tools proposed in the rest of the thesis. The reconvergent MFFC [121] of a node v is a

subnetwork that contains all the logic nodes used only by the node v . More formally, it is

defined as a subset of the fanin cone of node v such that every path from a node in the subset

to the primary outputs (POs) passes through v itself [122]. Thus, when a node v is substituted

or removed, also its MFFC can be removed from the logic network. It follows that optimization

methods can change and rewrite the MFFC without affecting the rest of the network. Here, we

present our version of the algorithm to detect the reconvergent MFFC.

The pseudocode for the procedure on a node v is presented as Algorithm 2.1. The proce-

30

2.3. Efficient Circuit Partitioning

1 Function Reconvergent_MFFC(v):
2 if mar ked(v)∨ (v ∈ PI) then
3 return ;
4 end
5 Mark v ;
6 foreach children c of node v do
7 f l ag ← 0;
8 if mar ked(c)∨c ∈ PI then
9 continue;

10 end
11 foreach parent p of node c do
12 if not_mar ked(p) then
13 f l ag ← 1 ;
14 break;
15 end
16 end
17 if f l ag = 1 then
18 continue;
19 end
20 Reconvergent_MFFC(c);
21 end
22 End Function

Algorithm 2.1: Reconvergent MFFC on node v

dure “marks" all nodes in the MFFC of node v by recursively applying the algorithm on all its

children. The algorithm stops when (i) the node is a PI, (ii) the node is already marked (i.e.,

already been visited once), (iii) the node has a fan-out which is not marked (i.e., a path that

does not pass through v). At the end of the algorithm, all nodes in the MFFC are marked.

2.3.3 Windowing

In this section, we report a re-implementation of the windowing procedure presented in [119].

Windowing is an approach to limit the scope of an optimization procedure to a small fraction of

a logic network that allows in many cases to drastically improve the scalability. The pseudocode

of the windowing procedure applied over an MIG (used in Chapter 3) is shown as Algorithm 2.2.

The procedure takes as input an MIG M and two positive integers l and s, where l denotes the

maximal number of primary inputs (cut-size limit) of the window and s denotes the maximal

number of nodes (node limit) of the window. As result, the procedure returns the MIG M

optimized for size.

In a loop, the procedure iterates over all nodes p of M in topological order and generates for

each of the nodes a reconvergence-driven cut C starting from p with at most l nodes (see [119]

for a detailed description of the cut computation). The cut C serves as the input boundary

of the window W . Starting from the nodes in C , the window W is iteratively extended by

merging parent nodes if all their children are already in W . The procedure terminates if no

31

Chapter 2. Background

Input: MIG M , cut-size limit l , node limit s
Output: Optimized MIG M

1 foreach node p in M in topological order do
2 C = ComputeCut(M , {p}, l);
3 W = ExpandToWindow(M ,C , s);

4 Ŵ = OptimizationProcedure(W, p);

5 M = M [W ← Ŵ];

Algorithm 2.2: Windowed MIG Optimization

new parents can be merged or the number of window nodes exceeds s. The obtained window

W is then locally optimized to Ŵ using an optimization procedure. Finally, the window W in

M is replaced by the optimized window Ŵ . It is worth mentioning that a similar procedure

can be applied to diverse logic networks.

2.4 Summary

In this chapter, we presented state-of-the-art data structures and algorithms involved in logic

synthesis flows. In the following discussion, truth tables, BDDs, and multi-level logic networks

will be used as a data structure for optimization. We described both algebraic and Boolean

heuristic methods and exact synthesis. All these algorithms will be involved, changed, and

adapted for our diverse goals and optimization metrics. In the remainder of the thesis, we will

mainly present new and revisited Boolean methods. All the partitioning methods discussed

above together with a proper engine selection (truth tables or BDDs) allow the application of

expensive Boolean methods in a controlled manner.

32

3 Majority-based Logic Synthesis

The main goal of this thesis is the development and implementation of novel logic synthesis

algorithms concentrating on both standard and emerging technologies. After a brief overview

of state-of-the-art synthesis methods and background in Chapter 2, we transition to the

core part of the research work. In particular, this chapter focuses on novel logic synthesis

techniques for majority-based logic, that work over majority-inverter graphs (MIGs). These

techniques include: (i) novel Boolean methods for size optimization; (ii) methods to obtain

inversion free MIGs with limited fan-out; and (iii) exact synthesis algorithms to deal with many

and complex constraints. All methods address novel synthesis and optimization methods for

emerging technologies-based design.

The remainder of this chapter is organized as follows (see also Figure 3.1). First, the motiva-

tions for this chapter are presented in Section 3.1, then, Section 3.2 introduces state-of-the-art

majority-based nanotechnologies. In Section 3.3, novel Boolean methods to minimize the size

of MIGs are introduced. These methods use Boolean techniques and truth tables to minimize

the size of the networks, without increasing their depth. Results show that the presented

methods can reduce the size of MIGs up to 18%, resulting also in depth optimization of 10.22%.

This section is largely based on the publication in [151]. Section 3.4 is based instead on the

publication presented in [181] and addresses novel techniques to manipulate the number of

inverters and limit the fan-out of MIGs. Section 3.5 illustrates an exact method to synthesize

MIGs constrained to have limited depth and limited fan-out. This last section is based on the

work presented in [180]. The results of these techniques on emerging technologies such as

quantum-dot cellular automata (QCA) and spin torque majority gate (STMG) are presented in

Section 3.6. Note that preliminary results on plasmonic-logic are instead illustrated in [173].

Finally, this chapter is concluded and summarized in Section 3.7.

3.1 Motivation

To overcome the intrinsic scaling limitations of CMOS, emerging technologies are going to play

a key role in the near future [137]. Many of today’s nano-emerging technologies, including spin-

33

Chapter 3. Majority-based Logic Synthesis

Chapter 3: Majority-based (MIG)
logic synthesis

1. Section 3.3: Novel size optimization
based on Boolean methods;
2. Section 3.4: Inverters on primary inputs
and limited fan-out;
3. Section 3.5: Exact synthesis with many
and complex constraints.

Motivated by:
1. Section 3.3: Lack of complete Boolean size optimization
for MIGs + size optimization for emerging technologies;
2. Section 3.4: Constraints of emerging technologies such
as STMG and QCA;
3. Section 3.5: Constraints of emerging technologies such
as plasmonic-based devices

Section 3.6: Results of (1) and (2) over QCA and STMGs.
Preliminary results on plasmonic (3) are presented in [173]

Figure 3.1 – Chapter organization

wave devices [95], QCA [106], and STMG[135], are inherently majority-based. As an example,

the computation principle of spin-wave devices is based on the interference of propagating

spin waves and the information is encoded in the phase of the waves. As a consequence, these

technologies offer a particular inexpensive realization of the majority operation. For example,

in the QCA technology the area requirements for the majority-of-three operation are more

than 2× smaller as compared to the ones for implementing an inverter [182].

The recent progress in such nano-emerging technologies has consequently sparked consid-

erable interest in majority-based logic synthesis optimization techniques and abstractions [18],

which are fundamental in order to properly assess these post-CMOS technologies. In contrast

to conventional logic synthesis algorithms–being based on logic primitives such as AND or

OR–majority-based algorithms employ intermediate data-structures capable of natively repre-

senting and manipulating majority operations [18]. Recently, many and diverse works have

focused on majority-based logic synthesis techniques – some examples being [14, 59, 144].

In particular, the work in [14] has introduced the MIG, which is a data structure that uses

only majority-of-three and inversion in order to represent and optimize Boolean functions.

While competitive solutions and significant results for majority-based delay optimization

have been presented in [14, 16], as of today, there is still a lack of complete and powerful size

optimization tool for MIGs. Furthermore, MIGs methods developed so far are mainly algebraic,

while there is lack of a unified Boolean framework for MIGs. In Section 3.3, we introduce novel

methods for size-optimization of MIGs; in particular, we focus on novel and scalable Boolean

techniques, which serve two purposes: (i) they achieve size reductions when other techniques

saturate; and (ii) they help to escape local minima in the logic optimization flow and thus

re-enable other size optimizations. We concentrate on node replacement techniques that

re-express the global function of an existing majority node using other nodes already present

in the logic network. The objective is to reduce the size of the logic representation as much as

possible while maintaining the global input-output functionality of the logic network (and

34

3.2. Majority-based Emerging Technologies

preserving the logic network’s depth).

Furthermore, the large variety of beyond-CMOS devices leads to a broad range of various

technological constraints (e.g., on the fan-out load of each gate) that need to be taken into

account by modern electronic design automation (EDA) tools. Two main drawbacks apply to

several devices. First, since all devices are targeted towards ultra-low energy operation, the

inherent amplification or the driving capabilities of these devices are low [137]. This leads

to the need for constraining the fan-out characteristics of the implemented circuits. Second,

several beyond-CMOS technologies do not offer efficient implementations of inverter [105,

134]. Therefore, it is required to minimize inversions [179] or even to eliminate them from

implemented circuits. In addition, some emerging nanotechnologies require more than one

constraint to be met at the same time. An example is given by the plasmonic-based devices

in [72], for which both depth and fan-out need to be limited to a maximum 3.

In Section 3.4 and 3.5, we focus on majority-based logic synthesis addressing nanotech-

nologies as the final goal. Logic synthesis approaches should be able to take into consideration

both (i) the new logic abstraction (majority-based) and (ii) the different technological con-

straints in order to be able to give better technology-dependent results. In Section 3.4, we

present techniques to (i) eliminate inverter components, by moving them to primary inputs

(PIs); and (ii) constrain the maximum fan-out of each node to Φ (to 3 in our case). These

two algorithms work on MIGs and produce networks that can be adapted for majority-based

beyond-CMOS technologies, such as QCA and STMG. As a matter of fact, both these technolo-

gies suffer from fan-out limitations and have expensive or lack-of inverter cell. In Section 3.5,

being faced with nanotechnologies (i.e., plasmonic-based devices) that seek for low-depth

majority-based networks with limited fan-out for small functions, we demonstrate how state-

of-the-art exact synthesis algorithms can be adapted and used to find logic networks that

match these constraints. To emphasize the need for exact synthesis, we also demonstrate how

conventional logic synthesis either fails to find constraint-satisfying logic networks or yields

networks of inferior quality.

3.2 Majority-based Emerging Technologies

With transistor dimensions reaching their scaling limits, it is interesting to look at disrup-

tive computation paradigms offered by emerging nanotechnologies. This section illustrates

examples of state-of-the-art majority-based emerging technologies. Examples of majority-

based beyond CMOS technologies include, but are not limited to, QCA [106], superconducting

electronic devices (RSFQ [107] and AQFP [169]), nanomagnet logic [65], spin-based devices

(e.g., spin-wave devices [198] and STMG [135]), and plasmonic-based devices [72]. Another

interesting example arises from 2D materials-based devices as the ones reported in [148].

Even though these devices are not intrinsically based on the majority function, an efficient

implementation of the majority-of-three-inputs gate has recently been demonstrated [147].

Although many and diverse examples of majority-based technologies exist, we discuss

35

Chapter 3. Majority-based Logic Synthesis

here in details (i) QCA, (ii) STMG, and (iii) plasmonic-based devices, as they will be used as

running examples through the rest of the chapter.

Quantum-dot cellular automata

QCA technology is based on the interaction of QCA cells [106]. Each cell consists of four

quantum dots and two free electrons. The free electrons can tunnel between the dots, which

are coupled by tunnel barriers. Coulomb repulsion forces the electrons in opposite corners of

the cell, thus producing two energetically equivalent polarizations, i.e., P = 1 and P =−1. The

two polarizations are used to represent the logic values 1 and 0, respectively. QCA technology

is functionally complete, and the fundamental logic element of QCA is the majority-of-three

gate [182]. Figures 3.2(a) and (b) show the layout of a QCA majority gate and a QCA inverter,

respectively. For the majority gate, the polarization of the central logic cell, called device

cell, is the majority of the three inputs; the output cell follows the polarization of the device

cell. In the inverter case, the input wire is first branched in two offset wires. Both have the

same polarization as the input due to aligning effects. Anti-aligning effects at the second joint

control the polarization of the next cell, causing an inversion of the input signal. In the last few

years, 5-input majority gate realizations using QCA cells have been intensively studied [155].

The majority-5 is a versatile primitive and it can be employed to realize a variety of functions.

Figure 3.2(c) shows one of the first implementations of the majority-5 [133]. It only requires

ten QCA cells; on the other hand, the input cells are close to each other and difficult to be

accessed. Improved versions of 5-input majority have been recently proposed [155, 159]. In

these implementations, the 5 inputs are easier to reach, allowing single layer accessibility to

the input and output cells.

Even though QCA technology enables the realization of 3- and 5-input majority gates, plus

the inversion, some limitations and costs for circuits realization need to be discussed. The

cost used to compare QCA blocks is the number of QCA cells [155], i.e., the area. The area of a

QCA layout can be obtained by analyzing the layout with QCADesigner [186], a tool for the

layout and analysis of QCA technology circuits. In this scenario, the inverter implementation

is very expensive in terms of number of cells as compared to the majorities. Note that eleven

QCA cells are needed for a single 5-input majority, while thirteen are necessary to change

the polarity of each cell. It is thus preferable to limit the number of inversions in the circuit.

Considering further constraints, each 3- and 5-input majority block has a fan-out limited

to 3. This is due to the fact that in order to have the same polarization, two cells should be

aligned and close to each other on one of the square borders (being 3 for each output signal).

Moreover, the fabrication of interconnections between building blocks needs to be handled

efficiently for better stability. Until now, an efficient and robust realization of wire crossing is

not available, thus river routing is needed [155].

36

3.2. Majority-based Emerging Technologies

0

1 1

1

Input x
Input y

Input z

Device cell

Output cell

(a) 3-input majority

1

Input

0

Output

(b) inverter

0Input v

1Input w

0Input x

0Input y

0Input z
Output

0 0

Output

(c) 5-input majority

Figure 3.2 – (a) QCA layout for majority, (b) inverter, and 5-input majority (c) [133]. © 2017
IEEE [181]

free layer
reference layer

tunnel barrier

output MTJ

input MTJ

(a) STMG gate (b) 3-stage plasmonic gate with 27 inputs

Figure 3.3 – (a) Schematic of STMG [135]; and (b) 3-stage cascaded plasmonic majority circuit.
© 2017 IEEE [181]

Spin torque majority gates

STMG is a three-input majority gate driven by spin transfer torque (STT) [26] and has been

proposed by Nikonov et al. [135]. It consists of a cross-shaped free layer shared between

four magnetic tunnel junctions (MTJ) (see Figure 3.3(a)). The information (0 or 1) in the

device is represented by the magnetization orientation (up or down) in the free layer. Three

MTJs write the input states via STT in a current perpendicular to plane configuration. The

fourth MTJ reads the output state via tunnel magnetoresistance. The magnetic domains are

mainly driven by domain wall automotion, the transport of a magnetic domain wall under the

influence of demagnetization and magnetic anisotropy [136]. The operating range has been

extensively studied by micromagnetic simulations and numerical modeling in [184] and [185],

respectively.

The STMG concept carries the potential of smaller area, low power, nonvolatility, recon-

figurability, and radiation hardness [135]. However, there is a lack of an efficient spin torque

inverter (STI) concept which would be necessary to implement circuits. A first inverter concept

was presented in [134] where it was assumed that the functionality of an inverter is achieved

through a ferromagnetic wire that connects two STMG devices and is fabricated as a slanted

layer in the magnetic material stack. Due to its potential fabrication difficulties, this con-

cept is considered unfeasible. We will describe Section 3.4 how to overcome this difficulty in

implementation by producing inverter-free MIGs.

37

Chapter 3. Majority-based Logic Synthesis

Plasmonic-based devices

Plasmonic-based devices [72] described hereafter are based on the propagation of surface

plasmon polaritons (SPP) [23], which are electromagnetic waves propagating at the interface

between a dielectric and a metal. In particular, the plasmonic-based logic considered in this

thesis makes use of the phase φ of the SPP as logic variable. The computation is based on the

interference of waves: in general, the output depends on the number of inputs with phase φ

and φ+π. The phase of interfering SPP waves follows the majority rule; this makes the 3-input

majority function easy to realize with plasmonic-based devices [72]. Thanks to the physics of

plasmonic devices that can be abstracted as multi-valued logic, it has been shown [72] that

a 9-input majority gate can be easily realized using four 3-input plasmonic devices. Note

that the best realization of majority-9 in binary-valued logic known so far uses 12 majority-3

gates (as demonstrated in Chapter 4), and thus plasmonic devices may be more efficient

(as compared to other wave-based devices) to realize logic circuits. The wave nature of the

computation allows us to easily implement the inverter by using a waveguide of half the length

of the SPP wavelength. Thanks to this property, a complete set of logic primitives (INV and

MAJ) can be built using plasmonic-based devices.

Plasmonic-based devices make a complete set of Boolean primitives; however, some

constraints arise due to the wave nature and the physics of this device. As an example, the

propagation losses of SPP put a limitation on the number of cascaded stages (i.e., the number

of levels of the circuits). Currently, it is not efficient to have more than three stages, which

means that after the third stage, either an amplifier or a converter to voltage domain is

necessary. An example of 3-stage cascaded plasmonic majority is shown in Figure 3.3(b). The

propagation losses across the first stage are around 30%, and keep increasing at every cascaded

stage. The increase in propagation losses between the different stages is a direct consequence

of the size difference between the devices in different stages (as shown in Figure 3.3(b)). As

the size of the majority gates increases with the number of stages, also the delay of devices at

different stages follows a similar trend. Furthermore, since the SPP wavelength has different

values according to the stage, also the inversion cost depends on the stage at which it is

implemented. It should also be noted that most emerging nanodevices target ultra-low energy

operation, with an inherent low amplification and reduced driving capabilities. Thus, in

addition to the constraints already considered, for this technology a strong limit exists on the

maximum number of outgoing waves and, hence, on the maximum fan-out.

The presented emerging technologies naturally implement majority-based primitives,

and have some potential to overcome the intrinsic scaling limitation of CMOS technologies.

Nevertheless, they present some implementation limits in the depth, number of fan-outs or

inverter realization. Section 3.4 and 3.5 will discuss logic synthesis algorithms to take these

limitations into account.

38

3.3. Boolean Resynthesis for MIGs

1 ComputeTruthTable(W);
2 foreach node u in W in topological order do
3 foreach node v in W \{u} in topological order do
4 if v ∈ TransitiveFanout(u) then continue;
5 if u = v then
6 Merge(W,u, v);
7 else if u = v̄ then
8 Merge(W,u, v̄);

Algorithm 3.1: Functional reduction

3.3 Boolean Resynthesis for MIGs

In this section, we concentrate on several methods for majority-based size optimization over

MIGs. In contrast to the algebraic rewriting proposed in [14], we focus instead on Boolean

methods. In particular, we revise functional reduction and introduce two new size optimiza-

tion methods for MIGs: (i) Boolean resubstitution and (ii) replacement optimization. The

first method is inspired by existing size optimization algorithms for non-majority-based logic

networks; the second method leverages the properties of the majority function. Both methods

are Boolean and make use of functional information computed for each node in the logic

network. The basis for all optimization methods is the scalable logic synthesis framework

described by Mishchenko and Brayton [119]: a small window (with restricted fan-in and

unlimited fan-out) is moved over the logic network. The window is built using Algorithm 2.2

presented in Chapter 2. The Boolean function of each node within the window is computed

using exhaustive simulation. The approach is fast (Boolean functions are represented as truth

tables), scales well, and often outperforms computation based on binary decision diagrams

(BDDs) [46] or Boolean satisfiability, when windows up to 16 inputs are considered.

3.3.1 Functional Reduction

Functional reduction (FR) [56, 59, 101] is an approach that identifies and merges functionally

equivalent nodes in a logic network such that after its application no two nodes in the func-

tionally reduced network represent the same logic function. In this section, we revise the basic

functional reduction approach of [101] and present a scalable variant utilizing the windowing

procedure from Chapter 2. The pseudocode is shown in Algorithm 3.1.

Functional reduction is applied to a window W . In an iterative process, each node u ∈W

is checked for functionally equivalence with each node v ∈ W not in the transitive fan-out

(TFO) of u. If u and v (u and v̄) represent the same logic function, i.e., u = v (u = v̄), then u

and v (v̄) are merged in W , such that the larger logic cone is replaced by the smaller logic cone

and the overall size is reduced.

39

Chapter 3. Majority-based Logic Synthesis

x0x1x2

∨∧ ∧

∨

∧∧

∧ ∨

cout sum

(a) MIG of the fulladder

x0 x1 x2

〈〉∧ ∧

∨

∧ ∧

∨

coutsum

(b) Optimized MIG by resubstitution

Figure 3.4 – Example of majority resubstitution. The blue nodes from (a) are substituted using
the majority of already existing nodes, resulting in the network of (b)

3.3.2 Boolean Resubstitution

Boolean resubstitution (RS) expresses the logic function of a node using other nodes already

present in the logic network. Resubstitution techniques are distinguished by the number k of

logic nodes additionally added to the logic network when substituting a logic function, i.e.,

0-resubstitution expresses a logic function by one other logic function without adding a new

node; 1-resubstitution expresses a logic function by adding one logic operator, and so forth.

An example of majority resubstitution is depicted in Figure 3.4. One node is added to the

implementation, but the final circuit has reduced total number of nodes.

A resubstitution of a candidate node p with the logic function f is considered beneficial if

the number of nodes of W decreases after substitution, i.e., if Gain(p, f) ≥ 1 which corresponds

to the number of majority operators freed. We consider 0-resubstitution and 1-resubstitution

only:

1 ComputeTruthTable(W);
2 if TryResubstitution0(W, p) then return ;
3 if TryResubstitution1(W, p) then return ;

4 [...]

The 0-resubstitution algorithm is an asymmetric variant of functional reduction. Its

pseudocode is identical to Algorithm 3.1, but instead of iterating over all nodes u (line 2) the

fixed candidate node p is used.

The 1-resubstitution algorithm shown as Algorithm 3.2 searches for nodes x, y , z to replace

p using one majority operator. Note that due to the inverter propagation rule 〈x y z〉 = 〈x̄ ȳ z̄〉
(see Chapter 2), it suffices to consider x̄ as the only negated child. To further speed up

the computation, we employ a Boolean filter derived from the majority law. If x �= y , then

〈x y p〉 = p has to hold, i.e., after selecting nodes for x and y , one does not have to iterate over

40

3.3. Boolean Resynthesis for MIGs

1 foreach node x ∈W \{p} in topological order do
2 if x ∈ TransitiveFanout(p) then continue;
3 foreach node y ∈W \{p, x} in top. order do
4 if y ∈ TransitiveFanout(p) then continue;
5 if p �= 〈x y p〉 then continue;
6 foreach node z ∈W \{p, x, y} in top. order do
7 if z ∈ TransitiveFanout(p) then continue;
8 if Gain(p,〈x y z〉) < 1 then continue;
9 if p = 〈x y z〉 then

10 W =W [p ←〈x y z〉];
11 return true;
12 else if p = 〈x̄ y z〉 then
13 W =W [p ←〈x̄ y z〉];
14 return true;

15 return false;

Algorithm 3.2: TryResubstitution1

z whenever the filter applies.

3.3.3 Replacement Optimization

In this section, we introduce replacement optimization (RO), a novel node replacement tech-

nique for MIGs that exploits the properties of the majority function and thus cannot be

employed when restricted to gate libraries using only NOT and AND or NOT and OR.

This optimization makes use of the replacement rule, which describes under which condi-

tion one operand in a majority expression can be replaced by another one. A complete proof of

this rule will be presented in Chapter 4. In fact, the replacement rule has been first introduced

in the more general scenario of the theoretical results that will be presented in the mentioned

chapter. We report the replacement rule in the followng to ease the reading of the thesis.

Theorem 3.1 (Replacement rule) We have 〈x y z〉 = 〈w y z〉 if and only if (x ⊕w)(y ⊕ z) = 0, or

in other words y �= z ⇒ w = x.

The replacement rule is used here to formulate an optimization procedure that replaces a

child node x of a majority expression m = 〈x y z〉 with another node w if (x⊕w)(y⊕z) = 0 holds

and x is not used by any other logic function in the network or as a primary output. These

additional structural conditions stem from the fact that the replacement rule only enforces

x = w if y �= z. Otherwise, if y = z, the result of m is determined by the majority law. However,

in these cases, x �= w may hold which would affect other logic functions that use x. Further, to

guarantee that the logic network stays free of cycles, the node p cannot be chosen from the

transitive fan-out of m.

41

Chapter 3. Majority-based Logic Synthesis

The replacement rule allows to reduce the complexity of a logic network in two ways: (i) If

w is replaced by x, then x is no longer used in the logic network and can be removed. The

size of the logic network is reduced if and only if x is not a constant. (ii) If the logic cone

of w is smaller than x, the logic cone of m is reduced. Consequently, if multiple different

nodes w satisfy the replacement rule, the x with the smallest logic cone is preferred. To find

good candidate pairs x, w fast, we iterate over w in topological order, but over m in reverse

topological order:

1 ComputeTruthTable(W);
2 foreach node m = 〈x y z〉 in W in reverse top. order do
3 foreach node w in W \{m} in topological order do
4 if |Fanout(x)| > 1 then continue;
5 if w ∈ TransitiveFanout(m) then continue;
6 if (x ⊕w)(y ⊕ z) = 0 then
7 W =W [x ← w];
8 return ;
9 else if (x ⊕ w̄)(y ⊕ z) = 0 then

10 W =W [x ← w̄];
11 return ;

All presented size optimizations can be integrated with existing large-scale logic optimiza-

tion frameworks. Experimental results over unmapped network will be presented next, while

mapped results over QCA and STMG are presented in Section 3.6.

3.3.4 Experimental Results

In this section, we illustrate the results for size optimization over MIGs. We implemented the

presented size optimization methods in C++ and evaluated them using the EPFL combina-

tional benchmark suite [15].1 All experiments were conducted on an Intel(R) Xeon(R) CPU

E5-2690 v4 @ 2.60GHz. The windows were limited to at most 12 inputs and at most 200 nodes.

We apply ABC [40] equivalence checking to ensure the correct behavior of each benchmark.

We show the size improvement obtained by applying each of the proposed techniques

individually, and we compare our results over existing approaches from the state-of-the-art

for size optimization [81]. We focus on reducing the size without any additional restrictions

on the depth. Table 3.1 shows the results for all three optimization methods when applied

individually to the benchmarks. The first column names the benchmarks, the remaining

columns are organized in five blocks: the first block (Benchmark) lists the size and depth for

the benchmarks. In the second block (Prev. flow), we present the size and depth of the MIGs

when optimized with the best-known state-of-the-art approach. The other three blocks (FR,

RS, RO) are structured in the same way and present the size and depth after an optimization

method was applied as well as the time required for optimizing the benchmark. In the last

1Available at: https://github.com/lsils/benchmarks

42

3.4. Inverter Propagation and Fan-out Constraint

Table 3.1 – Optimization methods applied to size optimized benchmarks

Benchmark Prev. flow [81] FR [59] RS RO

Size Depth Size Depth Size Depth Time Size Depth Time Size Depth Time
[s] [s] [s]

ctrl 174 10 139 10 139 10 0.01 128 9 0.06 135 9 0.02
router 257 54 220 54 217 54 0.08 215 54 1.05 211 54 0.11
int2float 260 16 263 18 261 16 0.04 256 16 0.46 254 16 0.06
dec 304 3 328 4 328 4 0.00 328 4 0.26 328 4 0.01
cavlc 693 16 757 19 744 19 0.29 725 19 2.43 724 19 0.41
priority 978 250 993 245 993 245 2.15 978 239 9.95 807 125 0.92
adder 1020 255 386 129 386 129 0.08 385 129 1.29 386 129 0.07
i2c 1342 20 1329 23 1310 23 0.42 1298 23 2.78 1287 23 0.64
max 2865 287 2491 290 2428 261 4.72 2469 280 18.52 2448 279 5.70
bar 3336 12 3110 14 3110 14 2.40 3110 13 14.76 3088 14 3.75
sin 5416 225 4496 167 4480 162 4.74 4465 158 36.31 4480 170 6.08
arbiter 11839 87 8957 63 8957 63 8.82 8957 63 45.41 8957 63 11.97
voter 13758 70 7767 67 6649 59 31.90 5787 47 87.81 6537 61 45.10
square 18484 250 13671 156 13390 130 61.67 13194 128 109.84 13463 154 47.55
sqrt 24618 5058 21066 5989 21063 5989 102.62 20976 5942 624.11 21060 5988 109.43
multiplier 27062 274 19844 143 19824 143 72.16 19824 141 252.05 19804 143 122.00
log2 32060 444 25040 230 24999 230 89.96 24996 229 257.55 24977 230 109.43
mem_ctrl 46836 114 45034 144 44476 144 410.72 43305 136 1170.23 44118 143 600.50

total reduction +15.30% +5.59% +16.34% +8.18% +17.64% +10.56% +18.13% +10.22%
improvement 0.00% 0.00% +1.04% +2.59% +2.34% +4.97% +2.83% +4.63%

Table 3.1 shows the results for size improvements over MIGs. The three novel methods proposed in the chapter
are tested: functional reduction (FR), Boolean resubstitution (RS) and replacement optimization (RO). The
size is decreased on average of 18,13% w.r.t. the unoptimized benchmarks.

row of the table, the mean size and depth reductions are summarized for all benchmarks. The

row total reduction shows the average reductions of the benchmarks achieved by the overall

synthesis flows with respect to the unoptimized benchmarks. The row improvement shows

the average reductions achieved by the new techniques with respect to the previous flow (Prev.

flow).

Regarding the size-optimized MIGs, the three methods further reduced the size of the

MIGs on average by 1.04%, 2.34%, and 2.83%, respectively. The size optimization also had a

positive effect on the depth—the depth is reduced on average by 2.59%, 4.97%, and 4.63%,

respectively. Moreover, the novel replacement optimization achieves a better size reduction

than functional reduction and resubstitution, which results in an average reduction of 18.13%

of nodes (up to 62.2% reduction for the adder) and 10.22% of levels in the MIGs. In these

experiments, the optimization methods were applied only once. We argue that the presented

techniques are, as in conventional logic synthesis, more powerful when applied several times

interleaved with other optimization passes, e.g., rewriting, factoring.

3.4 Inverter Propagation and Fan-out Constraint

Logic synthesis addressing emerging nanotechnologies should take into consideration not

only the new logic abstraction of the devices but also the different technological constraints

given by the new ways of computation. In this section, we synthesize and optimize circuits by

making use of a majority-based data-structure, and we introduce two algorithmic techniques

43

Chapter 3. Majority-based Logic Synthesis

Input: MIG node v
Output: MIG node v with inversions on inputs

1 p ← pol ar i t y(v);
2 if p = 1∧ v is not PI then
3 apply Ω.I on v ;
4 p ← 0;
5 end
6 if v is PI then
7 return v ;
8 end
9 if v ′ ← i s_cached(v, p) then

10 return v ′;
11 end
12 foreach child c of v do
13 i nv_ f r ee(c);
14 end
15 cache(v, p);
16 return v ;

Algorithm 3.3: Inversion propagation

to rewrite MIGs for emerging technologies applications. The first algorithm, called Inversion

propagation algorithm, propagates all inverters to the inputs in order to obtain an inversion-

free MIG. The second algorithm, called Fan-Out restriction algorithm, limits the maximum

fan-out of each node. Both methods aim at not changing the depth of the resulting graph.

These two algorithms produce networks that can be adapted for majority-based beyond-

CMOS technologies, such as QCA and STMG. As a matter of fact, both QCA and STMG have

fan-out limitations, since their primitive logic structure relies on a cross-like shape. This

means that the primitive fan-out gate for these two technologies has a fan-out of 3 (Φ = 3).

QCA-based circuits can realize inversion, even if not in an efficient way [105]. For STMG-based

circuits, a feasible inversion implementation has not yet been proposed, so hybrid circuits

need to be used.

3.4.1 Inversion Propagation

The inversion propagation algorithm rewrites the MIG to obtain a network where all inversions

are placed on PIs. This is achieved by propagating inverters using the transformation rule

〈x y z〉 = 〈x̄ ȳ z̄〉, which is one of the axioms presented in Chapter 2 and called Ω.I . The idea is to

recursively apply Ω.I to move complemented edges from the outputs to the inputs. Previous

works have been presented on inversion minimization [176, 179]. Here, the aim is to obtain a

network with all inversions on inputs; that means, the total number of inversions may not be

decreased. Our approach is similar to the one presented in [145], addressing AND/OR-based

dynamic logic synthesis [142]; on the other hand, in our case, majority properties and rules

are involved, aiming at emerging technologies applications.

The algorithm is based on a dynamic programming approach, and it consists of a recursive

44

3.4. Inverter Propagation and Fan-out Constraint

f

〈〉

x3

〈〉〈〉

x1x2

(a) Original MIG

f

〈〉

x3

〈〉〈〉

x1x2

(b) Inversion propagation

f

〈〉

x3

〈〉〈〉

x1x2

(c) Final result

Figure 3.5 – Example for Algorithm 3.3. (a) is the original MIG for function f = x ⊕ y ⊕ z; (b)
represents the same graph where Ω.I has been applied on the top node; (c) is the inversions
free graph (i.e., inversions are on PIs)

sum

〈〉

x0

〈〉〈〉

x1x2

cout

(a) Original MIG

sum

〈〉

x0

〈〉〈〉

x1x2

cout

〈〉

(b) Inversion propagation

Figure 3.6 – Example for Algorithm 3.3 leading to a size increase. (a) is the original MIG; (b)
represents the same graph after Algorithm 3.3 is applied

function called i nv_ f r ee. The inversion propagation algorithm is shown in Algorithm 3.3.

The algorithm starts by applying the function to each output of the network. If the node

v is not complemented, the function i nv_ f r ee is applied recursively to the children (lines

12–13 in Algorithm 3.3). If v is complemented, Ω.I is applied to the node before applying

i nv_ f r ee to the children (line 2 in Algorithm 3.3). In this second case, the polarities of the

children are changed and the algorithm is applied taking into account the new polarities. The

function is applied for each output. To avoid solving the same subgraphs more than once, all

the computed solutions are cached.

Example 3.1 An example is given in Figure 3.5. Figure 3.5(a) represents the original MIG for

function f = x ⊕ y ⊕ z. Since output f is complemented, the rule Ω.I is applied on the output

node f . Figure 3.5(b) shows the MIG with changed polarities. At this point, function i nv_f r ee

can be applied on each child of the top node. Since one children node is complemented, Ω.I

is applied. Since children of the node are all PIs, this subgraph is cached. The same procedure

applies for the second and third child of the top node. The resulting MIG is shown in Figure 3.5(c).

All the inversions are on PIs. �

The proposed algorithm does not change the depth of the graph, but it may result in an

45

Chapter 3. Majority-based Logic Synthesis

Input: MIG node v
Output: MIG node v with fan-out ≤Φ

1 f ← f o_counter (v);
2 if v is PI then
3 return v ;
4 end
5 if v ′ ← i s_cached(v, p)∧ f <Φ then
6 f o_counter (v)++;
7 return v ′;
8 end
9 if v ′ ← i s_cached(v, p)∧ f =Φ then

10 remove (v ′);
11 end
12 foreach child c of v do
13 f o_r estr (c);
14 end
15 f o_counter (v) ← 1;
16 cache(v);
17 return v ;

Algorithm 3.4: Fan-out restriction

increase in the MIG’s size. This happens if a node has fan-out with two different polarities.

The example in Figure 3.6 shows the MIG of a full adder and it explains the size increase.

Example 3.2 In Figure 3.6(a), there is one node with a fan-out of 2 (highlighted in red). The

edge going to the top most node is not complemented, while the one going to output cout has a

complementation. To be able to move the negation on output cout to the inputs, and without

changing the polarity of the other outcoming edge, two copies of the same node are necessary.

The final result is shown in Figure 3.6(b). The depth remains constant, but the size is increased.

�

3.4.2 Fan-Out Restriction

The fan-out restriction algorithm rewrites the MIG such that every node has a fan-out less

or equal to Φ. The main idea is to create copies of nodes with large fan-out. The algorithm

is similar to the inversion propagation algorithm. It is based on a dynamic programming

approach and it exploits a recursive function called f o_r estr . The recursive function is shown

in Algorithm 3.4. The algorithm starts by applying the function to each output. A counter

called f o_r estr cached the number of times node v is used (line 1 of Algorithm 3.4). For each

node v , four different cases are possible:

1. v is a PI. In this case, the function returns the PI since the fan-out limit is not applied on

inputs of the network;

2. The node is already cached and it has been used less than Φ times. Since the node has

46

3.4. Inverter Propagation and Fan-out Constraint

f

〈〉

x0

〈〉 〈〉

x1

x2x3

〈〉

(a) Original MIG

f

〈〉

x0

〈〉 〈〉

x1

x2x3

〈〉〈〉

(b) MIG with restricted fan-out

Figure 3.7 – Example for the Fan-Out Restriction algorithm. (a) is the original MIG; (b) repre-
sents the same graph after fan-out restriction to 1

fan-out <Φ, the function returns the cached node. The f o_counter is updated (line 6

in Algorithm 3.4);

3. The node is already cached but it has been used Φ times (fan-out = Φ). The same node

cannot be returned since the maximum fan-out is reached. In this case, a new node

needs to be created. The function f o_r estr is applied to the children. The cached value

is updated and the counter is reset (lines 12–16);

4. The node is not cached. The recursive function f o_r estr is applied to the children and

the node is created and cached (lines 12–16);

It follows from this algorithm that if there is at least 1 node with fan-out >Φ, the size of the

graph is increased; the depth, however, remains unchanged as we aim at keeping the same

circuit speed.

Example 3.3 Figure 3.7 shows an example with Φ= 1. The algorithm starts from the top node

and recursively reaches the PI. Figure 3.7(b) shows the final result. All nodes have fan-out ≤ 1;

the size is increased, while the depth remains constant. �

It is important to highlight that this algorithm can lead to an exponential size increase.

New copies of nodes lead to a fan-out increase for their children. This can result in new

copies also for nodes that were not reaching the fan-out limit in the original MIG. A possible

solution could be to use a method similar to the one proposed in [197]. The method consists

of introducing one more level with buffer nodes reproducing the original node. In this way the

maximum fan-out of the node is increased without introducing any new copy, hence keeping

children fan-out unchanged. This alternative method could limit the size increase, but it

results in a depth increase for the MIG. We applied this alternative method on the non-critical

paths of some benchmarks. This mixed-method leads to small improvements as compared to

Algorithm 3.4. Furthermore, for some circuits, the area increase is larger. For these reasons,

we present here only the results obtained with Algorithm 3.4.

47

Chapter 3. Majority-based Logic Synthesis

Both the inverter-free and the fan-out restriction algorithms manipulate the MIG in order

to make it suitable to address nanotechnologies applications. As a matter of fact, we demon-

strated inverter-free MIGs, having fan-out limited to Φ for each node. We will discuss and

present results over (i) MIG (next section) and (ii) QCA and STMG mapped circuit (Section 3.6).

3.4.3 Experimental Results

This section describes results obtained with the two algorithms proposed in the previous

sections. In order to obtain inversions free circuits with restricted fan-out, we developed

two C++ programs to implement Algorithm 3.3 and Algorithm 3.4. We evaluate our methods

on circuits from EPFL benchmarks, and we apply ABC [40] equivalence checking to ensure

the correct behavior of each benchmark. First we applied Algorithm 3.3, then, on the same

network, Algorithm 3.4 using Φ= 3. Results are listed in Table 3.2. The depth of the circuit

remains constant, while the final size is 1.9× larger on average. The column Depth + Inv is the

path with maximum number of majority nodes and inversions. The #INV is the number of

MIG nodes with at least one complemented fan-out. Note that the #INV in Table 3.2 refers

to inversions on PI, since all circuits are inversion-free. The number of inversions is lower as

compared to the original graph; only two circuits (dec and router) have the same number of

inversions after the algorithms are applied. As expected, the algorithms result in increased

size (× Larger), but, this is limited to only 3.3× larger network, in the worst case.

Table 3.2 – Inversion propagation and fan-out restriction algorithms © 2017 IEEE [181]

Benchmark Original MIG Optimized MIG
Name IN OUT Depth Depth + Inv Size # INV Depth + Inv Size × Larger # INV × Smaller

adder 256 129 12 21 2978 1449 13 6963 2.3 256 5.7
arbiter 256 129 14 27 2179 1042 15 2892 1.3 128 8.1
bar 135 128 14 28 3054 2999 15 3054 1.0 7 428.4
cavlc 10 11 11 21 745 370 12 955 1.3 10 37.0
ctrl 7 26 5 10 127 72 6 138 1.1 7 10.3
dec 8 256 4 5 420 8 5 528 1.3 8 1.0
i2c 147 142 9 18 1108 762 10 1354 1.2 93 8.2
int2float 11 7 9 15 246 121 10 279 1.1 11 11.0
log2 32 32 181 343 37582 22481 182 109839 2.9 32 702.5
max 512 130 27 53 7202 3147 28 21250 3.0 512 6.1
mem 1204 1231 18 36 10362 8519 19 14659 1.4 801 10.6
mult 128 128 111 205 41885 25594 112 113215 2.7 128 200.0
priority 128 8 10 18 498 295 11 621 1.2 122 2.4
router 60 30 9 13 113 62 10 185 1.6 60 1.0
sin 24 25 91 165 7890 3823 92 25557 3.2 24 159.3
sqrt 128 64 690 1249 52344 28734 691 174018 3.3 126 228.0
square 64 128 36 70 19200 17158 37 39234 2.0 64 268.1
voter 1001 1 60 114 14078 12064 61 31980 2.3 1001 12.1

Average 1.9 116.7

Table 3.2 shows the results for inverter propagation and fan-out restriction over MIGs. The opimized MIGs are
inverter-free (with reduced inverters up to 702 ×) and have fan-out Φ limited to 3. Size increase of ∼ 2 × on
average is obtained.

48

3.5. Exact Synthesis with Constraints

3.5 Exact Synthesis with Constraints

The aim of exact synthesis is to find logic networks that represent given Boolean functions

under a set of constraints. It indeed is a special case of the minimum circuit size problem [93],

which asks whether a Boolean function g can be realized by a network of size at most r ; it is

considered an intractable problem [132]. Due to its complexity, exact synthesis is typically

used to solve problems of limited size, i.e., functions with about 8 variables. Exact synthe-

sis plays a key role in logic synthesis applications that need to take into account complex

constraints. Many beyond-CMOS technologies have been studied in the last decade as re-

placement or enhancement for CMOS; and the broad variety of technologies has resulted in

many and diversified constraints that need to be taken into account by novel logic synthesis

tools. As an example, several emerging nanotechnologies do not have an efficient inversion

implementation or have limited fan-out capabilities. Some technologies have more than one

constraint that needs to be respected at the same time. These constraints are often present

due to restrictions in the hardware primitives or the logic representations for which the syn-

thesis has to be performed. Classical heuristic logic synthesis tools are usually not taking into

account such constraints. They could be used in the optimization process, but they may lead

to solutions that do not meet all the requested constraints. Moreover, no solution may exist if

constraints are too tight and heuristic optimization algorithms cannot identify this.

In this section, we illustrate the use of exact synthesis for logic synthesis applications that

deal with many and diversified technological constraints. In the following, first, we review

state-of-the-art SAT-based exact synthesis methods. Starting from Section 3.5.2, instead,

we present novel methods to encode diverse constraints. In particular, we consider small

multi-outputs functions (i) based on majority that necessitate (ii) limited-depth and (iii)

restricted fan-out for each node. These requirements are motivated by plasmonic-based

devices presented in Section 3.2, for which both depth and fan-out need to be restricted to

maximum 3. We conclude the section with details on the exact synthesis algorithms and the

experimental results.

3.5.1 Preliminaries

Exact methods have been briefly introduced in Chapter 2. In this section, we review methods

for SAT-based exact synthesis based on the SAT formulation proposed by Knuth [98] to find the

area-optimum normal Boolean network for functions g1, . . . , gm which depend on n variables.

This SAT encoding has been inspired by the work of Kojevnikov et al. [99] and Éen [74]. Recently,

the formulation has been extended by Soeken et al. [163] for combinational delay optimization.

Recall that, given a function g of n inputs x1, . . . , xn , a Boolean network is defined as a

sequence of 2-inputs gates (xn+1, . . . , xn+r), where for each gate i :

xi = x j (i) ◦i xk(i) (3.1)

49

Chapter 3. Majority-based Logic Synthesis

x1 x2 x3

∧

⊕

g1 g2

(a) 2-input Boolean network

x1x2 x3

〈〉

〈〉

g1 g2

(b) 3-input majority Boolean network

Figure 3.8 – (a) example of 2-input Boolean network, x4 = x1 ∧x2 and x5 = x3 ⊕x4. (b) example
of 3-input majority Boolean network. Dashed lines are inverters

with n < i ≤ n + r . In other words, the two inputs of each gate i are previous gates or inputs.

The ◦i represents one of the 16 binary operations. A Boolean function g is called normal if

g (0, . . . ,0) = 0. If all the gates of a Boolean network are normal, then the network represents a

normal Boolean function. For a normal Boolean network, each 2-input gate can represent 8

out of the 16 possible binary functions.

Knuth’s idea is to verify if it is possible to realize functions g1, . . . , gm with a normal Boolean

network of size r . In the following, variables and clauses proposed by Knuth are illustrated.

Variables

Let r be the number of gates, m be the number of outputs, and n be the number of inputs.
Then, the variables used for the SAT formulation are:

xi t : t thbit of xi ’s truth table

ghi : [gh = xi]

si j k : [xi = x j ◦i xk] for 1 ≤ j < k < i

fi pq : ◦i (p, q) for 0 ≤ p, q ≤ 1, p +q > 0

(3.2)

with 1 ≤ h ≤ m,n < i ≤ n + r , and 0 < t < 2n . For each gate xi , the variable xi t represents

the value of t th bit in the truth table. Each output variable ghi is true if the function gh is

represented by the gate xi . The select variable si j k encodes the children of node xi . The

variable is true if gates x j and xk are the children of gate xi . In this scenario, ◦i is one of the 8

normal 2-input Boolean functions. The variable fi pq encodes the operation of gate xi . This

is true if for the input assignment (p, q), the operation xi evaluates to true. It is important to

highlight that this method works for normal Boolean functions. If a function is not normal, we

find the optimum network for the inverted function. In the end, we invert the output node in

order to obtain the original function. The normal property allows Knuth to ignore xi 0 and fi 00

for each i .

In the following, we illustrate an example taken from [163] to explain this SAT formulation

50

3.5. Exact Synthesis with Constraints

and, in particular, the variables assignment. We refer the reader to [82, 98] for further details on

SAT-based exact synthesis. We consider the network shown in Figure 3.8 (a), with inputs x1, x2

and x3, therefore n = 3. In this example, r = 2, x4 = x1 ∧x2 and x5 = x3 ⊕x4. The gate index i

ranges from 4 to 5. Variable xi t encodes the truth table for each function of the multi-outputs

network. Since n = 3 and since we know that g (0, . . . ,0) = 0 (g is normal), the truth table bit t

ranges from 1 to 2n −1 = 7.

t = 7 6 5 4 3 2 1

x4t = 1 0 0 0 1 0 0

x5t = 0 1 1 1 1 0 0

Since we are considering a multi-output network, each gate could be an output. Two out of

the four output variables are assigned to 1, since g1 = x4 and g2 = x5.

g14 = 1, g15 = 0, g24 = 0, g25 = 1

There are three select variables for i = 4 and six for i = 5. For each gate, only one select

variable is equal to 1. For instance, variable s412 = 1, since x1 and x2 are children of node x4.

k = 2 3 4

s41k = 1 0

s42k = 0

s51k = 0 0 0

s52k = 0 0

s53k = 1

Finally, the AND and XOR operations are encoded in the fi pq variables. For this example:

p, q = 0,1 1,0 1,1

f4pq = 0 0 1

f5pq = 1 1 0

Clauses

In order to have a working algorithm, some clauses need to be added:

• a main clause that describes how truth tables are computed for each gate, depending
on children (si j k) and operation (fi pq):

(
si j k ∧ (xi t ⊕ ā)∧ (x j t ⊕ b̄)∧ (xkt ⊕ c̄)

)→ (fi bc ⊕ ā) =
(s̄i j k ∨ (xi t ⊕a)∨ (x j t ⊕b)∨ (xkt ⊕c)∨ (fi bc ⊕ ā)) (3.3)

• a clause to constrain each output value to be the same as the one of the gate it points to;

51

Chapter 3. Majority-based Logic Synthesis

• a clause to state that each output is realized by one gate in the network;

• and a clause to have two inputs for each gate.

In addition to the mandatory clauses listed above, some auxiliary clauses can be added to

reduce the solving time of the SAT solver. More details about both clauses formalization and

additional clauses can be found in [98, 163].

3.5.2 Constraints Encoding

In this section, we present our novel method to encode many constraints. In particular, we

illustrate how state-of-the-art exact synthesis algorithms can be adjusted to solve constraint-

problems. Knuth’s algorithm is used to find the optimum normal Boolean network for func-

tions g1, . . . , gm . In our case, we make use of MIGs as data structure for exact synthesis. Some

changes to the original algorithm are then necessary in order to extend our analysis to 3-input

majority gates. Further, some additional constraints need to be considered both for the maxi-

mum depth and for the maximum fan-out. Here, we demonstrate that Knuth’s algorithm can

be adapted and extended to work with 3-input majority gates and to limit depth and fan-out

for multi-ouputs networks.

3-input Majority Gates Constraint

Here, the extension to 3-input gates and the restriction to only majority gates is illustrated.

The xi t and ghi variables are used in the same way as proposed by Knuth. They encode

the truth table and the output gates, respectively. Since we are working with 3-input gates,

both the si j k and fi pq need to be reexamined. Each select variable should consider three

different children, here called x j , xk , and xl . The select variables si j kl is true if the operands

of gate xi are x j , xk , and xl . In a similar way, the function variables should take into account

the 3-input operations. The variable fi pqu is true if the operation of gate xi is true under the

input assignment (p, q,u).

In order to restrict the 3-input operations to only normal majority functions, a list of all

3-input majority truth table has been considered. Being p, q , and u the 3 inputs, each gate may

realize 〈pqu〉, 〈p̄qu〉, 〈pq̄u〉 or 〈pqū〉. Since the majority operator can behave as AND or OR

using constant inputs, also all normal truth tables with constant 1 or 0 have to be considered.

In this scenario, also ab, āb, ab̄, and a +b have to be taken into account as possible normal

majority operations. The total number of allowed operations is then equal to 8. However, the

variables fi pqu allow for a representation of all 128 normal 3-input functions. For each gate

i , the operation variable oi w is true if the operation of gate i is w , where w is one of the 8

possible normal majority operations.

Two clauses need to be added. First, a given fi pqu implies a different operation w . For

52

3.5. Exact Synthesis with Constraints

instance, if for gate i it holds that:

p, q,u = 0,0,1 0,1,0 0,1,1 1,0,0 1,0,1 1,1,0 1,1,1

fi pqu = 0 0 1 0 1 1 1

then the operation 〈pqu〉 is implemented. Being 〈pqu〉 the operation with w = 1, then the
following constraint is added:

(oi 1 → (f̄001 ∧ f̄010 ∧ f011 ∧ f̄100 ∧ f101 ∧ f110 ∧ f111))

= (ōi 1 ∨ (f̄001 ∧ f̄010 ∧ f011 ∧ f̄100 ∧ f101 ∧ f110 ∧ f111))
(3.4)

For each gate i , (3.4) is added for each operation w . Further, clause
∨8

w=1 oi w ensures that

each gate realizes at least one of the 8 operations.

Both Knuth’s algorithm and the one presented in [163] work with normal Boolean networks

with 2-inputs gates. Previous work has considered 3-input gates [83]. A dedicated MIG

encoding could have been considered, as in [162]. Nevertheless, here the aim is to demonstrate

that existing algorithms can be adapted to solve complex constraints problem. In our case,

we easily adjust existing algorithms, without changing clauses and with minor changes in the

encoding of the variables.

Depth Constraint

We need to constrain the maximum depth of the network. The SAT solver should check

whether there exists a MIG with r gates that can realize functions g1, . . . , gm with a depth less

or equal to Δ. All input arrival times are considered to be 0. For each gate i , a variable di

takes into account the depth of gate xi with n < i ≤ n + r . Each variable di has a value in

the range 0 ≤ di ≤ (i −n). The idea is the same as the one proposed in [163], and the depth

variable is encoded using the order encoding [98]. In this encoding, each value x in 0 ≤ x ≤ M

is represented by a bitstring of length M . In particular, it is represented by x ones followed

by (M − x) zeros. To make use of order encoding, each depth variable is a bitstring and it is

encoded as d�
i , where 1 ≤ �≤ (i −n).

The minimum delay of gate xi is the maximum delay of its children raised by 1. All inputs
have a delay of 0, then for j ,k, l ≤ n the d�

i variable has value equal to 0. The added clauses
are:

j−n∧
�=1

(s̄i j kl ∨ d̄�
j ∨d�+1

i)∧
k−n∧
�=1

(s̄i j kl ∨ d̄�
k ∨d�+1

i)∧
l−n∧
�=1

(s̄i j kl ∨ d̄�
l ∨d�+1

i) (3.5)

The clause ḡhi ∨ d̄Δ
i ensures a depth ≤Δ, by assigning 0 to the Δth bit in the order bitstring.

53

Chapter 3. Majority-based Logic Synthesis

Fan-out Constraint

To constrain the maximum fan-out of each node, we make use of cardinality constraints. The

cardinality constraint over a set of Boolean variables is a constraint on the number of variables

that can have values equal to 1. In particular, we implement the cardinality constraint as

proposed in [22].

In our case, the constraint is on the fan-out of each node to be at maximum Φ. Select

variable si j kl encodes that gates x j , xk , and xl are the children of node xi . To consider the fan-

out of node i , we need to take into account nodes with index larger than i : si+1 j kl , . . . , si+n j kl .

Among all these select variables we need to force a constraint on the ones that use i as children.

In other words, all the select variables of index larger than i , in which j or k or l is equal to i .

Also the output variables ghi need to be considered for this fan-out count.

Example 3.4 Figure 3.8 (b) shows an example of MIG exact synthesis. x1, x2 and x3 are the

inputs of the network, and n = 3. As in the previous example, r = 2; x4 = 〈x1x2x3〉 and x5 =
〈x̄1x3x4〉. The gate index i ranges from 4 to 5. Variable xi t encodes the truth table for each

output of the multi-outputs function. Further,

g14 = 1, g15 = 0, g24 = 0, g25 = 1

There is only one select variables for i = 4, which is s4123. There are three select variables

for node 5. For this gate, only one select variable is equal to 1: s5134 = 1, since x1, x3, and x4

are children of node x5. Finally, the two different majority operations are encoded in the fi pqu

variables. For this example:

p, q,u = 0,0,1 0,1,0 0,1,1 1,0,0 1,0,1 1,1,0 1,1,1

f4pqu = 0 0 1 0 1 1 1

f5pqu = 1 0 0 1 1 0 1

Only one operation variable oi w is equal to 1 for each node. For the depth, each variable d�
i has

1 ≤ �≤ (i −3). It follows that for node 4, the depth variable consists of only 1 bit. d�
5 is made of 2

bits, and it can have depth value of 0, 1, and 2. The fan-out constraint on node 4 consists of a
cardinality constraint of type:

s5124 + s5134 + g14 + g24 ≤Φ (3.6)

where all nodes that use 4 as child are considered. �

3.5.3 Exact Algorithms

This section describes the implemented exact synthesis algorithm. It also illustrates three

alternatives to the main algorithm.

54

3.5. Exact Synthesis with Constraints

1 Function F i nd M IG(g , Δ, Φ, r)
2 set S ← S AT Sol ver ();
3 AddV ar i abl es(S, g ,Δ,Φ,r,);
4 foreach 0 < t < 2n do
5 Add M ai nC l ause(S, g , t);
6 end
7 AddOtherC l auses(S,r);
8 AddOper ati onC l ause(S, g ,r);
9 AddDepthC l ause(S,Δ);

10 foreach n < i ≤ n + r do
11 AddF anOutC l ause(S,Φ, i);
12 end
13 if Sol ve(S) then
14 return M IG ;
15 else
16 return F i nd M IG(g ,Δ,Φ,r +1);
17 end

Algorithm 3.5: Function ‘F i nd M IG()’

The algorithm finds a MIG, if this exists, that satisfies all the constraints discussed in

Section 3.5.2. The names of the variables are the ones used in previous sections. The input of

the algorithm is the n-inputs m-outputs function g represented as truth tables obtained from

the MIG that needs to be optimized. The algorithm starts by trying to find a solution using

r = m (assuming that each output represents a different function). If a solution exists for r

gates, the algorithm returns a MIG that meets all the requirements, otherwise it looks for a

solution with larger size. The algorithm increases the number of gates until the upper bound

is reached. If no solution can be found up to the upper bound, it can be concluded that no

network exists that meets all the constraints. Let m be the number of outputs, an upper bound

for the number of gate r is 13m. This result is obtained considering that each output could be

represented as a tree, with no sharing edges between them. Each tree has one gate on the first

level, 3 gates on the second level and 9 gates on the third one, thus 13 gates at most.

The algorithm is described as function F i nd M IG() in Algorithm 3.5. First, the SAT solver

is instantiated (line 2 in Algorithm 3.5). Then, the algorithm adds all the variables discussed in

Section 3.5.1 and 3.5.2; they include the variables from Knuth’s formulation, but also variables

d�
i and oi w . All clauses are then added (lines 4–12). The main clause is the one which encodes

the truth table of the circuit (3.3); this is added for each bit t of each truth table. Other clauses

consist of both necessary and additional clauses proposed in [163]; depth, operations, and

fan-out clauses are the ones discussed in Section 3.5.2. The fan-out clause constraints the

fan-out of each node i of the network.

Alternative implementations to Algorithm 3.5 are possible. All algorithms take into ac-

count the same constraints, however, they may show different performances. We rewrite

Algorithm 3.5 by making use of counter-example-guided abstraction refinement (CEGAR). The

idea is to overapproximate the solution space by discarding several clauses, thereby decreasing

55

Chapter 3. Majority-based Logic Synthesis

1 Function F i nd M IG_C EG AR(g ,Δ, Φ, r)
2 set S ← S AT Sol ver ();
3 AddV ar i abl es(S,Δ,Φ,r);
4 AddOtherC l auses(S,r);
5 AddOper ati onC l ause(S, g ,r);
6 AddDepthC l ause(S,Δ,r);
7 foreach n < i ≤ n + r do
8 AddF anOutC l ause(S,Φ, i);
9 end

10 while Sol ve(S) do
11 if Functionality_Respected(g) then
12 return M IG ;
13 else
14 set t ← first bit which does not respect functionality;
15 Add M ai nC l ause(S, g , t);
16 end
17 end
18 return F i nd M IG_C EG AR(g ,Δ,Φ,r +1);

Algorithm 3.6: Function ‘F i nd M IG_C EG AR()’

solving time of the SAT solver. Algorithm 3.6 illustrates one CEGAR version of Algorithm 3.5.

Algorithm 3.6 does not add the main clause (3.3) which encodes the multi-output function

g . In this way, the SAT solver may find a solution that does not coincide with g for all inputs

assignment t . If this is the case, a refinement of the solution is pursued (lines 13–15). In order

to ensure the same functionality, the main clause (3.3) is added for the first bit t of the truth

table that does not agree with g . The updated problem is solved again by keeping the state

of the SAT solver active (incremental SAT). This procedure is repeated until the truth tables

coincide. During this refinement process, two possibilities emerge:

1. The SAT solver converges to a solution which respects the functionality;

2. The SAT solver is not able to find a solution that respects the new clauses. In this case,

the size r is increased and a new solution is searched.

CEGAR can also be applied to abstract the fan-out clauses. First, a solution without fan-out

constraints is found; then, the algorithm checks whether a gate i exists that does not respect

the fan-out constraint. If it exists, the fan-out constraint is added only for gate i , which has

fan-out >Φ. The algorithm is not reported here since it is similar to Algorithm 3.6.

Both CEGAR methods can also be applied at the same time. We call this method Dou-

bleCEGAR (DCEGAR) and it is shown in Algorithm 3.7. In this approach, both the truth table

and fan-out clauses are not added in the main function. If a solution of size r exists, the

functionality is checked (line 8). If the functionality is respected, then the algorithm ensures

that also the fan-out constraint is met (line 9). If both are respected, the MIG is returned (line

10). Otherwise, first, the algorithm tries to meet the truth table constraint (lines 15–18) and

then the fan-out one (lines 12–13). The algorithm works in a similar way as Algorithm 3.6; if at

56

3.5. Exact Synthesis with Constraints

1 Function F i nd M IG_DC EG AR(g ,Δ, Φ, r)
2 set S ← S AT Sol ver ();
3 AddV ar i abl es(S,Δ,Φ,r);
4 AddOtherC l auses(S,r);
5 AddOper ati onC l ause(S, g ,r);
6 AddDepthC l ause(S,Δ,r);
7 while Sol ve(S) do
8 if Functionality_Respected(g) then
9 if All _F anout s() ≤Φ then

10 return M IG ;
11 else
12 set i ← node with fan-out >Φ;
13 AddF anOutC l ause(S,Φ, i);
14 end
15 else
16 set t ← first bit which does not respect functionality;
17 Add M ai nC l ause(S, g , t);
18 end
19 end
20 return F i nd M IG_DC EG AR(g ,Δ,Φ,r +1);

Algorithm 3.7: Function ‘F i nd M IG_DC EG AR()’

some point the SAT solver cannot find a solution due to the new clause, then the algorithm

searches for a solution with size r +1.

The proposed algorithms can be employed in logic synthesis for applications that seek

for low-depth majority-based networks with limited fan-out, e.g., plasmonic-based devices.

We demonstrated how state-of-the-art exact synthesis algorithms can be adapted and used to

find logic networks that match these constraints. To emphasize the need for exact synthesis,

we will also demonstrate in the coming section how conventional logic synthesis either fails to

find constraint-satisfying logic networks or yields networks of inferior quality.

3.5.4 Experimental Results

In this section, first, we demonstrate how conventional logic synthesis tools are not suitable

for some complex constraints-problem; then, we illustrate results obtained with the different

algorithms proposed in Section 3.5.3. Finally, we discuss the feasibility of our method on larger

functions.

We developed a C++ program2 to implement Algorithm 3.5. The implementation uses

one of the SAT solvers implemented in ABC [40]. Motivated by plasmonic-based devices, for

these experiments we used the maximum depth Δ= 3 and the maximum fan-out Φ= 3. We

applied our approach to small arithmetic benchmarks and to some small hwb [1] circuits.

The ‘HWB34’ benchmark is a multi-output function containing both hwb3 and hwb4. To

2Available at: github.com/eletesta/cirkit-addon-mign-sat

57

Chapter 3. Majority-based Logic Synthesis

emphasize the key role of exact synthesis for complex constraint-problems, we demonstrate

that classical logic synthesis tools may fail in finding a solution that meets all the constraints.

Results are shown in Table 3.2. We optimized circuits using ABC depth optimization (‘clp; sop;

fx; strash; resyn2’). The results are shown in the first part of Table 3.2; only two circuits out

of six meet the depth constraint. The FO viol. column represents the number of nodes that

violate the fan-out constraint, thus with fan-out >Φ; for the ‘ADDER2x2’ benchmark, also

the fan-out constraint is not respected. The second block of Table 3.2 shows results obtained

by analyzing each output separately. Each function has been depth-optimized using exact

synthesis proposed in [162]. This approach leads to results that meet our depth constraint,

but it is time-consuming, since all outputs are analyzed separately. Further, this does not

optimize the network considering the common nodes and it does not take into consideration

the fan-out constraint. Copies of nodes with fan-out >Φ have been produced. In this case,

the runtime is the sum of the runtimes necessary for each output; the manual work needed to

separate and reunite the whole circuit is not taken into account. The third block of Table 3.3

shows the results achieved using our exact algorithm approach, disregarding the fan-out

constraint. Also, in this case, copies of nodes with fan-out > Φ are introduced. Table 3.3

shows that the better results are the ones obtained with the exact method implemented in

Algorithm 3.5, therefore considering all the constraints (both depth and fan-out). In this case,

there are no nodes with fan-out larger than Φ. As an example, ADDER2x2 leads to a better

result when also fan-out constraint is added. For these benchmarks, both the exact solutions

(disregarding and considering fan-out) lead to a depth equal to 3 and size equal to 6. But for

the first case, a copy of one node needs to be introduced since its fan-out is larger than Φ;

producing in this way size of 7.

Table 3.3 – Classical heuristic and exact synthesis comparison

Classical Heuristic ABC Exact [162] - separated outputs Exact - no fan-out Algorithm 3.5
Benchmark I/O Depth Size FO viol. Time [s] Depth Size FO viol. Time [s] Depth Size FO viol. Time [s] Depth Size Time [s]

ADDER 2x2 4/3 4 11 1 0.14 3 7 1 0.42 3 6 1 1.15 3 6 0.56
MULT 2x2 4/4 3 8 — 0.14 3 12 — 0.75 3 8 — 76.84 3 8 68.92
BITCOUNT3 3/2 4 8 — 0.14 2 3 — 0.09 3 3 — 0.00 2 3 0.05
HWB3 3/1 2 3 — 0.13 2 3 — 0.00 2 3 — 0.00 2 3 0.05
HWB4 4/1 4 8 — 0.14 3 5 — 0.25 3 5 — 0.25 3 5 0.23
HWB34 4/2 4 11 — 0.14 3 7 — 0.84 3 6 — 2.16 3 6 1.97

Table 3.3 compares the results of exact synthesis with the state-of-the-art heuristic and exact synthesis meth-

ods. These methods do not take into account the constraints and thus produce results that do not meet all the

specifications: (i) depth limited to 3; (ii) fan-out limited to 3; (iii) majority primitives.

We applied the four alternatives of Algorithm 3.5 to the same circuits; results are listed

in Table 3.4. The first algorithm is the one without CEGAR approach. The second one is

Algorithm 3.6, while the third one is the one in which the CEGAR method is applied not

considering the fan-out clause. DOUBLE CEGAR is the last method in Table 3.4. The runtimes

of the four methods are similar. This is not surprising, since the number of inputs in the

considered benchmarks is small. It is important to highlight that we are not optimizing the

depth, but just constrain it to be ≤Δ. For the BITCOUNTER3, exact solutions with different

depths are found. An extension that considers multi or all exact solutions can be easily

58

3.5. Exact Synthesis with Constraints

included in the algorithm.

Table 3.4 – Comparison of the different exact algorithms proposed

Algorithm 3.5 - All clauses Truth Table CEGAR Fan-out CEGAR DCEGAR
Benchmark I/O Depth Size Time [s] Depth Size Time [s] Depth Size Time [s] Depth Size Time [s]

ADDER 2x2 4/3 3 6 0.56 3 6 0.73 3 6 1.33 3 6 0.93
MULT 2x2 4/4 3 8 68.92 3 8 77.58 3 8 76.01 3 8 94.26
BITCOUNT3 3/2 2 3 0.05 3 3 0.05 3 3 0.05 3 3 0.05
HWB3 3/1 2 3 0.05 2 3 0.05 2 3 0.05 2 3 0.05
HWB4 4/1 3 5 0.23 3 5 0.30 3 5 0.24 3 5 0.41
HWB34 4/2 3 6 1.97 3 6 4.93 3 6 2.22 3 6 2.24

Table 3.4 compares the results of the 4 proposed exact synthesis algorithms. Similar runtimes are obtained for

such small benchmarks.

Table 3.5 – Sat-based algorithm on LUTs from EPFL benchmarks

3-LUTs 4-LUTs 5-LUTs 6-LUTs
Benchmark #LUTs # SAT % # TO #LUTs # SAT % # TO #LUTs # SAT % # TO #LUTs # SAT % # TO

adder 41 41 100 0 185 185 100.0 0 343 342 99.7 1 399 379 95.0 20
arbiter 64 64 100 0 285 285 100.0 0 395 395 100.0 0 419 419 100.0 0
bar 8 8 100 0 8 8 100.0 0 14 14 100.0 0 13 8 61.5 5
cavlc 65 65 100 0 216 216 100.0 0 190 185 97.4 5 139 115 82.7 24
ctrl 24 24 100 0 34 34 100.0 0 26 23 88.5 3 24 19 79.2 5
dec 8 8 100 0 24 24 100.0 0 32 32 100.0 0 40 40 100.0 0
i2c 76 76 100 0 159 159 100.0 0 151 149 98.7 2 145 124 85.5 21
int2float 45 45 100 0 68 68 100.0 0 55 54 98.2 1 40 30 75.0 10
log2 166 166 100 0 986 984 99.8 2 1620 1485 91.7 135 1932 1428 73.9 504
max 47 47 100 0 115 115 100.0 0 142 142 100.0 0 155 154 99.4 1
mem_ctrl 132 132 100 0 723 721 99.7 2 927 921 99.4 6 948 857 90.4 91
mult 132 132 100 0 784 782 99.7 2 1190 1115 93.7 75 1303 1099 84.3 204
priority 30 30 100 0 53 53 100.0 0 61 61 100.0 0 61 61 100.0 0
router 21 21 100 0 25 25 100.0 0 27 27 100.0 0 25 25 100.0 0
sin 142 142 100 0 700 699 99.9 1 958 910 95.0 48 915 751 82.1 164
sqrt 192 192 100 0 1754 1752 99.9 2 4574 4394 96.1 180 5505 4654 84.5 851
square 112 112 100 0 493 491 99.6 2 615 565 91.9 50 692 571 82.5 121
voter 79 79 100 0 194 192 99.0 2 206 192 93.2 14 215 177 82.3 38

Average 100.0% 99.9% 96.8% 86.6%

#LUTs is the total number of unique LUTs; # SAT is the number of LUTs which are satisfiable; % is the precentage of SAT over

the total number of LUTs; #TO is the number of LUTs that are not finished before the timeout.

Table 3.5 shows results on larger benchmarks. When 3-LUTs are used to map the circuit, all the functions can

be realized with circuits of depth and fan-out = 3. 6-LUTs results show that on average 86.6% of LUTs can be

realized with the given constraints.

The constraints used so far are motivated by an industrial application based on plasmonic-

based logic in which each small function is part of a larger function, and each function should

meet the depth and fan-out requirements. To validate the feasibility of this method, we map

networks using LUTs of different size; then we apply the SAT-based method on each LUT.

We are interested in finding how many LUTs can be realized as MIGs that meet all the given

constraints for depth and fan-out.

We applied this method on circuits from the EPFL benchmarks, using LUT size k = 3,4,5,6,

59

Chapter 3. Majority-based Logic Synthesis

Table 3.6 – Technology parameters for QCA inverter and majority gates © 2017 IEEE [181]

Area (μm2) Delay (ns) Energy (f J)

INV 4.0×10−3 1.4×10−2 9.8×10−6

MAJ 1.2×10−3 4×10−3 2.9×10−6

Table 3.6 shows the technological parameters for QCA majority and inverter. These parameters can be used

to evaluated area, delay, and energy of circuits. The parameters have been extracted and obtained by IMEC.

respectively. The LUTs and the functions they represent are obtained from CirKit3 using the

command ‘xmglut’. The SAT-based method is applied on all the unique LUT functions, using a

maximum depth Δ= 3 and a maximum fan-out Φ= 3. The experiments were performed on a

computer with Intel Xeon Processor E5-2680 v3, @ 2.5 GHz, 64 Gb RAM, using a timeout of 1

minute for each LUT function. Table 3.5 shows the results; in particular, it lists the total number

of unique LUTs, the satisfiable LUTs and the total timeouts for each LUT size k. Results show

that when 3-LUTs are used to map the circuit, all the functions can be realized with circuits of

Δ≤ 3 and Φ≤ 3, and with a runtime ≤ 1 minute. For LUTs of larger size, some timeouts are

present and not all the LUTs can be finished in less than 1 minute. No conclusions can be

drawn on the satisfiability of functions that were not concluded in 1 minute: they could be both

satisfiable or unsatisfiable. In the worst-case scenario (i.e. all timeouts are UNSAT), results

for 6-LUTs show that on average 86.6% of LUTs can be realized with the given constraints. In

general, a high number of LUTs from EPFL benchmarks can be realized with circuits that meet

all the constraints; we are then confident that our method could produce good results when

considering partitioned functions.

3.6 Area-Delay-Energy Product for QCA and STMG

In this last section, we show global trade-off results on QCA and STMG. We demonstrate how

QCA-based circuits benefit from inversion-free networks with limited fan-out, and in par-

ticular, how such networks result into smaller area-delay-energy product (ADEP) of mapped

circuits. We also demonstrate the realization of STMG-based circuits, without using inver-

sions. Finally, we present size optimization results after QCA and STMG technology mapping

compared to state-of-the-art size optimization techniques. Also in this case, size optimization

achieves optimized ADEP for both QCA and STMG technologies.

First, we evaluate area, delay, and energy of QCA-based circuits using the specification

from Table 3.6. These specifications have been obtained by IMEC and extracted from [86, 182].

Table 3.7 shows the experimental results comparing unoptimized MIG with our otimized one.

Note that for this experimental evaluation the optimized MIG is the one without inversions

and with fan-out limited to 3 (i.e., circuits from Section 3.4 and Table 3.2). Even if the optimized

3Available at: github.com/msoeken/cirkit

60

3.6. Area-Delay-Energy Product for QCA and STMG

MIG has larger size (see Table 3.2), this leads to a smaller QCA area, since QCA inverters are

much larger compared to majority gates. The inversion-free and fan-out restricted netlists

yield on average 3.1× smaller ADEP. Only one benchmark (dec) has a slightly worse ADEP; all

other circuits benefit from inversion-free and fan-out restriction.

Table 3.7 – Inversion-free and fan-out restriction on QCA © 2017 IEEE [181]

Original Optimized MIG
Name Area (μm2) Delay (ns) Energy (f J) ADEP (a.u.) Area (μm2) Delay (ns) Energy (f J) ADEP (a.u.)

adder 9.4 1.7×10−1 2.3×10−2 3.7×10−2 9.4 6.2×10−2 2.3×10−2 1.3×10−2

arbiter 6.8 2.4×10−1 1.7×10−2 2.7×10−2 4.0 7×10−2 9.8×10−3 2.7×10−3

bar 1.6×101 2.5×10−1 3.8×10−2 1.5×10−1 3.7 7×10−2 9.0×10−3 2.3×10−3

cavlc 2.4 1.8×10−1 5.8×10−3 2.5×10−3 1.2 5.8×10−2 2.9×10−3 2×10−4

ctrl 5×10−1 9×10−2 1.1×10−3 4.3×10−5 1.9×10−1 3.4×10−2 4.7×10−4 3.1×10−6

dec 5×10−1 3×10−2 1.3×10−3 2.1×10−5 6.7×10−1 3×10−2 1.6×10−3 3.3×10−5

i2c 4.4 1.6×10−1 1.1×10−2 7.6×10−3 2.0 5×10−2 4.9×10−3 4.9×10−4

int2float 8×10−1 1.2×10−1 1.9×10−3 1.8×10−4 3.8×10−1 5×10−2 9.3×10−4 1.8×10−5

log2 1.4×102 3.0 3.3×10−1 1.3×102 1.3×102 7.4×10−1 3.2×10−1 3.1×101

max 2.1×101 4.7×10−1 5.2×10−2 5.2×10−1 2.8×101 1.2×10−1 6.7×10−2 2.3×10−1

mem 4.7×101 3.2×10−1 1.1×10−1 1.7 2.1×101 8.6×10−2 5.1×10−2 9.1×10−2

mult 1.5×102 1.8 3.7×10−1 1.0×102 1.4×102 4.6×10−1 3.3×10−1 2.1×101

priority 1.8 1.5×10−1 4.4×10−3 1.2×10−3 1.2 5.4×10−2 3.0×10−3 2.0×10−4

router 4×10−1 9.2×10−2 9.4×10−4 3.3×10−5 4.6×10−1 5×10−2 1.1×10−3 2.6×10−5

sin 2.5×101 1.4 6.1×10−2 2.1 3.1×101 3.8×10−1 7.5×10−2 8.8×10−1

sqrt 1.8×102 1.1×101 4.4×10−1 8.2×102 2.1×102 2.8 5.1×10−1 3.0×102

square 9.2×101 6.2×10−1 2.2×10−1 1.3×101 4.7×101 1.6×10−1 1.2×10−1 8.7×10−1

voter 6.5×101 10.0×10−1 1.6×10−1 1.0×101 4.2×101 2.5×10−1 1.0×10−1 1.1

Averages 4.2×101 1.1 1.0×10−1 6.0×101 3.7×101 3.1×10−1 9.1×10−2 2.0×101

Table 3.7 shows results of mapped MIGs into QCA; optimized MIG are inverter-free and with restricted fan-out

(see Table 3.2). Even though the size of our MIG is larger, the optimization technique results in 2× smaller

ADEP.

We also evaluate area, delay, and energy for the STMG-based circuits. Note that the

inversion-free MIGs obtained with our algorithms allow realization of STMG-based circuits,

that do not involve inverters. As a matter of fact, there is a lack of an efficient STI concept

which would be necessary to implement circuits. A first inverter concept was presented

in [134] where it was assumed that the functionality of an inverter is achieved through a

ferromagnetic wire that connects two STMG devices and is fabricated as a slanted layer in

the magnetic material stack. However, this concept cannot be realized with state-of-the-art

magnetic material integration technology. We can envision two possible flavors of STMG

devices that can implement netlists:

1. STMG/CMOS hybrid, where each inversion is implemented by CMOS inverters. This

assumes that for each inversion an MTJ is read and the next one is written with the

inverted result.

2. STMG/NML hybrid, where each inversion is implemented by an out-of-plane nanomag-

net, as in the NML concept. This assumes that there is no conversion to the electric

domain and the inversion is implemented in the magnetic domain.

61

Chapter 3. Majority-based Logic Synthesis

Table 3.8 – Technology parameters for STMG hybrid flavors inverter and majority gates © 2017
IEEE [181]

Area (μm2) Delay (ns) Energy (f J)

MTJ write/read 0 4 70
MAJ 3.6×10−3 1.5 0

INV-CMOS 6.0×10−2 2.6×10−2 4.0×10−1

INV-NML 2.3×10−2 10 0

Table 3.8 shows technological parameters for STMG. These parameters can be used to evaluated area, delay,

and energy of circuits. The parameters have been extracted and obtained by IMEC. STMG cannot realize

inverters, thus hybrid soutions are proposed using CMOS and NML.

We benchmark and compare the results of our algorithms to these two aforementioned

STMG hybrid flavors. For this comparison we use the primitive area, delay, and energy

constants shown in Table 3.8 (obtained and extracted at IMEC). The MTJ parameters are

extracted from [91], the CMOS inverter parameters are extracted from a CMOS 7 nm node [143],

and the NML inverter is assumed to be a 150 nm×150 nm nanomagnet based on [42]. In both

cases CMOS and NML are used in order to obtain inversions.

Table 3.9 shows the STMG experimental results. As for the QCA case, the optimized MIG is

the one obtained in Table 3.2 (presented in Section 3.4). The STMG-based circuits produce,

on average, both smaller area and delay. On average, a 8.1× smaller ADEP compared to

STMG/CMOS hybrids and 2.9× smaller ADEP compared to STMG/NML hybrids is obtained

using only STMG. In this case, all circuits benefit from inversion-free and fan-out restriction.

Note that the inversion free algorithm allows the relization of STMGs circuits, without using

CMOS or NML cells.

On top of the presented results, we also test the efficiency of our size optimization methods

from Section 3.3 and presented in Table 3.1, by mapping the logic networks into QCA and

STMGs. We compare our results to the state-of-the-art approach presented in [187], which

we reimplemented using FR from Section 3.3 and windowing to achieve larger scalability and

therefore address larger benchmarks. In our experiments, we found that the results obtained

with our implementation of [187] outperform the more recently presented results in [59];

this can easily be validated by comparing the numbers for size and depth in Table 3.1 to [59,

Table III] for the common benchmarks (i2c, max, square, log2, multiplier).

Table 3.10 shows area, delay, energy, and the ADEP for each of the benchmarks when

mapped to QCA and STMG technologies, respectively. Total reduction compares the results

to the original EPFL benchmarks, while the improvement is evaluated with respect to [187].

In this case, since STMGs and QCA technologies have limited possibilities for inverter imple-

mentation, we always applied the Algorithm 3.3 (Section 3.4.1) in order to create inversion

free circuits. For size optimization, we used the approach in [81] followed by the FR, RO, and

62

3.7. Summary

Table 3.9 – Inversion-free and fan-out restriction on STMG © 2017 IEEE [181]

Original MIG — STMG/CMOS Original MIG — STMG/NML Optimized MIG
Name Area (μm2) Delay (ns) Energy (n J) ADE (a.u.) Area (μm2) Delay (ns) Energy (n J) ADE (a.u.) Area (μm2) Delay (ns) Energy (n J) ADE (a.u.)

adder 8.7×101 9.4×101 2.5×10−1 2.1×103 4.3×101 1.1×102 1.5×10−1 7.2×102 2.5×101 1.8×101 4.8×10−1 2.2×102

arbiter 6.3×101 1.3×102 2.7×10−1 2.2×103 3.1×101 1.6×102 2.0×10−1 9.5×102 1.0×101 2.1×101 2.7×10−1 5.8×101

bar 1.8×102 1.4×102 6.0×10−1 1.5×104 7.8×101 1.7×102 3.9×10−1 5.1×103 1.1×101 2.1×101 3.9×10−1 9.0×101

cavlc 2.2×101 1.0×102 1.1×10−1 2.4×102 1.1×101 1.2×102 8.3×10−2 1.1×102 3.4 1.7×101 1.2×10−1 6.6
ctrl 4.3 5.2×101 2.2×10−2 4.8 2.1 6.2×101 1.7×10−2 2.1 5.0×10−1 7.5 1.9×10−2 7.1×10−2

dec 1.5 1.8×101 5.0×10−2 1.4 1.7 2.0×101 5.0×10−2 1.7 1.9 6.0 6.5×10−2 7.4×10−1

i2c 4.6×101 9.0×101 1.9×10−1 7.8×102 2.1×101 1.1×102 1.4×10−1 3.1×102 5.6 1.4×101 1.7×10−1 1.3×101

int2float 7.3 6.6×101 3.9×10−2 1.9×101 3.6 7.8×101 3.1×10−2 8.6 1.0 1.4×101 3.6×10−2 5.0×10−1

log2 1.3×103 1.6×103 4.2 8.9×106 6.4×102 1.9×103 2.6 3.2×106 4.0×102 2.7×102 7.9 8.5×105

max 1.9×102 2.5×102 7.8×10−1 3.7×104 9.7×101 3.0×102 5.6×10−1 1.6×104 7.7×101 4.1×101 1.6 5.0×103

mem 5.1×102 1.8×102 1.8 1.6×105 2.3×102 2.1×102 1.2 5.8×104 5.3×101 2.7×101 1.7 2.4×103

mult 1.5×103 9.2×102 4.9 6.9×106 7.3×102 1.1×103 3.1 2.5×106 4.1×102 1.7×102 8.2 5.6×105

priority 1.8×101 8.3×101 7.5×10−2 1.1×102 8.4 9.9×101 5.4×10−2 4.5×101 7.3 1.5×101 7.2×10−2 7.9
router 3.7 5.0×101 1.9×10−2 3.5 1.8 5.8×101 1.4×10−2 1.5 3.6 1.4×101 2.4×10−2 1.2
sin 2.3×102 7.3×102 7.3×10−1 1.2×105 1.1×102 8.8×102 4.6×10−1 4.6×104 9.2×101 1.4×102 1.6 2.0×104

sqrt 1.7×103 5.5×103 5.3 5.0×107 8.3×102 6.6×103 3.2 1.8×107 6.3×102 1.0×103 1.1×101 7.0×106

square 1.0×103 3.3×102 2.8 9.4×105 4.6×102 4.0×102 1.5 2.8×105 1.4×102 5.4×101 3.2 2.5×104

voter 7.2×102 5.3×102 2.0 7.5×105 3.2×102 6.3×102 1.1 2.3×105 1.2×102 9.0×101 2.5 2.6×104

Averages 4.3×102 6.0×102 1.3 3.8×106 2.0×102 7.2×102 8.3×10−1 1.3×106 1.1×102 1.1×102 2.2 4.7×105

Table 3.9 shows results of mapped MIG into STMG when optimized MIG are inverter-free and with restricted

fan-out from Table 3.2. Inverter-free MIGs allow the realization of entirely STMG-based circuit which do not

use hybrid solutions for inversion.

RS optimization techniques. To obtain area, delay, and energy, we use the same specifications

as Tables 3.8 and 3.6. Our optimization method is able to further reduce the ADEP by 2.31%

for QCA and by 2.07% for STMGs. Overall, the MIG-based synthesis flow obtains an average

improvement of 20.81% and 55.63% for QCA and STMG, respectively.

3.7 Summary

Motivated by the requirements set by emerging nanotechnologies, we presented diverse algo-

rithms for logic synthesis of MIGs. First, we introduced novel methods for size optimization of

majority logic, focusing on both technology-independent results and mapped circuits. The

flow uses three Boolean methods to reduce the size of MIG, obtaining a total reduction of

the size of the MIG up to 18.13%, on average. Second, we focused on novel algorithms to

synthesize inversion-free circuits, with limited fan-out. Such constraints are set by emerging

nanotechnologies such as QCA and STMG. Our algorithms demonstrated the realization of

inversion-free circuits and limited fan-out, with only 2× size increase of the MIG. Finally, we

showed that existing exact synthesis algorithms can be adjusted to solve complex constraints

problems. We implemented an algorithm that takes into account all the different constraints

and we demonstrated that classical heuristic logic synthesis tools may lead to a solution

that does not meet all the requirements or give results of inferior quality. In this scenario,

plasmonic-based logic is responsible for this set of constraints. Our exact synthesis method

illustrated that, on average, more than 86% of practical 6-LUTs can be efficiently realized with

these constraints.

In the last part of the chapter, we mapped MIG networks into STMG and QCA to explore

global trade-offs. Technology-dependent logic synthesis approaches can lead to further

63

Chapter 3. Majority-based Logic Synthesis

Table 3.10 – Size optimization techniques (after QCA and STMG technology mapping)
Benchmark Baseline [187] QCA Opt. QCA Baseline [187] STMG Opt. STMG

Area Delay Energy ADEP Area Delay Energy ADEP Area Delay Energy ADEP Area Delay Energy ADEP
[μm2] [ns] [J] [μm2] [ns] [J] [μm2] [ns] [J] [μm2] [ns] [J]

adder 1.6 0.5 4.0E-18 3.5E-18 1.6 0.5 4.0E-18 3.5E-18 15.4 193.5 5.4E-11 1.6E-07 15.4 193.5 5.4E-11 1.6E-07
arbiter 12.8 0.3 3.1E-17 1.1E-16 12.8 0.3 3.1E-17 1.1E-16 35.2 94.5 5.9E-10 2.0E-06 35.2 94.5 5.9E-10 2.0E-06
bar 7.9 0.1 1.9E-17 1.1E-17 7.8 0.1 1.9E-17 1.0E-17 21.9 21.0 7.2E-10 3.3E-07 21.9 19.5 7.1E-10 3.0E-07
cavlc 1.4 0.1 3.3E-18 4.1E-19 1.3 0.1 3.2E-18 3.7E-19 4.0 28.5 1.3E-10 1.5E-08 3.8 28.5 1.2E-10 1.3E-08
ctrl 0.3 0.1 6.2E-19 8.6E-21 0.2 0.1 5.7E-19 6.6E-21 0.7 15.0 2.3E-11 2.4E-10 0.6 13.5 2.1E-11 1.8E-10
dec 0.4 0.0 1.1E-18 1.4E-20 0.4 0.0 1.1E-18 1.4E-20 1.2 6.0 2.8E-11 2.0E-10 1.2 6.0 2.8E-11 2.0E-10
i2c 2.6 0.1 6.5E-18 1.8E-18 2.5 0.1 6.1E-18 1.6E-18 6.9 34.5 2.1E-10 5.0E-08 6.6 34.5 2.0E-10 4.6E-08
int2float 0.5 0.1 1.2E-18 5.0E-20 0.5 0.1 1.2E-18 4.3E-20 1.4 24.0 4.8E-11 1.6E-09 1.3 24.0 4.4E-11 1.4E-09
log2 60.0 0.9 1.5E-16 8.2E-15 59.9 0.9 1.5E-16 8.2E-15 179.6 345.0 2.1E-09 1.3E-04 179.3 343.5 2.0E-09 1.2E-04
max 7.4 1.1 1.8E-17 1.4E-16 7.3 1.1 1.8E-17 1.4E-16 30.7 391.5 4.3E-10 5.2E-06 30.7 390.0 4.3E-10 5.1E-06
mem 92.4 0.6 2.3E-16 1.2E-14 86.3 0.6 2.1E-16 1.0E-14 265.2 216.0 6.5E-09 3.7E-04 247.0 204.0 6.0E-09 3.0E-04
mult 47.7 0.6 1.2E-16 3.3E-15 47.7 0.6 1.2E-16 3.2E-15 141.6 214.5 2.2E-09 6.6E-05 141.6 211.5 2.2E-09 6.5E-05
priority 2.6 1.0 6.5E-18 1.7E-17 2.6 1.0 6.3E-18 1.6E-17 7.7 367.5 1.8E-10 5.0E-07 7.7 358.5 1.7E-10 4.8E-07
router 0.7 0.2 1.8E-18 3.1E-19 0.7 0.2 1.8E-18 2.9E-19 3.6 81.0 4.2E-11 1.2E-08 3.6 81.0 4.1E-11 1.2E-08
sin 10.7 0.7 2.6E-17 1.9E-16 10.6 0.7 2.6E-17 1.8E-16 31.8 243.0 3.5E-10 2.7E-06 31.6 240.0 3.3E-10 2.5E-06
sqrt 51.0 24.0 1.3E-16 1.5E-13 50.8 23.8 1.2E-16 1.5E-13 151.6 8983.5 1.6E-09 2.2E-03 150.9 8911.5 1.6E-09 2.2E-03
square 32.0 0.5 7.8E-17 1.3E-15 31.0 0.5 7.6E-17 1.3E-15 95.1 195.0 1.6E-09 3.0E-05 92.3 193.5 1.6E-09 2.8E-05
voter 19.9 0.3 4.9E-17 2.4E-16 17.6 0.2 4.3E-17 1.6E-16 60.1 88.5 6.7E-10 3.6E-06 60.1 73.5 5.8E-10 2.6E-06

total reduction +18.50% +20.81% +53.56% +55.63%
improvement 0.00% +2.31% 0.00% +2.07%

Table 3.10 shows results of mapped MIG into QCA and STMG when MIG are size-optimized. Inversion-free
technique is applied to remove inversions (and thus realize STMG circuits). The ADEP is reduced for both
technologies.

improvements for many emerging nanotechnologies. Inversion-free MIGs with limited fan-out

result in a better ADEP for both STMG and QCA. In particular, for the STMG technology which

cannot realize inversion gates, our synthesis method for inversion-free networks demonstrated

the realization of circuits entirely composed of STMG cells, i.e., they do not need CMOS logic

to implement the complementation. The ADEP is decreased of 3.1× on average also in the

QCA case. As a last result, we presented mapped results of size-optimized MIG over QCA

and STMG, demonstrating a reduction in the ADEP also for this class of algorithms which do

not specifically take into account emerging technologies requirements, while reducing the

number of nodes in technology-independent MIGs.

64

4 Majority-n Logic

I think most of the important things that I know have been the result of learning from mistakes.

— Private email from D. E. Knuth

Chapter 3 was dedicated to logic synthesis techniques over majority-inverter graphs

(MIGs). In this chapter, we continue the study of majority logic, but we shift into more

theoretical results. In particular, the chapter concentrates on size-optimum networks for

monotone functions, and principally majority-n functions (i.e., majority with n inputs), using

majority-of-three gates. The chapter is divided into three parts addressing different and rele-

vant questions on such topic. First, we present a novel method to map majority-n into MIG,

together with novel upper bounds on the number of gates. Then, we study the complexity

of 7-input self-dual monotone functions, to give more insights on the characteristic of such

class of functions. Note that the majority function is both self-dual and monotone. Finally, we

conclude with more theoretical results on the decomposition of majority-n into majority-3.

The remainder of this chapter is organized as follows. Section 4.1 illustrates the motivation

for this work, while Section 4.2 provides the notation used in this chapter on binary decision

diagrams (BDDs) and majority graphs. Note that both topics have been previously introduced

in Chapter 2. This section aims instead at explaining the notation and highlighting important

features needed in the chapter. In Section 4.3, a novel BDD-based method to map majority-n

functions into 3-input majority is presented, together with novel upper bounds. In particular,

our method is able to obtain the optimum results for the majority-5 and the majority-7; while

demonstrating the best-known result for the majority-9. The section is largely based on the

journal publication in [177]. Section 4.4 addresses theoretical study of self-dual monotone

functions over 7-input. This class of function is important as it includes the majority-n

functions. Both the complexity and the length are studied in detail as already presented in

the paper [172]. Section 4.5 is largely based on the publication in [166] and proposes novel

results on the decomposition of majority-n into majority-3. This chapter is summarized in

Section 4.6. An overview of the chapter is shown in Figure 4.1.

65

Chapter 4. Majority-n Logic

Novel BDD-based
method to map
majority-n into
3-input majority
operators [Section 4.3]

[Section 4.3] Results:
• novel upper bounds;
• optimum results for 5 and 7 inputs;
• novel best result for 9-input majority
• novel insights on the structure of optimum solutions.

Conjecture:
There always exists an optimum network in which
(i) each node is connected to at least one primary input
(called leafy solutions) and
(ii) the root node is the only node that is connected to one
input variable xn .

Section 4.4 (i) Differences in complexity
for self-dual monotone 7-input functions
(leafy vs. non-leafy implementations)

Section 4.5 (ii) Results on decompositions
〈xn f1 f2〉 of the majority function
over n odd arguments x1, . . . , xn such that
f1 and f2 do not depend on xn

Figure 4.1 – Chapter organization

4.1 Motivation

The majority-of-three function 〈x y z〉, which is true if and only if at least two of its inputs are

true, plays an important role in the digital design of circuits using emerging nanotechnologies,

as extensely demonstrated in Chapter 3. Moreover, it has been shown that many arithmetic

and Boolean operations, such as addition, multiplication, and division, are contained in the

complexity class T C0, which means that they have an efficient realization with polynomial

size and constant depth networks, using unbounded majority gates [88, 146]. For instance, it

is possible to build a n-bit adder with depth = 2 [11, 146] and iterated multiplication of two

numbers with depth = 4 [88, 90]. It is then possible to realize arithmetic addition, division, and

multiplication with polynomial size and constant depth, built using only unbounded-fanin

majority gates and inverters [7]. Note that the arity of each majority is unbounded. These

results may serve as a good starting point for circuit realizations when using majority-based

nanotechnologies, provided that one is equipped with a technique to express majority-n

functions in terms of majority-of-three. In other words, as many emerging technologies only

provide the realization of 3-input majority, an effective realization of majority-n functions

in terms of MIG is required. Moreover, the study of majority-n functions properties and

decompositions into smaller-input blocks play also a fundamental role for the development

of plasmonic-based technologies (as the ones in [72] and Chapter 3) that can efficiently

implement 3-, 9-, and 27-input majority functions.

The problem of expressing majority-n using majority-of-three has already been studied

in the 1960s [12, 189]. In [12], Amarel et al. investigated “how best can the 5-argument

majority function be realized with a network of 3-input majority gates? ”. The focus was on

finding the minimum number of 3-input majorities to build majority-5, but larger n were also

66

4.1. Motivation

considered [12]. In the remainder, we will refer to the minimum number of majority-of-three

to build a majority-n as M(n). It is surprising that, as of today, M(n) is known only for 5-

and 7-input majorities, while the minimum realization of majority-9 (and larger n) in terms

of majority-3 is still under investigation. Other works have focused on M(n), but they have

only considered its asymptotic bounds [103]. The asymptotic complexity for M(n) is linear,

since one can reduce it to median selection [70]. However, when applying the construction

to small values for n, the resulting majority graphs are still very large. For example, the

majority-7 function can be constructed using 42 majority-3 operations according to median

selection construction, while it is known that M(7) = 7. Sorter networks provide an alternative

construction that provides a quasi-linear bound [61]. However, for small n the construction

can yield better results compared to median selection. To follow up with the previous example,

the majority-7 function can be constructed using 32 majority-3 operations based on the sorter

network construction.

In Section 4.3, we focus on finding the minimum number of majority-3 operations to

express majority-n. In particular, an alternative construction based on BDDs [46] is proposed

and we show that for monotone Boolean functions the Shannon decomposition, which is

used in the construction of BDDs, can be expressed using the majority function. This leads to

a one-to-one translation of BDDs into majority graphs, which are logic networks in which all

operations are majority-3 functions. Since majority-n is monotone, we can use the construc-

tion as an upper bound on the number of majority-3 operations. This bound is asymptotically

quadratic, however, for small n it leads to much smaller values compared to the constructions

based on median selection and sorter networks. For instance, for majority-7 the construction

leads to a realization with 15 majority-3 operations. Therefore, in order to find small realiza-

tions for majority-n networks, for small n, the proposed BDD based approach can be a more

effective starting point. Further, we can derive the known optimum results for majority-5 and

majority-7 starting from the proposed BDD construction by applying well-known algebraic

properties of the majority function and two new identities. We apply the same procedure to

majority-9, and it is shown that significant optimization can be obtained leading to a new best-

known solution with 12 majority-3 operations. Majority-7 is the largest majority-n function for

which a minimum size solution is known. The exact solution was found by using exhaustive

search using a SAT-solver (see, e.g., [162]). Here, the entire derivation is explained in detail;

this can provide insight into the decomposition of larger majority functions and may help to

find values for M(n) where n ≥ 9.

The structure of the optimum majority networks obtained using the BDD method has led

to the following conjecture, which does not predict the number of minimum operations, but

predicts a common structure.

Conjecture 4.1 There always exists an optimum network in which (i) each node is connected

to at least one primary input (PI) (leafy solution) and (ii) the root node is the only node that is

connected to xn.

67

Chapter 4. Majority-n Logic

In the second part of the chapter, we thus augment the previously described results with other

two sets of results: (i) a study of self-dual monotone 7-input functions over 3-input majority

operators, focusing on the comparison of their complexity for the leafy and the non-leafy

case; and (ii) novel results on decompositions 〈xn f1 f2〉 of the majority function over n odd

arguments x1, . . . , xn such that f1 and f2 do not depend on xn .

In Section 4.4, all self-dual monotone 7-input functions are enumerated and classified

according to their length L(f) and their combinational complexity C (f) over different majority

Boolean chains (detailed in Section 4.4.1). The former is defined as the minimum number of

operators in the shortest formula of a Boolean function, while the latter is the minimum length

of its Boolean chain. There are 1,422,564 7-input self-dual monotone functions, distributed

over 716 classes according to input permutation (P-equivalence). The classification over

majority network has first been presented by Knuth in [97], both according to the complexity

and the length. Here, we use our own implementation of the algorithm from [97] to enumerate

all 1,422,564 functions and to reproduce their classification according to their length. On

the other hand, we propose our own strategy to compute the combinational complexity for

all 716 classes, which is a SAT-based exact synthesis method. By comparing our results with

the ones in [97], we confirm that, when using majority Boolean chains, the largest L(f) is

11, while the largest C (f) is 8. Moreover, we also present results on leafy majority Boolean

chains, focusing on the differences with respect to the majority case. We demonstrate an

increase in the maximum length, while we show that the worst combinational complexity

remains unaffected. However, the combinational complexity does not remain unchanged for

all functions, i.e., 40 functions have increased combinational complexity when built using

leafy majority chains. As a last result, we show that inverters have an impact on the minimum

majority-network of self-dual monotone functions. It is theoretically known that inverters can

decrease complexity even in monotone functions [89], here we demonstrate and give concrete

examples for the complexity of 7-input functions.

In Section 4.5, we present results on decompositions 〈xn f1 f2〉 of the majority function

over n odd arguments x1, . . . , xn such that f1 and f2 do not depend on xn . In particular, we

derive the conditions for f1 and f2 that satisfy the decomposition. Such decompositions play a

central role in finding optimum majority-3 networks for the majority-n function and integrate

the previous set of theoretical results.

4.2 Preliminaries

This section describes the terminology used in the chapter for the BDDs and the majority-

graphs. We refer the reader to Chapter 2 for further background and to [97] for more details on

the notation.

68

4.2. Preliminaries

x3

x1

x4

x6

x5

x2

(a) K4 graph

clique4,3

22
3 33

5
6

4 44

1

5 5

 ⊥
(b) BDD (c) Graph instance with 3-clique

Figure 4.2 – Diagrammatic notation of a binary decision diagram for the function clique4,3.
(a) is the graph for K4, while (b) is the BDD. The ‘⊥’ and ‘
’ represent the constant functions 0
and 1 [97]. (c) is the graph instance with x4 = x5 = 0. © 2018 IEEE [177]

4.2.1 Binary Decision Diagrams

Recall that BDDs [46] are connected directed acyclic graphs, in which each node represents a

Boolean function. Two terminal nodes labeled ‘⊥’ and ‘
’ represent the constant functions

0 and 1, and all nonterminal nodes are labeled ‘i ’ for some 1 ≤ i ≤ n and connect their two

successor nodes fxi and fx̄i

i

fx̄i fxi

xi ? fxi : fx̄i

(4.1)

using Shannon’s decomposition:

f = xi ? fxi : fx̄i = xi fxi ⊕ x̄i fx̄i (4.2)

The cofactors fxi and fx̄i are the functions that are obtained by replacing xi with 1 and 0 in

f , respectively. Each BDD has one node without parents representing the function, called the

root. Note that in the following, we use the term BDD to refer to an ordered and reduced BDD.

We will use the Boolean function cliquen,k (see for example [92]) as a running example

throughout the section. The function has
(n

k

)
variables, each of which representing an edge in

the complete graph Kn over n variables. For example, the 6 variables representing edges in K4

are shown in Figure 4.2(a). A variable assignment corresponds to a particular graph instance,

in which an edge exists if the corresponding variable is set to true, and is absent otherwise.

We have cliquen,k (x) = 1, if and only if the graph instance corresponding to the assignment x

contains a k-clique, which is a fully connected sub-graph of k vertices.

Example 4.1 Figure. 4.2(b) shows a BDD for clique4,3 with the variable ordering x1 < x2 < x3 <
x4 < x5 < x6. The highlighted path represents the graph instance which assigns x1 = x2 = x3 =
x6 = 1 and x4 = x5 = 0 (see Figure 4.2(c)). This graph instance contains a 3-clique on edges x2,

69

Chapter 4. Majority-n Logic

x3, and x6, thus the function is equal to 1, i.e., the BDD path terminates in node ‘
’. �

When working with BDDs, it is often more convenient to represent a BDD of a Boolean

function over n variables as a sequential list of branch instructions Is−1, Is−2, . . . , I1, I0, where

each Ik has the form (vk ?hk : lk) [97]. In this notation, vk is the label of the node, and

hk < k and lk < k are indexes to other branch instructions, called high and low, respectively.

Instructions I1 = (n +1?1 : 1) and I0 = (n +1?0 : 0) are special instructions to represent the

terminal nodes. They have as vertex labels the “impossible” value n +1, which is not used in

any of the other steps.

Example 4.2 The BDD in Figure 4.2(b) has the following sequential list of branch instructions:

I14 = (1?13 : 12), I13 = (2?11 : 10), I12 = (2?9 : 6),

I11 = (3?8 : 7), I10 = (3?4 : 6), I9 = (3?2 : 6),

I8 = (4?1 : 5), I7 = (4?1 : 0), I6 = (4?3 : 0),

I5 = (5?1 : 2), I4 = (5?1 : 0), I3 = (5?2 : 0),

I2 = (6?1 : 0), I1 = (7?1 : 1), I0 = (7?0 : 0).

For example, I14 refers to the root node labeled 1, and I2 refers to the only node labeled 6. �

4.2.2 Majority Graphs

The mapping approach, which we will present in Section 4.3.1, changes BDDs into majority

graphs. We discuss here the notation used in the rest of the chapter.

A majority graph is a directed acyclic graph in which each terminal node is a PI or a

constant and each nonterminal node represents a majority operation with three incoming

edges. Formally, given a Boolean function f (x1, . . . , xn), it is most convenient to represent a

majority graph with r majority gates as a chain xn+1, . . . , xn+r , where

xi = 〈x j (i)xk(i)xl (i)〉 for n < i ≤ n + r , (4.3)

with −1 ≤ j (i) < i , −1 ≤ k(i) < i , and −1 ≤ l (i) < i . We also define x0 =⊥ and x−1 =
.

We call a majority graph leafy if j (i) ≤ n, k(i) ≤ n, or l (i) ≤ n for all n < i ≤ n + r . In other

words, in each majority operation at least one operand is an input variable.

Example 4.3 Figure 4.3 shows the majority graph for the Boolean function clique4,3. x1, . . . , x6

are the PIs, while each node x7, . . . , x15 represents the majority-of-three function. The majority

70

4.3. Decomposing Majority-n into Majority-3

x9

x8

x13

x15

x14

x12

x7

x11

x10

clique4,3

x1⊥

x3

x2

x5

x4

x6

Figure 4.3 – Majority graph for the function clique4,3 © 2018 IEEE [177]

nodes are given by:

x7 = 〈x0x2x6〉, x8 = 〈x0x1x2〉, x9 = 〈x−1x5x8〉,
x10 = 〈x−1x5x7〉, x11 = 〈x1x7x10〉, x12 = 〈x0x4x11〉,
x13 = 〈x6x8x9〉, x14 = 〈x−1x12x13〉, x15 = 〈x3x12x14〉.

�

4.3 Decomposing Majority-n into Majority-3

In this section, first, we present a novel method based on BDDs to map majority-n functions

into majority-3 and illustrate how the proposed construction can be used as an upper bound

on the number of majority-3 operations. Then, we show that we can derive the known

optimum results for majority-5 and majority-7 and a novel best-known result for the majority-

9, when starting from the proposed BDD construction.

4.3.1 Transforming BDDs into Majority Graphs

As discussed in Section 4.2, one can express any Boolean function f :Bn →B in terms of its

cofactors using (4.2). Recall that (4.2) states:

f = xi ? fxi : fx̄i = xi fxi ⊕ x̄i fx̄i

If f is monotone, i.e., fx̄i f̄xi = 0 for all i , it is possible to use the majority function for decom-

position [9]:

f = 〈xi fxi fx̄i 〉 = xi fxi ⊕xi fx̄i ⊕ fxi fx̄i (4.4)

71

Chapter 4. Majority-n Logic

Remark 4.1 The cofactors fxi and fx̄i commute in (4.4), but they do not in (4.2).

Remark 4.2 The cofactor operation preserves monotonicity in (4.2). Thus, (4.4) can iteratively

be applied to the whole BDD.

Due to these properties,

f = xi ? fxi : fx̄i = 〈xi fxi fx̄i 〉 (4.5)

and one can replace each “Shannon node” by a “majority node” in the BDD of monotone

functions:

i

fx̄i fxi

〈xi fxi fx̄i 〉
(4.6)

Remark 4.3 Since fxi and fx̄i commute, it is no further necessary to distinguish between the

two successors in the BDD node. Also, since the resulting majority graph is leafy, we can use a

notation analogous to the BDD notation, in which the node is labeled by the variable operand xi .

Note that the nodes in BDD and majority graphs use the same notation and have the same shape,

but they differ in the operation they implement (i.e., if-then-else and majority, respectively).

They also differ in how terminal nodes are drawn.

The replacement allows us to generate majority graphs for monotone functions f (x1, . . . , xn)

directly from their BDDs using the following simple transformation rule. Let the BDD for

f be represented using a sequential list of branch instructions Is−1, . . . , I0 as described in

Example 4.2. Then a majority graph for f is

xn+k−1 = 〈xvk xt (hk)xt (lk)〉 where Ik = (vk ?hk : lk) (4.7)

for 2 ≤ k < s. In (4.7) the index transformation function t : [0, s −1] �→ [−1,n + s −2] is defined

as

t (i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if i = 0,

−1 if i = 1,

n + i −1 otherwise.

(4.8)

Example 4.4 We show how to apply the transformation to the BDD in Figure 4.2(b). By just

translating every BDD node into a MAJ node as in (4.6), one obtains the majority graph depicted

in Figure 4.4(a). Note that we removed the boxes around the terminal nodes, mainly to further

help distinguishing the two representations.

Since 〈xi 01〉 = xi , we write nodes that have two constant successors also as terminal nodes.

This applies to three nodes in the graph. Figure 4.4(b) shows the compact version. �

72

4.3. Decomposing Majority-n into Majority-3

clique4,3

22

3 33

5

6

4 44

1

5 5

 ⊥
(a) Majority graph

clique4,3

22

3 33

5

4 4

1

5

 ⊥

4 5

6

(b) Majority graph (compact)

Figure 4.4 – Diagrammatic notation of a leafy majority graph for the function clique4,3 © 2018
IEEE [177]

We prove some properties of the transformation.

Theorem 4.1 The sequence of majority operations derived from (4.7) is a leafy majority graph.

Proof 4.1 By construction, we have vk ≤ n < n +k −1. This implies that the graph is leafy. Also,

n +hk −1 < n +k −1, since hk < k. The same applies to lk . �

Theorem 4.2 The majority graph represents f .

Proof 4.2 The last step in the majority graph is xn+s−2 which corresponds to branch instruction

Is−1 of the BDD. Therefore, due to (4.5),

f = xn+s−2
(4.5)= 〈xvs−1 xt (hs−1)xt (ls−1)〉

where

Is−1 = (vs−1 ?hs−1 : ls−1)

The rest follows from induction. When i = 1,0, the instructions are I1 = (n + 1?1 : 1) and

I0 = (n+1?0 : 0), respectively, which hold by construction. Let us suppose it holds for all Ii , with

2 ≤ i ≤ k. Ik+1 has the form (vk+1 ?hk+1 : lk+1). vk+1 is the label of the node, and hk+1 < k +1

and lk+1 < k +1 are indexes to other branch instructions, which can only be instructions Ii with

2 ≤ i ≤ k. Then it follows that also Ik+1 holds, and this concludes the proof. �

Discussion on complementation

When reducing the size of the resulting majority graph (which has not complemented edges),

some transformation rules may introduce complemented edges in the majority graph and

transform it into a MIG [16]. MIGs are majority graphs which make use of complemented

73

Chapter 4. Majority-n Logic

22

1

3

⊥

(a) BDD

22

1

3⊥

(b) Not optimized majority-3

1

32
(c) Optimum result

Figure 4.5 – Majority-3 from its optimal BDD. (a) is the BDD, while (b) is the network obtained
by the direct mapping of the BDD into the MIG. The optimum result is shown in (c). © 2018
IEEE [177]

edges to represent inversions. In the next section, which deals with deriving optimum majority

graphs for majority-5 and majority-7, we do make use of complemented edges to PIs and we

call them optimum MIGs. However, we also present solutions of the same size that do not

require complemented edges.

Discussion on optimality

In this section, we answer the question whether a size-optimum BDD produces a size-

optimum MIG. Using a simple counter-example, the majority-3 function, we show that this

is not the case. In general, the size of a BDD depends solely on the variable order. Therefore,

there are one or more variable orders that lead to the smallest BDD. The next section shows

that the optimum BDD for the majority-3 function requires 4 nodes, and therefore the direct

transformation into a majority graph requires 3 majority gates. This simple example shows

that this MIG is far from the optimal; and since the majority-3 function is symmetric (see,

e.g., [97]), it is not affected by the variable order. Optimal MIG representations can be achieved

by making use of algebraic transformation rules and identities presented in Chapter 2. It has

been proven in [16] that any other functionally equivalent MIG can be reached using a finite

sequence of transformation rules. It is worth noting that these identities and rules reshape the

MIG in a way such that the inverse transformation (from MIG to BDD) is not always possible

(see, e.g., majority-5 optimum result given in the next section).

4.3.2 Mapping Majority-n

In this section, we illustrate how to use the proposed approach to map the majority-n function

into MIGs with majority-3 operations. For example, for the majority-3 function 〈x1x2x3〉, the

BDD and its corresponding majority graph are shown in Figure 4.5(a) and (b), respectively. The

majority expression that Figure 4.5(b) represents is 〈x1〈x20x3〉〈x21x3〉〉, which is of course far

from optimal. The distributivity rule applies to this expression, giving 〈〈x101〉x2x3〉 = 〈x1x2x3〉;
its diagrammatic notation is shown in Figure 4.5(c).

This example is rather trivial. Next, we show that we can rewrite majority-5 and majority-7

into their optimum MIGs using the identities presented in Chapter 2 and new identities which

74

4.3. Decomposing Majority-n into Majority-3

will be described next. We present majority-5 and majority-7 optimization in detail in order

to (i) demonstrate that our method leads to the optimum known results, and (ii) to illustrate

the complete optimization procedure. Then, we show that the optimization procedure can be

generalized for larger n by showing the optimized majority-9, leading to a new best solution

with 12 majority-3 operations.

Replacement rule and swapping rule

The replacement rule describes under which condition one operand in a majority expression

can be replaced by another one. Note that this rule was used in Chapter 3 for size optimization

of MIGs.

Theorem 4.3 (Replacement rule) We have

〈x y z〉 = 〈w y z〉 if and only if (y ⊕ z)(w ⊕x) = 0,

or in other words y �= z ⇒ w = x.

Proof 4.3 First note that 〈x y z〉 = x(y ⊕ z)⊕ y z. Then

0 = 〈x y z〉⊕〈w y z〉
= x(y ⊕ z)⊕ y z ⊕w(y ⊕ z)⊕ y z

= x(y ⊕ z)⊕w(y ⊕ z) = (w ⊕x)(y ⊕ z),

which concludes the proof. An alternative way to see that the theorem is true, is by applying the

majority law to y and z. �

One can readily verify that the relevance rule presented in [14] is a special case of the replace-

ment rule.

Corollary 4.1 (Relevance rule) We have 〈x y z〉 = 〈xy/z̄ y z〉, where xy/z̄ is obtained by replacing

all occurrences of y with z̄ in x.

Relevance rule is a special case of the replacement rule when w = xy/z̄ . It can be easily shown

that the condition (y ⊕ z)(w ⊕ x) = 0 is always met. In fact, when y = z, (y ⊕ z) = 0; when

y �= z = z̄, (w ⊕x) = (xy/z̄ ⊕x) = (x ⊕x) = 0.

The swapping rule describes when two operands in a majority expression can be swapped

between them.

Theorem 4.4 (Swapping rule) Let v1, v2, w1, w2 not depend on x and y. We have

〈x〈y v1w1〉〈y v2w2〉〉 = 〈x〈y v2w1〉〈y v1w2〉〉, if (v1 ⊕ v2)(w1 ⊕w2) = 0.

75

Chapter 4. Majority-n Logic

In other words, the swapping rule describes a condition in which the subfunctions v1 and v2

can be swapped. Due to commutativity, one can also swap w1 with w2, or both.

Proof 4.4 From the condition in Theorem 4.4 (v1 ⊕ v2)(w1 ⊕w2) = 0, it follows that we have

either (v1 = v2) or (w1 = w2). Therefore, one of the following cases is true.

Case (v1 = v2): Then 〈x〈y v1w1〉〈y v1w2〉〉 = 〈x〈y v1w1〉〈y v1w2〉〉 is trivially true.

Case (w1 = w2): Then 〈x〈y v1w1〉〈y v2w1〉〉 = 〈x〈y v2w1〉〈y v1w1〉〉 due to commutativity. �

These new rules will be used in the next section to derive the optimum solution for

majority-5 and majority-7. However, they can be employed in more general majority-based

optimization.

Mapping majority-5

3

2

3

2

4

1

4

3

⊥ 5

(a) Distributivity

3

2

3

2

4

1

4

3

⊥ 5

4

(b) Relevance

3

2

3

2

4

1

3

⊥
5

3̄

4

(c) Distributivity

3

3

3

4

1

2

3̄

4

5

⊥

(d) Distributivity

3 3

4

2

1

3̄

4

5
(e) Optimum result with com-
plemented edges

3 3

4

2

1

1

4

5
(f) Optimum result without
complemented edges

Figure 4.6 – Decomposing majority-5 into majority-3. (a) is the optimal BDD, the final result
(optimum) is obtained by applying distributivity (a), relevance (b), distributivity 2× (c)-(d).
Both optimum results with (e) and without (f) complemented edges are shown. © 2018 IEEE [177]

We now show how to use these diagrams for the majority decomposition of the majority-5

expression 〈x1x2x3x4x5〉. The starting point derived from a BDD similar to the majority-3 case

is shown in Figure 4.6(a). Recall also that the distributivity rule states:

〈xu〈y v z〉〉 = 〈〈xuy〉v〈xuz〉〉 (4.9)

First, distributivity is applied to the gray nodes to change 〈x3〈x40x5〉〈x41x5〉〉 into 〈x3x4〈x501〉〉 =
〈x3x4x5〉. However, since the nodes labeled ‘4’ have other ingoing edges, these nodes need to

76

4.3. Decomposing Majority-n into Majority-3

be preserved. The resulting network is shown in Figure 4.6(b). Relevance rule is applied on

the gray nodes: 〈x30〈x40x5〉〉 = 〈x30〈x̄3x4x5〉〉 and 〈x31〈x41x5〉〉 = 〈x31〈x̄3x4x5〉〉. This allows

us to replace ⊥ and
 by x̄3 for the gray nodes, thereby making the two nodes labeled ‘4’ struc-

turally equal, as shown in Figure 4.6(c). After again applying the distributivity law twice, one

obtains the final network in Figure 4.6(e). This network has 4 nodes, which is optimum. This

result has been demonstrated to be optimum using SAT-based exact synthesis (see Chapter 2).

In particular, by demonstrating that a network for the majority-5 with 3 gates is unfeasible

(UNSAT).

3

2

3

2

4

1

44 4

3

5 55

6 6

⊥ 7

(a) Identify majority-5

3

2

3

2

4

1

44 4

M5

5 55

6 6

⊥ 7

(b) Left branch

3 M5

2

4

1

4

5 5

6 6

⊥ 7

(c) Identify majority-3

3 M5

2

4

1

4

5 5

6

⊥ 7

6

(d) Relevance

3 M5

2

4

1

4

5 5

6

⊥ 7

6

5̄
(e) Distributivity

4 M5

2 2

5

1

3

5 6

4

5 3

5

6 67 75̄

⊥ ⊥

(f) Distributivity

2

M51

4

53

5 6

4

5 3

5

6 67 75̄

⊥ ⊥

(g) Remove
 and ⊥

2

M51

4

5

6

4

5 5

〈x y z〉

x

675̄

3

3 3̄

(h) Replacement rule

2

M51

4

5

6

4

5 5

〈x y z〉

x

675̄

3

3 1

(i) Replacement rule

2

M51

4

5

6

4

5

675̄

3

1

(j) Distributivity + M5 optimum

2

4 4

5 53

6 5 65

v1 w1

v2

w2

5̄ 5̄7 76 6

1 3

(k) Swapping rule

2

4 4

5 5 1

561 3 3

5̄ 7 6 7
(l) Distributivity (gray) and
relevance (dark gray)

2

5 4

1 6 16

4 3 5̄ 7 5 4̄ 3
(m) Optimum result

Figure 4.7 – Decomposing majority-7 into majority-3. After identifying the majority-3 and
-5 (a-c), the graph is optimized by doing: relevance (d), distributivity ×2 (e)-(f), removing

and ⊥ (g), replacement rule ×2 (h)-(i), distributivity and changing the M5 with its optimum
realization from Figure 4.6 (j), swapping (k), distributivity and relevance (l). The optimum
result is shown in (m) © 2018 IEEE [177]

The final expression is

〈x2〈x3x4x5〉〈x1x3〈x̄3x4x5〉〉〉 (4.10)

77

Chapter 4. Majority-n Logic

Note that an alternative expression without complemented edges can be obtained by applying

the relevance rule on Figure 4.6(e). The final expression without complemented edges is

〈x2〈x3x4x5〉〈x1x3〈x1x4x5〉〉〉 (4.11)

This is shown in Figure 4.6(f).

Mapping majority-7

2

5 4

1 6 16

4 3 5̄ 7 5 4̄ 3
(a) Optimum majority-7, with complemented
edges

2

5 4

6 1

517 3

3 4 6 7
(b) Optimum majority-7, without comple-
mented edges

Figure 4.8 – Optimum majority-7 with (a) and without (b) complemented edges, respectively
© 2018 IEEE [177]

Here, we decompose the majority-7 expression 〈x1x2x3x4x5x6x7〉 using an approach simi-

lar to the one employed for majority-5, and we demonstrate that the optimum known result

can be obtained with our methodology. Figure 4.7(a) shows the starting point, derived from

its BDD as done for the majority-3 in Figure 4.5. First, the majority-5 graph is identified (gray

in Figure 4.7(a)) and written as node M5 = 〈x3x4x5x6x7〉; its expression will be used again

later. From Figure 4.7(b) to 4.7(e), only the left branch of node labeled ‘1’ is considered, but

it is worth noting that all steps are applied in the same way also to its right branch. First,

the majority-3 highlighted in Figure 4.7(c) is changed into its optimum result, then the rel-

evance rule is applied on the gray colored nodes of Figure 4.7(d), allowing the replacement

of 0 with x̄5. Further, the distributivity rule is applied on Figure 4.7(e). The same procedure

(Figure 4.7(b) to 4.7(e)) works for the right branch and the complete graph is shown in Fig-

ure 4.7(f). Here, the distributivity rule is applied on the topmost nodes. In Figure 4.7(g), the

two nodes labeled ‘4’ are almost identical; they only differ in ⊥ and
. In this scenario, ⊥
and
 are interchangeable, and this allows us to replace ⊥ and
 with two signals of opposite

polarities. Figure 4.7(h) shows the resulting network, where ⊥ is replaced by the input x3,

and
 by the input x̄3. Further, the replacement rule is applied on node labeled ‘1’. The

highlighted branch (being x here) is substituted with a new sub-graph w , resulting in Fig-

ure 4.7(i). The replacement rule can also be applied in a similar way on the left branch of node

labeled ‘1’; the resulting graph is Figure 4.7(j). The replacement rule allows us to apply the

distributivity rule on the graph (highlighted in gray). The new graph is shown in Figure 4.7(k);

the node M5 has been changed into its optimum expression from Figure 4.6(e). The swap-

ping rule is next applied on the graph shown in Figure 4.7(k). Since (v1 ⊕ v2)(w1 ⊕w2) = 0,

78

4.3. Decomposing Majority-n into Majority-3

5

2

1

4

3

5

4

3

2

4

3

5

6

4

5

6

7

6

7

8

5

6

7

8

9
⊥
(a) Not optimized
majority-9: 24 nodes

5

8

6

8

3

66̄

4

7

6

5

1

2

6

5̄

5

4

77 7̄

3

9
(b) Manually optimized
majority-9: 15 nodes

9

9 66

8
1

5

1 1

4 7

1̄

7
2 3

4

5 6 8 9

2 3
(c) Optimized majority-
9: 12 nodes

Figure 4.9 – Decomposing majority-9 into majority-3. (a) is the original graph mapped form
the BDD. Results in (b) is obtained by manually optimized (a), while (c) is obtained starting
from (a) and using the rewriting rules in an automatic implementation © 2018 IEEE [177]

then 〈x〈y v1w1〉〈y v2w2〉〉 = 〈x〈y v2w1〉〈y v1w2〉〉 and branches w1 and w2 can be exchanged

between them, resulting in Figure 4.7(l). Distributivity and relevance are applied (highlighted

in Figure 4.7(l)) to obtain the network of Figure 4.7(m). This is the final network, which has 7

nodes and which corresponds to the optimum solution. As in the previous case, the optimality

of the result has been demonstrated using SAT-based exact synthesis and by showing that a

solution with 6 gates is unfeasible. The final expression is

〈x2〈x5〈x1x3x4〉〈x̄5x6x7〉〉〈x4〈x5x6x7〉〈x1x3x̄4〉〉〉 (4.12)

Note that an alternative expression without complemented edges is

〈x2〈x5〈x1x3x4〉〈x6x7〈x1x3x4〉〉〉〈x4〈x5x6x7〉〈x1x3〈x5x6x7〉〉〉〉 (4.13)

This expression can be obtained by applying the relevance rule on the highlighted nodes in

Figure 4.8(a). The optimum result without complemented edges is shown in Figure 4.8(b).

Further, it is worth noting that to find the same solution, SAT-based exact synthesis (see,

e.g., [162]) takes around 0.5 seconds; here, the entire derivation is provided.

We have applied the same rules for the decomposition of the majority-9 expression

〈x1x2x3x4x5x6x7x8x9〉, using an approach similar to the one employed for majority-5 and

majority-7, and we have demonstrated the realization of majority-9 using 15 nodes. The initial

(not optimized) majority graph is the one shown in Figure 4.9(a). As of today, M(9) is still

unknown. We applied similar reduction and rewriting techniques as in the case of majority-7

and were able to reduce the number of majority-3 operations to 15 (Figure 4.9(b)). At the

time of this work, this was the smallest realization of majority-9 in terms of majority-3. At

the time of this writing, we report also a majority-9 realization using 12 nodes (shown in

Figure 4.9(c)) [6]. This has been obtained using algebraic rewriting (replacement rule) on the

79

Chapter 4. Majority-n Logic

majority-9 obtained from the BDD in an automatic way. As shown in Figure 4.9(c), this graph

is not leafy and contains complemented edges, but it is highly symmetric. This demonstrates

that our BDD method results into an advantageous starting point for finding optimum or

close-to-optimum implementations. State-of-the-art exact synthesis is still not able to find an

optimum representation for majority-9. The best-known lower bound is 10; this was derived

by showing, using exact synthesis, that no majority graph can be found with 9 nodes or less.

Upper bounds

In this section, we compare upper bounds of the proposed method with the state-of-the-art.

Further, we show that our method leads to a tighter upper bound for majority-9.

Our proposed synthesis method from a BDD suggests an upper bound uB(n) for the

majority-n function.

Theorem 4.5 The majority-n function 〈x1 . . . xn〉 can be realized using a majority graph with

at most uB(n) ≤ (⌈n
2

⌉)2 −1 majority operations.

Proof 4.5 Let n = 2k +1, i.e., k = ⌊n
2

⌋
. The BDD to represent 〈x1 . . . xn〉 has a diamond shape

with 1 node at the first level, 2 nodes at the second level, until k +1 nodes at level k +1. Then,

the number of nodes per level decreases: it has k nodes on level k +2, k −1 nodes on level k +3,

until 1 node on the last level. Further, this node in the last level will be a leaf in the majority

graph (thus the -1). In summary, this leads to:

uB ≤
k+1∑
i=1

i +
k∑

i=1
i −1.

From this, we can derive

k+1∑
i=1

i +
k∑

i=1
i −1 = (k +1)(2k +2)

2
−1 = (k +1)2 −1

=
(⌊n

2

⌋
+1

)2
−1 =

(⌈n

2

⌉)2
−1.

�

Theorem 4.5 yields a quadratic upper bound, but as discussed in the introduction, it is

possible to do much better. A quasi-linear construction follows from sorter networks [96]. We

simply sort the n bits and pick the one that ends up in the middle position. Sorter networks con-

sist of comparators, which are functions that map a pair of numbers x, y �→ min(x, y),max(x, y).

For Boolean numbers we have min(x, y) = x ∧ y and max(x, y) = x ∨ y , i.e., each comparator

in a sorter network can be composed with 2 majority-3 operations. Let S(n) be the optimum

number of comparators in a sorter network that sorts n elements. Then an upper bound on

80

4.4. The Complexity of Self-Dual Monotone 7-input Functions

Table 4.1 – Upper bounds on the number of majority-3 operations to realize majority-n © 2018
IEEE [177]

n 3 5 7 9 11 13 15 17

Optimum (M(n)) 1 4 7
Optimized BDDs 1 4 7 12
BDDs 3 8 15 24 35 48 63 80
Sorter networks 6 18 32 50 70 90 112 142
Median selection∗ 18 30 42 53 65 77 89 101

∗ These numbers are based on the number of comparators in the construction of [70], but do not take other operations into

account.

Table 4.1 shows the upper bounds on majority functions with various inputs n. The optimum M(n) is known

for n up to 7. Even though the BDD method leads to a quadratic upper bound, for small n (up to 17) the upper

bound is better than state-of-the-art. The BDD method – followed by optimization – leads to the best-known

majority-9 with 12 gates.

the number of majority-3 operations is uS(n) ≤ 2S(n). From [61], it is known that S(10) = 29.

Using, e.g., the systematic construction from Batcher [25], one can derive upper bounds for

larger n.

Dor and Zwick showed that less than 2.942n comparisons are necessary to select the

median value from a set of n numbers, without the need to sort them [70]. Applying it directly,

it would lead to an upper bound of 5.884n majority-3 operations to decompose majority-n.

However, this number needs to be treated more carefully, since their analysis is based on

the comparison model in which only the number of comparators are counted and all other

operations are considered free.

Both the construction on sorter networks and median selection have asymptotically better

upper bounds compared to the quadradic bound from the BDD construction. However, when

actually calculating the numbers for small instances with n ≤ 17, the BDD approach yields

the smallest values (see Table 4.1, which also shows the known optimum results up to n = 7

that were confirmed using exhaustive enumeration [162]). The approach is therefore a good

starting point for finding compact majority-n realizations for small n. The results obtained

using BDD + optimization rules are listed in Table 4.1 as Optimized BDD. Our method is able

to obtain (i) the optimum known results for majority-5 and -7, and (ii) the best-known result

for majority-9. One may be able to derive a general derivation procedure to obtain optimum

or close to optimum majority-n realizations for n ≥ 9.

4.4 The Complexity of Self-Dual Monotone 7-input Functions

In the previous section, we described a mapping method for monotone Boolean functions,

based on the transformation of BDDs into majority graphs. We have used the proposed

method to map the majority-n functions into MIGs with majority-3 operations, obtaining

81

Chapter 4. Majority-n Logic

optimum solutions in which each node is connected to at least one PI (leafy solution). In other

words, we demonstrated that for the majority-n functions up to 7 inputs, the complexity is

invariant when considering majority or leafy majority graphs. Further, it has been proved that

all majority-n functions can recursively be constructed from self-dual monotone functions.

In this section, thus, we study the class of functions that includes self-dual monotone

functions, in particular, focusing on their implementation as multi-level logic networks that

only use (i) majority and (ii) majority-leafy operators. We use enumeration-based and SAT-

based exact synthesis methods to find (i) the minimum number of operators in the shortest

formula of a Boolean function, and (ii) the minimum length of its Boolean chain. First, we

introduce the background and the notation useful to understand the rest of the chapter, this

includes: majority Boolean chains and their complexity and P equivalence classes; then, we

present the proposed algorithms and the results.

4.4.1 Preliminaries

In this section, we focus on self-dual monotone functions and in particular on their com-

plexity [188]. In order to define the complexity of a logic Boolean function, we introduce

the concept of majority Boolean chain.1 The complexity of a Boolean function depends on

the way used to represent the function over a given set of primitives. Given a Boolean func-

tion f (x1, . . . , xn) of n input variables, a majority Boolean chain [97] is a way of representing

functions defined as a sequence (xn+1, ..., xn+r), with the property that each step i in the

chain combines 3 previous steps or inputs using a 3-input majority operator, such that for

n +1 ≤ i ≤ n + r :

xi = 〈x1(i)x2(i)x3(i)〉
x1(i) < x2(i) < x3(i) < xi (4.14)

A leafy majority Boolean chain is a majority Boolean chain for which x1(i) ≤ n for all steps i .

In other words, each step in such Boolean chain is constrained to have at least one previous

step which is an input variable. The inherent complexity of a Boolean function is studied

here according to two different measures, being (i) the combinational complexity, and (ii)

the length. The combinational complexity of a Boolean function f , denoted as C (f), is

defined [97] as the minimum length r of the majority or leafy majority Boolean chain such

that xn+r = f (x1, . . . , xn). Note that the definition of Boolean chain allows for multiple fanouts:

multiple distinct steps in the chain may refer to the same input or step xi . On the other hand,

the length L(f) is defined as the number of 3-input majority operators (leafy or not leafy)

in the shortest formula for f . It can be easily verified that L(f) = C (f) for n ≤ 3, and that

L(f) ≥C (f) [97].

Generally, the study of the complexity of Boolean functions considers the problem of

1In [97] Knuth called them median Boolean chains.

82

4.4. The Complexity of Self-Dual Monotone 7-input Functions

finding some upper bounds [78, 88] or lower bounds [139] over a set of primitives. In our

case, we are instead interested in finding exact numbers both for the length and the combina-

tional complexity over majority operators. Similar problems have already found application

in the logic synthesis and optimization field [81, 161, 162], as, for instance, logic rewriting

algorithms optimize logic networks by replacing small subnetworks with optimized Boolean

chains [81, 161]. In [97], the complexity for all 4- and 5-input Boolean functions in terms of

2-input Boolean operators have been studied, while 3-input Boolean operators have been

used in [83]. Having exact numbers for the combinational complexity of some small functions

can help to find tighter upper bounds for larger functions by using arguments from Boolean

decomposition.

A Boolean function f (x1, x2, . . . , xn) is monotone if and only if f (x) ≤ f (y) whenever x ⊆ y .

This means that for the bitstrings x = x1 . . . xm and y = y1 . . . ym , it follows xi ≤ yi for all i .

A monotone Boolean function can be expressed using only AND (∧) and OR (∨) operators,

without using complementation [97]. Being 〈x y z〉 the majority-of-three-input (majority-3)

operator and considering that 〈x0y〉 = x ∧ y and 〈x1y〉 = x ∨ y , it follows that any monotone

Boolean functions can be written using only majority-3 operators and constants, without

using inverters.

A Boolean function f (x1, x2, . . . , xn) is self-dual if it satisfies

f̄ (x1, x2, . . . , xn) = f (x̄1, x̄2, . . . , x̄n)

where the¯is used to represent the complementation. In other words, it states that nega-

tions can be freely propagated from the inputs to the output. A monotone Boolean function

expressed over ∧ and ∨ operators is self-dual if the symbols ∧ and ∨ can be interchanged

without affecting the value of the function. The majority-3 is an example of self-dual function.

Another useful definition is the one of normal Boolean function, also called 0-preserving

function [140]. A Boolean function f (x1, x2, . . . , xn) is normal if

f (0,0, . . . ,0) = 0

More generally, a Boolean chain is normal if and only if all its operators are normal (see also

Chapter 3).

The majority operator is monotone, self-dual and normal. When considering functions

over 7 inputs, there are 1,422,564 self-dual monotone functions. A majority chain always

computes a monotone and self-dual function. Also, for each monotone and self-dual function,

there exists a majority Boolean chain that computes it.

83

Chapter 4. Majority-n Logic

Input Permutation Equivalence

Two Boolean functions are P-equivalent if they are equivalent up to permutation of their

inputs. As an example, functions f = a ∧ b̄ and g = ā ∧b are equal if we swap the input a

with input b and thus are said to be P-equivalent. P-equivalence is used to group functions

into P-equivalent classes which consist of all functions equivalent up to permutation of the

inputs. A class for a function f is denoted here as [f]. When two function f and g belong to

the same class, i.e., g ∈ [f], they are P-equivalent. Each class can be represented using the

canonical representative f̂ of the class, which is the function f ∈ [f] that has the truth table

corresponding to the smallest integer value. More details about efficient exact and heuristic

algorithms for P classification can be found in [97].

In this section, we are interested in studying the complexity of Boolean functions. A key

property is that all P-equivalent functions, i.e., functions which are in the same class, have

the same combinational complexity C (f) and the same length L(f), which means that when

g ∈ [f], C (f) =C (g) and L(f) = L(g). All self-dual monotone 7-input Boolean functions can be

grouped into 716 classes according to the permutation of their inputs. The key idea is that,

thanks to P-equivalence, we can study the complexity of self-dual monotone 7-input functions

by looking at C (f) and L(f) for only 716 functions, instead of for all 1,422,564 functions. This is

preferable, since the number of P classes is significantly smaller than the number of functions.

Thanks to this property, P-equivalence and its generalization to NPN [79] are largely used in

logic synthesis, for instance in logic rewriting and exact synthesis [81, 121].

4.4.2 Length and Combinational Complexity

In this section, we describe novel algorithms to enumerate and classify self-dual monotone

7-input functions with respect to their length and their combinational complexity over ma-

jority operators. First, we illustrate the implementation of an algorithm to classify functions

according to their L(f). The same algorithm allowed us to obtain the truth table for all the

716 self-dual monotone 7-input functions. Then, we propose a SAT-based exact synthesis

method to classify the obtained 7-input functions according to their combinational complexity.

Indeed, the combinational complexity of Boolean functions can be extracted directly from an

optimum size Boolean chain obtained with SAT-based exact synthesis, as it corresponds to the

number of steps in the optimum solution. Both the majority and the leafy majority Boolean

chains are considered.

Length L(f): Algorithm L

This section describes an exact algorithm to evaluate the length of self-dual monotone func-

tions in terms of majority operators. We start by describing the algorithm for majority opera-

tors, which is inspired by the one in [97]. In particular, it is a 3-input majority-based version of

“Algorithm L” presented in Section 7.1.2 of [97]. Finally, we address the changes necessary to

84

4.4. The Complexity of Self-Dual Monotone 7-input Functions

Input: Truth tables of input variables xk

Output: f uncti on_to_leng th
1 count ← 1,422,564 ;
2 cur r ent_leng th = 0 ;
3 foreach var i able ∈ xk do
4 f uncti on_to_leng th(var i able) ← cur r ent_leng th ;
5 end
6 while count > 0 do
7 cur r ent_l eng th = cur r ent_leng th +1 ;
8 j ,k = 0 l = cur r ent_leng th −1 while l > 0 do
9 foreach combination of g ,h, i ∈ f uncti on_to_l eng th with length j ,k, l respectively do

10 f ←〈g hi 〉 ;
11 if f �∈ f uncti on_to_l eng th then
12 f uncti on_to_leng th(f) ← cur r ent_leng th ;
13 count ← count −1 ;
14 if count = 0 then
15 return f uncti on_to_leng th;
16 end
17 end
18 end
19 if j +k = cur r ent_l eng th −1 then
20 j = j +1 ;
21 k = j ;
22 end
23 else
24 k = k +1 ;
25 end
26 l = cur r ent_leng th −1− j −k;
27 end
28 end
29 return f uncti on_to_leng th ;

Algorithm 4.1: Algorithm L to compute L(f)

make the algorithm work for the leafy majority case.

The idea is to compute the length of all 1,422,564 functions by enumerating all functions

with length 0,1,2, . . .r . Each function f with L(f) = r is built as 〈g hi 〉, where g ,h, and i

are three functions already enumerated and whose sum of lengths is equal to r − 1. This

is practically obtained by enumerating and storing all self-dual monotone functions from

previous lengths. As we are using only majority operators, each function built using previously

obtained self-dual monotone functions is self-dual and monotone and can be added to the

list itself, if not already there. The algorithm is also called [97] Find normal length as it works

only on normal Boolean chains.

The pseudocode is depicted in Algorithm 4.1. The input is a vector containing the truth

tables for the 7-input variables. The first part of the procedure initializes the count to the total

number of functions (line 1 in Algorithm 4.1) and the length for the input variables to 0 (lines

[3–5] in Algorithm 4.1). The table f uncti on_to_leng th maps each function, represented

85

Chapter 4. Majority-n Logic

as truth table, to its length. The algorithm’s outer loop takes into account the total number

of functions, and it ends once the counter hits 0. The inner while loop considers different

values for j ,k, and l , which are the lengths of functions g ,h, and i , respectively. Function f

is computed as the majority of functions g ,h, and i , using all combinations over the three

functions whose lengths sum is equal to cur r ent_l eng th −1 (lines [21–27] of Algorithm 4.1).

The length of f is equal to cur r ent_leng th, further, as all functions from previous steps

are self-dual and monotone, it follows also function f is self-dual and monotone. Thus, if

the function is not already present in the f uncti on_to_leng th map, it is saved in the map

together with its length. The algorithm ends when all functions have been computed, and it

returns all functions and their corresponding lengths.

In practice, few changes to Algorithm 4.1 allowed us to save not only all 1,422,564 self-dual

monotone 7-input functions, but also the 716 representatives of the P-classes. The for loop in

line 11 of Algorithm 4.1 consists practically of 3 loops over g , h, and i . The algorithm consists

thus of 5 nested loops, whose complexity grows with cur r ent_l eng th. Experimentally, to

save runtime, we used the map f uncti on_to_l eng th to search for the existence of function f

(line 13 of Algorithm 4.1), while the loops over g , h, and i have been performed using vectors of

truth tables. Further runtime has been saved by using the commutativity property of majority,

thus by disregarding all combinations of g ,h, and i already considered in different orders.

Algorithm 4.1 works over majority operators. We also designed a second algorithm to

work on leafy majority formulas. To constraint Algorithm 4.1 to work with leafy operators, we

constrained variable j to be always equal to 0, thus to consider only input variables. It means

function g loops over all input variables xk , while h and i can consider functions with larger

lengths. We do not report the leafy-algorithm here as, apart from fixing j = 0, it remains the

same as Algorithm 4.1.

Combinational Complexity C(f): Exact Synthesis

In this section, we present a SAT-based exact method to evaluate the combinational complexity

of self-dual monotone 7-input functions in terms of majority operators. The combinational

complexity is invariant under input permutation, thus we apply the SAT-based exact method

only to the 716 P-classes, whose number is significantly smaller than the total number of

functions. The truth tables for the 716 functions have been obtained by using Algorithm L

in 4.1. As in the previous section, we first present the general method that works over majority

Boolean chains, we then describe the differences to the implementation in order to consider

leafy majority Boolean chains.

The implemented exact synthesis algorithm starts by trying to find a Boolean chain for

function f using r = 0. If a solution exists with r steps, the algorithm returns a majority

Boolean chain that implements function f , otherwise it searches a solution with larger size

(r +1). The algorithm increases the number of steps until a solution is found.

86

4.4. The Complexity of Self-Dual Monotone 7-input Functions

1 synthesize_maj(f , r , S)
2 S ← Restart SATSolver ;
3 Cr eateV ar i ables(S, f ,r) ;
4 Add M ai nC l ause(S, f ,r) ;
5 AddF anInC l auses(S,r) ;
6 AddOtherC l auses(S, f ,r) ;
7 if Sol ve(S) then
8 return Majority Boolean chain ;

9 else
10 return synthesize_maj(f ,r +1,S);

Algorithm 4.2: SAT-based exact method to compute C (f)

This idea is described in the recursive procedure depicted in Algorithm 4.2, which is

applied to each function f separately. The inputs of the algorithm are (i) the function specifi-

cation f (for instance, given as truth table), (ii) the number of steps r , and (iii) the SAT solver S.

For the majority Boolean chain, we used the same encoding presented in [162, 180] and used

in Chapter 3. This is an extension that works over 3-input Boolean operators of the encoding

first proposed by Knuth [98] for 2-input Boolean operators. In our case, the operations of each

step are limited to the majority operator, without allowing inversions. The clauses are the same

as discussed in [98]. The main clause is the one which encodes the truth table of the circuit,

while the fanin clause assures that each step has exactly 3 distinct inputs. AddOtherC l auses

consists of both necessary and additional clauses proposed in [163], which can be added to

reduce the solving time of the SAT solver. More details about both clauses formalization and

additional clauses can be found in [82, 98, 163]. Algorithm 4.2 is first applied to each function

using r = 0, r is then increased until a solution is found. It is worth noting that this method

allows to not only count the number of functions for each combinational complexity, but also

to obtain their implementation in terms of majority operators.

In order to constrain Algorithm 4.2 to work only with leafy majority Boolean chains, we

changed the AddF anInC l auses in order to constrain the first input of each step to be one

of the input variables. The fanin of each step i is encoded in the select variable si j kl , which

is true if steps x j , xk and xl are the children of step xi . In the leafy case, the fanin clause is

changed to ensure x j ≤ n. The rest of the algorithm remains the same as Algorithm 4.2.

4.4.3 Experimental Results

In this section, we describe the experimental results both for the length and the combinational

complexity of self-dual monotone 7-input functions. First, we present our results for the

majority case. Then, we give a comparison between majority and leafy majority Boolean

chains.

We have implemented the proposed algorithms using the open source EPFL Logic Synthe-

87

Chapter 4. Majority-n Logic

Table 4.2 – L(f) and C (f) for all 716 self-dual monotone 7-input classes

Majority Computation Leafy Majority Computation
L(f) Classes Functions C (f) Classes Lleafy(f) Classes Functions Cleafy(f) Classes

0 1 7 0 1 0 1 7 0 1
1 1 35 1 1 1 1 35 1 1
2 2 350 2 2 2 2 350 2 2
3 8 3745 3 9 3 8 3745 3 9
4 38 35203 4 48 4 35 33628 4 45
5 139 270830 5 201 5 123 233660 5 191
6 313 699377 6 354 6 272 600887 6 347
7 176 367542 7 98 7 210 449673 7 114
8 34 43135 8 2 8 50 84519 8 6
9 3 2310 9 0 9 12 14770 9 0

10 0 0 10 0 10 1 1260 10 0
11 1 30 11 0 11 0 0 11 0
12 0 0 12 0 12 1 30 12 0

Table 4.2 shows the length L(f) and combinational complexity C (f) for self-dual monotone 7-input

functions, comparing the majority operators with the leafy majority operators. In the leafy case, L(f) is

increased from 11 to 12 for one class of function; while the maximum C (f) in unaffected.

sis Libraries [165]. Algorithm L has been implemented using the truth table library kitty.2 The

SAT-based exact method has been implemented using the exact logic synthesis library percy.3

We have used the “maj_encoder” and the Glucose SAT solver [20, 21]. All the experiments

have been carried out on Intel Xeon E5-2680 CPU with 2.5 GHz and with 256 GB of main

memory.

Regarding the majority Boolean chains, the results of classification have already been

presented in [97]. Our results have been obtained using Algorithm L (Algorithm 4.1) and are

shown in the first part of Table 4.2. The first three columns of Table 4.2 show both the number

of classes and the number of functions for each length. The largest length is equal to 11 (in

agreement with the results from [97]). Consider as an example function f = 〈x1x2x3x4x5x6x7〉,
which is the majority-of-seven-inputs (majority-7). Its L(f) has been demonstrated both here

and in [97] equal to 8, given by:

〈x1〈x2〈x3x4x5〉〈x3x6x7〉〉〈x4〈x2x6x7〉〈x3x5〈x5x6x7〉〉〉〉 (4.15)

While for the length we have implemented the same algorithm presented in [97] to obtain

2Available at: https://github.com/msoeken/kitty
3Available at: https://github.com/whaaswijk/percy

88

4.4. The Complexity of Self-Dual Monotone 7-input Functions

our results, for the combinational complexity we have used an alternative approach, i.e., SAT-

based exact synthesis. The results are obtained applying Algorithm 4.2 on all 716 functions,

with a total runtime of 4038 seconds and 2997 seconds for the majority and leafy majority

Boolean chains, respectively. The runtime for the method presented in [97] on majority

Boolean chains is 6894 seconds. Note also that while Knuth’s algorithm only counts the

number of functions for each class, in our case extra memory and runtime are necessary in

order to also get the majority networks implementations.4 Our results for the combinational

complexity are shown in columns 4 and 5 of Table 4.2. As we used a SAT-based exact synthesis

method, we have computed the combinational complexity only for the 716 classes. The

maximum combinational complexity is 8 (in agreement with the results in Table 4.3). The

shortest chain for function f = 〈x1x2x3x4x5x6x7〉 needs 7 steps and it is given by:

x8 = 〈x1x3x4〉, x9 = 〈x6x7x8〉, x10 = 〈x5x8x9〉
x11 = 〈x5x6x7〉, x12 = 〈x1x3x11〉, x13 = 〈x4x11x12〉

x14 =〈x2x10x13〉 (4.16)

This last result matches the one demonstrated both in [97] and in Section 4.3.

The second half of Table 4.2 shows the leafy majority results. The worst L(f) is increased

to 12, while the largest combinational complexity is still 8. As a general trend, functions need

more steps when the majority operators are constrained to have at least one PI. For example,

note that the number of chains with 8 steps is increased from 2 to 6. By comparing the majority

results with the leafy ones, we can conclude that:

1) The class with the largest length is the same both in majority and leafy majority compu-

tation, and it is the function with truth table (in hexadecimal form):

fefefeaafeccf080fef0cc80aa808080

Its combinational complexity in both majority and leafy is equal to 8 steps, obtained using

the Boolean chain given by:

x8 = 〈x5x6x7〉, x9 = 〈x2x3x5〉, x10 = 〈x1x8x9〉
x11 = 〈x3x7x10〉, x12 = 〈x2x6x10〉, x13 = 〈x4x11x12〉

x14 =〈x1x4x13〉, x15 = 〈x5x13x14〉 (4.17)

2) Regarding the length, 98 functions out of 716 have different length when comparing

majority with leafy majority formulas. The maximum difference in length is equal to 3. This is

true for functions:

4Available at: https://github.com/eletesta/7input_classification

89

Chapter 4. Majority-n Logic

feeaeaeaeeaaaaa0faaaaa88a8a8a880
feeeeeeaeeeaecc0fcc8a888a8888880
feeaece0faeaa8a0faeaa8a0f8c8a880

3) For the combinational complexity, 40 functions out of 716 have a different combinational

complexity when comparing majority with leafy majority Boolean chains. In this case, the

difference is equal to 1 for all the functions.

4) Up to 3 steps, the results are the same both for majority and leafy majority case. This

was expected, if we consider that we are not allowing steps in the Boolean chains to have two

equal inputs.

5) For the majority-7, the length in the majority case is equal to 8 and its complexity is 7.

The combinational complexity in the leafy case is unchanged (w.r.t. the majority case) and

equal to 7, as it has been demonstrated in Section 4.3 and seen in (4.16). Further, we prove

that also its length is unchanged when considering leafy majority operators.

To further stress the difference between majority and leafy majority Boolean chains, con-

sider function feeaeaeaeeaaaaa0faaaaa88a8a8a880 as an example. When considering its length,

the difference between majority and leafy majority is equal to 3. i.e., L(f) = 4 and Lleafy(f) = 7.

The smallest majority Boolean chain needs 4 steps:

x8 =〈x1x3x6〉, x9 = 〈x1x4x5〉,
x10 =〈x1x2x7〉, x11 = 〈x8x9x10〉 (4.18)

In the leafy case, the same Boolean chain cannot be used, as the last step x11 is the majority of

three majority operators in the previous steps. The function needs 5 steps in the leafy majority

Boolean chain, given by:

x8 =〈x1x3x6〉, x9 = 〈x1x2x7〉,
x10 = 〈x1x8x9〉, x11 = 〈x5x8x9〉, x12 = 〈x4x10x11〉 (4.19)

As a last result, it is worth mentioning that our SAT-based exact synthesis method was able

to demonstrate better combinational complexity for one of the 716 classes with respect to

the original results in [97]. The discrepancy was due to a bug in the original version of the

algorithm in [97], which has been found and solved as a result of this work. The original results

obtained in [97] are listed in Table 4.3. In Table 4.3, the number of functions with complexity 6

and 7 respectively are not in agreement with our results in Table 4.2 (see highlighted numbers).

In particular, for one function, the SAT-based synthesis method was generating a smaller

combinational complexity. The discrepancy has been discussed with the author, and corrected

in the most recent version of [97].

90

4.4. The Complexity of Self-Dual Monotone 7-input Functions

Table 4.3 – L(f) and C (f) for all self-dual monotone 7-input functions taken from Section 7.1.2
in [97]

L(f) Classes Functions C (f) Classes Functions

0 1 7 0 1 7
1 1 35 1 1 35
2 2 350 2 2 350
3 8 3745 3 9 3885
4 38 35203 4 48 42483
5 139 270830 5 201 406945
6 313 699377 6 353 798686
7 176 367542 7 99 169891
8 34 43135 8 2 282
9 3 2310 9 0 0

10 0 0 10 0 0
11 1 30 11 0 0

Table 4.3 shows the length L(f) and combinational complexity C (f) for self-dual monotone 7-input functions

over majority operators. The discrepancy in this table as compared to our results in Table 4.2 is due to a bug

in the original version of [97].

Table 4.4 – C (f) for 715 self-dual monotone 7-input functions over majority Boolean chains
with inverters

C (f) Classes

0 1
1 1
2 2
3 9
4 48
5 210
6 374
7 70
8 0

Table 4.4 shows the combinational complexity C (f) for self-dual monotone 7-input functions over majority

operators with inverters. The table is not complete (one function is still running), but preliminary results

show that inverters have a positive effect in decreasing the complexity of such functions.

Concerning future developments of this section results, a key role is played by the use of

inverters. It is already known from complexity theory that the inverters could help to reduce

91

Chapter 4. Majority-n Logic

asymptotic bounds of size and depth of logic networks for monotone functions [89]. Future

work may include studying the effect of inversions both on the length and the combinational

complexity of self-dual monotone 7-input functions. Also for this case, leafy majority Boolean

chains could be considered. Towards this direction, we show in Table 4.4 some preliminary

results for the combinational complexity of the 716 self-dual monotone Boolean functions

when using majority Boolean chains and inverters. The results are obtained using a SAT-based

exact synthesis method for MIGs [14], as presented in [162]. This method is similar to the one

presented in Algorithm 4.2. At the time of writing the thesis, 715 functions out of 716 were

synthesized by our exact synthesis method. 5 Even if not complete, Table 4.4 shows that the

combinational complexity of 39 functions is decreased thanks to the use of inverters. For

instance, consider function feeeeee8faa8aaa0faaaeaa0e8888880. The combinational complexity

over majority Boolean chain (with no inversion) is equal to 7, given by the Boolean chain:

x8 =〈x1x3x4〉, x9 = 〈x2x6x8〉,
x10 =〈x7x8x9〉, x11 = 〈x3x4x10〉,

x12 = 〈x5x6x11〉, x13 = 〈x2x5x12〉, x14 = 〈x1x10x13〉 (4.20)

The same function can be synthesized using only 6 steps, if we allow inverters:

x8 = 〈x1x̄5x7〉, x9 = 〈x1x5x̄7〉, x10 = 〈x3x4x8〉,
x11 = 〈x2x6x9〉 x12 = 〈x1x5x̄9〉, x13 = 〈x10x11x12〉 (4.21)

4.5 Pairs of Majority-Decomposing Functions

In this section, we present further theoretical results on top of those presented in Section 4.3.

Ultimately, we are again driven by the question of how many majority-3 operations are suf-

ficient to realize the majority-n function. Recall that we address the minimum number of

majority-of-three to build a majority-n as M(n). Optimum majority networks obtained with

the BDD method for n = 3, 5, and 7 are demonstrated in Section 4.3 and reported here:

1 2 3

1 2 3

1 4 2
4 3

5

1 2 3
4 5

6

4 5 6

2 1

3
7

(4.22)

The structure of these optimum majority networks has led to Conjecture 4.1, which does not

predict the number of minimum operations, but predicts a common structure. We report

again the conjecture here to help the reading of the rest of the chapter.

5Unfortunately, after 10 months of computation, one function is still running. It is not surprising that the
“missing” function is the one with largest lenght and combinational complexity.

92

4.5. Pairs of Majority-Decomposing Functions

Conjecture 4.1 There always exists an optimum network in which (i) each node is connected

to at least one PI and (ii) the root node is the only node that is connected to xn.

For example, variables x3, x5, and x7 only appear at the root nodes of the optimum

majority networks for n = 3,5, and 7 in (4.22). In order to derive further knowledge from

the optimum majority networks for n = 3,5, and 7, and motivated by Conjecture 4.1, in this

section, we investigate decompositions of the majority-n function 〈x1 . . . xn〉 into the majority-

3 expression 〈xn f1 f2〉, such that f1 and f2 are Boolean functions over n −1 variables that do

not depend on xn .

The main result of this section is the following:

Theorem 4.6 For k ≥ 1, let n = 2k +1, and f1 and f2 two (n −1)-variable Boolean functions.

Then

〈x1 . . . xn〉 = 〈xn f1 f2〉,
if, and only if

(a) f1(x1, . . . , x2k) = f2(x1, . . . , x2k) = 1, if x1 +·· ·+x2k > k,

(b) f1(x1, . . . , x2k)⊕ f2(x1, . . . , x2k) = 1, if x1 +·· ·+x2k = k, and

(c) f1(x1, . . . , x2k) = f2(x1, . . . , x2k) = 0, if x1 +·· ·+x2k < k.

In other words, if the number of ones in the input pattern is less than k, then both functions

must evaluate to 0, and if the number of ones is larger than k, then both functions must

evaluate to 1. Only in the case where the number of ones equals k, one has the freedom to

select the output of one function to be 1, if the other function outputs 0.

Moreover, a second conjecture states:

Conjecture 4.2 M(n) = 3(n−3)
2 +1, for odd n ≥ 3.

Note that M(n) is the minimum number of majority-of-three to build a majority-n. Con-

sequently, M(9) = 10. However, neither a witness nor a proof excluding the existence of a

network with 10 majority operations has been found. We made use of our findings in an

exhaustive search algorithm and were able to find experimentally that Conjecture 4.2 and

Conjecture 4.1 cannot both be true. More precisely, there cannot be a majority network for

majority-9 with 10 majority operations (as predicted by Conjecture 4.2) adhering to a structure

as described by Conjecture 4.1.

The remainder of the section is organized as follows. First, we give the proof for Theo-

rem 4.6. Then, after introducing threshold functions in Section 4.5.2, we review two results

93

Chapter 4. Majority-n Logic

from the literature as special cases of Theorem 4.6, together with a new decomposition, which

is also a special case of Theorem 4.6 and can be used as an explanation for the optimum

majority network for n = 7.

4.5.1 Proof of the Main Theorem

In this section, we give the proof for Theorem 4.6.

Proof of Theorem 4.6 The theorem is proved by case distinction on xn. If xn = 0, then the result

of the majority-n must be true only if more than k of the arguments x1, . . . , x2k are true. Case (a)

yields 〈011〉 = 1; case (b) yields 〈001〉 = 〈010〉 = 0; case (c) yields 〈000〉 = 0.

If xn = 1, then the result of the majority-n must be true only if at least k of the arguments

are true. Case (a) yields 〈111〉 = 1; case (b) yields 〈101〉 = 〈110〉 = 1; case (c) yields 〈100〉 = 0. �

4.5.2 Majority-n Decompositions

In this section, we describe two majority-n decompositions from state-of-the-art and intro-

duce a novel type of decomposition called “Parity-splitting Decomposition”. The described

decompositions are special cases of our main result from Theorem 4.6. In order to understand

the following discussion, we first illustrate some important symmetric Boolean functions

called threshold functions, which are a generalization of majority functions. Let

S>k (x1, . . . , xn) = [x1 +·· ·+xn > k] (4.23)

be the function that is true, if more than k of the input arguments are true. Also, for k > 0 let

S=k (x1, . . . , xn) = S>k−1(x1, . . . , xn)∧S>k (x1, . . . , xn) (4.24)

be the function that is true, if exactly k of the input arguments are true.

Let n = 2k +1 for some integer k ≥ 1. Then the majority-n function can also be written as

〈x1 . . . xn〉 = S>k (x1, . . . , xn). (4.25)

Co-factor Decomposition

The first decomposition was discovered by Akers in the early 1960s [9]. It is a simple decompo-

sition in which f1 and f2 are the positive and negative co-factor of the majority-n function,

respectively. One obtains the positive or negative co-factor of a function f with respect to a

variable xi , by setting xi to 1 or 0, respectively:

〈x1 . . . xn〉 = 〈xn〈x1 . . . xn−11〉〈x1 . . . xn−10〉〉 (4.26)

94

4.5. Pairs of Majority-Decomposing Functions

Theorem 4.7 For k ≥ 1 and n = 2k +1, the functions f k
1 = 〈x1 . . . xn−10〉 and f k

2 = 〈x1 . . . xn−11〉
are a pair of majority-decomposing functions.

Proof 4.7 It follows easily from noting that f k
1 = S>k (x1, . . . , x2k) and f k

2 = S≥k (x1, . . . , x2k). �

Example 4.5 We use the co-factor decomposition to derive an expression for majority-3. In this

case, we get n = 3, f 1
1 = 〈x1x20〉 = x1 ∧x2, and f 1

2 = 〈x1x21〉 = x1 ∨x2. Hence, the decomposition

leads to the expression 〈x3(x1 ∧ x2)(x1 ∨ x2)〉 with 3 majority-3 operations to express a single

majority-3 operation. �

Majority-reducing Decomposition

In this section, we review a decomposition from Amarel, Cooke, and Winder [12] that sets

f k
1 = 〈x1 . . . x2k−1〉. In other words, the majority-n function is decomposed in terms of the

smaller majority-(n −2) function.

Theorem 4.8 (See [12] for the proof) For k ≥ 1 and n = 2k+1, the functions f k
1 = 〈x1 . . . x2k−1〉

and f k
2 = S>k (x1, . . . , x2k−1)∨ x2k S>k−2(x1, . . . , x2k−1) are a pair of majority-decomposing func-

tions.

Example 4.6 We use Theorem 4.8 to find a decomposition for majority-3. Then, f 1
1 = S>0(x1) =

x1 and f 1
2 = S>1(x1)∨x2S>−1(x1) = x2. Hence 〈x1x2x3〉 = 〈x3x1x2〉. �

The optimum network for majority-5 can be directly derived from this decomposition as

illustrated by the following example.

Example 4.7 For k = 2, we have f 2
1 = 〈x1x2x3〉, corresponding to the subnetwork on the left-

hand side in (4.22), and

f 2
2 = S>2(x1, x2, x3)∨x4S>0(x1, x2, x3) = x1x2x3 ∨x4(x1 ∨x2 ∨x3).

One can readily verify that f 2
2 = 〈x1x4〈x2x3x4〉〉, which corresponds to the subnetwork on the

right-hand side in the optimum network for majority-5. �

It is worth noting that in [12], the authors also show how to describe f k
2 in terms of k

majority-3 operations and k +1 majority-5 operations.

Parity-splitting Decomposition

In this section, we introduce a new decomposition, which we will use to explain the optimum

majority network for majority-7. Let n = 2k+1, as in the previous sections. The decomposition,

95

Chapter 4. Majority-n Logic

by construction, is not applicable to all odd n, but only when k is odd, e.g., n = 3, n = 7, n = 11,

and so on. We first define a function

gk (x1, . . . , xk , xk+1, . . . , x2k) =
S>k (x1, . . . , x2k)⊕S=k (x1, . . . , x2k)(x1 ⊕·· ·⊕xk), (4.27)

which is true, if (i) either more than k arguments are true, or if (ii) exactly k arguments are true

while an odd number of these k arguments must be from the first arguments x1, . . . , xk . We

can use this function to describe a pair of majority-decomposing functions.

Theorem 4.9 Let k ≥ 1, and k be odd. Then

f k
1 = gk (x1, . . . , xk , xk+1, . . . , x2k)

and

f k
2 = gk (xk+1, . . . , x2k , x1, . . . , xk)

are a pair of majority-decomposing functions.

Proof 4.9 It is easy to see that case (a) and (c) of Theorem 4.6 are true from the definition of gk .

In the case of (b), the functions simplify to f k
1 = x1⊕·· ·⊕xk and f k

2 = xk+1⊕·· ·⊕x2k . Since k

is odd, we have f k
1 ⊕ f k

2 = x1 ⊕·· ·⊕x2k = 1. Note that in the case k even, the x1 ⊕·· ·⊕x2k would

be equal to 0, and the theorem would not be valid. �

Example 4.8 Let k = 3, i.e., n = 7. Then one can verify that

f 3
1 = S>3(x1, x2, x3, x4, x5, x6)⊕ (x1 ⊕x2 ⊕x3)S=3(x1, x2, x3, x4, x5, x6)

can be expressed as

〈x3〈x4x5x6〉〈x1x2〈x4x5x6〉〉〉,
which corresponds to the subnetwork on the right-hand side in the optimum network for

majority-7 in (4.22). Similarly, f 3
2 corresponds to the subnetwork on the left-hand side, as it

is obtained by simply swapping x1, x2, x3 with x4, x5, x6. In fact, it is quite surprising that in

the optimum network for majority-7, there is no sharing between the networks for f 3
1 and f 3

2 ,

although their expressions are very similar. �

Also the optimum network for k = 1, i.e., majority-3, can be derived from the parity-

splitting decomposition.

Example 4.9 Let k = 1. Then we have

f 1
1 = S>1(x1, x2)⊕x1S=1(x1, x2) = x1x2 ⊕x1(x1 ⊕x2) = x1.

Analogously, we find f 1
2 = x2. �

96

4.6. Summary

4.5.3 Application to Find Optimum Majority Networks

Having found that the reviewed and proposed decompositions can explain the optimum

results for n ≤ 7, we investigate whether they help to find optimum networks for larger n.

Theorem 4.6 describes a large set of pairs of majority-decomposing functions. Case (a)

and (c) fix the output for f k
1 and f k

2 for all input patterns with less or more than k ones. But

for the
(2k

k

)= (2k)!
k !2 input patterns that have exactly k ones, one can decide whether to assign

f k
1 to 1 or 0. This leads to 2

(2k)!
k !2 different pairs of decomposing functions. Concretely, these are

4,64,220,270, and 2252 for k = 1,2,3,4, and 5.

We first show that Conjecture 4.2 and Conjecture 4.1 cannot both hold for n = 9, i.e., k = 4.

In other words, there exists no majority network for majority-9 with 10 gates in which each gate

points to a PI and only the top-most gate points to x9. Instead of finding a majority network for

majority-9, we tried to find a majority network for a pair of functions (f 4
1 , f 4

2) with 8 inputs and

9 gates. We leave f 4
1 and f 4

2 unspecified, but only constrain them to adhere to the conditions

from Theorem 4.6. This allows to explore the full space of all 2
8!

4!2 = 270 possible decompositions.

We expressed this problem using a SAT solver similar to the encoding proposed in [99, 162]. On

a MacBook computer using a 2.7 GHz Intel Core i5 processor with 8 GB memory, we are able to

show that the problem is unsatisfiable within about 5 minutes. Since no network with 9 gates

exists to compute any pair (f 4
1 , f 4

2), there cannot be a majority network to compute majority-9

with 10 gates that follows the structure described in Conjecture 4.1. However, there still may

exist a majority network for majority-9 with 10 gates, but if so, it cannot have a decomposition

structure similar to those found for n = 3,5 and 7. Or, the optimum network requires more

than 10 gates but can still have a structure as described by Conjecture 4.1.

Based on Conjecture 4.2, majority-11 might be realizable using 13 operations. Inspired

by the structure for majority-7 in (4.22), we tried to realize f 5
2 = S>5(x1, . . . , x10)⊕ (x1 ⊕ ·· ·⊕

x5)S=5(x1, . . . , x10) from the parity-splitting decomposition using 6 gates. We can show with

exhaustive search that this is not possible. This implies that the structure for majority-7

in (4.22) cannot trivially be extended for majority-11, with two disjoint subnetworks for f 5
1

and f 5
2 . However, this result does not imply that there is no 13-operation majority network for

majority-11 that used the parity-splitting decomposition, since there may be shared nodes for

f 5
1 and f 5

2 .

4.6 Summary

In this chapter, we illustrated many and diverse theoretical results on majority logic. We

addressed two main topics, being (i) answering the question “how best can the n-argument

majority function be realized with a network of 3-input majority gates?”; and (ii) the complex-

ity of self-dual monotone functions, and its dependancy on inversions and leafy constraint.

Regarding the first topic, we described a mapping method for monotone Boolean functions,

based on the transformation of BDDs into majority graphs. We used the proposed method to

97

Chapter 4. Majority-n Logic

map the majority-n function into majority graphs. Due to the more compact initial representa-

tion, the approach is favorable as compared to methods based on median selection and sorter

networks, for small n. In particular, we were able to derive the optimum MIG for majority-5

and majority-7 functions, and the best-known results for majority-9. For their optimization,

we introduced two useful new identities for majority-based function optimization. Moreover,

we presented a novel decomposition, called “parity-splitting decomposition”. This novel de-

composition contributed in giving more insights on the optimum results of large n. We also

studied the complexity of self-dual monotone 7-input functions in terms of 3-input majority

operators. Finding minimum chains is not only of interest from a theoretical point of view,

but it also has practical application. For example, they can be used in logic optimization and

technology mapping. Our method uses both state-of-the-art algorithms and exact synthesis,

based on P classification, to compute the complexity of Boolean functions according to their

(i) length, and (ii) combinational complexity. We demonstrated how inverters can positively

contribute in reducing the complexity for this class of functions, while constraints on the

inputs (i.e., leafy majority nodes) of each node can instead have a negative effect. As a final

result, for the majority function of 7 inputs, nor the inverters neither the leafy constraint

change the complexity of the function, when realized using 3-input majority operators.

98

5 XOR-based Logic Synthesis

Chapter 3 was dedicated to majority logic synthesis mainly addressing emerging technologies,

while Chapter 4 considered theoretical results of majority-n Boolean functions. This chap-

ter focuses instead on the study of XOR-based logic synthesis, i.e., techniques that use the

XOR operator as a key part of the optimization. The chapter consists of two main sections,

concentrating on different aspects and optimization goals. First, we present a novel Boolean

resubstitution method based on the Boolean difference, for the area optimization of standard

CMOS-based designs. Then, we describe a complete and automatic framework that works

over xor-and graphs (XAGs), to minimize the number of AND gates for cryptography and

security applications.

An overview of the chapter is presented hereafter and shown in Figure 5.1. First, the

motivations are detailed in Section 5.1. Then, we present two XOR-based optimizations in

Section 5.2 and Section 5.3, respectively. In particular, in Section 5.2, we illustrate a novel

Boolean method addressing size optimization of and-inverter graphs (AIGs). The method is a

resubstitution algorithm, based on computing the Boolean difference between two nodes of

the network. Note that the Boolean difference is the XOR operation between two functions.

Our method uses BDDs as underlying datastructure for optimization, and allows us to reduce

the area of 36 industrial benchmarks of −3.12% on average, after place & route, at limited

runtime increase. The section is largely based on the publications in [170, 171]. In Section 5.3,

we present three different methods concentrating on the minimization of the number of

AND gates in an XAG. The three methods are based on classical resubstitution, rewriting,

and refactoring techniques of standard logic synthesis. The presented tool is fully automatic,

and achieves remarkable results over both EPFL benchmarks and two sets of cryptography

benchmarks. This last section is based on the publications presented in [175, 178]. Finally, the

chapter is concluded in Section 5.4 with a summary.

99

Chapter 5. XOR-based Logic Synthesis

Novel Boolean logic syn-
thesis techniques based
on XOR logic.

[Section 5.2] Boolean Difference method
• Scalable Boolean method
• Resubstitution framework based on BDDs;
• Area optimization: -3.12% over 36 ASICs in standard
CMOS technologies, after physical implementation.

[Section 5.3] Crypthography Applications
• Minimize the number of ANDs over XOR-AND Graphs;
• Complete and automatic tool using Boolean methods:
rewriting, resubstitution and refactoring
• Results over cryptography and security benchmarks.

Figure 5.1 – Chapter organization

5.1 Motivation

This section discusses the motivations of the chapter. Compared to the previous chapter,

which concentrates on theoretical results, this chapter shows a more pragmatic approach

to logic synthesis, and thus considers practical aspects to make algorithms and methods

successful in logic syntehsis complex tools. This chapter focuses entirely on XOR-based logic

synthesis methods, and experimental results address both classical CMOS-based design, and

cryptography and security benchmarks.

The benefit of the XOR operator in representing and optimizing logic has already been

demonstrated in [58, 81, 85]. For instance, the work in [81] proved how majority graphs en-

riched with the XOR operator (xor-majority graphs (XMGs)) are more compact representations

and result in more efficient exact synthesis-based rewriting than MIGs; while the work in [85]

has presented the benefit of the XOR operator in AIG-based rewriting. The renewed interest

in Boolean methods in logic synthesis is due to the continuous push to improve quality of

results (QoR) faced by the electronic design automation (EDA) community. In particular, and in

light of modern computing capabilities, Boolean synthesis methods have experienced revived

attention in the last few years [19, 171]. Boolean methods use don’t cares as degree of freedom

for optimization and rely on complete functional properties of Boolean functions. Compared

to algebraic methods, which treat a Boolean function as a polynomial, Boolean methods

achieve better QoR but imply higher computational cost and consequently have been used

cautiously in EDA flows [38, 69]. For instance, the recent work in [19] showed improvements

to Boolean resynthesis, enabling some high-quality Boolean methods to be runtime afford-

able. This motivates our research to revisit high-quality and high-computational-complexity

optimization methods. In Section 5.2, we present a novel Boolean resubstitution method

(based on the Boolean difference), specifically designed to be scalable (runtime-effcient) and

to unveil further optimization opportunities in modern synthesis flows. The XOR operator is

100

5.1. Motivation

the key in identifying the difference between two functions, which is defined as the ⊕ of two

Boolean functions.

Our research in XOR-based Boolean methods has resulted in a novel interest for such

techniques, and, in the second half of the chapter, we specifically extend XOR-based logic

synthesis to consider an alternative optimization objective for cryptography and security ap-

plications. Recently, the works in [33, 60, 149, 175] have started this new domain of application

for logic synthesis. In this scenario, logic synthesis makes use of XAGs [175] as data struc-

ture for optimization, because they efficiently abstract cryptography circuits over the basis

{AND, XOR, NOT} [33]. Further, logic synthesis focuses on the minimization of the number

of AND gates as its main target metric for optimization. The minimization of the number

of AND gates for cryptography is fundamental for two main reasons. First, the number of

AND gates correlates to the degree of vulnerability of a circuit [183]. The minimum number

of AND gates sufficient to implement a Boolean function as an XAG is called multiplicative

complexity of the function [183], while the multiplicative complexity of the logic network is

defined as the actual number of AND gates used in the network representation of the func-

tion [80, 175]. The multiplicative complexity of a function directly correlates to the resistance

of the function against algebraic attacks [64], while the multiplicative complexity of a logic

network implementing that function only provides an upper bound. Consequently, minimiz-

ing the multiplicative complexity of a network is important to assess the real multiplicative

complexity of the function, and therefore its vulnerability. Second, the number of AND gates

plays an important role in high-level cryptography protocols such as zero-knowledge protocols,

fully homomorphic encryption (FHE), and secure multi-party computation (MPC) [10, 52, 149].

For example, the size of the signature in post-quantum zero-knowledge signatures based on

“MPC-in-the-head” [77] depends on the multiplicative complexity in the underlying block

cipher [52]. Moreover, the number of computations in MPC protocols based on Yao’s garbled

circuits [167] with the free XOR technique [100] is proportional to the number of AND gates.

Regarding FHE, XOR gates are considered cheaper and less noisy compared to AND gates.

To further motivate our work, it is worth mentioning that in techniques to protect against

side-channel attacks, the cost of general-purpose protections grows with the number of AND

gates [64]. Moreover, in a different domain, the work in [113] has recently demonstrated

the positive effect of the minimization of AND gates on the number of qubits and expensive

quantum operations (T gates) in fault-tolerant quantum circuits.

While it is clear that the multiplicative complexity has a key role in cryptography and

that logic synthesis can have a strong impact in its optimization, so far, there are no fully

automatic logic synthesis tools able to address the optimization of the number of AND gates

in a network as their main goal for optimization. State-of-the-art tools [40, 190] automatically

address size optimization, without precisely minimizing the number of ANDs, and methods

from the cryptography community rely heavily on manual decomposition and optimization

strategies [33]. Thus, in Section 5.3, we propose a fully automatic logic synthesis toolbox for

cryptography applications. The proposed tool presents a complete synthesis flow that inter-

changes various logic synthesis techniques able to find different optimization opportunities

101

Chapter 5. XOR-based Logic Synthesis

on the same network.

5.2 Boolean Difference Method

This section presents a novel Boolean resubstitution framework based on the Boolean differ-

ence computation and implementation, aiming at optimizing the size of circuits. We focus on

techniques to make our Boolean resubstitution methods efficient and applicable to large func-

tions. We thus discuss novel Boolean filtering and partitioning techniques to break the logic

into smaller subnetworks. In the remainder of the section, we first present the theory on the

Boolean difference; then, we describe the algorithm implementation and the complete flow.

Finally, we present the experimental results over both academic and industrial benchmarks.

5.2.1 Theory

The Boolean difference [38] of a Boolean function f (x1, x2, . . . , xn) w.r.t. an input variable xi is

defined as:
∂ f

∂xi
= fxi ⊕ fx̄i (5.1)

where fxi and fx̄i are the two cofactors and ⊕ is the XOR operator. It states whether function f

is sensitive to any change in input xi . In a similar way, the Boolean difference of two Boolean

functions f (x1, x2, . . . , xn) and g (x1, x2, . . . , xn) is defined as:

∂ f

∂g
= f ⊕ g , (5.2)

It indicates whether the two functions are functionally equivalent (i.e., the Boolean difference

value w.r.t. inputs assignments is 0) or not (i.e., they have a Boolean difference equal to 1).

Note that the Boolean difference is a function, and it takes value 0 and 1 with respect to some

input assignments.

According to Boolean difference, each function f can be written as f = ∂ f
∂g ⊕ g . While this

approach reminds general XOR bi-decomposition algorithms [125, 168], in our case, the main

advantage of the resubstitution method comes from the synthesis of the Boolean difference
∂ f
∂g . Since g is a node already in the logic network, the cost of implementing f is given entirely

by the Boolean difference ∂ f
∂g . A small Boolean difference implementation could thus result in

size reduction for the logic network.

Example 5.1 Consider as an example the logic network for function f and g in Figure 5.2(a).

Each node in Figure 5.2(a) is a 2-input gate, and dashed edges represent inverters. Function

f is rewritten as ∂ f
∂g ⊕ g in Figure 5.2(b). The function g is the one highlighted in gray in both

Figure 5.2(a) and (b). The small size of the Boolean difference network results in a decreased

total number of nodes (from 16 to 12). �

102

5.2. Boolean Difference Method

∧
∨

x1 x3x2x5 x4

∨∧

∧
∨

f g

∨ ∧

∧
∧

∧

∨

∧
∧

∨
∧

(a) Logic network for functions f and g (in gray)

∨∧

∧
∧

∧

∨
⊕

∨

x1x3 x2 x5x4

∨ ∧

∧
∨

fg

(b) Function f rewritten as f = ∂ f
∂g ⊕ g

Figure 5.2 – Boolean difference example: (a) is the original AIG of f and g , while (b) represents
the network optimized using the Boolean difference – thus introducing a XOR node. © 2019
IEEE [171]

We refer to function f and g as candidates for Boolean difference, and to the inputs variables

x1, x2, . . . , xn as their support. We use f and g both for the corresponding nodes in the logic

network and for the function they represent.

In the following, we first present the selection of the candidates and their support, and we

discuss algorithms aiming at computing the Boolean difference between two nodes. Then, the

resubstitution flow based on the Boolean difference is presented. Both the use of BDDs and

partition methods are discussed.

5.2.2 Boolean Difference Optimization

Identifying Viable Candidates

To ensure the scalability of this Boolean method, we evaluate and apply the Boolean difference

locally on limited size circuit partitions. The partitions are created by collecting all the nodes

in topological order and by sorting them according to the similarity of their structural support.

Each partition respects some predefined characteristic, e.g., maximum number of primary

inputs (PIs), maximum number of internal nodes V , maximum number of levels, etc. In

our implementation, we give priority to the limit on the maximum number of levels, as they

correlate with the complexity of the reasoning engine selected for the Boolean difference

computation. Nevertheless, we also ensure partitions to have limited size and limited number

of PIs. Experimentally, we found promising bounds on the number of levels ranging from 5 to

30, resulting in partitions with controlled maximum size of 1000 nodes.

In order to find good candidates f and g , all pairs of nodes inside each partition are

considered. The supports for the computation are the PIs of the partition itself. As this requires

the evaluation of V pairs of nodes for each node, in the worst case, the time complexity of the

resubstitution framework is quadratic w.r.t. the partition size V . Experimentally, to reduce the

time complexity, we fixed the maximum number m of pairs to be tried. Structural filtering can

103

Chapter 5. XOR-based Logic Synthesis

Input: Two nodes f and g , xor _cost , al l_bdd s

Output: A new node boolean_di f f equal to ∂ f
∂g ⊕ g

1 boolean_di f f ← 0;
2 bdd f ← al l_bdd s(f);
3 bdd g ← al l_bdd s(g);
4 bdd_di f f ← bdd f ⊕bdd g ;
5 if bdd_di f f already exists in al l _bdd s() then
6 return corresponding node;
7 end
8 if (size(bdd_di f f) > thr eshol d) then
9 return null ;

10 end
11 savi ng ← mffc(f)+nodes_shar i ng ;
12 if (size(bdd_di f f)+xor _cost > savi ng) then
13 return null ;
14 end
15 bdi f f _node ← bdd_to_node(bdd_di f f);
16 boolean_di f f ← bdi f f _node ⊕ g ;
17 return boolean_di f f ;

Algorithm 5.1: Boolean difference computation and implementation using BDDs

also accelerate the computation. For example, the algorithm does not consider nodes with

less than one element in their shared support, and it also neglects cases where f is completely

included in g , or partially included up to a certain threshold. Functional filtering similar to

the one in [19] also helps speeding up the computation. After all structural and functional

filtering, we can apply the method to EPFL i2c and cavlc benchmarks with a runtime of 2.3

and 1.2 seconds, respectively.

Computing and Implementing The Difference

BDDs are the selected data structure to compute and implement the Boolean difference. BDDs

result into fast evaluation of the Boolean difference (as XOR of the two BDDs) and can be easily

“strashed” 1 into their corresponding AIG. The pseudocode is depicted in Algorithm 5.1.

Recall that f and g are two nodes belonging to the same partition. The BDDs for all nodes

in the partition are precomputed and stored in the hashtable al l_bdd s. The algorithm com-

putes the BDD of the Boolean difference as XOR of the two BDDs. Thanks to the limited size of

the partition, BDDs allow fast Boolean difference computation. If the BDD of the difference

already exists in the hashtable, the corresponding node is returned. In our implementation,

we did not perform any BDD variables ordering, as we are dealing with small BDDs. This saves

runtime, but it requires a higher amount of memory to be used by the BDD package. The

memory usage plays a critical role. For instance, for the EPFL cavlc benchmark, the algorithm

does not converge in a reasonable amount of time unless the memory used for the BDD of the

difference is freed at each iteration. In this last case, the algorithm was applied on the whole

1strashing refers to structural hashing, defined in [119]

104

5.2. Boolean Difference Method

network, which has 10 inputs and more than 600 nodes. To further prevent memory issues,

we set a maximum memory limit for the employed BDD package. The BDD computation is

bailed out if the maximum memory limit is hit. This case results into a BDD of size 0 for the

given node, which will be disregarded in the next steps of the algorithm.

Afterwards, structural filtering is applied on the BDD. In case the BDD does not meet the

size requirements, Algorithm 5.1 returns null , which means the current pair of nodes can

be skipped. First, we limit the size of the BDD (lines 8–10 in Algorithm 5.1) to consequently

limit the size of the difference network once its BDD is merged into the AIG. This usually

ensures a limited size implementation for the Boolean difference, but it may overlook some

optimization opportunities. Empirically, we found 10 to be a suitable tradeoff to have good

QoR and feasible runtime. The second filter skips pairs of nodes that could result in a larger

network implementation. Experimentally, we skip nodes whose savi ng is smaller than the

empirical threshold set by the BDD size and the xor _cost . The saving resulting from the

Boolean difference is the sum of the size of the MFFC of f and the total sharing of nodes

between the Boolean difference implementation and the existing network. The size of the BDD

sets a lower bound on the number of AIG nodes to implement the Boolean difference. The

xor _cost is the number of AIG nodes needed to implement the functionality of a two-input

XOR. According to the specific technology involved, the XOR node has a different area ratio as

compared to AND/OR nodes, so the xor _cost can have a different value.

The algorithm concludes with the implementation of the Boolean difference node (lines

15 in Algorithm 5.1) as an AIG, obtained using strashing on the corresponding BDD. Optimiza-

tion algorithms from the state-of-the-art are applied on the AIG to guarantee an optimized

implementation.

Global Resubstitution Flow

We integrate the candidates selection and the Boolean difference computation into a resubsti-

tution framework. Algorithm 5.2 depicts the pseudocode. The flow applies the resubstitution

framework to each partition N of the entire network. The partitions can be chosen to be

distinct or overlapping to cover more optimization opportunities. The algorithm precomputes

and stores all BDDs in the hashtable, and considers all nodes in topological order. Trivial

pairs of nodes are skipped according to criteria discussed above. Thanks to the use of BDDs,

information needed for functional filtering of pairs are immediately available. Algorithm 5.1

is used to achieve the new implementation of f using the Boolean difference. Algorithm 5.2

accepts a new implementation of f only if (i) it leads to size minimization, or (ii) it does

not increase the number of nodes. This second case could reshape the network, open new

optimization opportunities and help escaping local minima.

105

Chapter 5. XOR-based Logic Synthesis

Input: Network N , xor _cost
Output: Optimized network

1 l i st s ← topological_sorted_partitions(N);
2 foreach l i st in l i st s do
3 al l_bdd s ← BDDs for all nodes in l i st ;
4 for nodes f in l i st do
5 for nodes g in l i st do
6 if f = g then
7 continue;
8 end
9 if f and g are not good candidates then

10 continue;
11 end
12 di f f ← Boolean_difference(f , g , xor _cost , al l_bdd s);
13 if size(di f f) <= size(f) then
14 Change f with di f f in N ;
15 end
16 end
17 end
18 end
19 return N ;

Algorithm 5.2: Resubstitution flow based on Boolean difference

5.2.3 Experimental Results

In this section, we evaluate the efficacy of the Boolean difference method for synthesis. First,

we consider the EPFL logic synthesis competition2. In this scenario, we outperform previous

EPFL best results coming from various research groups in industry and academia. Finally, we

integrate our Boolean method in an industrial EDA flow for application specific integrated

circuits (ASICs), and show sensible QoR gains post place & route.

Methodology

We implemented our scalable Boolean method as part of a commercial design automation

solution. We target size reduction of logic networks, as, in the EDA flow, Boolean methods are

frequently called during logic structuring, which mainly aims at reducing area. Nevertheless,

we enforced a tight control on the number of levels and the number of nets during the synthesis

flow for ASIC results, as this is known to correlate with delay and congestion later on in the

flow.

We have integrated our Boolean difference method in an industrial logic synthesis tool,

together with other novel methods we presented in [170, 171]. We created a global Boolean

resynthesis flow which runs the following optimizations:

1. Gradient-Based AIG Minimization, which revisits classical AIG optimization by using a

2Available at: https://github.com/lsils/benchmarks

106

5.2. Boolean Difference Method

technique that adapts online to apply the most effective AIG transformations [171];

2. Novel Resubstitution Methods, which includes the novel resubstitution techniques

from [19, 170];

3. Resubstitution with Boolean Difference, which consists of our novel resubstitution flow

based on Boolean difference from Algorithm 5.2;

4. Heterogeneous Elimination for Kernel Extraction to enhance division and logic sharing

to work on heterogeneous thresholds within the same network [171];

5. SAT Resubstitution, which includes the resubstitution techniques with Boolean filtering

and windowing, implemented using SAT [170].

The optimization flow is run once. However, note that this Boolean resynthesis flow may

produce better results when iterated multiple times, e.g., 2 to 5 times, depending on the

specific runtime budget. Further, after each transformation, the logic network is translated

into an AIG in order to have a consistent interface and costing between the various steps of

the flow. More details on the implementation of the resynthesis flow can be found in our work

on Boolean methods [170].

EPFL Benchmarks

In this section, we use our global synthesis flow to improve (decrease) the size of the EPFL

benchmarks [15]. In particular, we challenge the area (i.e., number of LUTs) category within

the EPFL competition,3 which records the best synthesis results in term of size and number of

levels obtained by mapping the optimized EPFL benchmarks into LUT-6.

In order to compare our results to the baseline, we apply our resynthesis flow followed by

the ABC [40] command “if -K 6 -a" to map our AIGs into LUT-6. Since LUT-6 minimization

does not follow strictly AIG minimization, we adapted our tool to work in general for the

LUT-6 experiment in the following way: We inserted selective structural hashing of LUTs, over

previous best results, with optimization and remapping on smaller partitions, in order to

preserve some of the good LUT-6 structures.

Table 5.1 summarizes our results. At the time of evaluation of this work, we improved 12

(out of 20) of the previous best size (area) results of the EPFL benchmarks,4 advancing the

size results coming from [19], [108], and [110]. Our improvements range from a few LUTs

to several (tens) for larger circuits. It is worth mentioning that the EPFL benchmarks have

been optimized various times in the last 3 years by the most advanced techniques both from

industry and academia, thus each improvement (even if relatively small), is highly significant.

3The best results for the EPFL benchmarks are available at: https://github.com/lsils/benchmarks
4We compare our results to commit 87cf8ec in https://github.com/lsils/benchmarks, reported here as Baseline

LUT-6 count in Table 5.1

107

Chapter 5. XOR-based Logic Synthesis

Table 5.1 – Best 6-LUT area results for the EPFL benchmarks © 2019 IEEE [171]

Benchmark I/O Baseline LUT-6 count LUT-6 count Level count
arbiter 256/129 403 365 117
div 128/128 3268 3267 1211
hypotenuse 256/128 40385 40377 4530
i2c 147/142 211 207 15
log2 32/32 6570 6567 119
max 512/130 523 522 189
mem_ctrl 1204/1231 2117 2086 23
mult 128/128 4923 4920 93
priority 128/8 106 103 26
sin 24/25 1228 1227 55
sqrt 128/64 3076 3075 1106
square 64/128 3244 3242 76

Table 5.1 shows the best-area results for the EPFL benchmarks, mapped into 6-LUTs. We report only the im-

proved benchmarks. We optimized 12 of the previous best results in the EPFL logic synthesis competition.

Note also that some benchmarks (e.g., max) are mostly improved by our Boolean difference

method, which is capable of resolving convergent logic not distinguished by other techniques.

Furthermore, recently, new best-size results have been presented by Machado et al. in [109].

Even though additional size optimizations have been applied on top of our best results, we

still hold the best area results for 5 out of the 12 results from Table 5.1, that is, no further

optimizations were found for these 5 cases.

As already pointed out, a smaller AIG was not resulting in the best LUT-6 result for some of

the benchmarks. Nevertheless, our global resynthesis flow allows us to obtain the smallest-

known AIGs compared to the state-of-the-art,5 which are reported in Table 5.2. For some

benchmarks, this result is much smaller than the AIG size leading to the best LUT-6 results.

As an example, we show 1.3× size reduction in the smallest known AIG for the EPFL voter

benchmark.

ASIC Results

We tested a commercial EDA flow, empowered with our global resynthesis flow, on 36 state-of-

the-art ASICs, coming from major electronics industries. Due to non-disclosure agreements,

we cannot provide details on each ASIC benchmark. However, we present average results

w.r.t. a baseline flow without our resynthesis methods. The post place & route results are

summarized in Table 5.3. All benchmarks are verified with an industrial formal equivalence

checking flow. In Table 5.3, the baseline is a complete industrial EDA flow from register trans-

fer level to GDSII, without any of the mentioned techniques. The first experiment presents

results when the gradient-based AIG minimization is included in the EDA flow. On average,

5The smallest known AIG from state-of-the-art has been computed by structural hashing the current best LUT-6
result and running resyn2rs from ABC [40] until no improvement is seen

108

5.2. Boolean Difference Method

Table 5.2 – Smallest AIG results for the EPFL benchmarks. Submitted to IEEE TCAD 2019

Benchmark I/O Best-known size AIG Opt. size AIG
cavlc 10/11 584 483
div 128/128 22206 19250
hypotenuse 256/128 226220 209460
i2c 147/142 769 710
log2 32/32 33213 30522
mem_ctrl 1204/1231 7986 7644
mult 128/128 29885 25371
router 60/30 99 96
sin 24/25 6300 4987
sqrt 128/64 22569 19706
square 64/128 18187 17010
voter 1001/1 13272 9817

Table 5.2 shows the best-size AIGs for some of the EPFL benchmarks. For instance, it presents a 1.3× size
reduction in the smallest known AIG for the EPFL voter benchmark.

Table 5.3 – Post Place&Route results on 36 industrial design for ASICs. Submitted to IEEE TCAD
2019

Flow Comb. Area N-C. Area WNS TNS Comb. SW P. Comb. Leak P. # Cells Runtime

Baseline - - - - - - - -
Ex1: optimized AIG [171] -0.48% +0.02% +0.02% +1.09% -0.68% -0.22% -0.45% +0.2%
Ex2: Ex1 + resub [170] -1.31% +0.04% -0.65% -0.24% -1.29% -0.45% -0.95% +0.5%
Ex3: Ex2 + Bdiff resub -1.87% +0.01% +0.11% +0.87% -1.36% -0.36% -1.24% +1.2%
Ex4: Ex3 + het. kernel [171] -2.47% -0.01% -0.80% -2.43% -2.18% -0.90% -2.07% +1.8%
Ex5: Ex4 + SAT resub [170] -3.12% -0.02% -1.34% -0.82% -2.49% -0.98% -2.25% +2.2%

“Comb. Area" and “N-C. Area” are the combinational and non-combintional area respectively. “WNS" is the worst
negative slack, and “TNS" is the total negative slack; “Comb. SW P." is the dynamic power dissipation due to
switching activity, while “Comb. Leak P. ” is the static power dissipation due to leakage. “ # Cells” is the total cell
count in the design, and the “Runtime” is the total runtime post P&R. All results are averaged over 36 designs.

Table 5.3 shows average results of our flow over 36 industrial benchmarks for ASICs. We demonstrate an area
reduction of -3.12%, and power of -2.49% after place and route, with limited runtime increase.

this technique decreases the combinational area, which is our target metric, of −0.48%, with

negligible increase in runtime and WNS/TNS. The second experiment enriches experiment 1

with novel resubstitution methods from [19]. These techniques allow a further combinational

area decrease, resulting in improvements also for WNS and TNS. Experiment 3 uses the resub-

stitution with Boolean difference presented in this thesis to further improve the combinational

area, while experiment 4 enhances the previous steps by using heterogeneous elimination for

kernel extraction. The last experiment presents results when the complete flow is applied, i.e.,

experiment 4 enriched with SAT resubstitution.

Our complete design flow embedding our new optimization, and highlighted in green,

enables sensible combinational area and dynamic power (without considering the clock

network) reductions, −3.12% and −2.49%, respectively, after physical implementation. On

average, we also achieve WNS/TNS improvements, with a runtime increase of only +2.2%.

109

Chapter 5. XOR-based Logic Synthesis

cout sum

a cinb

⊕∧

∧ ⊕

∧

(a) XAG implementation of the full adder

cout sum

a cinb

⊕∧

∧ ⊕

∧

(b) One cut of the full adder highlighted in gray

Figure 5.3 – (a) XAG representation of the full adder. The signal cout in the output carry. Dashed
lines represent complemented edges. (b) highlights a subgraph described by the cut for the
output cout with leaves a,b and cin. A cut is k-feasible (denoted here as k-cut), if it has at most
k leaves (see Chapter 2)

5.3 Multiplicative Complexity and Cryptography Applications

In this section we present a XOR-based logic synthesis framework, aiming instead at the

minimization of the number of AND gates in an XAG. As already pointed out, the minimization

of the number of AND gates plays an important role for many and diverse cryptography and

security applications. Our logic synthesis tool is complete and automatic, and it consists of (i)

rewriting, (ii) resubstitution, and (iii) refactoring. The remainder of the section is organized as

follows: We first discuss the preliminaries necessary to understand the rest of the chapter; then,

we describe the complete flow and the three methods. We conclude with the implementation

details and the experimental results over both EPFL benchmarks and benchmarks from the

cryptography community.

5.3.1 Preliminaries

In this section, we review XAGs and the multiplicative complexity. We also discuss a Boolean

functions classification method based on affine-equivalence of Boolean functions. This

classification is used in the rewriting algorithm.

Xor-And Graphs and Multiplicative Complexity

In many cryptographic applications, Boolean functions are usually represented over the

basis {AND, XOR, NOT} [36]. In analogy with the data structures usually involved in logic

synthesis, e.g., AIGs [121], or majority-inverter graphs (MIGs) [14], in this thesis we represent

logic networks from cryptographic applications in terms of XAG. We define an XAG as a logic

network in which each gate corresponds to either an AND or an XOR operator. Both regular

and complemented edges can be used to connect the gates, where a complemented edge

indicates the inversion of the signal. Figure 5.3(a) shows an XAG representation of the full

adder, which uses two XOR gates, denoted by ⊕, and three AND gates, denoted by ∧. Inversions

110

5.3. Multiplicative Complexity and Cryptography Applications

are represented as dashed lines. Previous works in logic synthesis have considered XOR-AND

logic networks, called xor-and-inverter graphs (XAIGs) [85]. Even if our work and the one

in [85] use the same data structure, XAIGs have been exploited to perform a different task.

Indeed, the work in [85] focuses on LUT mapping, and considers XOR and AND gates to have

the same cost.

As stated in the introduction, the multiplicative complexity of a Boolean function is defined

as the minimum number of AND gates sufficient to implement it over the basis {AND, XOR,

NOT} [33, 183]. More general, we also call the multiplicative complexity of a logic network

the actual number of AND gates to implement the circuit [80]. For example, the full-adder in

Figure 5.3 has a multiplicative complexity equal to 3.

Affine Functions Classification

This section reviews affine function classification, which is a strong Boolean function classifi-

cation technique based on affine operations.

Definition 5.1 (Affine operations [73]) The following set of five affine operations on a Boolean

function can be used to partition all Boolean functions into equivalence classes [73].

1. Swapping two variables. From f (x1, . . . , xi , . . . , x j , . . . , xn), one obtains

g = f (x1, . . . , x j , . . . , xi , . . . , xn) by swapping variables xi and x j . We denote this operation

as f
xi↔x j−−−−→ g .

2. Complementing a variable. From f (x1, . . . , xi , . . . , xn), one obtains g = f (x1, . . . , x̄i , . . . , xn)

by complementing variable xi . We denote this operation as f
x̄i−→ g .

3. Complementing the function. One obtains g = f̄ from f by complementing the whole

function. We denote this operation as f
¬−→ g .

4. Translational operation. One obtains g = f (x1, . . . , xi ⊕x j , . . . , xn) from f (x1, . . . , xi , . . . , xn)

by replacing xi with xi ⊕x j . We denote this operation as f
xi⊕x j−−−−→ g .

5. Disjoint translational operation. One obtains g = xi ⊕ f from f by XOR-ing it with input

xi . We denote this operation as f
⊕xi−−→ g .

These operations partition all n-variable Boolean functions into equivalence classes by

means of the following equivalence relation.

Definition 5.2 (Affine equivalence [104]) We say that two n-variable Boolean functions f and

g are affine-equivalent, if there exist operations o1, . . . ,ok from Definition 5.1 such that

f
o1−→ ·· · ok−→ g .

111

Chapter 5. XOR-based Logic Synthesis

One can readily verify that affine equivalence is an equivalence relation. In the remainder,

we write f
.= g , if f is affine-equivalent to g . Further, we refer to the equivalence class of f as

[f] = {g | f
.= g }.

We can define one element of [f] to be the representative function of that class. In an abuse

of notation, we use [f] both as the set of all Boolean functions in the equivalence class, and

also to denote the representative itself. Note that f
.= g , if and only if [f] = [g].

Example 5.2 We can show that 〈x1x2x3〉 .= x1 ∧ x2, where in this case x1 ∧ x2 is considered a

3-variable Boolean function in which x3 is a don’t care input.

x1 ∧x2
x̄2−→ x1 ∧ x̄2

x2⊕x3−−−−→ x1 ∧ (x̄2 ⊕x3)
x1⊕x2−−−−→

(x1 ⊕x2)∧ (x̄2 ⊕x3) = x1x̄2 ⊕x1x3 ⊕x2x3
⊕x1−−→

x1 ⊕x1x̄2 ⊕x1x3 ⊕x2x3 = x1x2 ⊕x1x3 ⊕x2x3 = 〈x1x2x3〉

�

Using this equivalence relation the set of all n-variable Boolean functions for n = 1,2,3,4,5,6

collapses into just 1,2,3,8,48,150357 equivalence classes [27, 183], respectively. An algorithm

to compute the representative of each class and the set of operations o1 . . .ok has been recently

proposed in [114, 116].

5.3.2 General XOR-based Resynthesis Framework

In this section, we present XOR-oriented rewriting, resubstitution, and refactoring as three

new algorithms to create a logic synthesis flow for cryptography and security applications.

The presented algorithms modify state-of-the-art logic synthesis optimization techniques by

considering the minimization of the number of AND gates as their primary goal.

Rewriting

Rewriting is a technique largely used in logic synthesis, and allows to replace parts of a

logic network with optimized (e.g., in the number of nodes or levels) subnetworks. These

subnetworks can be precomputed, as done in [121, 175], or computed on-the-fly with exact

synthesis as presented in [150]. This section presents first the general idea and illustrates the

proposed rewriting method using an example, then it describes the optimization algorithm.

Our rewriting optimization method is based on two major considerations:

1. The multiplicative complexity of a function is invariant under affine operations. Each

affine operation can be realized by (i) an XOR gate, (ii) an inversion or (iii) a permutation

112

5.3. Multiplicative Complexity and Cryptography Applications

a

∧

b

a ∧b

(a) Circuit of the representative

cout

a cinb

⊕ ⊕

⊕

∧

(b) Circuit of the representative and
operations

coutsum

acin b

⊕⊕

∧⊕

⊕

(c) Final full adder XAG

Figure 5.4 – Rewriting example: (a) is the circuit of the representative; (b) is the circuit of the
representative plus the operations, and (c) is final circuit after rewriting

of two inputs. All of them do not affect the number of AND gates in an XAG. Thus,

to find the multiplicative complexity of a Boolean function, it is enough to know the

multiplicative complexity of the representative of its equivalence class. In other words,

each function can be written as an XAG using the same number of AND gates of its

representative.

2. As the number of affine classes is orders of magnitudes smaller than the number of

functions, a minimum circuit implementation over {AND, XOR, NOT} is known [48, 183]

for each representative up to 6-input functions. In this scenario, minimum means

minimum in terms of AND gates. The minimum XAG implementation of each Boolean

function (up to 6-input) can thus be obtained by the XAG of its representative. This is

obtained by adding XOR gates, inverters, and input permutation in accordance with the

operations from Definition 5.1. As stated above, this will not influence the number of

AND gates.

These two considerations allow us to optimize the number of AND gates of a Boolean

function by (i) using the minimum XAG of the representative and (ii) augmenting it by the

gates required for each transformations. In the following, we use the full adder from Figure 5.3

as an example.

Example 5.3 Consider the full adder in Figure 5.3(a), which has three AND gates. The objective

is the minimization of the number of such gates. Let us focus on the cout output, which has the

subgraph highlighted in Figure 5.3(b). The subgraph implements the majority of three inputs

〈abcin〉 which has truth table (in hexadecimal form) equal to 0xe8. The representative of the

class is the function 0x88, which is the AND gate represented in Figure 5.4(a). As in Example 5.2,

a ∧b is considered a 3-variable Boolean function in which cin is a don’t care input. This means

that the full adder can be built using one AND gate together with some of the operations from

Definition 5.1. The operations o1 . . .ok to transform a majority gate into a AND gate are the

ones from Example 5.2: b̄,b ⊕ cin, a ⊕b,cout ⊕ a. These add three XOR gates to the circuit in

113

Chapter 5. XOR-based Logic Synthesis

Input: XAG of the cut c of node v , DB_representative_to_xag
Output: Optimized XAG for cut c

1 f ←Boolean function of v with respect to the leaves ;
2 r epr esent ati ve ← representative of the equivalence class of f ;
3 oper ati ons ← operations to go from f to r epr esent ati ve ;
4 if r epr esent ati ve ∈ DB_r epr esent ati ve_to_xag then
5 r epr _ci r cui t ← DB_r epr esent ati ve_to_xag [r epr esent ati ve];
6 else
7 return c;
8 end
9 new_cut_ci r cui t ← r epr _ci r cui t+ gates corresponding to operations on inputs and outputs ;

10 return new_cut_ci r cui t ;

Algorithm 5.3: Cut-rewriting to minimize the number of AND gates (multiplicative com-
plexity) of an XAG

Figure 5.4(a), and one inversion. The gates introduced are highlighted in Figure 5.4(b). The

final XAG of the full adder in shown in Figure 5.4(c). We can conclude that the full adder has a

multiplicative complexity of at most 1. �

To sum up, we minimized the number of AND gates of a full adder by (i) using the minimum

XAG of the representative (Figure 5.4(a)) and (ii) by adding to it the gates corresponding to

each operation (Figure 5.4(b)).

The proposed algorithm is based on cut rewriting and is a general version of the DAG-

aware AIG rewriting presented in [121]. The work in [121] aims at minimizing the AIG size by

iteratively selecting AIG subgraphs and replacing them with smaller pre-computed subgraphs.

Our algorithm implements a similar approach, based on cut enumeration [138]. The idea is to

replace XAG subgraphs with new graphs which have smaller multiplicative complexity.

For each cut, the minimum representation in term of AND gates can be computed as

described in Example 5.3. Algorithm 5.3 presents the pseudocode. The minimum represen-

tations over the basis {AND, XOR, NOT} for all affine class representatives up to 6 inputs6

are used to create a database mapping all representatives up to 6 inputs to their minimum

XAG representation. Further, as optimum results are known for functions with up to 6 inputs,

the cut enumeration has been restricted to 6-cut. First, the Boolean function of the cut with

respect to its leaves is computed. The work presented in [116] is then used to compute the

affine class representative and the operations. The XAG of the representatives is retrieved from

the database previously stored, and XOR gates, inverters and permutations according to the

different operations are added in order to obtain the XAG implementing the correct function.

Once the circuit for the cut is obtained, the algorithm continues as in [121]. In our case, the

gain is evaluated considering the reduction in the number of AND gates.

6Available at: https://github.com/usnistgov/Circuits/tree/master/data/slp

114

5.3. Multiplicative Complexity and Cryptography Applications

Input: Logic network N , cut-size, max_div
Output: Resynthesized logic network

1 list ← topological-sort-network(N);
2 foreach node v in list do
3 cut ← find-reconvergent-cut(v , cut-size);
4 mffc ← computeMFFC(v);
5 if |m f f c| > 0 then
6 di v ← collect-divisors(l i st , v , max_di v) ;
7 compute-truth-tables(cut);
8 compute-satisfiability-DC(cut);
9 if v ′ ← 0-resub(l i st , v, di v) then

10 continue;
11 end
12 and_m f f c ← AND-in-MFFC(m f f c);
13 if and_m f f c = 0 then
14 continue;
15 end
16 if and_m f f c > 0 then
17 if v ′ ← xor -resub(l i st , v, di v) then
18 continue ;
19 end
20 if v ′ ← xx-resub(l i st , v, di v) then
21 continue ;
22 end
23 if v ′ ← and-resub(l i st , v, di v, and_m f f c) then
24 continue;
25 end
26 if v ′ ← aa-resub(l i st , v, di v, and_m f f c) then
27 continue;
28 end
29 if v ′ ← ao-resub(l i st , v, di v, and_m f f c) then
30 continue;
31 end
32 end
33 end
34 end
35 network-cleanup-and-sweeping(N);

Algorithm 5.4: Resubstitution to reduce the number of ANDs

Resubstitution

The second transformation of our synthesis tool is resubstitution. Recall that resubstitution is

a method adopted in many logic synthesis flows [19] to express the function of a node v using

other nodes (called divisors) which are already present in the logic network. A resubstitution is

accepted if the new implementation is more compact (e.g., in the number of nodes) than the

current one, thus resulting in size optimization. Resubstitution is usually classified according

to the number of operators that it adds to the logic network, i.e., 0-resubstitution, if it does

not add any new operator; 1-resubstitution if it expresses a logic function by adding one

logic operator, and so forth. When k nodes are added by resubstitution, size improvement is

115

Chapter 5. XOR-based Logic Synthesis

obtained if l > k, where l is the number of nodes in the maximum fan-out free cone (MFFC)

of node v . We also refer to “AND-resubstitution”, “OR-resubstitution”, etc., depending on the

type of operators added to the network.

Our tool minimizes the number of AND gates in the logic network, independently from the

number of XOR gates and inverters. Thus, state-of-the-art resubstitution algorithms need to be

re-investigated to take this new cost into account. First, XOR gates do not take part in the total

cost and saving, and only the number of AND gates in the MFFC, called hereafter and_m f f c ,

are considered in the global saving for resubstitution. It means that XOR-resubstitution is

always advantageous when the number of AND gates in the MFFC is larger than 0. On the other

hand, in the case and_m f f c = 0, resubstitution is never leading to any AND optimization.

Regarding AND/OR resubstitutions, classical implementations can be used, paying attention

to evaluate the gain as and_m f f c.

The resubstitution procedure is depicted in Algorithm 5.4. For each node in the network

(in topological order), the procedure computes a reconvergent-driven cut and the MFFC of

v as implemented in [151]. k-resubstitution is intrinsically an expensive task, and it is thus

applied to small partitions of the whole network. To accelerate the computation, the divisors

are collected by setting a maximum number of nodes max_di v . As resubstitution may result

in more optimization opportunities when enriched with don’t cares, we allow the use of satis-

fiability don’t cares in the algorithm. Truth tables are used as underlying data structure for the

computation of both the Boolean functionality and the don’t cares (lines 7–8 in Algorithm 5.4).

First 0-resubstitution is attempted. Due to the use of don’t cares, the algorithm looks for a

divisor d1 such that DC (v)∨ v = DC (v)∨d1. If this is successful, resubstitution is applied and

the procedure moves to the next node; otherwise, more complex types of resubstitution are

tried, depending on the number of AND gates in the MFFC. If and_m f f c = 0, the procedure

jumps to the next node, as resubstitution is not leading to any optimization. In the opposite

case, i.e., and_m f f c > 0, any XOR-resubstitution is successful independently on the number

of increased XORs. Two XOR resubstitutions are implemented: XOR-resubstitution (xor-resub)

and XOR-XOR-resubstitution (xx-resub). In the case xor-resub and xx-resub are not applicable,

standard AND resubstitutions are attempted in increasing complexity order. The tried resub-

stitutions are: AND-resubstitution (and-resub), AND-AND resubstitution (aa-resub), AND-OR

resubstitution (ao-resub). In this scenario, the resubstitution is successful if the number of

k added AND nodes is smaller than and_m f f c. To accelerate the computation, Boolean

filtering rules from [19] have been applied for the AND-resubstitution.

Example 5.4 As an example, consider the logic network from Figure 5.5(a), which is the XAG of

the full adder. By applying XOR-XOR-resubstitution, one AND gate can be written using two

XORs (highlighted in Figure 5.5(b)). This example intentionally shows that the algorithm does

not consider the increase in the number of nodes as the main cost for optimization, while only

the AND gates are accounted for in the optimization process (decreased from 7 to 6). �

116

5.3. Multiplicative Complexity and Cryptography Applications

ab cin

∧ ∧

∧

∧ ∧

∧ ∧

ccout sum

(a) Logic network for the full adder

ab cin

⊕ ∧

⊕

∧

∧ ∧

∧ ∧

cout sum

(b) Logic network rewritten using
resubstitution

ab cin

⊕ ∧

⊕

⊕

∧ ⊕

⊕

cout sum

(c) Logic network rewritten using
refactoring

Figure 5.5 – Resubstitution and refactoring example. (b) shows the network after XOR-XOR
resubstitution is applied on (a); while (c) shows the result after refactoring. © 2020 IEEE [178]

Refactoring

Refactoring is an effective technique often used to overcome local minima that can be encoun-

tered during optimization. As a matter of fact, refactoring resynthesizes large subnetworks in a

logic network from scratch and without using existing nodes in the logic network. Depending

on the optimization needs and the data structure, different logic synthesis algorithms can be

used for this purpose, e.g., [8, 125].

In the presented flow, we aim at minimizing the number of AND gates over an XAG,

consequently, a refactoring technique that works over 2-input XOR/AND operators is needed.

For this purpose, the algorithm for bi-decomposition proposed by Mishchenko et al. in [125]

is used. The algorithm synthesizes a function using OR, AND and XOR gates, together with

internal don’t cares to allow a better quality of results. The primary goal of optimization in [125]

is to obtain a “balanced” network; it means that, when more than one bi-decomposition

exists, the algorithm chooses the type of operator (i.e., AND, OR, XOR) that leads to the most-

balanced result in terms of the size of the support. In our optimization, we consider a different

operator-selection and change the original algorithm to always (when possible) choose the

XOR operator over AND and ORs, independently on the size of the supports. This is because

the XOR operator does not take part in the total cost and, in this way, the algorithm always

picks the XOR operator when more than one bi-decomposition exists.

The refactoring procedure to minimize the number of AND gates is depicted in Algo-

rithm 5.5. It has been implemented following the general guidelines in [152]. For each node

in the network, the MFFC is evaluated by setting a limit on the maximum number of PIs

(max_ f ani n), and truth tables are used to compute Boolean functions and satisfiability don’t

cares. The function is synthesized (line 5 in Algorithm 5.5) by using a modified version of the

bi-decomposition from [125], in which the selection of the operators is changed to prefer the

117

Chapter 5. XOR-based Logic Synthesis

Input: Logic network N , max_ f ani n
Output: Resynthesized logic network

1 foreach node v in N do
2 mffc ← computeMFFC(v,max_ f ani n);
3 f ← compute-truth-tables(m f f c);
4 dc ← compute-satisfiability-DC(m f f c);
5 new_m f f c ← synthesize(f ,dc) ;
6 if AND-in-MFFC(new_m f f c) < AND-in-MFFC(m f f c) then
7 Substitute(new_m f f c, m f f c);
8 end
9 end

10 network-cleanup-and-sweeping(N);

Algorithm 5.5: Refactoring to reduce the number of ANDs

XOR operator, when a XOR-bi-decomposition exists. If the new implementation of the MFFC

has less AND gates, the new MFFC is substituted to the previous one, resulting in a network

with reduced multiplicative complexity.

Example 5.5 As an example, consider the logic network from Figure 5.5(b), which is the XAG

implementation of the full adder, obtained after resubstitution. By applying refactoring on

each primary output, the network can be factorized as presented in Figure 5.5(c). The new

implementation has a smaller number of AND gates, which are decreased to only 2 gates. �

5.3.3 Experimental Results

The three aforementioned techniques have been implemented to create a complete and

automatic logic synthesis toolbox that minimizes the number of AND gates. In this section,

first, we detail the implementation of the proposed algorithms, then the experimental results

are presented. We test the efficacy of the algorithms on state-of-the-art best-known results

both on the EPFL and cryptography and security benchmarks.

Implementation Details

The proposed algorithms have been implemented as part of the open-source logic synthesis

framework mockturtle, which is part of the EPFL logic synthesis libraries [165].7 All the

experiments have been carried out on an Intel Xeon E5-2680 CPU with 2.5 GHz and with 256

GB of main memory.

Regarding the rewriting algorithm, the maximum number of leaves for each cut is equal

to 6 (Algorithm 5.3). Thus, as we are dealing with 6-input functions, we make use of truth

tables to represent the Boolean functions. Truth tables for 6-input functions can be efficiently

7Available at: github.com/lsils/mockturtle. Experiments are available at: github.com/lsils/date2020_experiments
and https://github.com/eletesta/dac19-experiments

118

5.3. Multiplicative Complexity and Cryptography Applications

stored in computers as a single 64-bit unsigned integer, and are fast to compute. Further, our

algorithm allows us to limit the maximum number of cuts computed for each node. In our

experimental evaluation, we found that a cut limit of 12 leads to a good trade-off between

runtime and quality.

The database stores the XAGs for each representative. In practice, this can be stored as

one “large” XAG, called hereafter XAG_DB. XAG_DB has 6 inputs, and 147998 outputs (this

number is explained below). Each output is the XAG of one representative. The total size of

this XAG is 2339563. XAG_DB is created once and can be reused for several rewriting calls.

The database_to_xag function in Algorithm 5.3 maps the truth table of each representative to

its corresponding output in XAG_DB.

The work presented in [116] is used to calculate the affine representative and the required

operations. The classification is performed by rearranging the coefficients of the function’s

Rademacher-Walsh spectrum [73] based on their magnitudes. Depending on the distribution

of coefficients, the number of iterations to reach the representative can vary significantly

among different functions. In most cases, a representative is found very quickly, but for some

functions this computation can be inefficient. We address this problem using two techniques.

First, we maintain a cache of computed representatives and affine operations for all considered

Boolean functions during rewriting. Therefore, no Boolean function needs to be classified

twice. Also, we put an iteration limit on the classification routine, which causes us to omit

some Boolean functions from rewriting. In our experiments, we consider 147998 of all 150357

affine equivalence classes.

For resubstitution, we fixed the maximum number of divisors to 100, and the maximum

number of inputs for computing a cut to 8. Don’t cares may be used to trade off runtime and

quality of results. In our case, we always use don’t cares within resubstitution. The maximum

number of PIs for the refactoring MFFC was set to 15; as in the previous case, don’t cares are

also used for refactoring.

The three presented algorithms can be applied separately or in a global flow, which al-

ternates between the three proposed techniques. In the following experiments, we optimize

benchmarks using the following heuristic: rewriting method until saturation of the baseline

results, followed by resubstitution, refactoring and rewriting interleaved in this order until

further saturation of the results. All optimized benchmarks are verified to be formally equiva-

lent to the original ones. It is worth mentioning that we do not apply any XOR optimization;

nevertheless, in some protocols, XORs involve a communication overhead [10]. An algorithm

to minimize the number of XORs for crypthography applications can be found in [33].

Results over EPFL Benchmarks

In this experiment, we demonstrate that our method decreases the number of AND gates

when applied to benchmarks optimized using state-of-the-art generic size optimization.

119

Chapter 5. XOR-based Logic Synthesis

Table 5.4 – Experimental results for EPFL benchmarks using rewriting

Name Inputs Outputs Baseline* Rewriting Repeat until convergence

AND XOR AND XOR time [s] impr. AND XOR time [s] impr.

Adder 256 129 550 255 318 529 3.74 42 % 128 549 5.36 77 %
Barrel shifter 135 128 2688 0 896 1728 15.41 67 % 832 1728 16.65 69 %
Divisor 128 128 12001 3897 6378 8779 100.83 47 % 6060 8994 1132.23 50 %
Log2 32 32 24941 3592 19942 8583 327.34 20 % 19436 9371 11988.6 22 %
Max 512 130 2687 0 1471 1387 17.36 45 % 931 1479 81.82 65 %
Multiplier 128 128 16119 4301 12209 8122 169.97 24 % 11940 8614 9202.11 26 %
Sine 24 25 4937 519 4194 1572 56.76 15 % 4075 1770 405.47 17 %
Square-root 128 64 12336 3746 7101 9122 103.35 42 % 6244 9640 418.98 49 %
Square 64 128 9225 3850 5323 7984 34.34 42 % 5181 8084 158.92 44 %

Norm. geom. mean 1 0.60 0.49

Round-robin arbiter 256 129 1181 0 1181 0 17.85 0 % // // // 0 %
Alu control unit 7 26 86 2 85 8 0.7 1 % 85 8 1.22 1 %
Coding-cavlc 10 11 536 16 507 152 10.05 5 % 494 197 23.86 8 %
Decoder 8 256 341 0 341 0 0 0 % // // // 0 %
i2c controller 147 142 823 15 659 342 17.22 20 % 623 502 109.12 24 %
int to float converter 11 7 133 13 112 76 1.82 16 % 100 101 4.66 25 %
Memory controller 1204 1231 7418 361 5393 3165 89.62 27 % 5113 4168 2592.97 31 %
Priority encoder 128 8 368 0 327 158 4.12 11 % 327 158 8.1 11 %
Lookahead XY router 60 30 96 0 96 0 1.6 0 % // // // 0 %
Voter 1001 1 7308 1833 6046 4917 55.74 17 % 5651 6066 262.21 23 %

Norm. geom. mean 1 0.90 0.87

*Note that the baseline here is obtained using ABC. “Norm. geom. mean” is the normalized geometric mean.

Table 5.4 shows the results for AND minimization over the EPFL benchmarks, using the rewriting algorithm.
On average, we decrease the number of AND gates of 34% using only rewriting. The arithmetic benchmarks
benefit more from our method and are optimized up to 77% in the number of AND gates.

We present our results on the EPFL benchmark suite [15], and we use the synthesis package

ABC [40] as baseline for our comparison. In case of the EPFL benchmarks, our starting points

are the best-known size-optimized 6-LUT benchmarks.8 As state-of-the-art size optimization,

we apply a synthesis script that interleaves priority-cut-based 2-LUT mapping (&if) [123],

structural choices (&dch and &synch2) [54, 122], and Boolean network optimization and

resynthesis (&mfs) [120]. We apply the synthesis script

&st; &synch2; &if -m -a -K 2; &mfs -W 10;
&st; &dch; &if -m -a -K 2; &mfs -W 10

ten times, and we pick the final result as our baseline. The result is a 2-LUT network, i.e.,

a logic network in which each gate corresponds to an arbitrary 2-input function. Note that

a 2-LUT network can be directly translated into an XAG without increasing the number of

gates by choosing inverters appropriately. Therefore, it provides us with a good starting point,

despite the fact that it uses a unit cost model that accounts the same cost for both AND and

XOR gates.

8See version v2018.1 on https://github.com/lsils/benchmarks

120

5.3. Multiplicative Complexity and Cryptography Applications

The results for the rewriting algorithm are shown in Table 5.4. The initial benchmarks

are generated as previously discussed. The Rewriting results are obtained by applying one

iteration of our proposed rewriting method (see Algorithm 5.3), while the Repeat until conver-

gence results show the number of AND and XOR gates after more iterations of our rewriting

algorithm. In this last case, the algorithm is run until no further improvement is obtained by

rewriting. A ‘ // ’ entry in Table 5.4 indicates that no improvement was possible even with ap-

plying a single iteration of our proposed method. On average, 15 iterations are needed before

convergence. The maximum number of iterations encountered by our rewriting algorithm

is equal to 58 (multiplier benchmark). The experiments show that the number of AND gates

reaches a local minimum for all benchmarks, and the normalized geometric mean decreases

both for arithmetic and random-control benchmarks. The total improvement is shown in

the last column of both the One round and Repeat until convergence results. On average, we

decrease the number of AND gates of 34% using only rewriting. The arithmetic benchmarks

benefit more from our method and are optimized up to 77% in the number of AND gates. On

the contrary, the random-control benchmarks are optimized 23% on average.

The experiments of resubstitution and refactoring, followed by the complete flow, are

shown in Table 5.5. As baseline, we use the results presented in Table 5.4, that are obtained

applying the rewriting algorithm until convergence of the results is achieved. In the following,

we thus present separately the results of resubstitution and refactoring, as the rewriting

algorithm is not leading to any further optimization if applied separately (i.e., not as part

of the complete flow) on the baseline. The column Resubstitution presents results when

Algorithm 5.4 is applied once on top of the results obtained after rewriting, while Refactoring

shows the improvements achieved by applying once Algorithm 5.5. The complete flow shows

the results when the three techniques (i.e., rewriting, refactoring, and resubstitution) are

applied in the given order until convergence is reached. It means, no further optimization is

achieved with any of the proposed algorithms. The runtime of the complete flow is evaluated

as an average runtime obtained dividing the total runtime by the number of iterations, where

each iteration consists of the three presented techniques. Even though, as a general trend,

the results in Table 5.5 show that resubstitution achieves better optimization compared to

refactoring, for few benchmarks (e.g., mult, sin, log2) refactoring largely overcomes the results

achieved with resubstitution. As expected, for the adder benchmark no further optimization

is obtained as the rewriting result is optimum [34]. More interestingly, none of the presented

techniques manages to optimize the bar benchmark. On average, the complete flow optimizes

the best-known results up to 47%, with a geometric mean of 0.81 and 0.85 for the arithmetic

and random-control benchmarks, respectively. For the max, arbiter, decoder, and router

benchmarks, the results of the complete flow are entirely obtained by resubstitution. On

average, 4 iterations are needed to reach the convergence of the results for the complete flow.

121

Chapter 5. XOR-based Logic Synthesis

Table 5.5 – Experimental results for EPFL benchmarks using (i) resubstitution, (ii) refactoring
and (iii) the complete flow. © 2020 IEEE [178]

Benchmark Baselineˆ Resubstitution Refactoring Complete flow

AND XOR AND XOR impr. AND XOR impr. AND XOR impr. time [s]

Adder * 128 549 // // 0% // // 0% // // 0% 1.76
Barrel shifter 832 1728 // // 0% // // 0% // // 0% 8.38
Divisor 6060 8994 5844 9053 4% 5691 8562 6% 5291 8678 13% 129.60
Log2 19436 9371 17240 10644 11% 12360 15633 36% 10913 15923 44% 732.69
Max 931 1479 890 1520 4% // // 0% 890 1520 4% 8.48
Multiplier 11940 8614 11623 8120 3% 7941 12272 33% 7653 11855 36% 233.45
Sine 4075 1770 3390 2157 17% 3236 2444 21% 2603 2709 36% 70.00
Square-root 6244 9640 5927 9562 5% 6023 9148 4% 5381 9260 14% 148.38
Square 5181 8084 4929 8140 5% 5011 8076 3% 4672 8198 10% 84.57

Norm. geom. mean 1 0.94 0.87 0.81

Round-robin arbiter 1181 0 1174 7 1% // // 0% 1174 7 1% 21.29
Alu control unit 85 8 53 36 38% 69 24 19% 45 49 47% 1.62
Coding-cavlc 494 197 414 246 16% 476 215 4% 394 267 20% 17.20
Decoder 341 0 328 13 4% // // 0% 328 13 4% 15.16
i2c controller 623 502 586 345 6% 588 535 6% 557 375 11% 11.99
int to float converter 100 101 91 85 9% 99 102 1% 85 88 15% 2.20
Memory controller 5113 4168 4923 3262 4% 4893 4328 4% 4695 3401 8% 135.07
Priority encoder 327 158 326 159 0.3% 324 161 1% 323 162 1% 7.36
Lookahead XY router 96 0 93 6 3% // // 0% 93 6 3% 2.81
Voter 5651 6066 4802 5759 15% 5257 6160 7% 4257 5990 25% 92.61

Norm. geom. mean 1 0.90 0.96 0.85

ˆ Note that the baseline here are the results obtained in Table 5.4. *These results are known to be optimum [34], we
thus do not expect any further optimization for the number of AND gates. “Norm. geom. mean” is the normalized
geometric mean.

Table 5.5 shows the results for AND minimization over the EPFL benchmarks, using the resubstitution, refac-
toring, and the complete flow. On average, the complete flow further optimizes the best-known results up to
47%, with a geometric mean of 0.81 and 0.85 for the arithmetic and random-control benchmarks, respectively.

MPC and FHE Benchmarks for Cryptographic Applications

In this section, we demonstrate our approach in the context of MPC and FHE, by optimizing

the number of AND gates for best-known reported benchmarks.9 Both these cryptographic

applications benefit from AND gates minimization. XOR gates and inverters are almost for

free, while AND gates are considered more expensive in both cases [10].

The results are presented as in the previous section. It means, the first part of the results

are shown in Table 5.6. As in the previous case, we distinguish between Rewriting results and

Repeat until convergence. The first four benchmarks are block ciphers, followed by three

hash functions, and seven arithmetic functions. Of most interest is the improvements in the

block ciphers and hash functions. No improvement is possible with our rewriting technique

in both variants of the AES block cipher, which indicates that the reported number of AND

gates may be close to the multiplicative complexity of the function. An improvement of 17%

9Available at: https://web.archive.org/web/20190105040458/homes.esat.kuleuven.be/~nsmart/MPC/

122

5.3. Multiplicative Complexity and Cryptography Applications

Table 5.6 – Experimental results for MPC and FHE benchmarks using the rewriting algorithm

Name Inputs Outputs Baseline* Rewriting Repeat until convergence

AND XOR AND XOR time [s] impr. AND XOR time [s] impr.

AES (No Key Expansion) 256 128 6800 25124 6800 25124 37.48 0 % // // // 0 %
AES (Key Expansion) 1536 128 5440 20325 5440 20325 27.32 0 % // // // 0 %
DES (No Key Expansion) 128 64 18124 1337 17404 4096 251.57 4 % 15093 11105 8876.11 17 %
DES (Key Expansion) 832 64 18175 1348 17403 4168 256.69 4 % 15126 11263 9262.73 17 %

MD5 512 128 29084 14133 12300 29270 101.53 58 % 9381 30325 145.44 68 %
SHA-1 512 160 37172 24166 17141 42415 114.55 54 % 11820 44311 293.8 68 %
SHA-256 512 256 89478 42024 52921 86304 311.68 41 % 30201 91278 12562.8 66 %

32-bit Adder 64 33 127 61 38 146 0.83 70 % 32 150 0.98 75 %
64-bit Adder 128 65 265 115 100 260 2.06 62 % 64 284 2.61 76 %
32x32-bit Multiplier 64 64 5926 1069 4290 2351 57.19 28 % 4107 2473 135.02 31 %
Comp. 32-bit Signed LTEQ 64 1 150 0 121 69 3.65 19 % 114 89 6.3 24 %
Comp. 32-bit Signed LT 64 1 150 0 129 74 3.9 14 % 108 116 10.17 28 %
Comp. 32-bit Uns. LTEQ 64 1 150 0 121 69 3.23 19 % 114 89 6.38 24 %
Comp. 32-bit Uns. LT 64 1 150 0 129 74 4.04 14 % 108 116 10.59 28 %

Norm. geom. mean 1 0.68 0.56

*Note that the baseline here is obtained using ABC. “Norm. geom. mean” is the normalized geometric mean.

Table 5.6 shows the results for AND minimization over the cryptography benchmarks, using the rewriting
algorithm. Our rewriting method optimizes the number of AND gates needed to implement the 32- and 64-
bit adders down to 32 and 64, respectively. These are known to be optimum [34] in the number of AND gates.

Table 5.7 – Experimental results for MPC and FHE benchmarks using (i) resubstitution, (ii)
refactoring and (iii) the complete flow © 2020 IEEE [178]

Benchmark Baselineˆ Resubstitution Refactoring Complete flow

AND XOR AND XOR impr. AND XOR impr. AND XOR impr. time [s]

AES (No Key Expansion) 6800 25124 // // 0% // // 0% // // 0% 383.87
AES (Key Expansion) 5440 20325 // // 0% // // 0% // // 0% 274.50
DES (No Key Expansion) 15093 11105 9840 12347 35% 11413 14658 24% 9048 13092 40% 532.85
DES (Key Expansion) 15126 11263 10078 12291 33% 11595 14691 23% 9205 13136 39% 536.07

MD5 9381 30325 9374 29743 0.1% 9380 30326 0.01% 9367 29729 0.1% 520.94
SHA-1 11820 44311 11684 44355 1% 11776 44302 0.4% 11515 44358 3% 996.70
SHA-256 30201 91278 29145 91578 3% 29933 91254 1% 26927 91495 11% 4316.69

32-bit Adder * 32 150 // // 0% // // 0% // // 0% 0.41
64-bit Adder * 64 284 // // 0% // // 0% // // 0% 0.92
32x32-bit Multiplier 4107 2473 4060 2456 1% 2650 3866 35% 1689 3861 59% 27.78
Comp. 32-bit Signed LTEQ 114 89 98 98 14% 114 89 0% 92 97 19% 3.25
Comp. 32-bit Signed LT 108 116 96 100 11% 108 116 0% 92 95 15% 4.13
Comp. 32-bit Uns. LTEQ 114 89 98 98 14% 114 89 0% 92 97 19% 3.26
Comp. 32-bit Uns. LT 108 116 96 100 11% 108 116 0% 92 95 15% 4.11

Norm. geom. mean 1 0.90 0.93 0.82

ˆ Note that the baseline here are the results obtained in Table 5.6. *These results are known to be optimum [34], we
thus do not expect any further optimization for the number of AND gates. “Norm. geom. mean” is the normalized
geometric mean.

Table 5.7 shows the results for AND minimization over the cryptography benchmarks, using the resubstitu-
tion, refactoring, and the complete flow. Our method further optimizes the number of AND gates up to 59%,
reducing it 2.4× (multiplier benchmark).

123

Chapter 5. XOR-based Logic Synthesis

was possible in the case of the DES cipher, while a much larger improvement was possible

for all three hash functions, with more than 66% improvement after repeating the proposed

approach until convergence. It is worth noticing that the our rewriting method optimizes the

number of AND gates needed to implement the 32-bit adder down to 32, which is known to be

optimum [34] in the number of AND gates. The same applies for the 64-bit case.

The experimental results for refactoring, resubstitution and the complete flow are shown

in Table 5.7. As in the previous case, results are obtained with (i) resubstitution, (ii) refactoring,

and (iii) a complete flow that alternates between rewriting, refactoring, and resubstitution

until convergence of the results. The runtime is evaluated as discussed in the previous section.

These algorithms are applied on top of the results presented in Table 5.6 (used as Baseline).

Both the 32- and 64-adder cannot be further optimized because their number of AND gates is

optimum [34]. For the AES benchmarks, which were not optimized by the previous method,

the global flow does not find any optimization opportunity. On the other hand, the tool can

further optimize most of the previous best results. In particular, for the multiplier, it further

optimizes the number of AND gates up to 59%, reducing it 2.4×. As for the EPFL benchmarks,

this optimization mostly comes from refactoring, while resubstitution does not find many

opportunities (1%) for the multiplier. As a general trend, resubstitution obtains better results

compared to refactoring on most of the cryptography benchmarks (e.g., on the comparators).

On average, the complete flow achieves substantial optimizations, with a geometric mean of

0.82. For the SHA-256 benchmark, 21 iterations are needed for the saturation of the results.

Our tool’s main goal is to optimize the number of AND gates in cryptography applications

that do not account for XORs and inverters in their cost function. We exercised the pro-

posed flow on a second group of cryptography benchmarks in the context of MPC presented

in [149].10 This second set consists of practical MPC problems. We compared the proposed

flow to the flow in [149] on the MPC circuits. Table 5.8 lists the results. Beside the name of the

benchmark, the table shows the number of AND gates obtained using the original approach

as reported in [149]. In this case, we did not apply the proposed approach on top of their opti-

mized benchmarks, but compared the flows directly. The benchmarks in [149] are specified

in register-transfer-level Verilog code, which we transformed using Yosys [190] and ABC [40]

into a format that can be read by our tool. The proposed complete flow applies rewriting,

refactoring, and resubstitution until convergence. The resulting number of AND gates are

reported in the third column of the table, with the percentage improvement compared to the

original flow given by the last column. We do not report the number of XORs because the

results reported in [149] includes both XOR and inverters, while in our case it only includes

XORs. The results in Table 5.8 show that the proposed flow achieves significant improvements.

For one benchmark, our result is far beyond the flow in [149], meaning that some optimization

opportunities are not found by the proposed method. On the auction benchmarks, results

are close to the ones obtained running the flow in [149]; on the other hand, for the voting and

secure k-nearest neighbor search (knn) benchmarks, results are improved by 25% and 17% on

10Available at: github.com/sadeghriazi/MPCircuits

124

5.4. Summary

Table 5.8 – Experimental results for MPC benchmarks [149] © 2020 IEEE [178]

Benchmark Flow in [149] Proposed complete flow impr.

AND AND impr.

knn_comb_K_2_N_16 2370 1919 19.0%
knn_comb_K_1_N_16 1160 1162 -0.2%
knn_comb_K_1_N_8 556 554 0.4%
knn_comb_K_2_N_8 1080 881 18.4%
knn_comb_K_3_N_8 1520 1060 30.3%

knn_comb_K_3_N_16 3500 2394 31.6%

voting_N_1_M_3 8 7 12.5%
voting_N_3_M_4 388 275 29.1%
voting_N_2_M_4 147 104 29.3%
voting_N_2_M_3 79 55 30.4%
voting_N_1_M_4 16 15 6.3%
voting_N_2_M_2 37 21 43.2%

auction_N_3_W_16 228 232 -1.8%
auction_N_2_W_16 97 97 0.0%
auction_N_3_W_32 454 456 -0.4%
auction_N_4_W_16 492 495 -0.6%
auction_N_4_W_32 975 975 0.0%
auction_N_2_W_32 194 193 0.5%

secure_s_m_M_4_N_16 16700 16001 4.2%
secure_s_m_M_8_N_16 46660 58723 -26.0%

Normalized geom. mean 0.87

Table 5.8 shows the results for AND minimization over MPC benchmarks, using the complete flow. For the

voting and knn benchmarks, results are improved by 25% and 17% on average, respectively.

average, respectively. Results for the private set intersection (bitwise-AND) are not reported as

neither the flow in [149] nor the complete flow managed to optimize them.

5.4 Summary

This chapter focused on more practical aspects of logic synthesis, concentrating on XOR-logic.

First, we presented a practical algorithm to synthesize CMOS-based circuits with better area

and performances, without increasing the runtime budget of the logic synthesis flow. The

algorithm uses BDDs and the Boolean difference between two functions to decrease the size

of the underlying AIG. We showed significant synthesis results. We obtained remarkable

improvements of the smallest known AIGs for EPFL benchmarks, and we improved 12 of the

best-known area results in the EPFL synthesis competition. We demonstrated -3.12% combi-

national area savings and -2.49% dynamic power reduction, after physical implementation,

at contained runtime cost for a commercial EDA flow over 36 ASICs designs. In the second

part, we addressed XOR-based logic synthesis for cryptography and security. We proposed

different algorithms to reduce the number of AND gates (called multiplicative complexity)

in an XAG, which is a logic network composed of AND, XOR, and inverter gates. Such XAG

125

Chapter 5. XOR-based Logic Synthesis

optimization plays a central role in cryptography applications such as FHE and MPC. For both

these applications, XOR gates and inverters are for free, while AND gates are considered slower

and more expensive. Nevertheless recent work in this field, there is still a lack of logic synthesis

tools to automatically and efficiently optimize the multiplicative complexity of cryptography

circuits. In this thesis, we have presented a complete and automatic logic synthesis toolbox to

address these alternative applications. The tool alternates between rewriting, refactoring, and

resubstitution techniques, precisely modified to focus on the minimization of the number of

AND gates in an XAG. Our tool achieves significant results over both EPFL and cryptography

best-known results. Our rewriting experiments show that we can reduce the number of AND

gates by 34% on average when compared to generic size optimization. We demonstrate an

average further improvement of 15% for the EPFL benchmarks when using refactoring and

resubstitution. We also demonstrate improvement in best-known benchmarks for MPC and

FHE applications.

126

6 Conclusions

In this thesis, we investigated novel data structures and algorithms for logic synthesis, focusing

on both standard and emerging technologies. Motivated by the (i) many and diverse ways of

computation, alternative to CMOS, presented in the last years; and (ii) the modern computing

and memory means, we extended logic synthesis to abstract the constraints given by modern

nanotechnologies, as well as optimized standard logic synthesis flow in light of modern

computing capabilities. We also augmented standard logic synthesis algorithms to consider

novel applications in cryptography and security.

The results presented in this thesis demonstrate the need for logic synthesis to be revisited

to consider the variety of modern primitives and novel engines that can be of interest, and,

consequently, the corresponding objective metrics and optimization goals. In the following,

we present the main thesis contributions and directions for future work.

6.1 Summary of Thesis Contributions

We introduce the main contributions of this thesis in the order of the chapters.

• Chapter 3 – Majority Logic for Emerging Technologies [151, 180, 181]. Motivated by

the many emerging technologies that naturally implement the 3-input majority as the

main building block, we demonstrated novel optimization methods over MIGs. We in-

troduced novel logic synthesis size optimizations that achieve more than 18% reduction

in the number of MIG gates, as well as remarkable results after technology mapping

to quantum-dot cellular automata (QCA) and spin torque majority gate (STMG). We

further demonstrated how technology-dependent optimization steps are needed to in-

vestigate the limits and capabilities of emerging technologies. For instance, since STMG

technology can efficiently implement a majority gate, but it cannot realize inverters,

we proposed an algorithm to move inversions to PI. This achieves an inversion-free

circuit, that can be fully implemented using STMG gates. We further studied novel exact

synthesis algorithms to abstract problems with many and complex constraints that

127

Chapter 6. Conclusions

need to be met at the same time. We demonstrated that tailored changes to existing

algorithms allow us to fully abstract the constraints given by emerging technologies

such as plasmonic devices.

• Chapter 4 – Theoretical Results for Majority-n Logic [166, 172, 177]. Motivated by our

research on majority logic, we presented novel theoretical results on the decomposition

of majority-n functions into 3-input majority gates. We introduced a novel method

to directly map binary decision diagrams (BDDs) of monotone functions into 3-input

majority graphs. Our method allows us to find novel upper bounds on the size-optimum

results for these functions, as well as novel decompositions. We proposed the opti-

mum implementation of majority-5 and majority-7, showing the whole derivation by

using algebraic transformations of MIGs. Moreover, we demonstrated the best-known

majority-9 implementation with 12 nodes. This is a remarkable result if you consider

that the optimum realization of the majority-9 is still unknown. Being the majority both

self-dual and monotone, we investigated the complexity of such class of functions over

7 inputs. Our results demonstrated that for the majority function over 7 inputs, the

complexity is invariant when (i) inverters, or (ii) leafy constraints are considered. We

also showed that this is not the case for all self-dual monotone 7-input functions, as the

inverters have in general a positive effect in decreasing their complexity.

• Chapter 5 – XOR-logic for Standard Logic Synthesis Flows [170, 171]. We introduced

a novel size optimization method for standard CMOS technologies, that takes advantage

of the novel and modern computing capabilities of industrial logic synthesis flows. In

contrast to the theoretical results of the previous part, this section aims at building a

functional and efficient flow for industrial purposes. We demonstrated how XOR-based

techniques based on the Boolean difference, together with a modern BDD package allow

us to obtain significant size and power optimization over 36 ASIC design, evaluated after

P&R. We showed that many unexplored optimizations opportunities can still be revealed

by using Boolean methods and pushing the computing performances of modern flows.

Embedding our algorithm in an industrial flow achieved a total area reduction of -3.12%

and switching power of -2.49%, on average, after physical design.

• Chapter 5 – XOR-logic for Cryptography and Security Appications [175, 178]. Moti-

vated by the remarkable results given by XOR optimization for standard CMOS circuits,

we further investigated XOR-based logic synthesis for cryptography and security appli-

cations. We proposed a complete and automatic flow that works over XAGs to reduce

the number of AND gates in the network. Heuristic state-of-the-art methods are not

able to address this alternative cost, which is fundamental for cryptography applica-

tions such as MPC and FHE. We presented a tool consisting of standard logic synthesis

transformations, i.e., rewriting, resubstitution, and refactoring, specifically changed and

designed to consider the minimization of ANDs as the primary goal in the optimization.

We presented remarkable results over both EPFL benchmarks and best-known results

from the cryptography community. As an example, our tool obtained the optimum

result for 32- and 64-bit adders.

128

6.2. Open Problems

6.2 Open Problems

Here, we give some ideas for future research and perspectives.

• Logic Synthesis Flow for MIGs In Chapter 3, we presented a size optimization flow for

MIGs. In this direction, much work is still needed to be able for MIG-based tools to be

fully competitive in the number of optimization opportunities and quality of results with

AIGs state-of-the-art tools such as ABC. Further direction for research could continue

the work started by the EPFL Logic Synthesis Libraries in the direction of building a

complete flow for MIGs [153].

Future work in the same direction could also include an automatic and complete flow

for size optimization of majority-3 graphs obtained with the BDDs method presented

in Chapter 4. Indeed, preliminary results on the majority-9 demonstrated that promis-

ing results are obtained by the automated flow as compared to the ones of the man-

ual decomposition strategy. How to automate the process of optimizing the baseline

majority-3 network derived from its BDD remains still to be studied.

• Mapping of Emerging Technologies While we focused on some of the constraints set by

emerging technologies in Chapter 3, many other constraints and technology mapping

requirements need to be addressed. For instance, QCA technology has strict constraints

on the wiring and timing of the cells. Logic synthesis and EDA tools are far from being

able to abstract these circuits and efficiently work over emerging technologies. Con-

sidering the large variety of different emerging technologies, this leaves many research

opportunities in this direction still unexplored.

• Plasmonic-based Logic: For the plasmonic-based logic presented in Chapter 3, we

mainly took into consideration small circuits. The techniques shown in Chapter 3 can

be used and extended to consider this technology and its constraints. At the time of

this thesis, plasmonic-logic circuits are still in their infancy, and detailed results on area,

delay, and energy still under investigation [196]. Preliminary results on plasmonic-based

logic for multiplier architectures have been recently proposed in [173]. Future work

on logic synthesis for plasmonic-based logic should investigate technology mapping

algorithms using area, delay, and energy results to unlock and study the possibilities

given by this alternative way of computation.

• Task-specific MIG Encoding: In this thesis, we presented exact synthesis methods for

three different tasks: (i) abstract the constraints of emerging technologies (Chapter 3),

(ii) find upper bounds and optimum solutions for majority-n (Chapter 4), (iii) study

the complexity of self-dual monotone 7-input functions (Chapter 4). In all these cases,

we used and modified existing MIG encodings for our needs. While this allowed us to

obtain important results, it was not always the best choice for runtime requirements.

As an example, the complexity of a 7-input function over majority Boolean chain with

inverters is still running after 10 months. Future work may include revisiting them and

129

Chapter 6. Conclusions

build encoding specifically for our requirements. This could also help in finding the

size-optimum implementation for the majority-9 function over MIGs.

• Majority-n Logic for Arithmetic Circuits: An interesting application of majority-n logic

worth being explored is arithmetic circuits. In particular, the depth and size properties of

arithmetic circuits could be addressed. It has been demonstrated that many arithmetic

Boolean operations, such as addition, multiplication, and division, are contained in

the complexity class TC0, which means that they have an efficient realization with

polynomial-size and constant depth networks, using unbounded threshold gates [88,

146]. The possibility to built such arithmetic components using majority-n graphs with

polynomial depth, and restricted number of inputs is a possible future direction for

research. Novel bounds on the number of inputs for polynomial depth are worth being

considered.

• New Logic Primitives: Our thesis focused on majority- and XOR-based logic synthesis.

Studies to understand which elementary functions have a major impact and can lead to

higher improvements in logic synthesis should also be conducted. This is also important

in light of future emerging technologies that could be built upon different primitives.

Preliminary results in this direction will be submitted for publications soon [111].

In this thesis, we extended logic synthesis to approach standard as well as unconventional

applications. Our synthesis methods demonstrated that many optimization opportunities are

still unexplored for conventional logic synthesis flows. Besides, we believe that the material

presented in this thesis opens novel research paths in logic synthesis for emerging technologies

and cryptography and security applications.

130

Bibliography

[1] Hidden-weighted bit (hwb) functions. IEEE Trans., (C-40):208–210, 1991.

[2] Cadence Genus Synthesis Solution, datasheet available at

https://www.cadence.com/content/dam/cadence-www/global/en_us/documents/tools/

digital-design-signoff/genus-synthesis-solution-ds.pdf, 2018 release.

[3] Mentor Graphics Oasys-RTL, datasheet available at

http://s3.mentor.com/public_documents/datasheet/products/ic_nanometer_design/

place-route/realtime-designer/realttime-designer.pdf, 2018 release.

[4] Synopsys Design Compiler Graphical, datasheet available at

https://www.synopsys.com/content/dam/synopsys/implementation&

signoff/datasheets/dc-graphical-ds.pdf, 2018 release.

[5] Synopsys Fusion Compiler, datasheet available at

https://www.synopsys.com/content/dam/synopsys/implementation&signoff/

datasheets/fusion-compiler-ds.pdf, 2018 release.

[6] Dewmini Sudara Marakallage, Private communication, 2019.

[7] M. Agrawal, E. Allender, and S. Datta. On TC0, AC0, and arithmetic circuits. Journal of

Computer and System Sciences, 60(2):395 – 421, 2000.

[8] S. B. Akers. Synthesis of combinational logic using three-input majority gates. In Annual

Symposium on Switching Circuit Theory and Logical Design, pages 149–158, 1962.

[9] S. B. Akers Jr. A truth table method for the synthesis of combinational logic. IEEE Trans.

Electronic Computers, 10(4):604–615, 1961.

[10] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers for

MPC and FHE. In Annual International Conference on the Theory and Applications of

Cryptographic Techniques, pages 430–454, 2015.

[11] N. Alon. and J. Bruck. Explicit constructions of depth-2 majority circuits for comparison

and addition. SIAM J. Discrete Math., 7(1):1–8, 1994.

131

Bibliography

[12] S. Amarel, G. E. Cooke, and R. O. Winder. Majority gate networks. IEEE Trans. Electronic

Computers, 13(1):4–13, 1964.

[13] L. G. Amarù, P.-E. Gaillardon, A. Chattopadhyay, and G. De Micheli. A sound and

complete axiomatization of majority-n logic. IEEE Trans. on Computers, 65(9):2889–

2895, 2016.

[14] L. G. Amarù, P.-E. Gaillardon, and G. De Micheli. Majority-inverter graph: A novel

data-structure and algorithms for efficient logic optimization. In Design Automation

Conference, pages 194:1–194:6, 2014.

[15] L. G. Amarù, P.-E. Gaillardon, and G. De Micheli. The EPFL combinational benchmark

suite. In Int’l Workshop on Logic and Synthesis, 2015.

[16] L. G. Amarù, P.-E. Gaillardon, and G. De Micheli. Majority-inverter graph: A new

paradigm for logic optimization. IEEE Trans. on CAD of Integrated Circuits and Systems,

35(5):806–819, 2016.

[17] L. G. Amarù, P.-E. Gaillardon, and G. D. Micheli. BDS-MAJ: a BDD-based logic synthesis

tool exploiting majority logic decomposition. In Design Automation Conference, pages

47:1–47:6, 2013.

[18] L. G. Amarù, P.-E. Gaillardon, S. Mitra, and G. De Micheli. New logic synthesis as

nanotechnology enabler. Proceedings of the IEEE, 103(11):2168–2195, 2015.

[19] L. G. Amarù, M. Soeken, P. Vuillod, J. Luo, A. Mishchenko, J. Olson, R. Brayton, and

G. De Micheli. Improvements to Boolean resynthesis. In Design, Automation and Test

in Europe, pages 755–760, 2018.

[20] G. Audemard and L. Simon. Predicting learnt clauses quality in modern SAT solvers. In

Proceedings of the 21st International Jont Conference on Artifical Intelligence, IJCAI’09,

pages 399–404, 2009.

[21] G. Audemard and L. Simon. Glucose and Syrup in the SAT Race 2015. In Reports on the

SAT 2015 Competition, 2015.

[22] O. Bailleux and Y. Boufkhad. Efficient CNF encoding of Boolean cardinality constraints.

In Constraint Programming, pages 108–122, 2003.

[23] W. L. Barnes, A. Dereux, and T. W. Ebbesen. Surface plasmon subwavelength optics.

Nature, 424(6950):824–830, 2003.

[24] K. A. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, C. R. Morrison, R. L. Rudell,

A. Sangiovanni-Vincentelli, and A. Wang. Multi-level logic minimization using implicit

don’t cares. IEEE Trans. on CAD of Integrated Circuits and Systems, 7(6):723–740, 1988.

[25] K. E. Batcher. Sorting networks and their applications. In AFIPS Sprint Joint Computing

Conference, pages 307–314, 1968.

132

Bibliography

[26] L. Berger. Emission of spin waves by a magnetic multilayer traversed by a current.

Physical Review B, 54(13):9353–8, 1996.

[27] E. R. Berlekamp and L. R. Welch. Weight distributions of the cosets of the (32,6) Reed-

Muller code. IEEE Trans. on Information Theory, 18(1):203–207, 1972.

[28] D. Bhattacharjee and A. Chattopadhyay. Synthesis, technology mapping and optimiza-

tion for emerging technologies. In Annual Symp. on VLSI, pages 369–374, 2018.

[29] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability. IOS

Press, 2009.

[30] G. Birkhoff and S. A. Kiss. A ternary operation in distributive lattices. Bulletin of the

American Mathematical Society, 53(8):749–752, 1947.

[31] B. Bollig and I. Wegener. Improving the variable ordering of OBDDs is NP-complete.

IEEE Trans. on Computers, 45(9):993–1002, 1996.

[32] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams.

Memristive switches enable stateful logic operations via material implication. Nature,

464(7290):873–876, 2010.

[33] J. Boyar, P. Matthews, and R. Peralta. Logic minimization techniques with applications

to cryptology. Journal of Cryptology, 26(2):280–312, 2013.

[34] J. Boyar and R. Peralta. Tight bounds for the multiplicative complexity of symmetric

functions. Theoretical Computer Science, 396(1–3):223–246, 2008.

[35] J. Boyar and R. Peralta. A new combinational logic minimization technique with ap-

plications to cryptology. In Int’l Symp. on Experimental Algorithms, pages 178–189,

2010.

[36] J. Boyar and R. Peralta. A small depth-16 circuit for the AES S-Box. In International

Information Security Conference, pages 287–298, 2012.

[37] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic mini-

mization algorithms for VLSI synthesis, volume 2. Springer Science & Business Media,

1984.

[38] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli. Multilevel logic synthesis.

Proceedings of the IEEE, 78(2):264–300, 1990.

[39] R. K. Brayton and C. T. McMullen. The decomposition and factorization of Boolean

expressions. In Int’l Symp. on Circuits and Systems, pages 49–54, 1982.

[40] R. K. Brayton and A. Mishchenko. ABC: an academic industrial-strength verification

tool. In Computer Aided Verification, pages 24–40, 2010.

133

Bibliography

[41] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang. MIS: A multiple-

level logic optimization system. IEEE Trans. on CAD of Integrated Circuits and Systems,

6(6):1062–1081, 1987.

[42] S. Breitkreutz, J. Kiermaier, I. Eichwald, C. Hildbrand, G. Csaba, et al. Experimental

demonstration of a 1-bit full adder in perpendicular nanomagnetic logic. IEEE Trans.

on Magnetics, 49(7):4464–4467, 2013.

[43] F. Brglez, D. Bryan, J. Calhoun, G. Kedem, and R. Lisanke. Automated synthesis for

testability. IEEE Transactions on Industrial Electronics, 36(2):263–277, 1989.

[44] F. M. Brown. Boolean reasoning: the logic of Boolean equations. Springer Science &

Business Media, 2012.

[45] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic. Field-programmable gate arrays,

volume 180. Springer Science & Business Media, 2012.

[46] R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans.

on Computers, 35(8):677–691, 1986.

[47] R. E. Bryant. On the complexity of VLSI implementations and graph representations of

Boolean functions with application to integer multiplication. IEEE Trans. on Computers,

40(2):205–213, 1991.

[48] C. Calik, M. S. Turan, and R. Peralta. The multiplicative complexity of 6-variable Boolean

functions. Cryptology ePrint Archive, Report 2018/002, 2018.

[49] R. Camposano and W. Wolf. High-level VLSI synthesis, volume 136. Springer Science &

Business Media, 2012.

[50] D. Canright and L. Batina. A very compact “Perfectly Masked” S-Box for AES. In Int’l

Conf. on Applied Cryptography and Network Security, pages 446–459, 2008.

[51] S.-C. Chang, L. P. Van Ginneken, and M. Marek-Sadowska. Circuit optimization by

rewiring. IEEE Trans. on Computers, 48(9):962–970, 1999.

[52] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger, D. Slamanig,

and G. Zaverucha. Post-quantum zero-knowledge and signatures from symmetric-key

primitives. In Conference on Computer and Communications Security, pages 1825–1842,

2017.

[53] S. Chatterjee and A. Mishchenko. Circuit-based intrinsic methods to detect overfitting.

arXiv preprint arXiv:1907.01991, 2019.

[54] S. Chatterjee, A. Mishchenko, R. K. Brayton, X. Wang, and T. Kam. Reducing structural

bias in technology mapping. IEEE Trans. on CAD of Integrated Circuits and Systems,

25(12):2894–2903, 2006.

134

Bibliography

[55] A. Chattopadhyay, L. Amarú, M. Soeken, P.-E. Gaillardon, and G. De Micheli. Notes on

majority boolean algebra. In Int’l Symp. on Multiple-Valued Logic, pages 50–55, 2016.

[56] Y. Chen and C. Wang. Fast detection of node mergers using logic implications. In Int’l

Conf. on Computer-Aided Design, pages 785–788, 2009.

[57] F. T. Chong, D. Franklin, and M. Martonosi. Programming languages and compiler

design for realistic quantum hardware. Nature, 549(7671):180–187, 2017.

[58] Z. Chu, L. Shi, L. Wang, and Y. Xia. Multi-objective algebraic rewriting in XOR-majority

graphs. Integration, 69:40–49, 2019.

[59] C. Chung, Y. Chen, C. Wang, and C. Wu. Majority logic circuits optimisation by node

merging. In Asia and South Pacific Design Automation Conference, pages 714–719, 2017.

[60] S. Cimato, V. Ciriani, E. Damiani, and M. Ehsanpour. An OBDD-based technique for the

efficient synthesis of garbled circuits. In International Workshop on Security and Trust

Management, pages 158–167, 2019.

[61] M. Codish, L. Cruz-Filipe, M. Frank, and P. Schneider-Kamp. Twenty-five comparators

is optimal when sorting nine inputs (and twenty-nine for ten). In Int’l Conf. on Tools

with Artificial Intelligence, pages 186–193, 2014.

[62] J. Cong and Y. Ding. FlowMap: an optimal technology mapping algorithm for delay

optimization in lookup-table based FPGA designs. IEEE Trans. on CAD of Integrated

Circuits and Systems, 13(1):1–12, 1994.

[63] J. Cong, C. Wu, and Y. Ding. Cut ranking and pruning: Enabling a general and efficient

FPGA mapping solution. In Int’l Symp. on Field Programmable Gate Arrays, pages 29–35,

1999.

[64] N. Courtois, D. Hulme, and T. Mourouzis. Solving circuit optimisation problems in

cryptography and cryptanalysis. IACR Cryptology ePrint Archive, 2011:475, 2011.

[65] G. Csaba, A. Imre, G. H. Bernstein, W. Porod, and V. Metlushko. Nanocomputing by

field-coupled nanomagnets. IEEE Trans. on Nanotechnology, 99(4):209, 2002.

[66] M. Damiani, J.-Y. Yang, and G. De Micheli. Optimization of combinational logic circuits

based on compatible gates. IEEE Trans. on CAD of Integrated Circuits and Systems,

14(11):1316–1327, 1995.

[67] F. David Bryan, Brglez and R. Lisanke. Redundancy identification and removal. IWLS,

1991.

[68] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, et al. Loihi: A neuromorphic

manycore processor with on-chip learning. IEEE Micro, 38(1):82–99, 2018.

[69] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

135

Bibliography

[70] D. Dor and U. Zwick. Selecting the median. SIAM Journal on Computing, 28(5):1722–

1758, 1999.

[71] R. Drechsler, N. Drechsler, and W. Günther. Fast exact minimization of BDDs. IEEE

Trans. on CAD of Integrated Circuits and Systems, 19(3):384–389, 2000.

[72] S. Dutta, O. Zografos, S. Gurunarayanan, I. Radu, B. Soree, et al. Proposal for nanoscale

cascaded plasmonic majority gates for non-Boolean computation. Scientific reports,

7(1):17866, 2017.

[73] C. R. Edwards. The application of the Rademacher-Walsh transform to Boolean function

classification and threshold logic synthesis. IEEE Trans. on Computers, 24(1):48–62,

1975.

[74] N. Éen. Practical SAT - a tutorial on applied satisfiability solving, 2007. slides of invited

talk at FMCAD.

[75] K. Fazel, M. A. Thornton, and J. E. Rice. ESOP-based Toffoli gate cascade generation. In

Pacific Rim Conference on Communications, Computers and Signal Processing, 2007.

[76] M. Fujita, Y. Matsunaga, and T. Kakuda. On variable ordering of binary decision diagrams

for the application of multi-level logic synthesis. In Proceedings of the conference on

European design automation, pages 50–54, 1991.

[77] I. Giacomelli, J. Madsen, and C. Orlandi. Zkboo: Faster zero-knowledge for boolean

circuits. In Security Symposium, pages 1069–1083, 2016.

[78] M. Goldmann, J. Håstad, and A. Razborov. Majority gates vs. general weighted threshold

gates. Computational Complexity, 2(4):277–300, 1992.

[79] E. Goto and H. Takahasi. Some theorems useful in threshold logic for enumerating

Boolean functions. In IFIP Congress, pages 747–752, 1962.

[80] D. Goudarzi and M. Rivain. On the multiplicative complexity of Boolean functions and

bitsliced higher-order masking. In International Conference on Cryptographic Hardware

and Embedded Systems, pages 457–478, 2016.

[81] W. Haaswijk, M. Soeken, L. G. Amarù, P.-E. Gaillardon, and G. De Micheli. A novel basis

for logic optimization. In Asia and South Pacific Design Automation Conference, pages

151–156, 2017.

[82] W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli. SAT-based exact synthesis:

Encodings, topology families, and parallelism. IEEE Trans. on CAD of Integrated Circuits

and Systems, 2019.

[83] W. Haaswijk, E. Testa, M. Soeken, and G. De Micheli. Classifying functions with exact

synthesis. In Int’l Symp. on Multiple-Valued Logic, pages 272–277, 2017.

136

Bibliography

[84] G. D. Hachtel and F. Somenzi. Logic synthesis and verification algorithms. Springer

Science & Business Media, 2006.

[85] I. Háleček, P. Fišer, and J. Schmidt. Are XORs in logic synthesis really necessary? In

Design and Diagnostics of Electronic Circuits & Systems, International Symposium on,

pages 134–139, 2017.

[86] I. Hanninen and J. Takala. Pipelined array multiplier based on quantum-dot cellular

automata. In European Conf. on Circuit Theory and Design, pages 938–941, 2007.

[87] L. Hellerman. A catalog of three-variable Or-invert and And-invert logical circuits. IEEE

Trans. Electronic Computers, 12(3):198–223, 1963.

[88] W. Hesse, E. Allender, and D. A. M. Barrington. Uniform constant-depth threshold cir-

cuits for division and iterated multiplication. Journal of Computer and System Sciences,

65(4):695 – 716, 2002.

[89] T. Hofmeister. The power of negative thinking in constructing threshold circuits for ad-

dition. In Proceedings of the Seventh Annual Structure in Complexity Theory Conference,

pages 20–26, 1992.

[90] T. Hofmeister, W. Hohberg, and S. Köhling. Some notes on threshold circuits, and

multiplication in depth 4. Inf. Process. Lett., 39(4):219–225, 1991.

[91] K. Ikegami, H. Noguchi, C. Kamata, M. Amano, K. Abe, , et al. Low power and high

density STT-MRAM for embedded cache memory using advanced perpendicular MTJ

integrations and asymmetric compensation techniques. In IEEE Int’l Electron Devices

Meeting, pages 28–1, 2014.

[92] S. Jukna. Boolean Function Complexity. Springer, 2012.

[93] V. Kabanets and J. Cai. Circuit minimization problem. Symposium on Theory and

Computing, pages 73 –79, 2000.

[94] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu. VLSI physical design: from graph partition-

ing to timing closure. Springer Science & Business Media, 2011.

[95] A. Khitun and K. L. Wang. Non-volatile magnonic logic circuits engineering. Journal of

Applied Physics, 110(034306), 2011.

[96] D. E. Knuth. The Art of Computer Programming, Volume 3, Second Edition. Addison-

Wesley, 1998.

[97] D. E. Knuth. The Art of Computer Programming, Volume 4A. Addison-Wesley, 2011.

[98] D. E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 6: Satisfiability.

Addison-Wesley, 2015.

137

Bibliography

[99] A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev. Finding efficient circuits using SAT-

solvers. In Int’l Conf. on Theory and Applications of Satisfiability Testing, pages 32–44,

2009.

[100] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and applica-

tions. In International Colloquium on Automata, Languages, and Programming, pages

486–498, 2008.

[101] K. Kong, Y. Shang, and R. Lu. An optimized majority logic synthesis methodology for

quantum-dot cellular automata. IEEE Trans. on Nanotechnology, 9(2):170–183, 2010.

[102] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai. Robust Boolean reasoning for

equivalence checking and functional property verification. IEEE Trans. on CAD of

Integrated Circuits and Systems, 21(12):1377–1394, 2002.

[103] A. S. Kulikov and V. V. Podolskii. Computing majority by constant depth majority circuits

with low fan-in gates. In Symposium on Theoretical Aspects of Computer Science, pages

49:1–49:14, 2017.

[104] R. J. Lechner. Harmonic analysis of switching functions. In Recent Developments in

Switching Theory, pages 121–228. Academic Press, 1971.

[105] C. S. Lent and P. D. Tougaw. A device architecture for computing with quantum dots.

Proceedings of the IEEE, 85(4):541–557, 1997.

[106] C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein. Quantum cellular automata.

Nanotechnology, 4(1):49–57, 1993.

[107] K. K. Likharev and V. K. Semenov. RSFQ logic/memory family: A new Josephson-junction

technology for sub-terahertz-clock-frequency digital systems. IEEE Transactions on

Applied Superconductivity, 1(1):3–28, 1991.

[108] G. Liu and Z. Zhang. A parallelized iterative improvement approach to area optimization

for LUT-based technology mapping. In Int’l Symp. on Field Programmable Gate Arrays,

pages 147–156, 2017.

[109] L. Machado and J. Cortadella. Support-reducing decomposition for FPGA mapping.

IEEE Trans. on CAD of Integrated Circuits and Systems, pages 1–1, 2018.

[110] L. Machado and J. Cortadella. Support-reducing functional decomposition for FPGA

technology mapping. Int’l Workshop on Logic and Synthesis, 2018.

[111] D. S. Marakallage, E. Testa, H. Riener, M. Soeken, and G. De Micheli. Semester project

on 3-input gates for logic synthesis, 2020.

[112] E. J. McCluskey. Minimization of Boolean functions. Bell Labs Technical Journal,

35(6):1417–1444, 1956.

138

Bibliography

[113] G. Meuli, M. Soeken, E. Campbell, M. Roetteler, and G. D. Micheli. The role of multi-

plicative complexity in compiling low T-count oracle circuits. In Int’l Conf. on Computer-

Aided Design, 2019.

[114] D. M. Miller and M. Soeken. A spectral algorithm for ternary function classification. In

Int’l Symp. on Multiple-Valued Logic, pages 198–203, 2018.

[115] H. S. Miller and R. O. Winder. Majority-logic synthesis by geometric methods. IRE Trans.

Electronic Computers, 11(1):89–90, 1962.

[116] M. Miller and M. Soeken. An algorithm for linear, affine and spectral classification of

Boolean functions. International Workshop on Boolean Problems, pages 237–254, 2018.

[117] A. Mishchenko, R. Brayton, A. Petkovska, and M. Soeken. SAT-based optimization with

dont-cares revisited. Int’l Workshop on Logic and Synthesis, 2017.

[118] A. Mishchenko and R. K. Brayton. SAT-based complete don’t-care computation for

network optimization. In Design, Automation and Test in Europe, pages 412–417, 2005.

[119] A. Mishchenko and R. K. Brayton. Scalable logic synthesis using a simple circuit structure.

In Int’l Workshop on Logic and Synthesis, pages 15–22, 2006.

[120] A. Mishchenko, R. K. Brayton, J. R. Jiang, and S. Jang. Scalable don’t-care-based logic

optimization and resynthesis. ACM Trans. on Reconfigurable Technology and Systems,

4(4):34:1–34:23, 2011.

[121] A. Mishchenko, S. Chatterjee, and R. K. Brayton. DAG-aware AIG rewriting a fresh look

at combinational logic synthesis. In Design Automation Conference, pages 532–535,

2006.

[122] A. Mishchenko, S. Chatterjee, and R. K. Brayton. Improvements to technology mapping

for LUT-based FPGAs. IEEE Trans. on CAD of Integrated Circuits and Systems, 26(2):240–

253, 2007.

[123] A. Mishchenko, S. Cho, S. Chatterjee, and R. K. Brayton. Combinational and sequential

mapping with priority cuts. In Int’l Conf. on Computer-Aided Design, pages 354–361,

2007.

[124] A. Mishchenko and M. A. Perkowski. Logic synthesis of reversible wave cascades. In Int’l

Workshop on Logic and Synthesis, 2002.

[125] A. Mishchenko, B. Steinbach, and M. Perkowski. An algorithm for bi-decomposition of

logic functions. In Design Automation Conference, pages 103–108, 2001.

[126] A. Mishchenko, J. S. Zhang, S. Sinha, J. R. Burch, R. K. Brayton, and M. Chrzanowska-

Jeske. Using simulation and satisfiability to compute flexibilities in Boolean networks.

IEEE Trans. on CAD of Integrated Circuits and Systems, 25(5):743–755, 2006.

139

Bibliography

[127] V. K. Mishra and H. Thapliyal. Heuristic based majority/minority logic synthesis for

emerging technologies. In International Conference on VLSI Design and International

Conference on Embedded Systems (VLSID), pages 295–300, 2017.

[128] Y. Miyasaka, A. Mishchenko, and M. Fujita. A simple BDD package without variable

reordering and its application to logic optimization with permissible functions. In Int’l

Workshop on Logic and Synthesis, 2019.

[129] G. E. Moore. Cramming more components onto integrated circuits. Electronics,

38(8):114–117, 1965.

[130] S. Muroga. Logic synthesizers, the transduction method and its extension, sylon. In

Logic Synthesis and Optimization, pages 59–86. Springer, 1993.

[131] S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney. The transduction method-

design of logic networks based on permissible functions. IEEE Trans. on Computers,

(10):1404–1424, 1989.

[132] C. D. Murray and R. R. Williams. On the (non) NP-hardness of computing circuit

complexity. Conference on Computational Complexity, pages 365–380, 2015.

[133] K. Navi, R. Farazkish, S. Sayedsalehi, and M. R. Azghadi. A new quantum-dot cellular

automata full-adder. Microelectronics Journal, 41(12):820–826, 2010.

[134] D. E. Nikonov, G. I. Bourianoff, and T. Ghani. Nanomagnetic circuits with spin torque

majority gates. In IEEE-NANO, pages 1384–1388, 2011.

[135] D. E. Nikonov, G. I. Bourianoff, and T. Ghani. Proposal of a spin torque majority gate

logic. IEEE Electron Device Letters, 32(8):1128–1130, 2011.

[136] D. E. Nikonov, S. Manipatruni, and I. A. Young. Automotion of domain walls for spin-

tronic interconnects. Journal of Applied Physics, 115(21):213902, 1996.

[137] D. E. Nikonov and I. A. Young. Overview of beyond-CMOS devices and a uniform

methodology for their benchmarking. Proceedings of the IEEE, 101(12):2498–2533, 2013.

[138] P. Pan and C. Lin. A new retiming-based technology mapping algorithm for LUT-based

FPGAs. In Int’l Symp. on Field Programmable Gate Arrays, pages 35–42, 1998.

[139] W. J. Paul. A 2.5n-lower bound on the combinational complexity of Boolean functions.

SIAM Journal on Computing, 6(3):427–443, 1977.

[140] E. L. Post. The Two-Valued Iterative Systems of Mathematical Logic, volume 5. Princeton

University Press, 2016.

[141] B. T. Preas, M. J. Lorenzetti, and B. D. Ackland. Physical design automation of VLSI

systems. Benjamin-Cummings Pub Co, 1988.

140

Bibliography

[142] R. Puri, A. Bjorksten, and T. E. Rosser. Logic optimization by output phase assignment

in dynamic logic synthesis. In Int’l Conf. on Computer-Aided Design, pages 2–8, 1996.

[143] P. Raghavan, M. G. Bardon, D. Jang, P. Schuddinck, D. Yakimets, et al. Holisitic device

exploration for 7nm node. In IEEE Custom Integrated Circuits Conf., pages 1–5, 2015.

[144] S. Ray, A. Mishchenko, N. Eén, R. K. Brayton, S. Jang, and C. Chen. Mapping into LUT

structures. In Design, Automation and Test in Europe, pages 1579–1584, 2012.

[145] S. M. Reddy. Complete test sets for logic functions. IEEE Trans. on Computers, C-

22(11):1016–1020, 1973.

[146] J. H. Reif and S. R. Tate. On threshold circuits and polynomial computation. SIAM J.

Comput., 21(5):896–908, 1992.

[147] G. V. Resta, Y. Balaji, D. Lin, I. P. Radu, F. Catthoor, et al. Doping-free complementary

logic gates enabled by two-dimensional polarity-controllable transistors. ACS Nano,

12(7):7039–7047, 2018.

[148] G. V. Resta, A. Leonhardt, Y. Balaji, S. De Gendt, P. Gaillardon, and G. De Micheli. Devices

and circuits using novel 2-D materials: A perspective for future VLSI systems. IEEE

Trans. VLSI Syst., 27(7):1486–1503, 2019.

[149] M. S. Riazi, M. Javaheripi, S. U. Hussain, and F. Koushanfar. MPCircuits: Optimized

circuit generation for secure multi-party computation. Int’l Symp. on Hardware-Oriented

Security and Trust, pages 198–207, 2019.

[150] H. Riener, W. Haaswijk, A. Mishchenko, G. De Micheli, and M. Soeken. On-the-fly and

DAG-aware: Rewriting Boolean networks with exact synthesis. In Design, Automation

and Test in Europe, pages 1649–1654, 2019.

[151] H. Riener, E. Testa, L. G. Amarù, M. Soeken, and G. De Micheli. Size optimization of

MIGs with an application to QCA and STMG technologies. In Int’l Symp. on Nanoscale

Architectures, pages 157–162, 2018.

[152] H. Riener, E. Testa, W. Haaswijk, A. Mishchenko, L. Amarù, G. De Micheli, and M. Soeken.

Scalable generic logic synthesis: One approach to rule them all. In Design Automation

Conference, 2019.

[153] H. Riener, E. Testa, W. Haaswijk, A. Mishchenko, L. Amaru, et al. Logic optimization of

majority-inverter graphs. In Workshop-Methods and Description Languages for Mod-

elling and Verification of Circuits and Systems, pages 1–4, 2019.

[154] R. Rudell and A. Sangiovanni-Vincentelli. Logic synthesis for VLSI design. PhD thesis,

University of California, Berkeley, 1989.

141

Bibliography

[155] T. N. Sasamal, A. K. Singh, and A. Mohan. An optimal design of full adder based on

5-input majority gate in coplanar quantum-dot cellular automata. Int.’l Journal for Light

and Electron Optics, 127(20):8576–8591, 2016.

[156] T. Sasao. Switching Theory for Logic Synthesis. Springer, 1999.

[157] H. Sato, Y. Yasue, Y. Matsunaga, and M. Fujita. Boolean resubstitution with permissible

functions and binary decision diagrams. In Design Automation Conference, pages

284–289, 1991.

[158] C. Schensted, 1978. A letter to Martin Gartner from December 9, 1978.

[159] S. Sheikhfaal, S. Angizi, S. Sarmadi, M. H. Moaiyeri, and S. Sayedsalehi. Designing

efficient QCA logical circuits with power dissipation analysis. Microelectronics Journal,

46(6):462–471, 2015.

[160] M. Sholander. Medians and betweenness. Proceedings of the American Mathematical

Society, 5:801–807, 1954.

[161] M. Soeken, L. G. Amarù, P.-E. Gaillardon, and G. De Micheli. Optimizing majority-

inverter graphs with functional hashing. In Design, Automation and Test in Europe,

pages 1030–1035, 2016.

[162] M. Soeken, L. G. Amarù, P.-E. Gaillardon, and G. De Micheli. Exact synthesis of majority-

inverter graphs and its applications. IEEE Trans. on CAD of Integrated Circuits and

Systems, 36(11):1842–1855, 2017.

[163] M. Soeken, G. De Micheli, and A. Mishchenko. Busy man’s synthesis: Combinational

delay optimization with SAT. In Design, Automation and Test in Europe, pages 830–835,

2017.

[164] M. Soeken, W. Haaswijk, E. Testa, A. Mishchenko, L. G. Amarù, et al. Practical exact

synthesis. In Design, Automation and Test in Europe, pages 309–314, 2018.

[165] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, et al. The EPFL logic synthesis

libraries, Nov. 2019. arXiv:1805.05121v2.

[166] M. Soeken, E. Testa, A. Mishchenko, and G. De Micheli. Pairs of majority-decomposing

functions. Information Processing Letters, 139:35–38, 2018.

[167] E. M. Songhori, S. U. Hussain, A. Sadeghi, T. Schneider, and F. Koushanfar. TinyGarble:

Highly compressed and scalable sequential garbled circuits. In Symposium on Security

and Privacy, pages 411–428, 2015.

[168] B. Steinbach and C. Posthoff. Compact XOR bi-decomposition for generalized lattices

of Boolean functions. Reed-Muller Workshop, 2017.

142

Bibliography

[169] N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa. An adiabatic quantum flux

parametron as an ultra-low-power logic device. Superconductor Science and Technology,

26(3):035010, 2013.

[170] E. Testa, L. Amarù, M. Soeken, A. Mishchenko, P. Vuillod, P.-E. Gaillardon, and G. D.

Micheli. Extending Boolean methods for scalable logic synthesis. Submitted to IEEE

Trans. on CAD of Integrated Circuits and Systems, 2020.

[171] E. Testa, L. Amarù, M. Soeken, A. Mishchenko, P. Vuillod, J. Luo, C. Casares, P.-E. Gail-

lardon, and G. De Micheli. Scalable boolean methods in a modern synthesis flow. In

Design, Automation and Test in Europe, pages 1643–1648, 2019.

[172] E. Testa, W. J. Haaswijk, M. Soeken, and G. De Micheli. The complexity of self-dual

monotone 7-input functions. In Int’l Workshop on Logic and Synthesis, 2019.

[173] E. Testa, S. L. Noor, O. Zografos, M. Soeken, F. Catthoor, et al. Multiplier architectures:

Challenges and opportunities with plasmonic-based logic. In Design, Automation and

Test in Europe, 2020.

[174] E. Testa, M. Soeken, L. Amarù, and G. De Micheli. Logic synthesis for established and

emerging computing. Proceedings of the IEEE, 107(1):165–184, 2018.

[175] E. Testa, M. Soeken, L. Amarù, and G. De Micheli. Reducing the multiplicative complexity

in logic networks for cryptography and security applications. In Design Automation

Conference, 2019.

[176] E. Testa, M. Soeken, L. G. Amarù, P.-E. Gaillardon, and G. De Micheli. Inversion mini-

mization in majority-inverter graphs. In Int’l Workshop on Logic and Synthesis, 2016.

[177] E. Testa, M. Soeken, L. G. Amarù, W. Haaswijk, and G. De Micheli. Mapping monotone

Boolean functions into majority. IEEE Trans. on Computers, 68(5):791–797, 2018.

[178] E. Testa, M. Soeken, H. Riener, L. Amarù, and G. De Micheli. A logic synthesis toolbox

for reducing the multiplicative complexity in logic networks. In Design, Automation and

Test in Europe, 2020.

[179] E. Testa, M. Soeken, O. Zografos, L. G. Amarù, P. Raghavan, et al. Inversion optimization

in majority-inverter graphs. In Int’l Symp. on Nanoscale Architectures, pages 15–20, 2016.

[180] E. Testa, M. Soeken, O. Zografos, F. Catthoor, and G. De Micheli. Exact synthesis for

logic synthesis applications with complex constraints. In Int’l Workshop on Logic and

Synthesis, 2017.

[181] E. Testa, O. Zografos, M. Soeken, A. Vaysset, M. Manfrini, et al. Inverter propagation and

fan-out constraints for beyond-CMOS majority-based technologies. In Annual Symp.

on VLSI, pages 164–169, 2017.

143

Bibliography

[182] P. D. Tougaw and C. S. Lent. Logical devices implemented using quantum cellular

automata. Journal of Applied Physics, 75(3):1818–1825, 1993.

[183] M. Turan Sönmez and R. Peralta. The multiplicative complexity of Boolean functions

on four and five variables. In Lightweight Cryptography for Security and Privacy, pages

21–33, Cham, 2015.

[184] A. Vaysset, M. Manfrini, D. E. Nikonov, S. Manipatruni, I. A. Young, et al. Toward error-

free scaled spin torque majority gates. AIP Advances, 6(6):065304, 2016.

[185] A. Vaysset, M. Manfrini, D. E. Nikonov, S. Manipatruni, I. A. Young, et al. Operating

conditions and stability of spin torque majority gates: Analytical understanding and

numerical evidence. Journal of Applied Physics, 121(4):043902, 2017.

[186] K. Walus, T. J. Dysart, G. A. Jullien, and R. A. Budiman. QCADesigner: A rapid design and

simulation tool for quantum-dot cellular automata. IEEE Trans. on Nanotechnology,

3(1):26–31, 2004.

[187] P. Wang, M. Y. Niamat, S. R. Vemuru, M. Alam, and T. Killian. Synthesis of majority/mi-

nority logic networks. IEEE Trans. on Nanotechnology, 14(3):473–483, 2015.

[188] I. Wegener. The complexity of Boolean functions. John Wiley, 1987.

[189] R. L. Wigington. A new concept in computing. Proceedings of the IRE, 47(4):516–523,

1959.

[190] C. Wolf. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/.

[191] C. Yang and M. Ciesielski. BDS: A BDD-based logic optimization system. IEEE Trans. on

CAD of Integrated Circuits and Systems, 21(7):866–876, 2002.

[192] S. Yang. Logic synthesis and optimization Version 3.0, 1991.

[193] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. Optimizing FPGA-based accelerator

design for deep convolutional neural networks. In Int’l Symp. on Field Programmable

Gate Arrays, pages 161–170, 2015.

[194] R. Zhang, P. Gupta, and N. K. Jha. Majority and minority network synthesis with applica-

tion to QCA-, SET-, and TPL-Based nanotechnologies. IEEE Trans. on CAD of Integrated

Circuits and Systems, 26(7):1233–1245, 2007.

[195] V. V. Zhirnov, R. K. Cavin, J. A. Hutchby, and G. I. Bourianoff. Limits to binary logic switch

scaling - a gedanken model. Proceedings of the IEEE, 91(11):1934–1939, 2003.

[196] O. Zografos, F. Catthoor, S. Dutta, and A. Naeemi. US Patent Application

US20190064438A1, 2019.

144

Bibliography

[197] O. Zografos, A. De Meester, E. Testa, M. Soeken, P.-E. Gaillardon, and et al. Wave

pipelining for majority-based beyond-CMOS technologies. Design, Automation and

Test in Europe, 2017.

[198] O. Zografos, B. Sorée, A. Vaysset, S. Cosemans, L. G. Amarù, et al. Design and bench-

marking of hybrid CMOS-spin wave device circuits compared to 10nm CMOS. In Int’l

Conference on Nanotechnology, pages 686–689, 2015.

145

Eleonora Testa
PhD Student at EPFL

Rue de Crissier 9 B
1020 Renens, Switzerland

� (+41) 77 9851412
� eleonora.testa@epfl.ch

Research Interests: Logic synthesis, EDA, majority-based logic synthesis, logic synthesis for nanotechnologies,
emerging nanotechnologies, new data structures for Boolean functions optimization, algorithms, threshold logic.

Education
Sept. 2016 - to date PhD in Computer and Communication Sciences, Institute: École Polytechnique

Fédérale de Lausanne (CH), Thesis advisor: Prof. Giovanni De Micheli, Thesis co-
advisor: Dr. Mathias Soeken.
Thesis title: Data Structures and Algorithms for Logic Synthesis in Advanced Technologies

2013 - 2015 Master of Science in Nanotechnologies for ICTs, Institute: École Polytechnique
Fédérale de Lausanne (CH), Grenoble INP (FR), Politecnico di Torino (IT), Final Mark:
110 con Lode/110 (full marks with honors).

2010 - 2013 Bachelor Degree in Physics Engineering, Institute: Politecnico di Torino (IT), Final
Mark: 109/110.

Research Experience
June - Aug. 2018 Internship, Synopsys Inc. (USA), Supervisor: Dr. Luca Amarù.

Sept. 2015 - Aug. 2016 Research Assistant, École Polytechnique Fédérale de Lausanne (CH), Supervisor: Prof.
Giovanni De Micheli.

June - Aug. 2016 Visiting Researcher, IMEC (BE), Supervisors: Dr. Julien Ryckaert and Prof. Francky
Catthoor.

June - Aug. 2014 Internship, Istituto Italiano di Tecnologia (IT), Supervisors: Dr. Giancarlo Canavese
and Prof. Fabrizio Pirri.

Publications
Conference & Workshop Papers:
� L. Amarù, F. Marranghello, E. Testa, C. Casares, V. Possani, et al.:“SAT-Sweeping Enhanced for Logic

Synthesis”. DAC, 2020.
� E. Testa, S. L. Noor, O. Zografos, M. Soeken, F. Catthoor, et al.: “Multiplier Architectures: Challenges and

Opportunities with Plasmonic-based Logic (special session)”. DATE, 2020.
� E. Testa, M. Soeken, H. Riener, L. Amarù, G. De Micheli: “A Logic Synthesis Toolbox for Reducing the

Multiplicative Complexity in Logic Networks”. DATE, 2020.
� H. Riener, M. Soeken, E. Testa, G. De Micheli: “Generic Logic Synthesis Meets RTL Synthesis”. WOSET,

2019.
� M. Soeken, E. Testa, M. Miller: “A Hybrid Method for Spectral Translation Equivalent Boolean Functions”.

PACRIM, 2019.
� E. Testa, W. Haaswijk, M. Soeken, G. De Micheli: “The Complexity of Self-Dual Monotone 7-Input Functions”.

IWLS, 2019.
� M. Soeken, E. Testa, M. Miller: “A Hybrid Spectral Method for Checking Boolean Function Equivalence".

RM, 2019.
� H. Riener, E. Testa, W. Haaswijk, A. Mishchenko, L. Amarù, et al.: “Logic Optimization of Majority-Inverter

Graphs”. MBMV, 2019.
� H. Riener, E. Testa, W. Haaswijk, A. Mishchenko, L. Amarù, et al.: “Scalable Generic Logic Synthesis: One

Approach to Rule Them All”. DAC, 2019.

147

� E. Testa, M. Soeken, L. Amarù, G. De Micheli: “Reducing the Multiplicative Complexity in Logic Networks
for Cryptography and Security Applications”. DAC, 2019.

� E. Testa, L. Amarù, M. Soeken, A. Mishchenko, P. Vuillod, et al.: “Scalable Boolean Methods in a Modern
Synthesis Flow”. DATE, 2019.

� M. Soeken, H. Riener, W. Haaswijk, E. Testa, G. De Micheli: “The EPFL Logic Synthesis Libraries". WOSET,
2018.

� L. Amarù, E. Testa, M. Couceiro, O. Zografos, G. De Micheli, et al.: “Majority Logic Synthesis (embedded
tutorial)". ICCAD, 2018.

� H. Riener, E. Testa, L. Amarù, M. Soeken, G. De Micheli: “Size Optimization of MIGs with an Application to
QCA and STMG Technologies". NANOARCH, 2018.

� M. Soeken, W. J. Haaswijk, E. Testa, A. Mishchenko, L. Amarù, et al.:“Practical Exact Synthesis (special
session)". DATE, 2018.

� E. Testa, O. Zografos, M. Soeken, A. Vaysset, M. Manfrini, et al.: “Inverter Propagation and Fan-out
Constraints for Beyond-CMOS Majority-based Technologies". ISVLSI, 2017. Best Poster Award.

� E. Testa, M. Soeken, O. Zografos, F. Catthoor, G. De Micheli: “Exact Synthesis for Logic Synthesis Applications
with Complex Constraints". IWLS, 2017.

� W. Haaswijk, E. Testa, M. Soeken, and G. De Micheli: “Classifying Functions with Exact Synthesis". ISMVL,
2017.

� O. Zografos, A. De Meester, E. Testa, M. Soeken, P.-E. Gaillardon, et al.: “Wave Pipelining for Majority-based
Beyond-CMOS Technologies (special session)". DATE, 2017.

� L. Amarù, M. Soeken, W. Haaswijk, E. Testa, P. Vuillod, et al.: “Multi-level Logic Benchmarks: An Exactness
Study". ASPDAC, 2017.

� E. Testa, M. Soeken, O. Zografos, L. Amarù, P. Raghavan, et al.: “Inversion Optimization in Majority-Inverter
Graphs". NANOARCH, 2016.

� E. Testa, M. Soeken, L. Amarù, P.-E. Gaillardon, G. De Micheli: “Inversion Minimization in Majority-Inverter
Graphs". IWLS, 2016.

Journal Papers:
� H. Riener, G. Meuli, E. Testa, M. Soeken, V. N. Kravets, et al.: “Open-Source EDA Benchmarks”. Submitted

to IEEE Design & Test, 2020.
� E. Testa, L. Amarù, M. Soeken, A. Mishchenko, P. Vuillod, et al.: “Extending Boolean Methods for Scalable

Logic Synthesis”. Submitted to IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2020.

� E. Testa, M. Soeken, L. Amarù, W. Haaswijk, G. De Micheli: “Mapping Monotone Boolean Functions into
Majority”. IEEE Transactions on Computers, 2018.

� E. Testa, M. Soeken, L. Amarù, G. De Micheli: “Logic Synthesis for Established and Emerging Computing".
Proceedings of the IEEE, 2018.

� M. Soeken, E. Testa, A. Mishchenko, G. De Micheli: “Pairs of Majority-decomposing Functions". Information
Processing Letters, 2018.

Preprints:
� M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli, F. Mozafari, G. De Micheli: “The EPFL

Logic Synthesis Libraries”. arXiv:1805.05121v2, subject: cs.LO, cs.MS, November, 2019.

Invited and Conference Talks
Invited Talks:
� “Decomposing n-ary Majority Functions”: ICCAD Embedded Tutorial, 2018.
� “Logic Synthesis for Post-CMOS Technologies”: Dagstuhl Reports, Vol. 7, Issue 2 ISSN 2192-5283, 2017

Conference Talks:
� “The Complexity of Self-Dual Monotone 7-Input Functions”. IWLS, 2019.
� “Reducing the Multiplicative Complexity in Logic Networks for Cryptography and Security Applications”. DAC,

2019.
� “Scalable Boolean Methods in a Modern Synthesis Flow”. DATE, 2019.

148

� “The EPFL Logic Synthesis Libraries". WOSET, 2018.
� “Inverter Propagation and Fan-out Constraints for Beyond-CMOS Majority-based Technologies". ISVLSI, 2017.
� “Exact Synthesis for Logic Synthesis Applications with Complex Constraints". IWLS, 2017.
� “Inversion Optimization in Majority-Inverter Graphs". NANOARCH, 2016.
� “Inversion Minimization in Majority-Inverter Graphs". IWLS, 2016.

Awards and Honors
� O-1 U.S. work visa - individuals with an extraordinary ability in sciences.
� Best poster award at the IEEE Computer Society Annual Symposium on VLSI (ISVLSI) received on the 3rd

July 2017 for the presentation of the paper “Inverter Propagation and Fan-out Constraints for Beyond-CMOS
Majority-based Technologies”.

� EPFL, I&C School PhD Fellowship, 2016.

Teaching Assistantships
� Design Technologies for Integrated Systems, M.Sc. course, Fall 2019, EPFL.
� Analog Circuits for Biochips, M.Sc. course, Spring 2019, EPFL.
� Design Technologies for Integrated Systems, M.Sc. course, Fall 2018, EPFL.
� Analog Circuits for Biochips, M.Sc. course, Spring 2018, EPFL.
� Design Technologies for Integrated Systems, M.Sc. course, Fall 2017, EPFL.
� Mathematical Analysis II, B.Sc. course, Spring 2017, EPFL.

Patents
� Patent Application with Synopsys Inc. on “Scalable Boolean Methods in a Modern Synthesis Flow".

Professional Service
� Reviewer for the journal ELSEVIER Integration, the VLSI Journal.
� Reviewer for the journal ELSEVIER Microprocessors and Microsystems.
� Reviewer for the journal IEEE Transactions on Very Large Scale Integration Systems.
� Reviewer for the journal IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
� Reviewer for the Design, Automation & Test in Europe Conference (DATE), 2020.
� Reviewer for the Design Automation Conference (DAC), 2019.
� Reviewer for the IEEE International Symposium on Multiple-Valued Logic (ISMVL), 2018-2019.
� Reviewer for the Workshop on Design Automation for Understanding Hardware Designs (DUHDe), 2017.
� Member of the IEEE.

Competences
Software Skills: LATEX, MATLAB; COMSOL; LabView; Cadence Virtuoso, Encounter; Synopsys Design Compiler,
Formality; Mentor Modelsim; Altera Quartus.

Technical Skills: Cleanroom experience (6 months): Optical lithography; Dry - Wet etching of Si, metals and
high-ks; Microscopy; SEM; FIB; Electrical characterization.

Programming Languages: C, C++, Python.

Languages
� Italian, first language.
� English, fluent (IELTS 7.5).
� French, A2/B1.

149

Ce document a été imprimé au Centre d’impression EPFL,
imprimerie climatiquement neutre, certifiée myClimate.

