CO-SYNTHESIS OF HARDWARE AND SOFTWARE FOR
DIGITAL EMBEDDED SYSTEMS

A DISSERTAITON
SUBMITTED TO THE DEPARTMENT OF ELECTRI CAL ENGI NEERI NG
AND THE COMM TTEE ON GRADUATE STUDI ES
OF STANFORD UNI VERSI TY
I N PARIT AL FULFI LLMENT OF THE REQUI REMENTS
FOR THE DEGREE OF
DOCTOR OF PHI LOSOPHY

By
Rajesh Kumar Gupta
December 10, 1993



© Copyright 1994

by
Rajesh Kumar Gupta



| certify that | have read this thesis and that in my opinion
it is fully adequate, in scope and in quality, as a dissertation
for the degree of Doctor of Philosophy.

Giovanni De Micheli
(Principal Adviser)

| certify that | have read this thesis and that in my opinion
it is fully adequate, in scope and in quality, as a dissertation
for the degree of Doctor of Philosophy.

Michael J. Flynn

| certify that | have read this thesis and that in my opinion
it is fully adequate, in scope and in quality, as a dissertation
for the degree of Doctor of Philosophy.

Krishna Saraswat

| certify that | have read this thesis and that in my opinion
it is fully adequate, in scope and in quality, as a dissertation
for the degree of Doctor of Philosophy.

Kunle Olukotun



| certify that | have read this thesis and that in my opinion
it is fully adequate, in scope and in quality, as a dissertation
for the degree of Doctor of Philosophy.

Dr. Martin Freeman, Philips Research Labs.

Approved for the University Committee on Graduate Stud-
ies:

Dean of Graduate Studies & Research



Abstract

As the complexity of systems being subject to computer-aided synthesis and optimization
techniques increases, so does the need to find ways to incorpardésigned@domponents

into the final system implementation. In this context, a general-purpose microprocessor
provides a sophisticated low-cost component that can be tailored to realize most system
functions through appropriate software. This approach is particularly useful in the design
of embedded systems that have a relatively simple target architecture, when compared
to general-purpose computing systems such as workstations. In embedded systems the
processor is used as a resource dedicated to implement specific functions. However, the
design issues in embedded systems are complicated since most of these systems operate
in a time-constrained environment. Recent advances in chip-level synthesis have made
it possible to synthesize application-specific circuits under strict timing constraints. This
dissertation formulates the problem of computer-aided design of embedded systems using
both application-specific as well as general-purpose reprogrammable components under
timing constraints.

Given a specification of system functionality and constraints in a hardware descrip-
tion language, we model the system as a set of bilogic flow graphs, and formulate the
co-synthesis problem as a partitioning problem under constraints. Timing constraints are
used to determine the parts of the system functionality that are delegated to application-
specific hardware and the software that runs on the processor. The software component
of such a ‘mixed’ system poses an interesting problem due to its interaction with con-
currently operating hardware. We address this problem by generating software as a
set of concurrent fixed-latency serialized operations called threads. The satisfaction of
the imposed performance constraints is then ensured by exploiting concurrency between

\'



program threads, achieved by an inter-leaved execution on a single processor system.
This co-synthesis of hardware and software from behavioral specifications makes
it possible to build time-constrained embedded systems by using off-the-shelf parts and
application-specific circuitry. Due to the reduction in size of application-specific hardware
needed compared to an all-hardware solution, the needed hardware component can be
easily mapped to semicustom VLSI such as gate arrays, thus shortening the design time.
In addition, the ability to perform a detailed analysis of timing performance provides an
opportunity to improve the system definition by creating better prototypes. The algorithms
and techniques described have been implemented in a framework Vallgah which
is integrated with the Stanford Olympus Synthesis System and provides a path from
chip-level synthesis to system-level synthesis.
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Chapter 1
Introduction

Recent years have seen remarkable growth in the design and use of digital systems in
several application areas. Digital systems are designed for two rolaigsesof appli-
cations: general-purposend application-specifisystems. General-purpose systems are
not designed for any specific applications but carpbegrammedo run different appli-
cations. The most common use of general-purpose systems is in computing applications.
Examples of these systems are computers such as workstations.

In contrast,application-specificystems are designed for dedicated applications. Ex-
amples of such systems can be found in medical instrumentation, process control, auto-
mated vehicles control, and networking and communication systems. As these systems
are contained within a larger non-electronic environment, these are commonly referred
to asembedded systemsEmbedded computer systems have been applied to tasks erst-
while handled by electronic or electro-mechaniocah-computingsystems. As a result,
the volume of embedded electronics market has grown. For the year 1991, the industrial
and medical electronics market alone accounted for $31 billion compared to the general
purpose computing systems market of $46.5 billion [JJ93].

This growth has been fueled by the advent of microprocessors, the primary compute
element in a system. Microcontrollers, a derivative of microprocessors, are now beginning
to be used in many embedded systems. For the year 1991, the market for microcontrollers
amounted to $4.6 billion and has been rising at a 18% annual growth rate compared to
a 10% annual growth rate of general-purpose systems [JJ93].
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2 CHAPTER 1. INTRODUCTION

While there has been notable growth in the use and application of embedded systems,
improvements in the design process for such systems have not kept pace, leading to a gap
in the evolution of component technology and its application in embedded computing sys-
tems. While new processors and programmable/reprogrammable integrated circuits are
announced every six months with an average performance boost of 50% per year, it may
be several years before such components find use in embedded computer systems. This
is in contrast to the design of general-purpose computing systems that have largely kept
pace with advances in component technology related to processors, memory or integrated
circuits. Currently, approximately 80% of the microcontrollers used in embedded systems
are 4- and 8-bit processors of old generations [Bad93]. Of the total $4.6 billion micro-
controller market for 1991, 32-bit processors account for less than 4% or $184 million,
despite the fact that such processors have been commonplace since 1985 and almost all
advances in processor technology since then have been concentrated in the design of
32-bit processors.

Examining the cost analysis for semiconductor manufacturing, including package and
testing, the total chip cost for a die size of 1x1 sq. cm. comes to an average of $27
versus $7 for a 0.25x0.25 sg. cm. die [HP90]. Thus, chip manufacturing cost is not
always the dominant factor in overall chip pricing. Historically, it has been observed
that the prices of single-chip processors stabilize to a certain level in the $10-50 range
regardless of the introduction price of the processor. This drop in price is more strongly
related to the advancements on the technology learning and yield curves than to market
dynamics. Typically this price stabilization occurs within two years of the introduction
of a processor.

There are several reasons for this discrepancy in the advancement of embedded versus
general-purpose systems. More often, the embedded system is not the most visible part
of the application and, therefore, its implementation inefficiencies are often overlooked.
Component prices and manufacturing/maintenance cost of such systems is often cited
as reasons for relatively slow proliferation of advanced components in such systems.
However, as explained, the cost/price stabilization for processors occurs much sooner
than their proliferation in the embedded systems. Further, instead of using multiple 4-,
8- or 16-bit processors, the trend in embedded system design is to use 32-bit processors



despiteincreased system costs. The use of 32-bit controllers in embedded applications,
though a tiny 4% of the total volume, is increasing at an annual rate of 52% as against
the overall growth of 18% for the overall embedded controller market [JJ93].

In summary, even though there is a greatly recognized need for the use of advanced
32-bit processors in embedded applications, their proliferation in terms of total volume
has been lagging behind the growth in the 32-bit processor market. Further, the price
stabilization for these advanced processors occurs much earlier than their bulk use in
embedded systems. Thus, the proliferation of advanced 32-bit processors in embedded
systems does not appear to be limited by component cost considerations alone.

The chief reason for the slow proliferation of advanced components into embedded
systems ighe long design time and high cost of desigof such systems. Since embed-
ded systems are tailored to specific applications, the design cost per unit volume is higher
for embedded systems. Therefore, such systems stand to gain most from advances in the
design process that shortens the design time and improves performances by leveraging
the use of newer and advanced components. Based on this hypothesis, this thesis exam-
ines the problems in system design and provides solutions to speed up the design process
by developingsynthesigechniques. The difference in design and synthesis techniques is
discussed a little later in this chapter. But first we briefly examine some of the commonly
used terms associated with the design of computer systems.

An electronic system consists of a setieractingcomponents. A digital electronic
system implements its primary functions using components that react to and produce
discrete objects. A component of a system may be a system in itself. At the lowest-level
(leaf-level) components tend to be more functionally homogeneous than the systems that
use these components. For example, a digital computer system consists of software,
processor, memory and peripheral input/output components. For this reason, systems are
often calledheterogenous systems

A component functionality is classified as eithec@mputationor communication
As the terms suggest, a communication functionality relates to operations involving input
and output operations, with the rest being computations. Both computation and commu-
nication functionalities can be implemented isymchronou®r anasynchronousnanner.
Synchronous communication refers to@stant phase-relationshipetween two or more



4 CHAPTER 1. INTRODUCTION

input and/or output operations. Asynchronous communication, on the other hand, refers
to input/output operations that have no or variable phase-relationships. A synchronous
implementation uses global mechanism such as a clock, whereas asynchronous com-
putations are characterized by the absence of glaitel synchronizatioomechanisms.

This thesis is targeted at exploring the implementation of embedded digital
systems with synchronous computation and communication components that are target-
ed for specific applications. In addition to being application-specific, such systems are
also designed to respect constraints related to the relative timing of their actions, hence
these systems are referred to rasl-time embedded system3he application-specific
nature of these systems often requires custom hardware circuits and programs to run
on a general-purpose processor hardware. This personalization is commonly referred
to as programmability irhardware and software respectively. Since the components
may be re-used, we are interested in hardware and software components that can be
reprogrammedo suit applications or changes and upgrades in an application.

1.1 Design of Embedded Systems

While there have been tremendous advancements in the design of the general purpose
components of an embedded system, the design of the hardware and software compo-
nents to achieve its programmability has not changed much over the years. Software
programmability is achieved by manually writing software often in processor assem-
bly language. Similarly, hardware programmability is achieved by manual design using
gate-level circuits or low to medium-scale integration circuits.

There are several challenges in the design and the analysis of time-constrained embed-
ded systems that prolong the design process. Important among these are the problems of
performance estimation, selection of appropriate components and verification of such sys-
tems for functional and temporal properties. In practice, such systems are created using
a design-orientedapproach. The system is specified by a collection of its functionalities
which are then implemented by a choice of appropriate components.

For instance, consider the design of a network controller shown in Figure 1. The
controller is connected to a serial line and a memory. The purpose of the controller is to
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Figure 1: A design-oriented approach to system implementation.

receive and send data over the serial line using a specific communication protocol (such
as CS/CD protocol for ethernet links). The decision to map functionalities into dedicated
hardware or implement them as programs on a processor is usually based on estimates
of achievable performance and implementation cost of the respective parts.

There are several limitations to this approach. The division of functionality between
components is based on the designer’s experience and takes place early on in the design
process. This often leads to portions of the design that are either under- or over-designed
with respect to their required performance. More importantly, due to the ad-hoc nature
of the overall design process, there is no guarantee that a given implementation meets
the required system performance (except possibly by overdesigning).

1.2 Synthesis Solutions

In contrast to design-oriented solutions, a methodical approach to system implementation
can be formulated assynthesis-orientedsolution which has been enormously successful

in the design of individual integrated circuit chipsh{p-level synthesis). Instead of
using a specification as a set of loosely-defined functionalities, a synthesis approach
for hardware proceeds with systems described atb#teavioral levelby means of an
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appropriate specification language. While the choice of finding a suitable specification
language for digital systems is a subject of on-going research, the use of procedural
hardware description languagdsiDLs) to describe integrated circuits has been gaining
wide acceptance in recent years.

A synthesis-oriented approach to digital circuit design takes a behavioral description
of circuit functionality and attempts to generate a gate-level implementation that can be
characterized as a purely hardware implementation (Figure 2). Recent strides in high-level
synthesis have made it possible to synthesize digital circuits from high-level specifications
and several such systems are available from industry and academia{B8&NCR89,
RMV*88, CPTR89, TLW90, MKMT90, WTH"92]. The outcome of synthesis is a
gate-level or geometric-level description that is implemented as a single chip or multiple
chips.

An alternative to hardware synthesis of system prototypes would be to soltveare
prototypeof the system functionality. Such implementations lie on the opposite end of
the cost-performance spectrum (Figure 2). Here cost refers to system development cost
and performance is the time-related performance of the prototype. A software prototype
consists of a completely software specification based on a programming language that is
sometimes enhanced to support the structural interconnection of language objects [BL90a,
BL90b]. An example of a software prototyping system is Ewe1 DE prototyping system
[LVBA93]. Software prototypes are rather quick to build and are often used for verifying
system functionality. Because the prototypes are primarily targeted for simulations, there
is a limit to the resolution of time-scale of events that can be used. Therefore, the
timing performance of software prototypes often falls short of what is desired for time-
constrained system designs.

In summary, there are several limitations of existing synthesis-oriented solutions to
system implementation. For synthesized hardware solutions, as the number of gates (or
logic cells) increases, such implementations require the use of semi-custom or custom
design technologies with their associated increases in cost and design turn-around time.
Therefore, for large system designs, synthesized hardware solutions tend to be fairly
expensive depending upon the choice of technology required for chip implementation.
As mentioned earlier, software solutions on the other hand, often fail to meet constraints
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Figure 2: A synthesis-oriented approach to system implementation.

on timing performance.

1.3 Co-design and Co-synthesis

Synthesis-oriented approaches to system implementation provide systematic and rapid
evaluation of implementation alternatives. System cost and performance tradeoffs dictate
a choice between synthesized hardware solutions or software prototypes. But we do know
from our practical experience that cost-effective designs use a mixture of hardware and
software to accomplish their overall goals (Figure 1).

This provides sufficient motivation for attempting a system implementation that con-
tains both hardware and software components. This is commonly referred to as the
process ohardware-software co-desigrwhere both components are designed together.
The input specification in co-design may consist of a single or a collectidetafroge-
nousspecifications.

A further development in this direction would be&a-synthesisapproach that attempts
to provide mixed hardware-software implementations using synthesis techniques. Such
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an approach would benefit from a systematic analysis of design trade-offs that is common
in synthesis, while at the same time creating systems that are cost-effective. One way to
accomplish this task would be to specify constraints on the cost and the performance of
the resulting implementation (Figure 3).

This thesis presents a synthesis approach to systematic exploration of system designs
that is driven by the constraints. This work is built upon high-level synthesis tech-
niques for digital hardware [MKMT90] by extending the concept of a resource needed
for implementation. Figure 4 shows the essential aspects of this approach. A behavioral
specification is captured into a system model that is partitioned for implementation into
hardware and software. The partitioned model is then synthesized into interacting hard-
ware and software components for the target architecture shown in Figure 9. The target
architecture uses one processor and application-specific hardware. The target architecture
is described in further detail in Section 1.7.1.
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Figure 4: Synthesis approach to embedded systems.

1.4 Motivations for Hardware-Software Co-synthesis

Most digital functions can be implemented by software programs. The major reason for
building dedicated application-specific hardware (ASICs) is the satisfaction of perfor-
mance constraints. These performance constraints can be on the overall time (latency)
to perform a given task, or more specifically on the timing to perform a subtask and/or
on the ability to sustain specified input/output data rates over multiple executions of the
system model. The hardware performance depends on the results of operation scheduling
and on the performance characteristics of individual hardware resources. The software
performance, defined as the number of cycles that it takes the processor to execute a
routine, depends on the number of instructions the processor must execute and the cycles-
per-instruction (CPI) metric of the processor. In general, application-specific hardware
implementations tend to be faster since the underlying hardware is optimized for the
specific set of tasks. However, in the absence of stringent performance constraints, for
a given behavioral description of an ASIC machine, some parts (subroutines) of it may
be well suited to a commonly available re-programmable processor (e.g., 6502, 68HC11,
8051, 8096 etc) while others may take too long to execute. For instance, most gener-
al purpose CPUs deal with byte-size operands whereas many ASIC controllers contain
bit-oriented operations resulting in unnecessary overheads when the operations are im-
plemented entirely in software. However, the software implementations do provide the
ease and flexibility of reprogramming for the possible price of loss of performance.
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Example 1.4.1 Data encryption controller.
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Figure 5: Example of a mixed system implementation

To be specific, consider the design of a data encryption/protocol controller chip,
based on the DES (Data Encryption Standard) protocol used by commercial banks
or the AES (Audio Engineering Society) protocol used for communication between
digital audio devices and computers. In Figure 5, the DES transmitter takes da-
ta from memory using a DMA controller, assembles the frame for transmission,
encrypts the data after it receives the key and transmits the encrypted data. The
encryption protocol requires that the encrypted data be transmitted within a certain
time duration of receiving the encryption key.

In the DES protocol, a 64-bit encryption key is used to transform 64 bits of ‘plain-
text’ into 64 bits of encrypted text. Here we present only the relevant aspects of the
encryption process. For details on the standard and algorithms the reader is referred
to [0S88] [SB88]. The encryption key contains 8 parity bits which are removed
before the encryption process thus deriving a 56-bit encryption key. As shown in
Figure 6, the entire encryption process consists of 18 permutation stages including
an initial and a final stage which do not require any key. The 16 intermediate steps
are key-controlled. The first and last stages are simple permutations. The 16 48-bit
keys required for intermediate stages are derived from the original 56-bit key. Thus
there are two separate 16-stage operations: a) generation of the 48-bit encryption
key, and b) use of encryption key to manipulate 64-bit data. Here we consider
the first operation, that is the generation of the encryption key, though a similar
argument can also be made for the data manipulation operations which consists of
rotation, permutationssor and table lookup.

The encryption key algorithm transforms the 56-bit input key buffer (known as
shifted key buffer, SKB) into a 48-bit key which is organized as an 8-byte key
buffer (KB) such that only 6 bits from each byte of the KB are used in the key.
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Thus each stage of the 16-stage key generation algorithm consists of 48 permutation
operations on the shifted key buffer as illustrated by the algorithm below:

clear 64-bit key buffer
fori =1 . 48 do
isolate bit i of the shifted keyed buffer
if (bit == 1)
set key buffer bit pc2(i) using permuted choice table, pc2
}

Software implementations of this encryption key algorithm vary from 300 to 3000
instructions depending on the level of bit-oriented operations supported. This is in
sharp contrast to the hardware implementation in which each stage can be accom-
plished in a single cycle by building the permutation into an interconnection network
as shown in Figure 7. Therefore, a hardware implementation of the algorithm would
require 16 cyclesd

Thus, hardware and software implementations vary widely in speed. For designs
that are dominated by bit-oriented operations, dedicated hardware implementations are
preferred, whereas it may take too long to execute these operations as a sequence of
instructions on most processors, thus violating the constraints on timing performance
of the controller. Whereas implementing the complete protocol controller on dedicated
hardware may be too expensive, an implementation which uses a re-programmable com-
ponent may satisfy performance requirements and at the same time provide the ease and
flexibility of programming in software.
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Figure 7: Bit permutations in DES Key Encryption

While bit-wise shifting andkor operations lead to slower software implementations,
the implementation of byte-oriented data-intensive operations with the use of structured
memory is considerably faster. Such implementations are often competitive with corre-
sponding hardware implementations. Consider the following example.

Example 1.4.2 Cyclic redundancy code computation.

Consider a 16-bit CRC-CCITT computation using the polynomi&h- 2124 25+ 1.

With the addition of every byte of data, the new CRC is clearly a function of 8-bits
of the old CRC and the new byte of data. This function is precomputed and stored
in a 256-entry table. A byte-wise implementation using two 256-byte tables, as
described by the following pseudo-code, when coded in assembly can achieve the
16-bit CRC computation in 7 instructions per byte.

typedef byte char;

byte Table _low[256], Table _high[256];
byte Temp, data, CRC _low, CRC _high;

Temp = data xor CRC _low;
CRClow = Table _low[Temp] xor CRC _high;
CRChigh = Table _high[Temp];

The actual latency of computation is strongly dependent on the instruction-set ar-
chitecture (ISA) of the target processor. The best implementation of the above
pseudo-code on an Intel 8086 processor computes 16-bit CRCs in 9 instructions, a
Motorola 68K implementation in 11 instructions and a RISC-based implementation
in 14 instructions.

In contrast to a table-driven software implementation, a hardware implementation
of the CRC typically consists of a 16-bit shift register wikbr taps at locations
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dictated by the polynomial (i.e., positions 0, 5 and 12). Then the incoming bit
stream is shifted from the right into the shift register by left shifting the register.
Any time a 1 bit gets shifted off the left end of this register, the register contents
are replaced by aror with the polynomial (equivalent to a modulo-2 subtraction

operation). This implementation results in a CRC computation rate of 8 cycles/byte.
O

1.5 Applications of Hardware-Software Co-synthesis

The hardware-software co-synthesis techniques formulated in this thesis can be used for
following applications.

1. Design of cost-effective systemsThe overallcostof a system implementation can
be reduced by the ability to use already available general purpose re-programmable
components while reducing the number of application-specific components.

2. Rapid prototyping of complex system designsA complete hardware prototype
of a complex system is often too big to be implemented using field programmable
gate-array (FPGA) technologies. For such systems a mask programmable or even a
custom hardware realization is required. With the identification of the time critical
hardware section, the total amount of hardware to be synthesized may be reduced
significantly, thus making it feasible for rapid prototyping. A feasible partition
that shifts the non performance-critical tasks to software programs can be used to
quickly evaluate the design.

3. Speedup of hardware emulation software: During their development phase,
many system designs are often modeled and emulated in software for test and
debugging purposes. Such an emulation can be assisted by dedicated hardware
components which provide a speedup on the emulation time.

Rapid prototyping and hardware emulation are two opposite ends of the system synthesis
objective. Rapid prototyping attempts to minimize the application-specific component to
reduce design time, whereas hardware emulation attempts to maximize the application-
specific component to realize maximum speed-up.
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1.6 The Opportunity of Co-synthesis

This thesis explores the opportunity of achieving hardware-software co-synthesis by
formulating it as a problem of system partitioning into application-specific and re-
programmable components. We can also view it as an extension of high-level synthesis
techniques to systems with generic re-programmable resources. Nevertheless, the overall
problem is much more complex and it involves, among others, solving the following
sub-problems:

1. Modeling the system functionality and performance constraints.

System modeling refers to thepecificationproblem of capturing important as-
pects of system functionality and constraints to facilitate design implementation
and evaluation. Most hardware description languages attempt to describe a system
functionality as a set of computations performed by a computing element and as
interactions among computing elements. Among the important issues relevant to
mixed system designs are:

e explicit or implicit concurrency in specification
e model of communication - shared memory versus message-passing

e control flow specification oschedulingnformation

There is a relationship between concurrency in specification andaheal par-
titions in the system descriptions. Typically, languages that contain explicit parti-
tioning via control flow breaks, find it difficult to specify concurrency explicitly.
Concurrency information is then obtained by performing a dependency analysis
whose complexity depends on the model of communication used. We consider the
relevant modeling issues in Chapter 3.

2. Choosing the granularity of the hardware-software partition.

The system functionality can be handled either at the functional abstraction level
where a certain set dfigh-leveloperations is partitioned or at the process com-
munication level where a system model composed of interacting process models
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is mapped onto either hardware or software. The former attempts fine grain parti-
tioning while the latter attempts laigh-level library bindingthrough coarse-grain
partitioning.

3. Determining the feasible partitions of application-specific and re-programmable
components.

The so-called problem dfardware-software partitioning This delineation is in-
fluenced by issues such as analog interfaces that require a specialized hardware
interface. However, for operations that can be implemented either in hardware or
in software, the problem requires a careful analysis of the flow of data and control
in the system model.

4. Specifying and synthesizing the hardware-software interface.

5. Implementing software routines to provide real-time response to concurrently exe-
cuting hardware modules.

6. Using synchronization mechanisms for software routines and synchronization be-
tween hardware and software portions of the system.

One important issue that needs to be resolved before addressing the co-synthesis sub-
problems is choice of a target system architecture. By target system architecture we mean
general organization of its components. As with specification, target architectures for
embedded systems are not universally defined or accepted. This is in sharp contrast with
single-chip systems where a single synchronous data-path/controller chip organization is
almost always implied unless otherwise mentioned.

The choice of a system architecture is not a trivial task due to the great impact of
system organization on system cost and performance. Further, a target architecture is
strongly influenced by thepecific applicationto which the system is targeted. This
issue, though important, is peripheral to the co-synthesis problem that this thesis seeks to
address. Therefore, we choose an architecture that preserves essential features of mixed
systems while leaving the specific details as a co-design problem that must be solved
in the context of an application. In order to put it in proper perspective, we present
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our target system architecture in the context of the organization of some of the familiar
computer systems.

1.7 Architectures with Hardware-Software Components

As mentioned earlier, most digital computer systems are egbeeral-purposeor em-
bedded General-purpose computer systems contain some form of storage that can be
altered (reprogrammed) by the user under software control. On the other hand, embedded
systems are usually hard-wired for certain specific tasks such that the degree of ‘repro-
grammability’ varies from none to the changing of parameters of some existing sequential
control. An embedded system may have a dedicated controller (a sequencer) or a mi-
crocontroller programmed to sequence operations. Most of these systems contain storage
(program or data) which is relatively small and cannot be easily altered. Microcontrollers
are essentially general purpose microprocessors with on-board memory for program and
data storage. The ability to reprogram a computer system is related to the versatility of
its primitive operations, or the instruction-set of the microprocessor or microcomputer
used in the system. In our terminology, we refer to a microprocessor or a microcontroller
as areprogrammable componemir simply as aprocessor The specific sequence of
instructions needed for a particular application to be executed by the reprogrammable
component is referred to as the software component.

Thus, in broad terms, a digital system can be thought of as consisting of two com-
ponents: softwareas a program in an on-board RAM or ROM ahdrdware as the
underlying interconnection of special-purpose blocks. Based on this distinction, Fig-
ure 8 shows compositions of some familiar systems. The hardware component in a
system design may be manually designed or synthesized automatically using a silicon
compiler. The software component of a system may consist of microcoded routines, or
machine-level programs used in embedded control systems or high-level programs used
in special-purpose machines. Note that some system designs, most notably single-chip
microprocessors, use microprogramming simply as a design technique for implementa-
tion of hardware control. This is different from the softwamecessaryo achieve system
functionality, as in microprogramming of functional algorithms in the case of mainframe
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machines. Conventionally, machine-level and high-level programs manipulate user data-
structures, while microprograms manipulate hardware resources. In the case of the mixed
controller designs proposed in this dissertation, we use machine-level programs to perfor-
m both activities. The co-synthesis approach proposed in this work addresses the design
problem of mixed controllers shown in Figure 8.

1.7.1 Target system architecture

For the purposes of developing a co-synthesis approach, we choose the target architecture
shown in Figure 9 that consists of a processor assisted by application-specific hardware
components.

The application-specific hardware is not pipelined, for the sake of simplifying the
synthesis and performance estimation task for the hardware component. Even with its
relative simplicity, the target architecture is applicable to a wide class of applications in
embedded systems used in medical instrumentation, process control, vehicular control,
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Figure 9: Target System Architecture

and communications. The following lists the assumptions relating to the target architec-
ture. These assumptions are made in order to keep the relevant synthesis issues subject
to a systematic approach, while at the same time retaining generality and effectiveness
of the target architecture. Many of these assumptions can be dropped in a larger system
co-design methodology without affecting the underlying co-synthesis approach developed
here.

e We restrict ourselves to use ofsingle re-programmable componen¥e make

this simplifying assumption in order to make the synthesis tasks manageable. The
presence of multiple re-programmable components requires additional software syn-
chronization and memory protection considerations to facilitate safe multiprocess-
ing. Multiprocessor implementations also increase the system cost due to require-
ments for additional system bus bandwidth to facilitate inter-processor communi-

cations. These issues, though important, are not directly relevant to the focus on
system co-synthesis problem addressed in this work.

e The memory used for program and data-storage may be on-board the processor.
However, the interface buffer memory needs to be accessible to all of the hardware
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modules directly. Because of the complexities associated with modeling hierarchi-
cal memory design, we consider only the case where all memory accesses are to a
single level memory, i.e., outside the re-programmable component. The hardware
modules are connected to the system address and data busses. Thus, all the com-
munication between the processor and different hardware modules takes place over
a shared medium.

e The re-programmable component is always the bus master. Almost all re-
programmable components come with facilities for bus control. The inclusion
of such functionality on the application-specific component would greatly increase
the total hardware cost.

e All the communication between the re-programmable component and the
application-specific circuits is done over named channels whose width (i.e. num-
ber of bits) is the same as the corresponding port widths used by read and write
instructions in the software component. The physical communication takes place
over a shared bus.

e The re-programmable component contains a ‘sufficient’ number of maskable inter-
rupt input signals. For the purpose of simplicity, we assume that these interrupts
are unvectored and there exists a predefined destination address associated with
each interrupt signal.

e The application-specific components have a well-defiREISET state that is
achieved through a system initialization sequence.

Figure 10 shows a single chip realization of the target architecture. The processor in
this realization refers to the processare of a general-purpose microprocessor. Physical
implementation of the ASIC may be achieved using standard cells or gate array circuits.
The interface between the processor and the ASIC refers to the hardware portion of the
interface circuitry (for details on this see Section 7.2.3). The memory consists of program
ROM plus any RAM buffers need for the interface. Finally, the system interface may be
composed of analog 1/O circuits such as A/D and D/A converters, direct-memory access
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Figure 10: Single chip realization of the target architecture

(DMA) circuits, and any possible data width conversion circuits (serial-to-parallel and
parallel-to-serial).

It is important to note that the final system implementation may or may not be a
single-chip system design, depending on availability of the re-programmable component
either as a macro-cell or as a separate chip. Further, the approach outlined in this report
can also be used for alternative target architectures.

The key concept in any realization of the target architecture is the fact that a (general-
purpose) processor is used as merely anotiesourceto realize system functionality.
The emphasis is not to build a system around a processor, instead the emphasis is to use
a processor to reduce the size of the ASIC circuiAyfirst glance, these two approaches
may appear to lead to the same implementation. However, the difference is in the em-
phasis on the utilization of the processor to implement system functionality. For systems
that are built around a given processor (or processors), the chief objective of system
design is to exploit processor functionality and utilization to the fullest extent, as is the
case in general-purpose computing systems. This often requires design decisions that are
difficult, if not impossible, to capture in a synthesis-oriented solution. In contrast, when
using the processor as another resource, the objective is to reduce the ASIC size while
meeting constraints where actual utilization of the processor is of secondary importance.
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Due to the emphasis on devising a synthesis-oriented solution to achieve embedded
system design, the resulting implementations have some limitations in their scope and
applicability. These limitations are due to assumptions made on the runtime system
and system interfaces in order to reduce the complexity of the embedded system design
details. The assumptions and limitations are described in their context in corresponding
chapters.

1.8 Scope and Contributions of Thesis
The following lists the goals and contributions of this dissertation:

e Development of a model for capturing hardware and software properties. The mod-
el is based on a graph-based representation of operations and dependencies and on
the relationship of computation rates to the associated communication mechanisms.

Formulation of rate constraints for high-level synthesis purposes and analysis of
feasible hardware-software partitions in the context of general timing constraints.

Development of partitioning schemes that capture both spatial and temporal prop-

erties of the partitioned systems.

Development of a runtime system software that is suitable for co-synthesis.

Development of model transformations to meet rate constraints, in particular pro-

gram transformations to improve latency and throughput.

Design of a low-overhead hardware-software interface architecture.

e \ircan- a CAD tool for exploring system-level designs.

Part of the subject matter addressed in this thesis has been presented in following
publications [GM90, GM91, GM92, GCM92b, GCM92a, GM93, GCM94].
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1.9 Outline of the Dissertation

This thesis is organized according to the problem taxonomy described in Section 1.6.
Chapter 2 briefly presents an overview of related work in system design and computer-
aided design techniques developed for system synthesis. The organization of the rest of
thesis can be best explained by relating it to the organization of our co-synthesis CAD
system \Mir.canshown in Figure 11. The input to our synthesis system is an algorithmic
description of system functionality described in a hardware description language (HDL).
The HDL description is compiled into a system graph model based on data-flow graphs.
Chapter 3 describes the features and properties of our system model. Chapter 4 describes
constraint modeling and analysis techniques to determine feasibility of hardware-software
implementations.

In Chapter 5 we discuss issues and techniques in the generation of software and
its associated runtime environment. We introduce the concept of a threaded software
implementation which is shown to observe constraint satisfiability properties discussed
in Chapter 4. In Chapter 6 we define the problem of system partitioning and present
an approach to partitioning of systems for hardware-software co-synthesis. In Chapter 7
we discuss issues in system synchronization, how synchronization is achieved between
heterogeneous components of a system design. Here we also present an overview of the
ViLcan system. The resulting mixed system design consists of an assembly code for the
software component, and a gate-level description of the hardware and hardware-software
interface. This heterogenous description is simulated using the pragrampon that
is described elsewhere [GCM92b].

Chapter 8 describes case studies in hardware-software co-synthesis and results. Chap-
ter 9 presents conclusions and directions for future research.
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Chapter 2

Related Work

This chapter reviews important developments in the area of system design and synthesis.
The issue of co-design of hardware and software often appears in the larger context of
system design. Computer architects often tradeoff the implementation of an instruction
in hardware versus its implementation in software as a sequence of available instructions.
This flavor of the co-design problem addresses the issue of design of software and hard-
wareuponwhich the software runs. This is clearly different from the notion of hardware
and software defined in the previous chapter, where the software runs on a predesigned
hardware. The idea of hardware-software co-design has even been appliegtoctss

of system design [BV92].

We briefly review some of the novel architectures that consist of a mix of hardware
and software. Programmable active memories, PAM [BRV89], use a network of ba-
sic cells which are programmed for specific applications. The Map-oriented Machine
(MoM) [HHW89] belongs to a class of system architectures for implementing systolic
algorithms. MoM’s relevance to system co-design is highlighted by its reliance on repro-
grammable technologies to achieve performance speedups. Indeed, its derivative work
on xputefHHR*91] attempts to use MoM architectural principles in prototype imple-
mentation of non-systolic algorithms. MoM is characterized by data-driven execution
streams. This key advantage is achieved by replacing register and ALU combinations
in sequential processors by a logic unit, called the problem-oriented logic unit, that uses
RAMs, PLDs and other programmable hardware. QuickTurn [Wal90] and PiE systems

24
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use reprogrammable hardware to create system prototypes. The primary advantage of
these systems is the short amount of time it takes to create and modify these prototypes
that may not provide the intended system timing performance, but these prototypes are
considerably faster than their equivalent software prototypes.

Another area where the co-design problem has been studied is in the design and
analysis of ‘real-time systems’. Real-time systems span a wide variety of applications and
can be fairly complex. Performability analysis of real-time systems, defined as analysis
of system performance metrics over finite time intervals, is one of the key analytical
tools.

Work in the computer-aided approach to system design is relatively new. Recent
interest in system synthesis has been stimulated by the relative success and maturity of
chip-level synthesis tools, and emergence of synthesis approaches at levels of abstraction
higher than logic-level and RTL-level circuit descriptions. CAD related work falls under
two broad categories:

1. Generic CAD for supporting hardware-software co-design.These approaches gen-
erally recognize the difficulty in addressing all parts of the system design prob-
lem in a unified framework. Therefore, these systems concentrate on providing a
frame-work to support the process of system design.

2. Specific CAD for hardware-software co-synthesisWork in this area concentrates
on providing CAD solutions to specific synthesis sub-problems. Most of these
solutions are devised under specific restrictions on system implementation.

2.1 CAD Systems for Hardware-Software Co-design

A CAD system refers to an integrated collection of tools that conform to an overlaying
methodology usage of these tools. The overall goal of a CAD system is to improve the
process of system analysis and design. In all these systems, trade-offs are made among
the following metrics:

1. Analyzability - the ability to analyze a system design for its functional and per-
formance properties,
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2. Simulatability - the ease in arriving at a complete system simulation,

3. Implementability - the ability to implement (design or synthesize) a system from
its specification.

2.1.1 Ptolemy

Pro.emy [BHLMar] [KL93] is a framework for the simulation, prototyping and soft-
ware synthesis of digital signal processing systems. Due to its application focus on the
DSP domain, the reprogrammable components in system design are chosen from a set
of general-purpose DSP processors (or equivalent cores), such as Motorola DSP56001,
DSP96002. Hardware iProLEMy refers to custom data paths and discrete (or glue)
logic components in addition to the processor.

ProLewy's strength is its unified framework for the simulation of specifications
as a set of heterogenous computation models. Specification in a particular model of
computation is referred to as a design style that is encapsulated in objectsdeatiaths
A domain is comprised of blocks, targets and a scheduling discipline appropriate to
its model of computation. In additiomgperational semanticere embedded in blocks
that govern their interaction with other blocks. Examples of supported domains are
synchronous data flow (SDF), dynamic data flow (DDF), discrete event (DE) and signal-
level digital hardware (Thor). A domain may embed another domain in its hierarchy. An
embedded domain interacts with its parent domain by means of a procedures called the
event horizon Figure 12 explains the organization of domains and interface.

The event horizon is a key feature FroLEMy that makes it possible to interface
event schedules from different domains. Domains can be classified into two categories:
timed and untimed domains. A timed domain refers to a model of computation that
produces events in the context of an associated time scale, for example, a discrete event
domain. On the other hand, untimed domains do not have an absolute time association
with their events, for example, data flow. When interfacing events across timed and un-
timed domains, there are several issues in event synchronization that must be worked out.
In general, it would be hard, if not impossible, to provide a consistent simulation frame-
work across concurrently independently active domains. However, due to embeddings
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Figure 12: Objects inProLEwY

of these domain®roLEwy makes it possible to carry out simulation under (conserva-
tive) restrictions. Stopping heuristics are used in domain simulations in order to make
sure that inner timed domains do not temporally get ahead of the time in outer domains.
Of course, inner untimed domains react in zero time. Outer untimed domains maintain
timing attributes in order to set stop times for their inner domains. As an example, an
event from an untimed domain causing an event into timed domain initiates a time scale
on which to carry out further events in the timed domain until the inner domain has no
more active events, thus making the timed domain appear like a functional block.

Despite the code generation abilities in its synchronous data flow (SDF) domain,
ProLemy is primarily a simulation-oriented tool. Its specification language (for do-
mains) is a procedural C++-type language. All models must be specified in this language
which is extended to allow modeling of operators from various other languages (such
as the ‘@’ operator from Silage etc). Each model generates tokens. Models differ in
values and timing interpretation of these tokens. Various models can be connected using
a graphical schematic capture or a netlist language.

Even though semantically riclProLEmy’'s syntax is awkward for specifying systems
that are best captured in non-procedural languages. The use of a predefined library of a
large number of models ameliorates this difficulty in specifying model functionalities.

The strength in heterogeneity by use of diverse computation moddPsoimmy
comes at the loss of an analytical handle on system properties. Further, it suffers in
implementability of these models because of the necessity to specify these systems in
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a simulation-oriented language which is not necessarily synthesizable. Nevertheless,
ProLemy represents an important step towards simulation of complex systems. A
ProLemy-like system that also allows heterogenous specification with associated syn-
thesis tools (similar to an event scheduler) would be the next natural step toward creating
a simulation and implementation framework.

2.1.2 CODES

Buchenrieder in [BV92] presents a framework for COncurrent DESign. The system is
specified as a set of communicating parallel random access machines (PRAMs [HU79]).
The design process is modeled using Petri nets. The emphasis here is on including both
time-discrete and time-continuous behaviors in a single model. A component described
using the RAM model is embedded in an I/O frame that defines its interaction with other
models. The input specification can be simulated using Statemate{BllJNor System
Description Language (SDL)[SSR89] tools. The synthesis into hardware relies on VHDL
based synthesis tools.

The authors report successful design of an engine controller using the co-design
methodology.

2.1.3 Rapid prototyping using SIERRA

Srivastava and Broderson [SB91] present a framework for rapid prototyping of systems
that span across chips and multiprocessor boards in hardware as well as device drivers
and operating system kernels in software. As opposebBrtoemy, the emphasis in
SIERRA iS on the implementability of the system. Due to the enormous complexity of
the the systems represented, the analytical handle on system properties is further removed
from achieved performance.

This work leverages the use of chip-level synthesis tools LAGER {91R HY-
PER [CPTR89], KAPPA [TR$89] and DSP code synthesis tool GABRIEL [LH&9]
(GABRIEL functionalities were later incorporated RroLEMWY) to present a framework
for performing both activities. A system is specified as a network of concurrent sequential
processes in VHDL. The communication between processes is by means of queues. This
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specification is (manually) mapped into architecture templateA mix of hardware and
software tools and libraries are used to implement parts of the design. The main strength
of this methodology lies in management of system complexity by using modularity and
reusability afforded by existing libraries.

Using this methodology, the authors report a dramatic reduction in the overall design
time to a matter of a couple of months. In addition, the framework affords the possibility
of exploring design alternatives such as the effect of different processors and components.
Successful designs of multi-board real time applications for a multi-sensory robot control
system and for a speech-recognition system are reported [Sri92].

2.2 CAD for Hardware-Software Co-synthesis

2.21 COSYMA

CO-SYnthesis for eMbedded ArchitecturéspYVA performs partitioning of opera-

tions at the basic block level with the goal of providing speedup in program execution
time using hardware co-processors. Figure 13 shows an overview of the system. Input to
YA consists of an annotated C-program [HE92]. This input is compiled into a

set of basic blocks and corresponding DAG-based syntax graphs. The syntax graphs are
helpful in performing data-flow analysis for definition and use of variables that helps in
estimating communication overheads across hardware and software. The syntax graphs
are partitioned using a simulated annealing algorithm under a cost function. This pro-
cess is repeated using exact performance parameters from synthesis results for a given
partition.

The partitioning task consists of the identification of the portions of the program
that are suitable for synthesis into hardware in order to achieve a speedup in overall
execution times. This partitioning, or hardware extraction is done by means of a simulated
annealing algorithm using a cost function that yields potential speedup in execution times
and reduction in communication overheads.

A timing constraint inCC5YMA refers to a bound on the overall delay of a ba-
sic block. Since partitioning is done within a basic block, the timing performance of a
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hardware-software implementation is characterized by overall latency of the basic block.
This latency includes delay overhead due to communication as the total number of vari-
ables that are alive across the partition boundary.

The chief advantage of this approach is the ability to utilize advanced software struc-
tures that result in enlarging the complexity of system designs. However, selective
hardware extraction based on potential speedups makes this scheme relatively limited in
exploiting potential use of hardware components. Further, the assumption that hardware
and software components execute in an interleaved manner (and not concurrently) results
in a system that under-utilizes its resources.

2.2.2 Use of non-deterministic finite state machines for co-design

Chiodo et. al. in [CGH*93a] present a formal model for specification of hardware
software systems. The proposed model, Codesign Finite State Machines (CFSMSs) is
based on the theory of finite state machines. Figure 14 shows the overall flow for co-
design. One of the important aspects of this approach to co-design is formal verification
of the system design (not shown in the Figure).

The behavior of a system in this model is described by a ‘trace’ as a sequence of
event instances. An event is defined by its name and the ‘communication port’ at which
it occurs. A broadcast model of event communication is assumed. An instance of an
event is different from the event itself and is identified by a time stamp at which the event



2.2. CAD FOR HARDWARE-SOFTWARE CO-SYNTHESIS 31

occurs. In general, events may carry values. Transitions are caused by trigger events, as
opposed to pure value events which are used to select between transitions over the same
set of trigger events based on data values. A CFSM is defined as a 5-tuple (I, E, O, R, F)
as a set of input events (I), set of output events (O) with initial value (R), and a transition
relation (F) from input to output events. E refers to a subset of events in | called trigger
events. The state of CFSM is defined by the set of simultaneously occurring events that
are both input (1) and output (O) events for the machine.

The reaction time to an input event can be (unbounded) non-zero. A CFSM con-
tains both temporal non-determinism (unknown reaction times) as well as causal non-
determinism since multiple input events may lead to the same output event (though an
output event is generated by one and only one CFSM). The CFSMs are shown to be
similar to classical finite state machines without an implied ‘synchronous’ hypothesis,
which assumes that state transitions in a network of machines happen at the same time.

Hardware synthesis from CFSMs is performed by translating a CFSM into a network
of (synchronous) Moore machines (with trace-equivalent/contained behavior) {G&i
which are then synthesized using sequential logic synthesis algorithms implemented in SIS
[SSM*T92]. This translation is done assuming a finite reaction time to input events (i.e.,
no non-deterministic delay times are possible). This is accomplished by adding looping
transitions on states to model the asynchronous nature of state transitions by synchronous
machine$. The reaction to an event is present in a state immediate successor to state
containing the event. Software synthesis is performed as translation of CFSMs into C-
code blocks. The output events from CFSM are translated into communication events on
virtual I/O ports.

The CFSM model is similar to other models based on communicating finite state
machines, like SDL [SSR89] and CSIM [Sch90], though it lacks the storage extensions
found in other models. However, for hardware-software co-design purposes, it is not the
FSM nature of CFSM that is as important as its event-based model of communication.
Its FSM nature does simplify the task of system verification. Thus, CFSMs are targeted
for solving the system co-design and verification problems.

1This implementation, of course, assumes that the clock cycle time in synchronous implementation is
much shorter than event interval times.
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Figure 14: Co-design from Finite State Machines

The chief modeling limitation of this finite-state machine based approach to synthe-
sis is that control and data operations are indistinguishable. Even though a BLIF-MV
representation allows a concise representation of a data variable as a multi-valued log-
ic variable, a particular value of a data variable defines a state. This is different from
flow-graph based models where particular data values are inconsequential, and a system
state is defined based on the state of control (for example, a particular path of execution).
Because of this merging of control and data states in CFSMs, synthesis and optimization
operations that are suited for data or control must either be applied uniformly or heuristics
be used to determine a data state from a control state. Also, from a system design point
of view, a CFSM based approach ignores modeling and the effect of timing constraints.

A CFSM based approach is expected to perform well for control dominated machines.
However, for systems with a high-degree of data-intensive operations, a CFSM model
may not be amenable to data-flow based optimizations.
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2.2.3 Co-synthesis from UNITY

Barros, Rosenstiel and Xiong in [BRX93] present partitioning of system descriptions
using the UNITY language. UNITY is a language for the specification of concurrent
systems developed by Chandi and Misra [CM88]. A specification in UNITY consists of
variable declarations and initializations followed by multiple-assignment statements. An
assignment modifies a value held by a variable. This is referred to as a state transition
in the execution of the UNITY program. Assignment can be composed in sequence or
in parallel. In case of a choice, the selection of assignment statement to be executed is
done non-deterministically.

The partitioning scheme presented classifies UNITY assignments according a set of
five attributes which identify the degree of data dependency and parallelism between
assignments. Associated with each of these attributes is a set of implementation alter-
natives. A reference implementation is chosen. A two-stage clustering algorithm then
selects assignments to be grouped according to similarity of implementation alternatives,
data dependencies, resource sharing and performance. The clustered assignments are
scheduled for a given target architecture. Finally, an interface graph is constructed based
on clustering results. This process is then reiterated based on satisfaction of design
constraints.

2.2.4 Interface co-synthesis

Chou, Ortega and Borriello in [COB92] present an algorithm for synthesis of the inter-
face between hardware-software systems. This interface allows interactions between the
external devices and the program running on the processor. The result of interface syn-
thesis is a software driver program and a logic circuit that provides a physical connection
between the processor and external devices. This problem is solved in two parts: (a)
allocation of physical ports on the processor to various devices; (b) selection of software
driver routines.

Port allocation refers to assignment of processor ports to device ports. A processor
port can be shared if its use by different device ports does not cause bus contention or
a temporal overlap of the software drivers associated with the devices. Allocation of
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processor ports to software function 1/O calls to a device is performed in steps: attempt
to share the device port to an already allocated port (conditional sharing); if conditional

sharing fails then attempt to allocate a new processor port; if both these steps fail, then
backtrack to find and make an allocated port shareable by addition of control hardware.
If additional hardware does not help in sharing, an encoding transformation is applied to
reduce 1/O transfers. In the absence of applicability of any of these solutions, a memory-
mapped 1/O is selected which is always possible, though it comes with significantly

higher delay and control overheads due to the protocols needed to implement memory
operations over a shared communication medium.

The chief advantage of this approach is its considerable efficiency in building suit-
able input/output interfaces for controlling external devices. These are, as opposed to
memory-mapped external communications, facilitated by a set of processor 1/0O ports. The
processor I/O ports, though limited in number, provide a low overhead communication
mechanism between software and hardware.



Chapter 3
System Modeling

This chapter examines issues in the specification and modeling of system functionality and
constraints for systems that are target of hardware-software co-synthesis. The essential
idea is to capture properties of a system without regard to its actual implementation. In
practice it is hard to do, save for specific application domains. Some would argue that
the more specific the application domain, the easier it is to develop a model. This work
is targeted towards co-synthesis of embedded systems for which the following properties
of target applications must be modeled and represented:

e The system consists of parts that operate at different speeds of execution,
e The interaction between parts of a system requires synchronization operations,
e There are constraints on the relative timing of operations.

A specification of a system functionality is done by means darguage The
language primitives and associated semantics determine the detailed functionality unam-
biguously. This degree of detail is often unnecessary for purposes of analysis. Hence
modelsare needed.

In general, a model refers to an abstraction over its object, capturing important (but
simple) relationships between important components of the object. Models are often
needed in order to avoid creating detailed implementations. A model of a system helps

35
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to estimate relevant properties, like area and delay, of its implementatiSisilarly, a
constraint models helpful in verifying satisfiability of imposed constraints.

For the purpose of model abstraction, sometimes generalizations and simplifications
are made in order to represent objects that may be conceptually similar but differ in
implementations. For example, a communication between two operations in a system
model may be accomplished by means of a direct connection or over a shared medium
such as memory or a bus or by using any of numerous protocols. A choice of a particular
communication mechanism depends upon the individual operations and the part(s) to
which they belong. For modeling purposes, a communication between two operations
in the same part is abstracted as a dependency between the operations. Communication
between operations belonging to different parts can be generalized to occypartser
Ports represent communication to a shared-memory or inter-task communication by means
of message-passing protocols (Section 3.4.1).

In the following section, we present our choice of the specification language. We
then present a graph-based model and describe properties of the model used. Finally, we
describe the constraints and a means of capturing them into the system model. Figure 15
shows the organization of this chapter.

3.1 System Specification using Procedural HDL

The search for a suitable language for specification is very much a subject of ongoing
research. A detailed analysis of specification language issues is beyond the scope of
this dissertation. For an overview of current research trends the reader is referred to
[Har92] [Hal93] [Mic94], and [Sch92] [BW90Db] for languages used for specifying real-
time systems.

In order to formulate a practical co-synthesis approach, it is important that the lan-
guage used have a developed path to hardware synthesis. From the point of view of
hardware synthesis the most likely candidates are procedural and applicative languages
[Joh83] [Sar89].

1Though sometimesimulationsof an implementation are resorted to, particularly in cases where the
mathematical complexity of a model analysis is overwhelming. A case in point are queueing systems. See
Chapter 4.
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The use of procedural hardware description languages (HDL) to specify system func-
tionality for synthesis into digital hardware circuits has been gaining popularity in recent
years. Most common languages used in practice today in this category are VHSIC Hard-
ware Description Language (VHDL) [IEE87], and Verilog [TM91].

Part of the reason for the popularity of procedural languages in hardware specification
is due to the familiarity of users with writing sequential programs. However, there
are important differences in the expression of control in a program as opposed to its
implementation in hardware. The program specification inherently assumes the existence
of a single thread of control and static data storage, whereas the execution of operations
in hardware is usually multi-threaded and is driven by the availability of appropriate
data. Multi-threading is possible in hardware due to availability of multiple resources
that are used to increase the degreeamicurrency in operation execution. As a result,
when describing hardware as a program, one is faced with the difficulty of specifying a
concurrently executing set of operations as an ordered set of operations.

In contrast to aninstruction-drivensingle-threaded linear-program representation,
data-flow graphs (DFG) provide adata-drivenrepresentation that naturally models
multiple-threads of execution (Figure 16). For this reason, the hardware for embed-
ded controllers and non-recursive DSP algorithms is more appropriately represented by
flow graphs instead of sequential programs used for procedural specification.
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To avoid this dichotomy of behavioral representations, most hardware synthesis al-
gorithms operate on aimtermediate representatiobased on data-flow graphs [McF78]
[CKR84] [PPM86] [BCM*88]. This intermediate representation is generated by parsing
and dependency analysis of the procedural input specification.

Data flow graphs have sufficient expressive power to represent either a hardware
or software implementation. For example, a sequence of machine instructions can be
represented by a machine-level data-flow graph. Indeed, the expression-evaluation trees
generated by compilers (before the code-generation stage) and for hardware are forms of
a data-flow graph. However, these data-flow graphs, consisting of operations described at
the level of machine instructions, decrease the specification granularity too much to make
them useful for the analysis needed for hardware and software co-synthesis. Therefore,
data-flow graphs in our context are described using operations available at the language
specification level.

Because of these strengths of a data-flow representation, we develop a system model
based on data flow graphs. This model provides the basis for analyzing hardware and
software implementations. From data-flow representations we can generate an equivalent
sequence of instructions by scheduling various operation vertices in the data-flow graph.
Operation scheduling techniques are important even in the case of a single thread of
execution where static memory requirements are affected by scheduling, even though
all schedules result in the same overall latency (see Chapter 5). Latency minimality in
scheduling is realized by exploiting parallelism in the instruction stream which requires
multiple execution threads. We consider the algorithms for evaluating data-flow graphs
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and their equivalent linear-code representations in Chapter 5. Thus the ability to analyze
and synthesize both hardware and software from data-flow graphs makes them a good
candidate for an unified system model. This model is described in Section 3.2.

Specification. We specify system functionality itardwareC [KM92a], a hardware
description language. As mentioned before, the co-synthesis approach developed in this
thesis is formulated on a system model based on data-flow graphs, and is independent of
the actual language used to describe the system functionality. It is possible to use VHDL,
Verilog or any other procedural HDL for system specification without altering the co-
synthesis approach described in this dissertation. In the context of the present work,
the choice of HardwareC is helpful in leveraging the existing path to hardware synthesis
[MKMT90]. HardwareC follows much of the syntax and semantics of the programming
language, C. Relevant features of the language are described in Appendix A. For further
details the reader is referred to [KM90a].

The basic entity for specifying system behavior igracess A process executes con-
currently with other processes mentioned in the system specification. A process restarts
itself on completion of the last operation in the process body. A process in HardwareC
is similar to corresponding constructs in other hardware description languages. There
are important differences, however. For example, in contrast to a process as a sequen-
tial set of operations in VHDL, a process in HardwareC can have nested sequential and
parallel statement blocks. On the other hand, the synchronous semantics of HardwareC
limit its expressiveness compared to VHDL. Example 3.1.1 describes a simple process
specification.

Example 3.1.1 Example of a simple HDL process

process simple (a, b, c)
in port a[8], b[8] ;
out port c[8] ;

boolean x[8], y[8], z[8] ;

= read(a);
= read(b);

V< X A

z = fun(x , vy);
writ e ¢ = z
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This process performs two synchronous read operations in the same cycle, followed
by a function evaluation and a write operation, then it restants.

Thus, the use of multiple processes to describe a system functionality abstracts the
parts of a system implementation that operate at different speeds of execution. The
effect of interaction between multiple processes is discussed further when we consider
the system model in Section 3.2.

Memory and Communication

Communication refers to the process of transfer of information between operations. Some
implementations of a communication require the execution of communicating operations
at the same time. The process of bringing operation executions together is referred to
as asynchronization. Synchronization is a general concept. Sometimes synchroniza-
tion is needed to manage availability of shared resources. In our HDL specifications,
synchronization is explicitly indicated only in the context of communication operations.
A static resource allocation and binding paradigm is assumed, thus obviating the need
for resource synchronization, i.e., avoiding conflicts when the same resource implements
more than one operation. Therefore, synchronization in this work is mentioned in the
context of communication operations.

All communication between operations within a process body is based on shared
memory. This shared storage is declared as a part of the process body (for example
variablesx, y andz in the Example 3.1.1 above). Shared memory communication be-
tween operations is possible since it is relatively straight-forward to determine a (partial)
ordering of operations within a given process body that ensures the integrity of memory
shared between operations. However, the consistency of memory shared across concur-
rently executing processes must be ensured by the processes themselves. Inter-process
communication is specified by message-passing operations that bleeking proto-
col for synchronization purposes. As with shared memory variables, the only data-type
available for a channel is a fixed-width bit-vector.

The use of message-passing operations simplifies the specification of inter-process
communication. It should be noted, however, that it is easy to implement message-
passing communication using memory shared between processes (the converse is not
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true, however). Indeed, during system partitioning, reduction in communication overhead
is realized by simplifying the inter-model communication as discussed in later sections.
Example 3.1.2 below shows a process description containing a message-passing receive
operation.

Example 3.1.2 Example of a process with unbounded delay operations

process example (a, b, c)
in port a[8] ;
in channel b[8] ;
out port ¢ ;

boolean x[8], y[8], z[8] ;

X = read(a);
y = receive(b);
if (x >y)
Z=X-Y;
else
Z=X*y;

while (z >= 0) {
writ e c =y ;
z=z-1;}

read refers to a synchronous port read operation that is executed unconditionally
as a value assignment operation from the wire or register associated with the port
a. receive is a message-passing based read operation where the channel
carries additional control signals that facilitateblacking read operation based on

the availability of data on channél O

3.2 System Model and its Representation

As mentioned earlier, a model refers to an abstraction of functionality over which the
properties of an implementation can be explored. Due to the simplicity of models, these
are extensively used in system analysis and synthesis procedures. A system model refers
to a model of the complete system, whereas a process model refers to the abstraction of
a process used in a system.

In order to correctly estimate properties of hardware and software in our target system
implementation, we look for model characteristics that ease this process of estimation.
Abstractions of operation-level concurrency and synchronization are important for hard-
ware since these affect tlEnountof resources required for hardware implementations.
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These also affect the satisfaction of timing constraints. Modeling software requires the
abstraction of its interaction with a non-trivial runtime environment.

In the following we present a graph-based model that represents operation-level con-
currency explicitly while making a provision for encapsulating operations due to the
runtime system by a making suitable choice of additional source and sink operations in
the graph-model.

As mentioned earlier, the specification of a digital system consists not only of a
behavioral or algorithmic description of its functionality, but also of a description of
its interaction with its environment and performance constraints. Correspondingly, any
model of a digital system must also abstract these important components:

1. Functionality or its behavior in response to environmental inputs.

Broadly speaking, there are two major way of modeling and analyzing the system
behavior: algebraic process-based and graph-based. Algebraic modeling techniques
such as process algebra [BK90, BW90a, Mil90] are commonly used in proof sys-
tems [AFR80, OG76]. Graph-based modeling uses techniques from graph theory
to analyze system properties. The main difference between the two approaches is
in the explicit expression of dependencies between processes and constituent op-
erations. However, the equivalence between algebraic and graph-based modeling
approaches has been demonstrated in [Tar81].

We take a graph-based approach to system modeling and representation. Section 3.3
describes the model and its properties.

2. A set ofportsover which it interacts with its environment.

The behavior of an embedded system includes its interaction with the environment
that influences current and future system behavior. Tdastivenature of system
functionality is expressed by means of its behavior on its ports. System interaction
with an environment can be seen as a generalization of the interaction between
its components. This generalization is supported by the port abstraction which in
implementation can be a memory location, another system, or a device. Ports and
port semantics are discussed in Section 3.4.1.



3.3. THE FLOW GRAPH MODEL 43

3. Constraints on properties of its behavior.

Constraints are an important part of system specification. Constraints can be placed
at various levels of abstraction. The specification of constraints is described in
Section 3.6 and their analysis is presented in the Chapter 4.

3.3 The Flow Graph Model

The flow graph model captures the essential computational aspects of the target system.
This model is presented in three parts: (1) Representation and definitions (Sections 3.3.1
and 3.3.2); (2) Execution semantics (Section 3.3.3); and (3) Abstraction of implementation
attributes (Section 3.3.4).

3.3.1 Representation and definitions

Definition 3.1 A flow graph model is a polar acyclic graphG = (V, E, x) where

V ={w, v, ...,n¢ represent operations withy and v5 being the source and sink
operations respectively. The edge sEt= {( n p) } represents dependencies between
operation vertices. Functioy associates a Boolean (enabling) expression with every
edge. In the case of edges incident from a condition vertex or incident to a join vertex,
the enabling expression refers to the condition under which the successor node for the
edge is enabled.

Table 1 lists operation vertices used in a flow graph model. It has been shown
that this set of simple operations (that is, all operations exegitandlink) provides a
representation sufficient to capture universal computing power [Fos7®faifoperation
is needed to capture the timing uncertainty in the system behavior due to its reactive
nature (see Section 3.4.2). The semantics oflitile operation is discussed in the next
section in the context of hierarchy in flow graphs. Note that the presence of multiple
case values for the same branch leads to multiple edges between the condition and its
successor vertex, thus making the flow graph a multigraph.

The flow graph model is similar to sequencing graph model by Ku [KM92a] with the
following differences:
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e A wait operation is added to abstract operations that represent synchronization
events at model ports. This distinguishes a synchronization operation such as
“wait(signal) " from a loop operation such aswvhile(!signal) " 2 The
reason for this distinction is that a software implementation of a wait operation is
different from that of a loop operation. Whereas, due to the presence of multiple
threads of execution in hardware, the wait operation is synthesized as a busy-waiting
loop operation.

e Conditionalcond andjoin operations. These operations have been added for the
purposes of simplicity in data structures and constitute simple syntactic alteration
to the sequencing graph model.

The advantage of the above changes to the sequencing graph models of [KM923a] is that
they permit the distinction in abstraction of intra-model and inter-model communications
as based on shared memory or message passing respectively. This issue is discussed in
Section 3.5. However, the inclusion of conditional paths in the graph model introduces
data-dependent execution paths of operations in addition to the possible data-dependent
delay of operations. In contrast, the sequencing graph model features only the uncertainty
due to data-dependent delay of operations by treating the conditional paths as separate
graph models. Thus once invokeal| operations in a sequencing graph are eventually
executed. As said earlier, this is only a syntactical alteration since invocation of operations
on conditional paths is data-dependent in both cases.

For the sake of simplicity, a flow graph modél, is often expressed as =( V, E) .
An edgee; ;= (» p € E( G) represents a dependeneyp;, between operations
v; and v; such that for any execution @( V') , operationumust always be initiated
before operatior;. An edge represents eitherdata-dependency; > v; or a control
dependency; v ; between operations; andv;. In the case of a data dependency,
operationv; produces (writes) data (variable) that is consumed (read) by the operation
A control dependency from operation to v; indicates one of the following conditions:

1. operatiory; is environmentally constrained to be invoked only after invocation of
v; for correct behavior of the system being modeled,

°The loop operation is described later in the context of hierarchy.
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| Operation | Description
no-op No operation
cond Conditional fork
join Conditional join
op-logic Logical operations

op-arithmetic| Arithmetic operations
op-relational | Relational operations

op-io I/O operations
wait Wait on a signal variable
link Hierarchical operations

Table 1: Operation vertices in a flow graph

2. v; is invoked conditionally (based on output ©f),
3. both operations; andv; write to the same variable (multiple assignments).
4. operatiorv; writes a variable that is read by operation(anti-dependency).

In compiler parlance, a data-flow dependency is also called a read-after-write dependency.
Note that in the last two cases (multiple assignments, and anti-dependency), dependencies
occur only when the shared variable corresponds to a physical port. The relation
indicates the transitive closure of the precedence relation

Note that any successor to a conditional operation is enabled if the result of condition
evaluation selects the branch to which the operation belongs. This is expressed by
the enabling condition associated with the edge from the condition vertex. In general, a
multiple in-degree operation vertex is enabled by evaluatingput expressioronsisting
of logical AND andORr operations over enabling expressions of its fanin edges. Similarly,
on completion of an operation, all or a set of its successor vertices can be enabled. For
each vertex, itoutput expressiors an expression over enabling conditions of its fanout
edges. These expressions determine the flow of control through the graph model.

A flow graph is consideredell-formed if the input and output expressions use either
AND Or OR operations but not both in the same expression. For a well-formed graph,
a set of input or output edges to a vertex is conside@goined if the corresponding
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Figure 17: Flow graph of processxample .

expression is a conjunction over inputs or outputs. Similarly, a set of edgksomed

if the corresponding expression is a disjunction. A conjoined output directs the flow of
control to all its branches, whereas a disjoined output selects one of the successors based
on condition index. Similarly, a conjoined input requires arrival of control on all its
inputs before enabling the vertex. Structurally this makes the flow grdplogic graph

[Cer72]. For this reason, the flow graphs can be calidolgic sequencing graphsas
opposed to (unilogickequencing graphsantroduced in [KM92a]. Bilogic graphs are a

fairly common occurrence in control graphs.

Example 3.3.3 Figure 17 shows example of a well-formed bilogic graph
model for the process described in Example 3.1.2. The example shows a one-bit
condition variablec = (x > y) . In general, it can a multi-bit variable, thus
leading to more than two branches. Note that for bilogic graphsjoihe node is

not essential since an appropriate input expression can be assigned to the successor
node. However, a join node makes it easier in defining well-formed graphs.

Overall, the flow graph model consists of concurrent data-flow sections which are or-
dered by control flow. The graph edges represent dependencies, while conjoined branches
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| Operation| Description | Invocation times |
call Procedural call 1
loop Iteration 1 or constant> 1 or variable

Table 2: Link vertices in a hierarchical flow graph

indicate parallelism between operations. (Conjoined and disjoined fanin and fanout of a
vertex are indicated by symbols * and ‘+’ respectively).

3.3.2 Hierarchy

Flow graph models are hierarchically composed by meatislofvertices. A link vertex
represents a call to a flow graph model in the hierarchy. The called flow graph may be
invoked one or many times depending upon the type of the link vertex. Table 2 lists
types of link vertices and associated invocation times. Function and procedure calls are
represented by a call link vertex where the body of function/procedure is captured in a
separate graph model. A loop link operation consists of a loop condition operation that
performs testing of the loop exit condition and a loop body. The loop body is represented
as a separate graph model. All loop operations are assumed to be of the form

repeat{
body
} until (condition);

that is, a loop body is executed at least once. HDL specification of ‘while’-loops is

transformed as follows:
if (condition) {

while (condition){ repeat{
body = body
H } until (! condition);
}

A systemconsists of interacting parts, each of which can be abstracted into a flow
graph model. Asystem modelrefers to the abstraction of the system. A system model
consists of one or more flow graphs, that may be hierarchically linked to other flow
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graphs. That is, a system model is expressedbas; {G;, G, ..., ¢, whereGr,
represents the process graph moé@eland all the flow graphs that are hierarchically
linked to GG;. Finally, a flow graph model that is common to two hierarchies of a system
model is considered shared modelor a shared resource.

Example 3.3.4  Model hierarchy in an Error Correction System.

Figure 18 shows an error correction system (ECS) that models the transmission of

digital data through a serial line. The ECS consists of an encoder front-end that

reads input data word, encrypts and transmits it serially as an encoded stream into
a noisy channel. The received bit stream is decoded and assembled into an output
data word.

The system graph model consists of three process graph mddels: .. . G » Chise -
The hierarchies ofs> ., andGy, . share the flow graph modeél.., . O

FLOW GRAPH

error?
encode I

data data

S - pees————

Figure 18: Flow graph model for an error correction system.

3.3.3 Execution semantics

In the previous section we showed the representation of the system functionality in a flow
graph where operations represent vertices and edges represent dependencies between
operations. This abstraction would be incomplete without an appropjzeational
semanticassociated with the execution of operations in a flow graph representation of the
system model (also referred to as the flow graph model). An execution of the flow graph
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model corresponds to a simulation of the system behavior. Thus, the development of an
execution semantics is instrumental in understanding the possible behaviors exhibited by
a system implementation. More importantly, it helps in reasoning about the validity of
transformations to the graph model vis-a-vis system specification.

The execution semantics for a flow graph can be described as follows. At any time,
an operation may be waiting for its execution, presently executing or having completed its
execution. Correspondingly, we define ttate, ¢, of a vertex to be one ofs,, s s}
where s, refers to the reset statg, to the enable state ang to the done state. An
operation is enabled for execution once all its predecessors have completed execution
in the case of a input-conjoined vertex; and once any of its predecessors has completed
execution in the case of a input-disjoined vertex. The state of a vertex is changed from
doneto resetif all its successors are either reset or done. This semantics is general, and
can support both pipelined and non-pipelined implementations of the graph model.

Example 3.3.5 Execution of process graph modstample in Figure 17
reproduced below.
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Non-pipelined Pipelined
1 2 3 4 5 6 7 8 9 1011 12 13 1 2 3 45 6 7 8 9 10 11 12 13
e R e - - - - - - - - - - -
d e e - - - - d e e - - - -
- d d e - - - - d d e - - -
- - - d e - - - - - - - d e - - - - -
- - - d - e - - - - - - d - e - - - - -
- - - - - d e - - - - - - - d e - - - -
- - - - e e - - e - - - - - e e - - -
- - - e d e e - - d e e - - - e d e e -
- - - e d d e - - d d e - - e - d d e
- - - d d e - - d e - d - - d e
e - - - - d - - d e - - - - d
d e e - - - - d e - - - -
- d d e e - - e e - - -
- d - e d e e - - e d e e -
- d e - - - - - . - d d e - - e - d d e
- d e - - - - - - - -d - e - d - - - d e
- e e - - - - - - - - -de - - - - - d
e d e e - - - - - - - - d e - - -

This table shows a particular sequence of operation executions for a given data
input. Symbols ‘e’ and ‘d’ indicate enable and done states respectively. A dash *-’
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indicates the reset state. No assumption about timing of the operations is made, that
is, consecutive rows in the table above can be spaced arbitrarily over the time axis.
Thus, the execution of a flow graph progresses agagefront of operations are
enabled for execution. The operations may complete at different times depending
upon the delay of the individual operations.

The table on the left shows theon-pipelined execution of the graph model, that

is, the source vertex is enabled again only after the completion of all operations
in the graph model. On the contrary, an execution is consideielined if the
source operation is enabled before completion of all operations. Therefore, in a
pipelined implementation, there is more than one wavefront of enabled operations
that progresses through the graph model at any time. In general, pipelining of flow
graphs requires generation of pipeline stall and bypass control needed to accommo-
date pipelining of variable delay and synchronization operations. In this work, we
consider restricted pipelining using buffers only in the context of software synthesis
in Chapter 4. For this pipelined execution, the minimum number of steps before
the source operation can be enabled is determined by the maximum number of the
steps taken by any operation.

3.3.4 Implementation attributes

In this sub-section we define operation and graph attributes that are essential to performing
the constraint analysis described in next chapter. Informallymatementation, Z(G),

of a graph model¢ refers to assignment of delays and size properties to operati@gns in
and a choice ofuntime schedulerY’, that enables execution of source operation&’in

This actual assignment of values is related to the hardware or software implementation
of operations in. For non-pipelined hardware implementations, the runtime-scheduler
is trivial, the source operation is enabled once its sink operation completes (and the
graph enabling condition is true for conditionally invoked graphs). For software, the
runtime scheduler refers to the choice of a runtime system that provides the operating
environment for execution of operations@h A runtime system is characterized by its
ability to preempt and prioritize operations. These are discussed in Chapter 5.

Size properties

Size attributes refer to the physicazeand pinout of implementations of operations and
graphs. The meaning of size for hardware and software implementations is different. A
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hardware implementation consists of hardware resources (also called data-path resources),
control logic, registers, and communication structures likes busses and multiplexor cir-
cuits. The size of a hardware implementation is expressed in units of gates or cells
(using a specific library of gates) required to implement the hardware. Each hardware
implementation has an associategathat is determined by the outcome of the physical
design. We estimate hardware size assuming a proportional relationship between size and
area. The size attribute for software consists of program and data storage required.

In general, it is a difficult problem to accurately estimate the size of the hardware
required from flow graph models. Indeed, the size of implementation is one of the
metrics that hardware synthesis attempts to minimize! Estimation in this context really
refers torelative sizes for implementations of different flow graphs, rather than an ab-
solute prediction of the size of the resulting hardware as formulated in [JMP89, KR93].
Notationally, thehardware size S of an operation refers to its size as a sum of sizes
of hardware resources required to implement the operation, associated control logic and
storage registers. The size of a graph model is computed as a bottom-up sum of the size
of its operations.

Even though we describe constraints later in this chapter, the effect of constraints on
hardware size should also be noted. The effect of constraints, specifically on resource
usage, is to limit the amount of available concurrency in the flow graph model. The
more constraints on available hardware resources, the more operation dependencies are
needed to ensure constraint satisfaction. The effect of timing constraints, on the other
hand, is to explore alternative implementations at a given level of concurrency. Here we
assume that the expressed concurrency in flow graph models can be supported by available
hardware resources. That is, serialization required to meet hardware resource constraints
has already been performed. This is not a strong assumption, since the availability of
major resources like adders and multipliers are usually known in advance.

Capturing memory side-effects of a software implementation

A graph model captures the functionality of a system with respect to its behavior on its
ports. The operational semantics of the graph model requires useiofeanal storage
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in order to facilitate multiple-assignments in HDL descriptions. Whereas additional vari-
ables can be created that avoid multiple assignments to the same variable, assignments
to ports must still be multiply assigned in a flow graph model. Further, a port is often
implemented as a specific memory location (that is, as a shared variable) in software. The
memory side-effects created by graph models are captured by (g€} of variables

that are referenced by operations in a graph mo@el, M{(G) is independent of the
cycle-time of the clock used to implement the corresponding synchronous circuitry and
does not include storage specific to structural implementatioas(@dr example, control
latches).

The size,S (@), of a software implementation consists of the program size and the
static storage to hold variable values across machine operations. The static data storage
can be in the form of specific memory locations or on-chip registers. This static storage
is, in general, upper bounded by the size of variable¥/|6/) defined above. In order to
estimate software size, a flow graph model is not enough. In addition, knowledge of the
processor to be used and the type of runtime system used would be needed. We discuss
the processor abstraction and runtime environment in Chapter 5.

Pinout, P(G) refers to the size of inputs and outputs in units of words or bits. A
pinout does not necessarily imply the numberpofts required. A pinout port may be
bound to a number of input/output operations in a flow graph model.

Timing properties

The timing properties of the system model are derived from the timing properties of
the flow graph models used to build the system model. For synthesis into hardware,
the flow graph model is assumed to represent an abstraction of the synchronous digital
hardware and as such its timing properties are derived usipgttam-upcomputation

from individual operation delays.

Let us first consider non-hierarchical flow graphs, that is, graphs without link vertices.
The delay, 6, of an operation refers to the execution delay of the operation. We assume
that for a graph model, the delay of all operations are expressed as number of cycles for
a given cycle time associated with the graph model. In a non-hierarchical flow graph,
the delays of all operations (exceptit ) are fixed and independent of the input data.
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The wait operation offers variable delay which may or may not be data-dependent
depending upon its implementation. Thaency, A\(G), of a graph model(, refers

to the execution delay off. The latency of a flow graph may be variable due to the
presence of conditional paths.

Next, the hierarchical flow graphs also contain link vertices suatels andloop
which point to flow graphs in the hierarchy. Therefore, an execution delay can be
associated with link vertices as the latency of the corresponding graph model times the
number of times the called graph is invoked. Since the latency can be variable, therefore,
the delay of a link vertex can be variable. It may alsoumoundedn case of loop
vertices, since these can, in principle, be invoked unbounded number of times.

As mentioned earlier, the delay ofait operation depends upon its implementation.
For instance, in &usy-waitimplementation, the wait operation is implemented as a
loop operation that iterates until the concerned input is received. This implementation
is commonly used for hardware synthesis [KM92a]. Another implementation of wait
operation would be to causecantext-switctwhich is particularly applicable for software
implementations. For this implementation, the delay of the wait operation is characterized
as a fixed quantity.

Length attribute and its computation

We define a lower bound on latency as tleagth, ((G) € Z*, of the longest path
between the source and sink vertices assuming the loop index to be one for the loop
operationd In presence of conditional paths, the length is a vedtes(( [:]) where
each element [: | indicates the execution delay of a pathGh The elements_adre
the lengths of the longest paths that are mutually-exclusive. No particular ordering of
elements irY is assumed.

The length computation for a flow graph proceeds by a bottom-up computation lengths
from delays of individual operations. Given two operatiomgndv with delays,q,, 6.,
these can be related in one of the following three ways in the flow graph:

Sequential composition:that is,« > v orv > u. The combined delay of andv is

SRecall that loop vertices represent ‘repeat-until’ type operations. The length computation treats the
loop operation as a call operation.
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represented by, © ¢, and is defined as

Oy ©6, =6 o + 6, (3. 1)

Conjoined composition: when the operationss and » belong to two branches of a
conjoined fork. A conjoined composition is denotedbyand the delay is defined
as

0y @6, =maxé ,, o) (3. 2

Disjoined composition: when the operationg andv belong to two branches of a dis-
joined fork. This composition is denoted by symboland the combined delay is
defined as

0y By = (6u, ) (3. 3)

Clearly, a disjoined composition of two delays leads to a 2-tuple delay since the two
operations belong to mutually exclusive paths. This composition of delays is generalized
to composition of paths as follows. In case of a sequential composition of two path
lengths,¢, and{, with cardinalityn andm respectively, the resulting path length contains

n x m elements, consisting of sum over all possible pairs of elements ahd/,. In

case of a conjoined composition, the resulting path length is of cardinality and
consists of maximum over all possible pairs of elements. Finally, in case of a disjoined
composition, the resulting path length is of cardinalityn and contains all elements

of ¢, and/,. With this definition, the composition operators, © and® form a simple
algebraic structure called commutative monoid, on the the power set of positive integers,
Z* with 0 as an identity element.

In practice, one often needs only the upper and lower bounds on latencies. Nota-
tionally, ¢,, and ?,; refer to the minimum and maximum elementdrespectively. For
well-formed graphs/,, and ¢,; can be computed efficiently by collapsing conditional
paths into a single operation vertex with minimum or maximum branch delay respective-
ly. We state without proof the following properties:

max(; ©Ly) = L H 2u (3.4)
min(ﬁl QK_Z) = 1m -|“€ 2m (35)
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max(; @L,) = max{ 1y, #u) (3.6)
min({; @0,) = max{ 1,, ) (3.7
max(; ©ly) = max{ 1y, #u) (3.8)
min({y &¢,) = min({ 1,,,, %) (3.9)

Recall that a flow graph is considered unilogic if it all the fanin and fanout edges are
only conjoined. A bilogic graph has both conjoined and disjoined relations on fanin and
fanouts. The following theorem says that the maximum over the path leagthin a
bilogic graph can be obtained simply by computing the longest path assuming the graph
to be unilogic.

Theorem 3.1 Given a bilogic graphGyi 1.4 « l€t Guni i o 4: D€ @ graph created by treating
all fanin and fanout edges to be only conjoined. Then,

KM(Gbilogf)c:K (Gunilogi)c (3 10)

Proof: Proof is by induction over expression for path length. See
Appendix B.

Example 3.3.6  Latency and path length computations for bilogic flow graphs.

Figure below shows a process graph model, and graph models on its calling
hierarchy. 3 calls G, that constitutes body of a loop operatiors. G2 in turn
calls (G that constitutes the body of a loop operatien, Numbers in the circle
indicate delay of the operations.

For this set of graph models, the path lengths are:
(G1) = 20(0, 1)© (1) =3, 4)
UGy) = 20301, 6)04G1)=(6, 11)> LG1) =(9, 10, 14, 15)
{G3) =2026(0, (5 7)) @tz)=4>(0, 5 7)0l:2)=(4, 9, 11)0{>)
= (13, 14, 18, 19, 20, 21, 23, 24, 25 26)
Possible latencies are as follows:
AG) = (GT) = (3, 4)
AMG) =l (G3) = (6, 1) oz -(3, 4) =643z, 6+4z, 113z, 11+
AMGa) =l (G3) = (4 9, 1oy Af=(4, 9, 1oy (6, 11)o (3, 4)]
=(4,9 11)oy (6, 1)y (3, 4)
446y 3ry, 446y Hdoy, 4+1ly 3Bvy, 441y Hdzy +
946y HBry, 946y vy, 9+lly 3ry, 9+1ly Hdzy +
1146y 3z y, 1146y ey, 11+1ly 3y, 11+1lly H4ay )
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Note that the upper bound on latencies are given by
maxA\ (Gl) =/ M(Gl)
maxA (Gp) = { p(G2) He — 1) bs(G1)
maxA (Gg) = € m(Ga) Hy —1)- fe(G2) Hy —1)- (2 —1)-alG)

Rate of execution

The instantaneousate of execution p,(t) of an operatior; is the marginal number of

executions: of operationv; at any instant of timet .
- odn An

Due to the discrete nature of executions (ireg Z ), we define

{ 1 k such thattk(vi) <t <t k_|_1(vi)

(sect) (3.11)

t— tk(vi)
O 1 S tl(vi)

pi(t) =

wheret(v;) refers to the start time of the" execution of operatiom;. Assuming a

synchronous execution model with cycle timewe define aiscrete rate of execution
1 te(vy) tir1 (v;)
1
PN (cycle™™) — < B (3.12)

T

pill) =pit) |t =1 . 7 =
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We define the rate of execution at invocatibof an operation ; as the inverse of
the time interval between its current and previous execution. That is,

pilh) = ) b = (0y)
1 1
= Tl = (o) (sec™) (3.13)
= . (cycle™?)

tre(v;) = k1 (vi)
By convention, the instantaneous rate of execution is 0 at the first execution of an op-
eration {p ==c). Note thatp ; is defined only at times when operationis executed
whereasp, is a function of time and defined at all times. In statistics such a function
is commonly referred to as déttice type In our treatment of execution rates and con-
straints on rates, only rates at times of operation execution are of interest. Hence we use
the definition ofp as the rate of execution.

Example 3.3.7  Figure 19 shows a simulation of the graph in Example 3.3.6.

g 12 18 24 a B 42 48 54 B0 B 72 ?IS a4 0 9
; : L] ] [L]] L]
; : [ ] L] [ ]
: ofl | ] [ ]
b0l 0 H
cl:0] 0 H
dl:0] 0 H H H
el0:0] 0 H H
FLO:0] 0 H H H H
glo:0] 0 H
HEZ:01 o 0 |111|22|333 |??|88|9 |HH|BBB|EEEEEEEEEEE |111|44|55|888 |??|888 |EEEE|??|8 |99|HH|BBB|EEEEECE |111 |??|888 |EEEEEEE |111|22|33
T T T T T T T T T T T T T T T T

delta = 47 [ 12 18 24 E E 42 48 54 [ 453 72 78 84 Bl 96

Figure 19: Simulation of the graph model in Example 3.3.6

Outputs labeledh, B andC refer to the execution of operation vertices ‘A, ‘B’
and ‘C’ respectively.
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From the figure, assuming the same cycle time for all graphs, the rate of execution
of these operations is given ésycle1) Consider operation ‘A’ that is executed at
times 22, 26, 30, 51, 66, 70, 84 and 88. For this operagiaQ) =0 by definition,

pa(l) = 5525 = % and so on. The following table lists the rate of execution for
operations ‘A, ‘B’ and ‘'C’.

k — 112 3 14 |5 6|7
1 1 1 1 1 1

pa(k) | O 2 |2 21|17 1

e o % | %

pc(k) |0 3 | 75| 18

Thus the rate of execution of an operation varies as the interval between successive
executions of the operation varies. A maximum rate of execution occurs following

the shortest interval between two successive executions, and is always less than or
equal to 1 cyclel. O

For a graph modeky its rate of reaction, is defined as the rate of of execution of
its source operation, that is,

ea(k) = po(k) (3.14)

The reaction rate is a property of the graph model and it is used to capture the effect on
the runtime system and the type of implementation chosen for the graph model. To be
specific, the choice of a non-pipelined implementatiorztdads to

0c(k)™F =X a(k) 4+ a(k) (3.15)

where( k) refers to theoverhead delay that represents the delay in reinvocatiorGof

7(k) may be a fixed delay representing the overhead due to a runtime scheduler or it
may be a variable quantity representing delay in case of conditional invocat@r-of

a pipelined implementation, th@egreeof pipelining determines the reaction rate @f

As the number of pipestages increases, the reaction rate of the graph model increases.

With appropriate choice of pipeline buffers, it is possible to accommodate different rates
of execution for operations in a graph model.
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Figure 20: Shared memory versus message passing communication
3.4 Interaction Between System and its Environment

3.4.1 Ports and communication

Input and output operations in a digital system are performed pods and channels

Since the HDL description can be implemented either as hardware or software, the seman-
tics attached to the input/output ports of a system model must be suitable for specification
of reactive hardware/software systems. In particular, the semantics of port/channel ac-
cesses must be compatible with the semantics of variable accesses. We examine these
two together in the general context of communication in the graph model.

Communication in a system graph modekfers to the transfer of a data value from
one operation vertex to another operation vertex or to the data transfer between operations
and the environment external &

The operation vertex generating the data value is referred to as the producer vertex
and the operation vertex using the data value is referred to as the consumer vertex.
Communication between operations is either baseshaned memory (SM) or message
passing(MP). In the case of a shared memory communication between two operations,
the sender operation modifies the contents of a storage (variable) that is shared by the
receiving operation. A variable can be written by more than one operation. In the
case of message passing communication between two operations, the actual data transfer
is preceded by d&andshaked communication protocolthat requires the sending and
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receiving operations to execute simultaneously (Figure 20). A communication protocol
is a general term that encompasses many possible schemes to facilitate data transfer.

For all operations in a graph modef;y all communication is based on shared
storage,M@. Inter-model communications are represented by explicit I/O operation
vertices, which on execution, may alter the model stor#fge An I/O operation ver-
tex encapsulates a sequence of operations as a particular ‘communication protocol’. A
communication protocol may d#ockingor non-blocking Since protocol is specified in-
dependently for the producer and consumer operations, it can be blocking or non-blocking
at either or both ends. Further, a non-blocking protocol may also be firbtéfered
These protocols are built using simpler operations available in the flow graph model.
Section 7.2.2 shows implementations of these protocols.

As mentioned earlier, dependencies between operations due to shared storage are rep-
resented by corresponding edges between operations. In the case of a read-after-write
operation, a data-edge is indicated. For all other dependencies, a control edge is used.
Communication based on message-passing is by meagckavinelsthat connect the
communicating models. A channel, as a variable, can be accessed by multiple opera-
tions in the graph model. In our model, all communication dependenciestatieally
specified, that is, shared memory and message-passing channels are compiled from input
descriptions.

3.4.2 Non-determinism in flow graph models

A flow graph model consists of operations that present fixed delay or variable delay
during execution. This variance in delay is caused by the dependence of operation delay
on either thevalue of input data or on théiming of input data.

Example of operations with value-dependent delays are loops with data-dependent
iteration counts. Since the execution delay (or latency) of a bilogic flow graph can, in
general, be data-dependent due to the presence of conditional paths, the delay of a call
vertex is also variable and data-dependent. In bilogic flow graphs, link vertices present
value-dependent delays.

“We note here that for unilogic flow graphs, the conditional operation is also a link operation which
presents a value-dependent delay corresponding to the delay of the operations in the branch taken.
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The second category concerns operations with delays that depend upon a response
from the environment. An operation presents a timing-dependent delay only if it has
blockingsemantics. The only operation in the flow graph model with blocking semantics
is the wait operation. Thaead and write operations are treated as non-blocking. Their
blocking versions are created by adding additional control signals and the wait operation.
For this reason, the wait operation is also referred to agnghronizatioroperation.

Data-dependent loop and synchronization operations introduce uncertainty over the
precise delay and order of operations in the system model. Due to concurrently operating
flow graph models, these operations affect the order in which various operations are
invoked. Due to this uncertainty, a system model containing these operations is called a
non-deterministic [BEW88] model and operations with variable delays are termad
deterministic delay or XDoperations Note that the non-determinism here is caused
by the uncertainty in timing behavior of a concurrent system, and is different from
the meaning of non-determinism used in the context of finite-state sequential machines
[HU79].

3.5 ND, Execution Rate and Communication

As mentioned earlier, a system model consists of parts (abstracted as graphs) that may
execute at different speeds. For a given input/output operation, the system throughput at
the corresponding port equals the rate of execution of the operation. For a flow graph
containing no conditional andDoperations, the rate of execution of all operations is

the same and is independent of input data. Therefore, the reaction rate of the(raph,

oc(k)=p ,, (k) forall v, VNG and forall £>0

Thus the execution ofzproceeds at a&ingle rate For a single-rate graph model, the
system throughput at all ports is identical. For two single-rate graph mo@elsand
G, there exists a fixed number of invocations(ef with respect to an invocation @,

given by the ratio%.
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Example 3.5.8  Single rate graph models.

Getlnfo DisplayUpdate

Velocity

Figure above shows part of a vehicle cruise controller that consists of two single-
rate graphs~; and (G, implemented in hardware and software respectively. The
latencies of the respective implementations &g, = 25- 7, sec withyg, = 0

and \g, = 665- 75, - sec withyg, = 85 cycles. The clock cycle times for the
hardware and software are 500 ns and 125 ns respectively. The reaction rates are
0c, = 80, 000/sec andg;, = 10, 666.6/sec. Therefore, for each execution of the
software model, there are a fixed number% = 7. 5 executions of hardware.

O

The reaction rate of a graph model containing conditional A} operations is
variable. A graph model with variable reaction rate is termeahudti-rate execution
model. A multi-rate model has a bounded reaction rate if the model does not contain
N'D operations, else it is unbounded.

All communication in a single-rate graph model can be accomplished by means of
shared storage since any execution of a graph model observes the partial order induced
by its edgesregardless of individual operation delayslowever, the relative ordering of
operationsacrossthe graph model are dictated by the execution delay of individual oper-
ations. For software implementations this may lead to possible interleaving of operations
in the graph models whereas a hardware implementation also includes the possibility of
concurrent execution of operations across processes.

For any communication between operations across the graph modalfgexecution
requires that the dependencies induced due to communication are always respected. For
example, in Figure 21, a communication from operatioim (G, to operationa in G1
implies that only those executions are safe in which execution girecedes execution
of a« . There are two ways to ensuring that this ordering fronto « is always observed.
One is to construct a single flow graph model by mergihgand GG, in which an edge
is added frome to «. This may not always be possible, particularly,gfand G,
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Graph model Graph model

memory

memory

Figure 21: Graph model properties

have different reaction rates or use different clocks. An alternative is then to make the
operationa block until ¢ is available (and vice-versa). This is accomplished by using a
message-passing protocol betweenand Gs.

Example 3.5.9 Use of message passing for communication across two graph
models.

A AL A A
() ond) =—= (=) OO, ong) =—(rev) (w)
NV WA AW

Gl G2 Gl G2

Single-rate Single-rate Multi-rate Multi-rate

Figure 22: Communication across models.

Figure 22 shows communication across two mod&lsandG,. In the first case(=;
and(/y, are single rate. Since trsend andreceive operations are invoked for
each execution of the respective graph models, therefore, the rates of execution of
operationd andware identical. In the second case the execution of synchronization
is conditionally invoked. Hardware-software implementations/@fandG'; benefit

by this synchronization operation since it allowg and G, to run at their reaction

rates and synchronize only when a communication is indicated.
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The advantage of message-passing is realized when communicating across multi-
rate model(s). In the case of single-rate models, use of message passing provides a
notational simplicity; however, it is more efficient to implement the communication
based on shared-memory. This is because a shared memory communication uses
much less overhead both in operation delay as well as control complexity. In this
context, a completely non-blocking message-passing communication can be thought
of as a shared memory communicatian.

In principle, communication between two single-rate models can be accomplished by
means of shared memory. This is, however, not convenient for different implementations,
such as one in hardware and the other in software, of single-rate graph models, even if they
have the same reaction rate. This is because, hardware and software implement storage
differently even though the access semantics in graph models are identical. On the other
hand, communication across two multi-rate models using the same implementation can
be accomplished by shared memory, as shown by the following example.

Example 3.5.10 Implementation of communication across multi-rate models
by means of shared memory.

An example of a multi-rate model using shared memory is the complete hardware
implementation of the loop operation in [FKD92]. As shown in Figure 23, the loop

All hardware implementation. Hardware-software implementation.

send a;

’ receive b;

SHARED MEMORY MESSAGE PASSING
Figure 23: Shared-memory versus message-passing implementations of loop operation.

body communicates with the calling body by means of shared storage, even though
the operations in the loop body are executed multiple times for each execution of the
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operations in the calling-body. The safety of the executions is ensured by blocking
the execution of the parent body (by operation wait2) until the loop has terminated.
O

A question naturally arises: what then is gained by using message passing based com-
munication between the parent body and the loop body? The answer depends upon the
memory side-effects created by the loop operation and the kind of loop operation be-
ing used. In the case of loop operations with no memory side-effects, the parent body
need not be blocked, i.e., operatioait2 can be eliminated, thus providing additional
flexibility in scheduling of operations. While such flexibility comes with significant addi-
tional overhead in hardware, software implementations of flow models require relatively
minor operations in the run-time environment to make use of this flexibility to overlap
operation. In particular, the execution of a blocking wait operation can be overlapped to
that of run-time scheduling operation. This is accomplished by including the delay of the
waitl operation into the runtime delay without leading to loss of processor utilization in
software. Therefore, different implementations of operations even within a graph model
are more conveniently handled by the use of message-passing based communications than
shared memory. This allows the hardware and software parts to run at suitable reaction
rates while synchronizing only when necessary.

3.6 Constraints

Constraints are an integral part of the system specification. Constraints can be on the size
and/or on the performance of the desired implementation. Typically, the goal of system
synthesis is to explore solutions that optimize parameters while observing constraints on
specified parameters.

In the context of mixed system synthesis, performance constraints can be on system
response time and degree of resource utilization. These performance constraints have
varying degrees of time granularity and tolerances. Further, different embedded systems
operate under varying types and degrees of constraints. For example, for systems used
in control applications, real-time response time constraints are most important, while to
systems used in on-line transactions and data-processing, synchronization and consistency



66 CHAPTER 3. SYSTEM MODELING

constraints are of most importance.

In general, these performance constraints are too abstract to be handled directly on
a system model that is described at the level of individual operations. For this reason,
we first devise timing constraints that apply to the level of individual operations, devel-
op a runtime system to support the operation of mixed systems and finally develop a
relationship of operation-level timing schema to system performance parameters in the
context of the runtime system environment. For a given set of performance constraints,
there can be more than one assignment of operation-level constraints. The selection of
appropriate operation-level constraints corresponding to a given performance constraint
would then require a clear understanding of the effect of constraints in system partitioning
for hardware and software. In the following, we discuss operation level constraints and
their implications for a mixed system design. The system performance constraints are
developed in the context of a runtime system described in Chapter 5.

Timing Constraints are of crucial importance, since in our approach to co-synthesis
they determine the feasibility of mixed implementations. We use these constraints to drive
a partitioning algorithm in choosing operations for hardware or software implementation.
Timing constraints are of the following types:

1. Min/max delay constraints

2. Execution rate constraints

These operation-level constraints are devised in order to make the task of constraint
analysis tractable in the context of our system model based on flow graphs. We note that
these two constraint types capture the durational and deadline timing constraints used in
specifying real-time systems [Das85].

3.6.1 Min/max delay constraints

Let us first consider the timing constraints of the first type, that is, the min/max delay
constraints. Min/max constraints are specified operation-to-operation and are needed to
ensure required separation between the execution of two operations. If the operations are
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input/output related, then a min/max constraint implies a certain bound on the response
from the environment in which a circuit operates (e.g., memory), or a bound on the
response of the system to the environment.

In the case where min/max constraints are on operations other than input/output,
min/max constraints account for delays of specific components or resources. By default,
any sequencing dependency between two operations, induces a minimum timing con-
straint which must be satisfied in order to observe the execution semantics of the flow
graph.

For operations implemented in software that is running on a single processor, the
important min/max constraints are those on input/output operations. This is due to the
fact that a single-processor enforces execution of only a single thread of control at any
time. In fact, the insensitivity to relative inter-operation delays in interleaved execution
threads is a necessary condition for ensuring functional correctness of the software. Note
this situation is different in hardware (or software on multiple processors) where multiple
threads of control can coexist simultaneously.

Recall thatt,(v;) represents thetart timeof the k" occurrence of operation;. A
minimum timing constraint/;; > 0 from operation vertex; to »; is defined by the
following relation between the start times of the respective vertices:

tk(v]‘) > tk(vi) 4+ ij forall £ >0 (3 16)

For notational simplicity, we drop the suffix when the constraint applies universally
to k£ . Similarly a maximum timing constraint; ; > 0 from v; to v; is defined by the
following inequality:

t(y) <t ()+uij (3. 17)

3.6.2 Execution rate constraints

Execution rate constraints refer to constraints on the interval of time between successive
executions of thesameoperation. In particular, execution rate constraints on input (out-
put) operations refer to the rates at which the data is required to be consumed (produced).
We assume that each execution of an input (output) operation consumes (prociares) a

ple of data. Execution rate constraints on input/output operations are referrediateas
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rate constraints In the literature, data rate constraints have also been referred to as
throughputconstraints as opposed to min/max constraints which are expressed on delays
associated with a single execution.

A minimum data rate constraint; (cycles!), on an input/output operation defines
the lower bound on the instantaneous execution rate of operati@imilarly, amaximum
data rate constraintR; (cycles'), on an I/O operation defines the upper bound on the
instantaneous execution rate of operatign

po(k) < R VEk >0 [max raté (3. 18
= tk(vi) — tk_]_(vi) > T - ZRl V k>0 ‘
Similarly,
(k) > VEkE>O0 min rat
pu(k) = > [min ratg (3. 19
= tk(vi) — tk_]_(vi) < 7 - Z_T'l V k>0

Let us now consider, an operationy, in a graph modelz. In general, when con-
sidering rate of execution of;, we must consider the successive executions;dhat
may belong to separate invocations@f On the other hand, eelative execution rate
constraint of an operationp;, with respect to a graph modek, is a constraint on the
rate of execution ob; when( is continuously enabled and executing other words,

i < pu(k) < F (3. 20)
for all £ > 0 andthere exists an execution, of G such that
ti(vo(G)) < te—a(vi) < te(vi) < t(on(G)) (3. 21)

The motivation behind the relative rate of execution is to express rate constraints that
are applicable to a specifwontextof execution as expressed by the flow of execution
that enables the specified graph Clearly, a relative rate constraint is meaningful
when expressed relative to a flow graph in the hierarchy in which the operation resides.
Further, as we shall see in the following chapter, the maximum execution rate of an
operation is achieved when the flow graph in which the operation belongs is continuously
enabled. Therefore, a relative maximum rate constrdifit, is always trivially satisfied

if a corresponding maximum rate constraint is satisfied. Therefore, it is the relative
minimum rate constraints that are used in practice.
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3.6.3 Specification of timing constraints

Operations in the flow graph model correspond to language-level operations, that is,
operations supported in the HDL. Therefore, it is easy to specify timing constraints by
tagging the corresponding statements in HDL descriptions.

In the case of nested loop operations, rate constraints are indexed by the corresponding
loop operations. The loops are indexed by increasing integer numbers. The inner-most
loop is indexed 0. In the Example 3.6.11 below there are two relative rate constraints on
the read operation with respect to the two while statements.

Example 3.6.11 Specification of rate constraints in presence of nested loop
operations.

process example (frameEN, bitEN, bit, word)
in port frameEN, bitEN, bit;
out port word[8];

boolean store[8], temp;
tag A,

while (frameEN)
while (bitEN)
A: { temp = read(bit);
store[7:0] = store[6:0] @ temp;
\};vrite word = store;
attribute “"constraint minrate of A 100 cycles/sample™;

attribute “"constraint minrate 0 of A = 1 cycles/sample";
attribute “"constraint minrate 1 of A = 10 cycles/sample";

In this example, arnr of 0.01 per cycle is indicated on the read operation. In
addition, tworelative minimum data rates of 1 and 0.1 per cycle are indicated for
the read operation with respect to loopkile(bitEN) andwhile(frameEN)
respectively.O

3.7 Summary

The design of a suitable language for system specification is a topic of active research
interest and beyond the scope of this work. We follow the current practice in system
design by using a procedural language input as specification. Clearly, this does not imply
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that this means of specification is ideal, except that it serves our purpose of specifying
sufficient information in order to make system co-synthesis possible.

Most of this chapter defines the input model used for abstraction of system functional-
ity and constraints. We develop a representation based on graphs that meets the essential
requirements of capturing explicit concurrency, synchronization, data and control flow.
This model is general enough to allow synthesis of both hardware and software as well as
their pipelined or non-pipelined implementations. The properties of implementations are
captured as attributes of the graph model. Due to this abstraction of an input description
into operations and dependencies, it is argued that different specification languages can
be used without altering the co-synthesis paradigm. The scope of systems handled by the
co-synthesis approach is succinctly defined by this abstraction. HardwareC or any other
language (not necessarily procedural) can be used to describe the system functionality for
this purpose. (The converse is of course not true. That is, not all VHDL or C descriptions
can be synthesized into hardware-software as described here.)

The flow graph model consists of a graphical structure and an execution semantics
that formally abstracts HDL descriptions. Computationally, the flow graphs are similar
to control graphs. However, unlike the general control-data-flow graph models, the flow
graph model also captures the memory side-effects of an implementation by means of
a set of variables that are associated with a graph model. Most representations based
on data-flow graphs, disallow this multiple assignment, thus creating a correspondence
between a single data-item to each edge in the graph. Our motivation for multiple
assignments stems from our need to treat all communication, whether by ports in hardware
implementations or by means of storage in software implementations, symmetrically.
Therefore, variables, in general, can be multiply assigned, similar to ports. Indeed a
port can itself be implemented as a memory location in case of memory-mapped 1/0
operations.

The distinction between rate of execution of an operation as it relates to the structure
of the flow graph in which the operation belongs helps in analysis of constraints on rates
of execution by propagating known rates of execution through the graph model. By
definition, in a single rate graph model, all operations execute at the same rate. When
interfacing two graphs models (with possibly different implementations), their rates of
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reaction are important in selecting the protocol for communication across the models. The
protocols can be blocking, non-blocking or buffered. Since these protocols have different
implementation costs, analysis of reaction rates can be used to minimize communication
costs (for example, by eliminating redundant synchronizations).



Chapter 4
Constraint Analysis

In this chapter, we present timing constraint abstraction and analysis techniques. The
primary objective of constraint analysis is to examine the mutual-consistency of timing
constraints, and to answer the question about the existence of a system implementation
that would satisfy the timing constraints. This analysis assumes that any constraints
on availability of hardware resources have already been resolved as additional control
dependencies in the flow graph model. Therefore, the available concurrency in the flow
graph model can indeed be supported by the available hardware.

For each invocation of a flow graph model, an operation is invoked zero, one or
many times depending upon its position on the hierarchy of the flow graph model. The
execution times of an operation are determined by two separate mechanisms:

e The runtime schedulei;
e The operation schedulef?

The runtime scheduler determines the invocation times of flow graphs, which may be as
simple as fixed-ordered where the selection is made by a predefined order (most likely by
the system control flow). This is typically the case in hardware implementations where
the graph invocation is purely a subject of system control flow. Software implementations
of the runtime scheduler tend to be more sophisticated, due to the ease in altering system
control flow. The runtime scheduling is also referred to as long term scheduling (as
opposed to short term operation scheduling performed by the operation scheduler). We

72
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make a distinction between two major types of runtime environments: non-prioritized
and prioritized. A prioritized environment assumes an ordering of graphs irrespective of
system control flow. The effect of a runtime scheduler is presented in the next chapter.

4.1 Scheduling of Operations

Given a graph model7 =(V, E), the selection of achedulerefers to the choice of
a function, {2 that determines the start time of the operations such that graph execution
semantics shown by the following equation:

tk(vi) > max [tk(v]‘) +6 (v]‘)] (4 22)

J 3y

is satisfied for each invocatioh > 0 of operations; andv;. Hereé (- ) refers to the
delay function and returns the execution delay of the operation.

Given a scheduling function, a timing constraint is considered satisfied if the operation
initiation times determined from applying the scheduling function satisfy the correspond-
ing Inequalities (3.16, 3.17, 3.18 or 3.19). Clearly, the satisfaction of timing constraints
is related to the choice of the scheduling function. Before proceeding to analyze satisfi-
ability of timing constraints, let us take a look at differeppesof scheduling functions
that can be applied to the flow graph model described in the previous chapter.

We consider first a model;, where the delay of all operations @ is known and
bounded. A schedule aF maps vertices to integer labels that define the start time of
corresponding operations, that 13, : V' — Z* such that operation start times{v;) =
2,(v;) satisfy Inequality 4.22. A schedule is considered minimumnfv; ) — t;(v,)| is
minimum for allv; € V. For each invocation of7, since the start times of all operations
are fixed for all executions ofr (that is, for all£ ), such a schedule is referred to as a
static schedule Various static scheduling disciplines are possible, for example, As Soon
As Possible (ASAP), As Late As Possible (ALAP), List or Force Directed Scheduling
(refer to Chapter 5 in [Mic94] for an overview of static scheduling methods).

All static scheduling disciplines require the determination of fixed and known delays
for all operations. In the presence of conditional, loop and wait operations, not all delays
can be fixed or known statically, thus making a determination of an unique operation
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start time impossible. This provides the motivation for a scheduling function that does
not requires (- ) to be a fixed quantity. We consider one such function, called the relative
schedule [KM92b], which uses runtime information to determine operation start times
for each invocation of a graph model.

A relative schedulefunction maps vertices to gset of integers representingffsets
An offsetd,, (v;) of vertexw; with respect to vertex; is defined as the delay in starting
execution ofv; after completion of operation;. Offsets are determined relative to
vertices which the execution ef (transitively) depends upon. That is,

tr(vi) 2 ti(v;) 40 (v;) +6 o, (vi) 1 v; > v,

For a given vertexy, a set, A(v;) of anchorvertices is defined as the set of conditional
(CD) and loop, wait {'D) vertices that have a path tg:

A(v))={v; € V iy > v, pisND orC D} (4. 23)

A relative schedule function, is defined as a set of offsets for each operation such that
operation start time satisfies the following inequality:

tk(vi) > max [tk(a) —|—5(a) +6 a(vi)] (4 24)

a€A(v;)

Since the quantity (a) is known only at runtime, the operation start time under relative
schedule is determined only at the runtime.

Inequality 4.24 can be derived from the inequality 4.22 by expressing the latter over
the transitive closurez>, of G and then adding the known operation delays,as
offsets from unknown delay operations. Recall, that a transitive closure of a graph refers
to a graph with edges indicating direct or transitive dependency between operations.
Clearly, a solution to Inequality 4.24 will also satisfy Inequality 4.22 if the offsets,
0., (vi) > L(v;, u), wherel(v;, u) refers to the path length from vertex to vertexw;.
Finally, a relative schedule is minimum if it leads to minimum values of all offsets for
all vertices.

One of the interesting properties of a relative schedule is that it attempts to express
the (spatial) uncertainty associated with conditional invocations of an oper&tiby &s
its temporal uncertainty by treating it as an unbounded de\a®) operation. Thus, a
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conditional operation is same as an data-dependent loop operation where operations on
its branches are invoked a variable number of times (0 or 1) depending upon data values.
For the purposes of relative scheduling, variable delay operations are treated as unknown
delay operations in [KM90c]. Due to this treatment, the corresponding flow graph used
for relative scheduling isinilogic, since conditional branches belong to separate graphs
same as in the case of loops. Of course, this idea can be carried further by treating all
operations as unbounded delay operations and computing the start times of operations at
runtime. Such an implementation of a flow graph would be similar in architecture to data
flow machines [Wat84]. In terms of the latency of execution, such a dynamic scheduler
will give the most ‘compact’ schedule. There is, however, an overhead cost of control
associated with increasing the number of unbounded delay operations that makes such an
architecture unsuitable for either gate-level hardware or software on conventional general-
purpose processors. Hence we seek to minimize the number of unknown delay operations
in the graph model. Filet. al. in [FKD92] address the problem of minimization of

the number of unbounded delay operations that belong to the anchor set of an operation
based on the notion of irredundant anchor operations that are essential in determination
of the start time of an operation. This process can be complemented by taking out as
many operations out of the scope of unbounded delay operations as possible.

In this context, bilogic flow graphs treat conditional operations not as unknown delay
operations, but as variable and bounded delay operations. Correspondingly, we develop
a bilogic relative schedule that uses bounds on the variable delay operations to develop
a schedule. Depending upon the actual branches taken, this schedule may not be the
minimum in the sense of relative scheduling described earlier, however, it reduces the
number ofA"D operations, thus making it easier to perform the constraint analysis. Also,
the cost of implementing control for a bilogic relative scheduler lies somewhere between
the control costs for static and relative schedulers.

A bilogic relative scheduletreats an operation offset asvactoré, (v;) representing
the (finite) set of possible delays. A bilogic scheduf®, then computes the offset
vectors such that

t(u) = max [t +6(a) H Galvi)loc] (4.25)

where| - |refers to the largest element (or the infinity norm) of the vector. The bilogic
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anchor set is defined ad,(v;) ={v; € V :v; >* v;, y is ND}. Once again, the
inequality 4.25 can be derived from Eq 4.22 for bilogic flow graphs. Thus a solution to
Eqg. 4.25 will also satisfy Eq. 4.22 providéd)(v;)|.. > (am(a, v). The following shows

an example of unilogic and bilogic relative schedules.

Example 4.1.1  Unilogic versus bilogic relative schedule for procegample
in Example 3.1.2. The flow graph of the process model is reproduce below. The
numbers outside the circle indicate operation delays in cycles.
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The assignment of offsets using a relative scheduler and a bilogic relative scheduler
are shown below:

Relative offsetd || Bilogic relative offsetf
Vertex || v1 | 3 | V4 | vg || 1 | v3 | v8
1 - - - -l - - -
2 O|-|-|-1|0 - -
3 O|-|-|-1|0 - -
4 10| -|-|12 0 -
5 -1 -10] -1 0 -
6 -1 -10] -1 0 -
7 1010 - |24 @13 -
8 1010 - |24 @13 -
9 1010 - |24 @13 -
10 - -1 -101- - 0
11 - -1 -101- - 0
12 - -] -1 - - 1
13 170100 |(24]@13 0

where a ‘-’ indicates that the start time of the operation is not affected by the
particular anchor vertex. According to thelative schedule(Inequality 4.24), the
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start time of a vertex,, for example, is given by(vz7) =max{t(v 1) +1, t(v3) +

03, t(m)+6 4}. Note thats(v1) =0. For abilogic relative scheduler, the vertexv 3

is no longer an anchor but a variable delay vertex. The offsets are now computed
as vectors of possible delay values, as shown below: Thus the start time for vertex,
v7 in this case is given by(v7) =max{t(v 1) +4, t(v3) +6 3+3}. O

From Section 3.3.4 we recall that for a given flow graph modék(V, E), an
implementation, Z (G) of Grefers to the selection of a delay functian, that assigns
execution delay to simple nakD vertices inV(G) and to the choice of a runtime
scheduler)".

Definition 4.1 Given an implementatiod, (G), of a flow graph modelz a constraint is
consideredsatisfiableif there exists a solution to the corresponding constraint inequality
(Egs. 3.16, 3.17, 3.18, 3.19) that also satisfies the basic scheduling Inequality 4.22.

A particular assignment of start times to operations is referred to as a schedule of the
operations. For constraint analysis purposes, it is not necessary to determine a schedule
of operations, but only to verify thexistenceof a schedule. Since there can be many
possible schedules, constraint satisfiability analysis proceeds by identifying conditions
under which no solutions are possible.

A timing constraint is considereidconsistenif it can not be satisfied banyimple-
mentation of the flow graph model. A set of timing constraints is considerewally
inconsistentf these constraints can not be satisfied by any implementation of the flow
graph model. Since the consistency of constraints is independent of the implementation,
these are related to the structure of the graphs.

Timing constraint analysis is performed in stages and in order of increasing non-
determinism in the model. We first consider the satisfiability of min/max delay constraints
followed by the execution rate constraints. The questions about constraint satisfiability
are answered in the context of the scheduling schemes discussed in this section. The
emphasis in satisfiability analysis is in the determination of constraint satisfiability without
relying on runtime (or data-dependent) information. We identify the cases where such
a (deterministic) analysis fails and develop the bounds on operation delays in order to
satisfy imposed constraints. A notion of marginal satisfiability is developed that relates
the likelihood of constraint violation to the probability of violation of delay bounds.
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1. CONSTRAINTS SATISFIED BY THE IMPLEMENTATION
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Figure 24: General flow of constraint analysis.

Figure 24 shows the flow of the constraint analysis. The given flow graph model with
an implementation and a set of min/max delay and execution rate constraints is input to
deterministic constraint analysis that relies on a constraint graph model to determine if
the constraints are satisfiable. If the constraints are satisfiable (answer 1 in Figure 24),
then the choice of hardware or software implementation is acceptable and the constraint
analysis is complete. This means that there exists a possible detailed implementation
of the graph model in hardware or software for which the constraints can be satisfied.
Conversely, a given set of constraints may be violated by an implementation (answer 2),
for example, the operation delays may not be fast enough for the choice of hardware or
software. If the constraints are not satisfiable by either hardware or software implemen-
tations, there is a possibility that constraints may be inconsistent (answer 3). Constraint
analysis in all these cases is complete. On the other hand, constraint analysis may be
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inconclusive, implying the need for alterations in #tgle of implementation. For exam-
ple, alternative implementations of theait operation can be explored or buffering can
be used to meet execution rate constraints. Such cases are identified by cycl&é&with
operations in the constraint graph model, described in the next section.

In presence of cycles with"D operations in the constraint graph model, constraints
may be treated as marginally satisfiable if certain bounds on delay ®foperations
are observed. These (positive) bounds are developed from available slack assuming that
the constraints are satisfied (answer 4). In the case of marginally satisfiable constraints,
alternative implementations 8f D operations can be explored that improve these bounds.
In the last case (answer 5), we need additional information about a measure of confidence
(for example, acceptable probability of error) in order to carry out probabilistic analysis.

4.2 Deterministic Analysis of Min/max Delay Constraints

The timing constraints are abstracted in a constraint graph model which is based on the
flow graph model. An edge from vertex to v; with weight, 6, implies thatt,(v;) >

ti(v;) +6 for all £ >0. This represents a minimum delay constraint on the interval
from initiation of v; to initiation of v;. A maximum delay constraint from; to v,
impliest,(v;) < #(v;) 46 which can be rewritten as;(v;) > t,(v;) — 6 and is indicated

as an edge from; to v; with weight —é. Therefore, maximum delay constraints are
represented by edges with negative weights. Since an edge in the (acyclic) flow graph
model represents a minimum delay constraint, edges with negative weight are considered
backward edges.

Definition 4.2 Thetiming constraint graph model, G is defined as7; =V, E A
where the set of edges consistdafvardandbackwardedges,E=E ;UE;, andé;; € A
defines the weights on edges such that;) +0 ;; < tx(v;) for all & >0.

The constraint graph here does not make any distinction between conjoined and
disjoined forks/merge operation nodes. In other words, all forks/merge are considered
conjoined. This interpretation is consistent with the constraint Inequality 4.22 where the
inequality is defined over all dependencies. It is important to note that the scheduling of
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operations for a given set of resources is not affected by the presence of conditionals, since
start times for operations must observe worst case path delays. Conditionals do reduce
the resource requirements by allowing sharing of resources across mutually exclusive
operations [Cam90] which is not an issue here since we assume that the concurrency in
the flow graph model can indeed by supported by available resources.

Example 4.2.2  Constraint graph model.

#define Const 100

process convert(a,b,c)
in port a[3];
in port b[2];
out port c[8];

static sum[8], count[8];
boolean sample[3], t[1], scale[2], value[8];
tag tag_a, tag_c;

\

./

tag_a: sample =read(a);
t = (sum+sample >= Const);
if (0 { e
scale = read(b);

value = sum * scale; N

}else {
sum = sum + sample;
count++;

[m|@)
/ v \
+ +®D(e(@=o0

tag_c: write ¢ = count;

write ¢ = value;
constraint maxtime from tag_a to tag_c = 12 cycles

SR OO

Figure 25: Constraint Graph Model

Figure 25 shows the (well-formed) flow graph model and the corresponding con-
straint graph model for the processnvert . O

We now examine the use of the constraint graph model in answering question about
constraint satisfiability. The following theorem defines the conditions for constraint sat-
isfiability. This theorem occurs in various forms in different application areas. Its proof
can be found in, for example, in [CK86] [KM90c] [LW83].

Theorem 4.1 (Static scheduling)in the absence of anyW’D operations, a set of
min/max delay constraints is satisfiable if and only if there exist no positive cycles in
Gr.
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In the presence alV'D operations, satisfiability analysis attempts to determine the
existence of a schedule of operations for all possible (and conceivably infinite) values of
the delay of the\"D operations. Clearly, due to variations in operation delays, any static
scheduling function that attempts to determine operation initiation tay@gri must use
upper bounds on operation delays such that the initiation times satisfy Inequality 4.22.
However, such a schedule may not be minimum. In order to obtain minimum sched-
ules, the operation scheduler can not be static and must have the flexibility to schedule
operationsdynamicallybased on actual operation delays. As explained above, relative
and bilogic relative schedulers allow this flexibility. Therefore, constraint satisfiability is
checked only for these schedulers.

Using a relative scheduler, a minimum delay constraint is always satisfiable since
from any solution that satisfies Inequality 4.24 or 4.25 a solution can be constructed
such thatd,, (v;) > max((v;, u), [;) for each constraint;. This solution satisfies both
Inequalities 4.22 and 3.16. On the contrary, a maximum delay constraint may not always
be satisfiable. A constraint graph is considefealsibleif it contains no positive cycle
when the delay of\"D operations is assigned to zero.

The following theorem due to Ku and De Micheli [KM92b] lays out a necessary and
sufficient condition for to determine the satisfiability of constraints in presence€®f
operations.

Theorem 4.2 (Relative scheduling)Min/max delay constraints are satisfiable if and on-
ly if the constraint graph is feasible and there exist no cycles with operations.

4.3 Deterministic Analysis of Execution Rate Constraints

Execution rate constraints are constraints on the time interval between invocations of the
same operation. In general, this interval can be affected by pipelining techniques since
pipelining allows one to initiate an operation sooner than what the total latency of the
graph model will allow.

We consider here only non-pipelined implementations of the flow graph models.
Limited pipelining of operations is considered in the contextA\GD-cycles discussed
in the following section. Therefore, operations in the graph model are enabled for next
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iteration only after completion of the previous iteration:
tk_l(vo) < tk_l(vN) < tk(vo) < tk(vN) Y k>O0. (4 26)

wherewvy andvy refer to the source and the sink vertices respectively.
Consider an 1/O operation, ¢ V(G with data-rate constraints,; and R;. The rate

< t(v;) — tie1(v;) <
i k(Ui k10 -

7 refers to the cycle time of the clock associated withinequality 4.27 is satisfied if

Y & >0. (4. 27)

and only if

=

mkin(tk(vi) —t1(vy)) > [lower bound (4.28)

R;
-
;

mka>(tk(vi) —te1(v;)) < [upper bound (4.29)

Thus, satisfiability for execution rate constraints is determined by checking for the min-
imum and maximum delay between any two consecutive invocations of constrained op-
eration. This interval can be expressed as shown in Figure 26, namely:

tr(vi) = tea(vi) = [t k(vi) = te(vo)] Htr(vo) — te-a(von)] +
[tr-1(vn) = te-1(vo)] Ht r-1(vo) — ti-1(vi)]
= A p(0) Y 1@ B e1(G — A pea(v;) (4.30)
where \,(v;) refers to execution delay from source vertgxto v; for the k" execution.
ve1(G is the delay in rescheduling a graph, that is, the time from completioh-efl)

execution ofG'to initiation of thek ** execution. From Inequalities 4.22 and 4.26 each
of the four components in Inequality 4.30 are non-negative quantities.

A ——Y A ~

]

| ] | | ] |
(Vo) Bea(v) Lav) (vt (v) WY

Figure 26: Operation invocation interval.
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Example 4.3.3 Interval between successive executions of an operation.

Consider the execution of operation ‘B’ in graph model shown in Example 3.3.6.
Its simulation is shown in Figure 17 in Chapter 3. The interval betwearid 2d
executions of ‘B’ is given as

to(B) —ti(B =44-10 = X o(B+y 1(G2) +\ 1(G2) — A(B
= 2+H11H113x4)-2=34

Similarly, interval between™® and 39 executions of ‘B’ is expressed as

t3(B—1t20B=54-44 = X 3(B+y 2G2)+\ 2G2) — M(B
=240 H6+1x4)-2=10

Note that inA;(3 =1 for all £ > 0. Note also that the invocation overhead of
(G is 11 cycles fory; and 0 cycles fory,. O

Let us now consider the lower and upper bounds on this interval. These bounds are
developed based on the analysis of paths in the flow graph. It follows from Inequali-
ty 4.22, that for vertices in a path, ={ v;, u41, - - 5}, the following is true for all
k>0

tr(vi) < tp(vipa) < - - - x$0f) (4.31)

It is important to note that even though the actual interval between successive execu-
tions is summed as shown in Eq. 4.30, the bounds on this interval can be developed based
on analysis of the graph model itself. This is because, in a non-pipelined implementation
of GGthe consecutive execution of an operation corresponds to traversal of a path from
source to sink vertex it: Consider(k — 1) ** and k* executions of an operation in
V(G as shown in Figure 27. Lef ;1 ={ v;, - - -} wepresent the path traversed
from v; to vy in k— 1% execution ofGand letp , ={ vo, - - -;}, e the path traversed
from vg to v; in k% execution ofG Using Ing. 4.31 it can be easily shown thatU ¢
is a path from source to sink &

Theorem 4.3 (Maximum rate constraint) A max-rate constraintR;, in Gis satisfied
if (,,(G > Rt

Proof: In order to obtain a lower bound on the interval between
two consecutive executions of operation, we consider the case when the
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@)
execution, k-1 ov
source
qk—l
—
@)
Py )
execution, k Vv sink
®)

Figure 27: Consecutive executions of an operation corresponds to traversal of a path in
G

execution of the graph model is restarted immediately after the completion
of the previous execution, that is;_, (G) =0. From the discussion above,
there exists a path if¥that corresponds to consecutive execution of operation
v;. In other words, the interval.(v;) — t,—1(v;) is bounded by the latency of
the graph. Recall that the length vector provides a lower bound on latency
of G The result follows.{

Note that similar to a minimum delay constraints, a maximum rate constraint is always
satisfiable. Whert,,(G) <R ;' the maximum rate constraing;, can still be satisfied
by an appropriate choice of overhead delay that is applied to every executi®n of

Example 4.3.4 Maximum rate constraints.

For the process graph modminvert  shown in Figure 25{(G =(5, 10). There-
fore, for non-pipelined implementations 6fthe lower bound on the interval be-
tween successive initiations of any operatiortiiis 5 cycles. In other words, the
maximum rate for any operation ifiis % =0.2 cycle—. For any maximum rate
constraint less than 0.2 cyclé transformation of the flow graph would be needed

to ensure satisfaction of the maximum rate constraint.

For the process graph modetample shown in Figure 17 (reproduced blow) the
maximum rate of thevrite operation, determined b G'1), is 1 cycle'l, whereas
the maximum rate of theead operation, determined b§(G'2) =((1® 0) ® (14
3))® (1® 1) =(3,5)is 1 cycle™l. Any maximum rate constraint larger than or
equal to% is satisfied by the graph model.

Note that this lower bound,,,, used for checking the satisfaction of maximum rate
constraints, also defines the fastest rate at which an operation in the graph model
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can be executed by a non-pipelined implementation. Thus points to the necessary
condition for meeting a minimum rate constraint. Sufficient conditions for minimum
rate constraints are considered in next section.

Note that in case of a pipelined implementatior¢hfthe operation; can be restarted
without waiting for completion of all operations . An extreme example of this would
be a buffer at an input operation (equivalent to a pipestage containing gnlyn which
case the operation can be enabled after every execution delay(ohtil the buffer is
full).

Upper bound

While the lower bound on time-interval between successive executions of an operation
can be derived by analyzinGg™*, that is the graph to which the operation belongs and
all the graphselowin the control-flow hierarchy, the determination of upper-bound on
the inter-iteration interval of an operation, requires also estimations of the delays due
to operations and graphs that k&ovethe operation in the control-flow hierarchy. In
particular, the effect of the runtime scheduler must also be taken into account.

We use following notation to help express the propagation of constraints over the
graph hierarchy. For a given gragh G, denotes the parent body that calls the graph
G. For a graph(, G, refers to theparent process grapithat is, the graph at the root
of the hierarchy corresponding to a process model.

Note that (static) determination of interval of successive executions of an operation
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that is conditionally invoked is undecidable. That is, there may not exist an upper bound
on the invocation interval. For example, consider a statement

if (condition)
value = read (a);

There is not enough information to determine the rate of execution of the ‘read’
operation. In order determine constraint satisfiability we need additional input on how
frequently the condition is true. For deterministic analysis purposes, we take a two step
approach to answering constraint satisfiability:

1. Answer about implementation satisfiabileggsuming that the condition is always
true. In other words, the only uncertainty is conditional invocation of the graph
which may correspond to the body of a process or a loop operation. This is
consistent with the interpretation that a timing constraint specifies a bound on the
interval between operation executions, but does not impplysethat the operation
must be executed.

Under this assumption, the loops are executed at least once (that is, loops are of the
type ‘repeat-until’) since the ‘while’ loops are expressed as a conditional followed
by a repeat-until loop as explained in Chapter 3.

2. Next we use the rate constraint on the ‘read’ operation as the additional information
about frequency of invocation of the condition. That is, the rate constraint serves
as aproperty of the environment in continuing the rate constraint analysis. This
way, constraints are source of additional input which is far more convenient to
specify than probabilities of conditions taken. An alternative approach would be
to use simulations to collect data on the likelihood of the condition being true and
use it to derive constraint satisfiability.

The actual execution delay or the latenay,), refers to the delay of the longest
path inG. This path may contaith"D operations in which case the latency can not be
bounded. We examine the two cases separately.
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Case |: G contains no /D operations. The latency of7 takes one of the finite values
given by {(G). Equations 3.4 through 3.9 define the formulae for calculatiof. oAn
upper bound on the operation interval is then given by:

max(t(vi) = tea (01)) < Max[ypa (G) +A 1 (G)]
< mkax%(G)—l%M(G) (4.32)

Let us now examine the delay;(G). The overheady,(G) represents the delay
[t1(vo(G)) — t(vn(G))] and can be thought of as an additional delay operation in
series with the sink operationy(G). If G is not a root-level flow graph, then there
exists a parent flow grapd ;. that callsG' by means of a link operation, say. The upper
bound on this interval is derived when thé& and (% 1) invocations ofG correspond
to separate invocations of the link operationc V (). That is,

(G) =1 1(vo(G)) — t(vn(G))
< (v ) —4v ) -3 NG)
< matipa(v ) —H(v )]—rjni'%' Mip\(&)] (4.33)

wherez; is the number of times the flow graph is invoked for thej** execution of
operationv . By definition, G is invoked at least once for each executionvof i.e.,
min; z; =1. Therefore, from Ing. 4.32 and 4.33,

(@) <THG) = [u(Gy) +7(Gy)] = 6u(G) (4. 34)

Note that by definition/y(G+) > (u(G) > (,(G), thereforey is always a positive
guantity.

Lemma 4.1 (Minimum rate constraint with no A'D) A minimum rate constraint on
an operationv; € V (G), whereG contains na\VD operations is satisfiable if

F(G) + m(G) < = (4. 35

~

K3

where the overhead term &) is defined by Equation 4.34.

Proof: Follows from Inqg. 4.29, 4.32 and 4.34.
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Clearly, a bound on the overhead dekay ) implies existence of a bound on the
invocation interval ofG,, and by induction, bound on the invocation interval of all
graphs in the parent hierarchy. In particular, the bound on the invocation interval of
the parent process grapf,, corresponds to the bound on the delay due to the runtime
scheduler overhead. This places restrictions on the choice of the runtime scheduler such
that a bound on the scheduling interval can indeed be placed (see Section 5.2). Note
that a bound ony,(G) does not necessarily imply a bound on the latencyzofThis is
illustrated by Example 4.3.5 below. An immediate consequence of the above (sufficient)
condition for satisfiability of minimum rate constraint is that question about the constraint
satisfiability can bg@ropagatedas a minimum rate constraint on the link operation in the
parent graph model. The following lemma defines this concept more precisely.

If a given implementation of a flow grap& satisfies a minimum rate constraint
on an operatiorz, we say that- satisfies the rate constraint,

Lemma 4.2 (Constraint propagation) A flow graphG satisfies a minimum rate con-
straint r; if its parent graphG, satisfies a minimum rate constraivbf7 A4 (G])_l,
where Al (G)= (y(G) — 0,(G).

Proof: If G+ satisfies a minimum rate constrai[q} — Al (G])_1 then
from Lemma 4.1,

T(G1) H m(Gy) <

—AC(G)
ST H (G < T (bu(G) ~1,(G))  [4. 34
ST H (@) < T

= G satisfies minimum rate constraint. #

In order to obtain a bound on the runtime scheduler overhead, Equation 4.34 can
be unrolled until the parent graph corresponds to the (unconditionally invoked) process
model, G, for which v (G) =y ,. Thus,

TG = S A(G) +7, + [6n(Go) — £(G) (4. 36)

Gi=Gy

wherev, = 7(G,) is the bound on the delay due to the runtime scheduler.
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Figure 28: Upward propagation of minimum execution rate.

Example 4.3.5 Minimum rate propagation.

Figure 28 shows the constraint model corresponding to the graph models in Exam-

ple 3.3.6. Recall
UG1) =(3,4) Al(Gq1)=4-3 =1
UGo) =(9, 10, 14, 15) A(G 2)=15-9 =6

((G3) =(13, 14, 18, 19, 20, 21, 23, 24, 25, 26) A(C4) =26— 13 =13

First we show the intuition behind rate constraint satisfiability, followed by the use

of constraint propagation to achieve the same result.

A minimum rate constraint is specified on operation ‘A'dh that constitutes loop
body of operation 2 iy, with loop index, , which in turn is a loop body of
operation 3 inGis. Letr, =1/100, 7 §* =1/5, » §2 =1/25 andr §* =1/50
cycle 1. Recall, thatrg refers to a minimum rate constrairglative to

Let us first considerrffl =1/5 cycle -1, Since this constraint is relative 6,
therefore, there is no overhead in invocation‘sf, i.e.,5(G1) =0. Since

[F(G)] H ni(Gr) =4 < 1 % 5

Therefore, the constraimﬁl =1/5 is satisfied. Similarly, constraimt 552 =1/25is

satisfied since
(G1) +H m(Ga) (€ m(G2) +7(G2) — L (G)] + m(Gh)

(1540 — 3] +4 =16 < 1/ 2% 25
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ConstralntrG3 =1/50 is satisfied since

T(G) H m(Gr) = [A(G 3) +A(G 2) +7(Ga) H (G
— [134640+13— 3] 44=33< 1/

U (G1)] H m(Ga)

3) -
1
= =50

50

Finally, for the minimum rate constrainty; =1/100 we should also consider the
overheady, due to the runtime scheduler which adds to the bound of 33 cycles on
successive intervals of operation ‘elative to G3. Therefore, ar, is satisfied if

the delay due to the runtime scheduler is less than or equal te 386-67 cycles.

Alternatively,r 4 =1/100 can be propagated as a rate constraintﬁ% =1/99
on G2 which is in turn propagated as a rate constraing&} =1/93 onG 3. This
constraint on(z3 is satisfied for a bound of 93 (3;(G'3) =93 — 26 =67 cycles
on the delay due to the runtime schedulsr.

Theorem 4.4 (Minimum rate constraint with no A"D) A minimum rate constraint on
operation,v; € V(G), whereGcontains na\V'D operations is satisfiable if the minimum
available overhead for the runtime scheduley,, is greater than the maximum delay
~ Offered by the chosen runtime scheduler. That is,

Go
Faval = — — (@ — > [na(Gi) = 6n(Gi)] = [€n(Go) = Ll G ] = 9y (4.37)
G;=Gy
Proof: The maximum delayy,, due to the runtime scheduler defines

the overhead;, of the process modet,.

TFavail = 7= = (@ — Tiza, Wn(Gi) = lal(Gi)] = Un(Go) = (@] =7y
= 52 KM(G) + Yhima, (G )+ [0a(Go) = 6a(G ] + 7y
= L2 G+ {S8a, X(G )+ [a(Go) = 6u(Q] + 7.}
= =G+ 70 14.36)
= r, IS satisfied [Lemma 41]

t

In summary, a minimum execution rate constraint on a graph maéftiat contains
no N'D operations is translated as an upper bognadn the delay of the runtime system
which checked by comparing it agairst,. Note that if the grapléis not a root level
graph, then there exists a parent gréphwith a link operation that call& However, the
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unbounded delay due to thi§ D operation does not affect satisfiability of the minimum

rate constraints on operations {nas shown by the example above. In general, the
delay of an\"D operation affects satisfiability of a minimum rate constraint applied on
an operation other than the operations linked with Mi#® operation. This is included

in the case considered next.

Case lI: Gcontains "D operations. In presence of\"D operations inG the latency,

A(G can no longer be bounded by the longest path lengthin G In addition, if G

is not a root-level flow graph, its the overheads may also not be bounded by the
maximum path length of its parent graph. For the sake of simplicity, let us first consider
the (relative) minimum rate constraint on a graph model with zero overhead, that is,
(G =0 for all £ >0. Such a rate constraint then bounds the latency of the graph
model and is represented as a backward edge (that is, a maximum delay constraint) from
the sink vertex to the source vertex in the constraint graph modél obince Gis

a connected graph, such a constraint invariably leads A6T&cycle in the constraint
graph. According to Theorem 4.2, the maximum delay constraint can be satisfied only
by bounding the delay of th& D operation, that is, by transforming théD operation

into a nonA"D operation.

Since A'D operations represent synchronization or data-dependent loop delay, the
implications of developing bounds on the delay of these operations must be carefully
analyzed. While a discussion on this subject appears in Section 4.5, here we briefly
capture the motivation for developing the bounds.

e Let us first consider synchronization relatdd> operations. Since there are mul-
tiple ways of implementing a synchronization operation, the effect of the bound is
to choose those implementations which arest likelyto satisfy the minimum rate
constraint. Thus, a bound on the delay of the synchronization refers to a bound on
the delay offered by thanplementatiorof the A"D operation. The implementation
delay of a synchronization operation is referred to assghmehronization overhead
~». Due to the availability of multiple concurrent execution streams in hardware,
this overhead is zero. For softwarg,, delay is determined by the implementation



92 CHAPTER 4. CONSTRAINT ANALYSIS

of the wait operation by the runtime scheduler. For example, a common implemen-
tation technique is to force eontext switchin case an executing program enters

a wait state. Herey,, would be twice the context-switch delay to account for
the round-trip delay. For such an implementation, the minimum rate constraint is
interpreted as the rate supportable by an implementation. With this interpretation,
the A"D operations are considered ndfiP operations with a fixed delay,,.

e Next, the data-dependent loop operations use a data-depeodenindexthat
determines the number of times the loop body is invoked for each invocation of
the loop operation. The delay offered by the loop operation is its loop index times
the latency of the loop body. As mentioned earlier, at the leaf-level of graph
hierarchy, the latency of the loop body is given by its path length vector. The
elements of a path length vector consists of lengths of all paths from source to sink
and these are bounded. In the case the constrained graph model contains at most
one loop operationy, on a path from source to sink, the minimum rate constraint
can be seen as a bound on the number of times the loop Godyorresponding
to the loop operationy, is invoked. This bound on loop index, is given by
Equation 4.39 that is derived later. This bounds then treated as property of
the loop operation, consequently making it a ng operation with a bounded
delay for carrying out further constraint analysis. Verification of these bounds
requires additional input from the user.

For a relative minimum rate constraint constraint relativé;tthe overhead term

~(@G in Equation 4.39 is assigned zero value. In general, however, the satisfiability
of a minimum execution rate constraint also includes a bound on the invocation
delay~ of Gas per Equation 4.36. Clearly, a bound¢(t; implies a bound on

the latency of7 . which is equivalent to a minimum rate constraint on an operation
in G4. However, this minimum rate constraint does not bound the loop index of
link operation associated wittk The constraint satisfiability is then continued
until G, corresponds to a process body,.

Presence of multipl&/"D operations inGandG . present a more difficult case since
a minimum rate bounds the effective delay which is now a function of multiple loop
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indices. For example, considdfD operationsy; andv; representing loops in the flow
graph, that have a (transitive) dependency in the flow graph model (and thus belong to
the same path from source to sink vertices). In this case the satisfaction of minimum rate
constraint requires that the combined delay due @ndv; be bounded. This requirement
can be expressed as:

Y (4.38)

Z; l’]
wherez; defines the bound on loop index assumingr; =0 for all ;7 #:. Note that
the above equation also applies in the case\tie operations; andv; belong to nested
flow graphs. The satisfiability of Equation 4.38 is answered in two ways:

Deterministically: by substitutingz; by the upper bound; in Equation 4.38. This upper
bound is additional input from the user (in practice this can also be determined by
the bit-width of the variable used for loop index).

Statistically: by treatingz; as random variables. Then the constraint is satisfied in
probability, if Inequality 4.38 is satisfied over expected values of the random vari-
ables. These expected values are the additional input from the user needed to check
satisfiability.

In both the cases, in presence of multipleD operations that lie on the same path from
source to sink in a graph model, it is not possible to answer question about constraint sat-
isfiability without additional input from the environment with which the system interacts.
We consider this problem further in Section 4.7.

Theorem 4.5 (Minimum rate constraint with A’D) Consider a flow grapl&with an
N'D operationv representing a loop in the flow graph. A minimum rate constrairmn
operationv; € V(G andv,; /=v is satisfiable if the loop indey; indicating the number
of timesG, is invoked for each execution ofis less than the bound, where

| =G = (G Au(w)
0 (G,)

1 (4.39)

wherey(v) refers to themobility of operationv and is defined as the difference in length
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of the longest path that goes throughand ¢,;.! G, refers to the graph model called by
the N'D operationv and the overhead boung(G) is defined by Equation 4.36.

Proof: The maximum interval between successive executions of oper-
ationv; € V(@ is given by the maximum latency @¥and its maximum
overheady(G. (See Inequality 4.29 and the following discussion.). The
latency ofGis can be defined as the maximum over the lengths of all paths
from source to sink vertices. Let, represent the longest path from source
to sink that goes through operation

NG < Culpe) He v = 1) 4(G)

Note that(y,(G) is computed by treating all link vertices as call link vertices
(see Chapter 3) and, therefore, it includes the delay due to one execution
of each loop body, hence the second term in equation above represents the
additional component to the latency due to the — 1) invocations of the

loop flow graphG,.

The length of the longest path from source to sink determines the value of
(pm(G). The vertexv may or may not lie on the longest path from source
to sink operations. This slack betweén(G) and the length of the longest
path throughe is captured by the mobility(v) of operationv. That is,

Ou(py) =0 m(G) — plv).
For satisfiability of constraint;, we require that

T

7 Hmax (G < -

= T H (G — o) He o= 1) 4G} <

7 (G — Cul@ i)
(u(G.)

= x, <

This provides the bound on every loop indexGh In addition, following
discussion earlier in this section, if multipl€D operations lie on the same
path from source to sink, Equation 4.38 must also be satisfied.

1The mobility is computed ifD(| E(G)|) time as the difference in starting times of ALAP and ASAP
schedules of a deterministic delay flow graph constructed by considering all link vertices to be call link
vertices with delay as the maximum path length of the called graphs.
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Remark 4.1 In presence of multipld/"D operations, the minimum rate constraint on an
operationv; is satisfied if each loop index, is bounded as in Equation 4.39 above for
all N'D operationsv € V(G andv /=y, and Equation 4.38 is satisfied.

Example 4.3.6 Bound on loop index due to minimum execution rate
constraint.

Consider a minimum rate constraint of 0.02 /cycle on operation ‘B’ in graph model,
G2 shown in Example 3.3.6. Let the maximum delay due to the runtime scheduler
be¥,; = 0 (for example, hardware implementation). The bound on the loop index
for operationu, is calculated as follows:

T G) = A(H T+l G) —h(G)
= 13+04+13-9=17
_ {T B — 7(G2) — u(Ga) v 2)J 1
(a(Gh)
B {50— 17— 1540
4

J +1 =5.

With this bound on loop index, th&’D operationv, has a bound on its delay of
20 cycles.

On the other hand, eelativerate constraintrg2 of 0.02 /cycle leads to a bound on
loop index of

_ {50—0—154—0
T2 = 7

with this bound the delay of is less than 36 cyclesd

|20

In summary, satisfaction of the bounds on delay\@P operations requires addition-
al information from their implementations (such as context switch delay, possible loop
index values) against which the questions about satisfiability of minimum rate constraint
can be answered. Because of these bounds, there is now a cee@asureof constraint
satisfiability that approaches certainty as the derived bound approaches infinity. More
importantly, having bounds derived from timing constraints makes it possible to seek
transformations to the system model which tradeoff these measures of constraint satisfi-
ability against implementation costs. In the next section, we examine conditions under
which these bounds can be extended by modifying the structure of the flow graphs with
ND cycles.
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4.3.1 Procedure

Given a flow graph moded? with min/max delay and execution rate constraints, the
constraint analysis proceeds bottom-up. The leaf-level flow graphs do not contain any
loop N'D operations. For constraint analysis purposes, the graph bodies of procedure
calls are considered flattened into the calling graph model.

The following procedurehecksatisfiability outlines the algorithm. The input is a
set of graph models with min/max and rate constraints along with an implementation,
I =(7T, A). Its output is null if the constraints are satisfiable (answer 1), else &ither
is unsatisfiable (answers 2 and 3) or it returns bounds on the delAyIbfoperations
that would make constraints satisfiable (answers 4 and 5). As discussed earlier, the
wait operation is replaced by its implementation which is either a fixed delay operation
or a loop operation (representing a busy-wait implementation). The constraint analysis
proceeds from identification of cycles in the constraint graph, The cycles are found
by considering each backward edge at a time and enumerating all cycles caused by the
backward edge. If the length of a cycle is positive, the constraint graph is not feasible and,
therefore, constraints can not be satisfied. Recall that for length calculation purposes, the
loop link operations are treated same as call link operations. In presence of cycles that
contain loop link operations, the algorithm derives bounds on the loop index of each loop
link operation. In case of series or nested loop link operations verification of additional
constraints on loop indices is done separately.

checksatisfiability(G {

forv € V(G) {
if v = loop I* recursively go to leaf-level graph */
checksatisfiability(=.,);
> constructG ¢ [* construct the constraint graph model */
el if (cycle-set = find-cyclest 1)){ [* check for min/max */
for I' € cycle-set{ /* identify cycles caused by backward edges */
if ({ar(1) >0) /* find positive length cycles */
return (~is unsatisfiable); I* not feasible */
forv e 'andv € ND { * identify "D cycles */
printé, =u — € A (I);
bound delay ofv =6 ,; * bound on /D delay using constraints */
mark v as nonA/D; [* now treat this delay bound as a property */
}

}
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}

s =[( ,(G) — 7 - maxR; Y I* check for max rate */

if s >0
return (~is satisfied);

else{ /* need to add null operations — */
add NOPwith ¢ =s; /* — to ensure lower bound on delay */
updatel(G,); I* modified flow graph */
checksatisfiability(G);

If G4 exists * check for min rate */

impose constrainit TLZ — A (@) ~1on link operation inGy; /* propagater; */

Example 4.3.7 Procedurecheck-satisfiabilityon Example 3.3.6. For conve-
nience the graph model is reproduced below.

| t ¢
cg | C@ ;
C/ C N é/ ? « \C )/
5 w A <¢
\ N 7
. / “
‘L ')'l‘ ““““““““““““
(Cla
© © ©

Let us assume the following imposed constraints:

ra =1/100, r §* =1/6, r G2 =1/40, r g =1/50, r 52 =1/30, r - =1/200
uc p=12, R g =0.5, Ymr =20.

Recall

UG1) =(3, 4) A(G 1) =1
UGo) =(9, 10, 14, 15) A(Gy) =6
UGs) =(13, 14, 18, 19, 20, 21, 23, 24, 25, 26) A{)7 =13

There are three main steps to the constraint analysis procedure: construction of the
constraint graph which is done by adding forward edges for minimum delay and
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maximum rate constraints, and backward edges for maximum delay and (relative)
minimum rate constraints. ldentification of cycles by path enumeration for each of
the backward edges in the constraint graph and finally the propagation of minimum
rate constraints up the graph hierarchy. We show these three steps for this example.
The procedure first conside@;:

> : In the constraint graph of/ 1, there are 3 backward edges with following
weights:

r§t=1/6 = -6

ri2 =1/40 = —[40- (G 1)l,( ) =0
= —[40— (G 2) = tu(G2) H m(Ga)]
= —[40-0- 1543
= 28

r4 =1/100 = —[100— (G 1)] =—(100— [y(G 2)] — 15+43)
= —(88—[A(G 3)+7u H m(G3) — (n(G2)])
= —(88—[13+420+13—9))
= 51

Bl : The maximum forward path length is<4 6
= Nno positive cycles
= The constraints are feasible. Furthéry 1contains naVD cycles.

r§t = not propagated

Il : Propagate minimum rate constraintste = r$? =r (2 =1/(28- 1) =1/27
ra =T, =1/(51-1)=1/50

For Gy:

> : In the constraint graph of/ », there are 4 backward edges with following

weights:

rg =1/50 = —(50— F(G2))=—(50— 37) =—13
12 =1/27 = =27
Ty, =1/50 = —50
r%2 =1/30 = -30

>l : r p is infeasible since it leads to a positive cycle with weight=15-13=2. Rest
are feasible. Next, the constraint graph contaWi® cycles with a singleN'D
operationv, for each of the three (feasible) backward edges. Of these only one,
namelyrg2 bounds the delay due to th&€D operation by the following upper
bound on loop indexz(v,) = {%’J +1 =4. With this bound the delay of

the loop operationy, is bound below 16 cycles.
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rB = Infeasible Not propagated

- . rG2 =1/27 = Not propagated
. v2
>l : Propagate minimum rate constraintsic = ry, =1/50 =r ,, =1/(50— 6) =1/44

r%2 =1/30 = Not propagated
Finally for G 3:

>l : In the constraint graph of/ 3, there are 3 backward edges with following
weights:

uc p=12 = -12
re =1/200 = —(200— F(G3)) =—180
r, =1/44 = —44

>l : There are no positive cycles, so the constraint graph is feasible. Further, two
backward edges lead D cycles. Only one of them, constraints the delay of
the "D operationps. The bound on the loop indexg = {180‘%(%)“(3” 1=

11. With this bound the delay of; is < 165.

Sl : There is no parent graph to propagate the minimum rate constraints.

4.4 Min/max Constraints Across Graph Models

The algorithm presented in the previous section carries out constraint analysis on con-
straint graphs by considering one flow graph at a time. We now consider timing constraint
between operations that belong to two separate flow gréphend G,. The satisfiability
constraints that span across flow graphs is affected by the relationships between the flow
graphs. As shown in Figure 29 there are following three types of relationships between

flow graphs:

& A
50 06|db|%

A. Concurrent B. Sequential C. Hierarchical

Figure 29: Relationships between flow graphs
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Case A: 3 and G, are concurrent. This refers to the case when invocation paths to
(G, and G, are disjoint. If the graphg&7; and GG, share the parent process graph,
there are referred to as single-rate mode)s ¢therwise the reaction rate of the
graphs can be multi-rate and is indicated hy. (See Example 4.4.8 below for an
illustration. For operations with multi-rate executions, min/max delay constraints
are considered between all execution events of the respective operations. Verifica-
tion of such constraints is a difficult problem. Such constraints are not allowed in
our formulation of hardware-software cosynthesis.

For operations with single-rate executions, a composite graph model is constructed
by merging the respective source and sink verticegzgfand G, into a single
source or sink vertex off;, respectively.

Case B: (1 and GG, have a sequential dependencyin this case, a composite con-
straint graph is constructed either as a serialization féeymto G, or vice-versa
depending upon the ordering relation betwé&enand G,. A composite constraint
graph constructiort=1., as a serialization frond-; to G is carried out by adding
an edge from sink of the predecessor gréfahto the source of the successor graph
G,. The inter-graph constraints are then added and constraint analysis is carried
out on the composite constraint graph model.

Case C: (G, and G, belong to the same hierarchy.Verification of these constraints is
carried out by propagating these constraints upwards until these are applicable to
the operations in the same graph model.

The following example illustrates the dependencies between flow graphs.

Example 4.4.8 Constraints across flow graphs.

With reference to the graph model hierarchy shown in Figure 30 the following
relations are induced:

Case A: Concurrent. G1.]|G2.. That is, graphs across two separate process hier-
archies may have multiple rates of reaction. No constraints that span across
two different hierarchies are supported. Hence constraint analysis disallows
use of any constraints that span across flow gr&phsandG», for instance.
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Gl1

Process P1 Process P2

Figure 30: Graph model hierarchy

However, it is possible that two graph models belong to the hierarchy of the
same process graph and be concurrent. This would be the case when corre-
sponding link operations belong tocanjoined fork For example, consider
operationsyz; andvo,. These operations belong to the fanout of a conjoined
fork operation and, therefore, these are concurrent. Thus constraints across
(/21 and G2 are analysed by the composite constraint graph constructed by
composingG21 and Gp in parallel.

Note thatdisjoined forkdead to mutually exclusive paths, therefore, by defi-
nition there can not be constraints on operations that belong to separate con-
ditional paths.

Case B: Sequential. Consider timing constraints that are imposed upon operations
in G171 and G12. Due to the sequential dependengy > v12, a composite
graph is constructed &s11.12 and the constraint analysis is carried out on the
composite constraint graph model.

Case C: Hierarchical. G1%G11%6 111 and G113 12. Similarly for G,. These
graphs belong to the same control hierarchy. Constraints across graph models
are considered to be constraints on respective link operations in the parent
graph. For instance a constraint that applies to an operatioim (1 and
another operation iG711 is treated as a constraint across operatigrend the
link operationwv11 in G1.
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1
-u
()

Figure 31: An N'D cycle in the constraint graph

4.5 ND Cycles in Constraint Graph

Figure 31 shows a/D-cycle in the constraint graph. AND cycle in the constraint
graph is caused either by a maximum delay constraint or by a minimum execution rate
constraint. A relative minimum rate constraint onis not propagated above the graph
model, G relative to which it is specified. Therefore, it leads to.&D-cycle only if

G* contains an\'D operation and it is not;.

If we consider the constraints as an additional input from the system designer about
propertiesof the environment in which the given system operates, then the presence of
an N'D-cycle in the constraint graph of the system model implies existence of bounds
on the delay of theV'D operations. Modelingy"D operations then as purely unbounded
operations is restrictive and undermodels the actual design and its environment. We can
use constraints to derive bounds on delays\aP operations. With these bounds, the
constraint graph contains operations with bounded delays which is analyzed to determine
graph model reaction rates and answer question about satisfiability of constraints at the
ports.

4.5.1 Meaning of anA/D cycle

With respect to a\'D cycle I' there are two possibilities:

e TheN'D operation is avait operation. This is also referred to as synchronization-
related V'D-cycle. The satisfiability of a constraint by a systémplementation
refers to its ability to keep up with a reactive environment under the imposed
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constraints. Since the true delay of AAD operation is determined by the envi-
ronment, constraint satisfiability faf" is interpreted as a maximum delay bound

on theactive delay of the operations. In this case, instead of determining the
upper bound of delay offered hyD operation, alower bound on this delay

is computed based on implementation choic&'ofDepending upon how A D
operation is implemented, the active delay will be related tom@text-switch delay

in software, or in the worst case blisy-waitingtrue delay of the wait operation

(as in hardware). In the latter case, constraint satisfiability can only be answered
in probabilistic sense.

e The N'D operation is doop operation. (Deterministic) constraint satisfiability in
this case requires either an upper bound on the number of times a the loop body
can be invokedor a lower bound on how frequently the loop operation is invoked.
Fortunately, the latter bound can be determined from the choice of implementation
of the graph model containing the loop operation.

The intuitive idea in\"D-loop analysis is to use bounds from hardware-software im-
plementations to answer questions about satisfiability of constraints. Due to unconditional
invocations of process bodies and busy-wait implementatiof"8f operations, purely
hardware implementation can not be guaranteed to meet the minimum rate constraints in
any deterministic sense. However, for a hardware-software implementation satisfiability
of such constraints can be guaranteed under assumptions which are inherent in a mixed
implementation, for instance, finite context switch (instead of busy wait) implementation
of A'D operations, finite and non-zero delay in runtime scheduling of flow graphs.

Types of loop operation

We examined the semantics of the loop operation, and its implementation based on shared
memory and message passing in Example 3.5.10. Here we explore the conditions under
which the message-passing implementation of loop operations can be simplified, making

it amenable to multirate hardware-software implementation.

20f course, a faster the hardware implementations is always better able to meet the same constraints at
higher implementation costs. The essential idea in co-synthesis is to achieve cost-effective implementations
while verifiably supporting the performance constraints.



104 CHAPTER 4. CONSTRAINT ANALYSIS
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PRE-INDEXED WEAKLY PRE-INDEXED POST-INDEXED

RAW WAR \

Figure 32: Types of loop operations.

A loop body,G= ( V, E) consists of two sets of operations: those relating to loop
control and those relating to loop body:= V,, + V.. V. consists of operations relating
to loop condition evaluation, loop register loads and modification of loop index. An
execution of loopG consists of a finite number of iterations bf. andV,. We assume
that each loop is controlled by a single variable index. A loop index valuenarks
execution of loop body until some exit condition becomes true. An operatioh ither
reads the loop index, or writes the loop index or is independent of the loop index. That
is, the operations in the loop body can be partitioned o= V,. U Vi, U V,, where
Vi, is the set of operations that read the loop ind®¥, is the set of operations that
modify the loop index and/,, is the set of operations that do not read or modify loop
index. With respect to the structure of the loop operations, we now examine three cases
(Figure 32).

1. If Vi, =V, = 0. That is, loop body operations do not affect the loop index. We
call these loopgpre-indexed loops

2. If Vi, = 0. That is, loop body operations use but do not modify the loop index.
We call such loopwveakly pre-indexed

3. IfV,, /= 0. That is, the loop index is modified by the loop body. We call such
loop aspost-indexed loops

Example 4.5.9  Loop types.
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Pre-indexed. Weakly pre-indexed. Post-indexed.
read(v); read(v); read(v);
repeat repeat repeat
write X =y write X = v v = read(x);
Vv =v-1; Vv =v-1; Vv =v-1;
} until(v); } until(v); } until(v);

a

The number of invocations of pre-indexed loops are marked by a loop index variable
that is assigned a value at run time but before the execution of the loop body is started.
This is in contrast to post-indexed loops where the number of iterations of loop body are
determined by the body of the loop operation. For pre-indexed loops depending upon
the side effects created by the body of the loop operation, it may be possible to overlap

executions of the loop body across invocations of the calling link operation. We consider
this possibility in the next section.

Producer Consumer

Figure 33: Modeling anN"D loop as a producer-consumer system

45.2 Problem formulation

Consider the case of a graph modéhat contains achD loop operatiorv. The body

of the loop operation is modeled by a graph mo@el Because of théV"D operation

v in G a minimum rate constraint on any operation (other tham Gwill cause an
ND-cycle in the corresponding constraint graph@f In addition, a maximum delay
constraint inGmay also cause ak'D-cycle. We saw in previous sections that constraint
satisfiability for A"D-cycle leads to a bound;, on the number of times the loop body
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G, can be invoked for each invocation of the loop operatian\We now consider the
ways in which this bound can be improved by altering the implementation of the loop
operation.

As explained in Example 3.5.9, in general, the loop b6dyconsumes some data that
is produced by the calling bod§#and produces some data that is consumed:bwe
are interested in cases where the data transfer happens only in one direction, for example,
from Gto G ,. The data consumed b¥, is defined by the storage that is common to
both GandG ,, i.e., M G NM G,) . Further, we consider preindexed loops for which
the loop index is determined by actual execution of the loop body. Even though given all
possibilities such a choice ofD operation may seem restrictive, from our experience
in modeling systems, it defines the most frequent use of loop operations in the hardware
descriptions. For such loop operations, as shown in Figure 33, we can think of the called
graph model as a consumer and the calling body as a producer. There are various ways
of modeling the dynamics of the producer-consumer system. Here we consider a model
that explores relationships between the rate of data consumption to the values of input
data. Clearly, in general, the rates of data production and consumption are given by the
respective reaction rates of the graph models. aLle¢ the index variable associated with
the loop operation, indicating the number of times the loop bGdy invoked for an
invocation of the loop operation. The fastest rate of production of data by the producer
model Gis given by the inverse of its minimum latency. This rate of production is fixed
by an imposed minimum rate constraint relative@oThe rate of consumption of data,
however, is variable and depends upon the actual value of the loop index. That is, the
larger the loop index, the longer it takes for the consumer to consume the data.

For a given rate constraint, the bound on the value of the loop index was computed
in Section 4.3. In order to maintain correct behavior the producer model bhosk
if at any time, the loop index exceeds this bound. This blocking leads to violation of
the imposed rate constraint. For this producer-consumer system, since the data transfer
occurs only fromGto G, Gneed not block for completion aF , if the loop index is
bounded as above. Therefore, we can replace the unknown didagperation,v, by a
fixed delay operation which consists in transferring data to a waiting loop body without
waiting for completion of the loop operation. L&{ G be the new length vector &
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For any invocation of loop link operation, the executions of the loop body, must
complete before the link operation is restarted. That is,

g/

=z, <

Y
8
<

é;ﬂﬁ( %) ( 4.40)

tu( G)

This defines an upper bound on the value of the loop index,

Definition 4.3 For a given producer-consumer system thlecking limit, By, is the
upper bound on value taken by the loop index beyond which the calling body must block
before restarting.

g/

B = = 4.41
' DM( G)J ( )

B, provides a conservative bound on the loop index value based on the fastest rate of

production and the slowest rate of consumption of data. We now consider the possibility

of extending this bound by altering the structure of the loop operation.

4.5.3 Use of buffers to extend bounds on loop index

Let us now consider an implementation of the producer-consumer system that is connected
by a buffer of depth greater than one. Note that due to the semantics of the loop operation
there is always a 1-deep buffer between producer and consumer. In this case, the blocking
limit can be extended to

J (4.42)

wherek is the number of empty spots in the buffet puffer depth,n). For any loop

index value greater thai; the execution of consumer model (i.e., body of the loop) spans
across successive executions of the link operation in the producer model and, therefore,
occupies a place in the buffer. We assume that each invocation of the loop link operation
always produces a loop index value greater than or equal to one. That is, it is not the
case that an invocation of the loop link operation does not enqueue data into the buffer.
This is needed in order to keep the software synchronization simple with low overheads.
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Example 4.5.10  Buffering for preindexed loops.

Consider a producer-consumer systeth—-G ,, where the producer flow graph

GG produces data at fixed intervals ¢f, = 1 and maximum path length in the
consumer flow graph i$5;( ;) = 1. The blocking limitR = 1. That is, for
each invocation of the producer, the gragh can be invoked at most once without
having to blockG. Assuming 3-deep buffer, the maximum value of loop index can
be 3. The following shows a sample execution corresponding to loop index values
of3, 1, 1, 1, 1

Buffer

Time — 1 2 3 4 5 6 7 8

Note that in hardware-software implementations the buffer between producer and
consumer can also be implemented as a serial-parelirdingoperation, where

the data to be transferred from producer to consumer is reworded as a multiple of
original data width. The producer then assembles new words which consists of
multiple invocations of the producer

Clearly a buffer can help only in conditions where there is irregularity in the values of
the loop index and its average value still observes the blocking Iihit,In other words,
given a finite depth buffer, the producer will always block eventually if the average rate
of production is greater than the rate of consumption, that is the average value of loop
index exceeds3;. However, the time it takes to fill up the buffer depends upon the
transient behavior of the producer-consumer queueing system. This transient behavior
is captured by the following simplification. The producer-consumer system itself is
conditionally invoked at a certain rate which is determined by the runtime scheduler
or the parent graph model in which the producer-consumer system resides. For each
conditional invocation of the producer consumer there is a fixed number of unconditional
invocations of the producer-consumer system and at the beginning of each conditional
invocation, the producer-consumer system is started from the initial state, that is, all
buffers are empty.

Previous work on buffer sizing under rate constraints is by Amon and Borriello
[AB91], where the producer-consumer system is modeled as a deterministic queue with
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bounds on maximum and minimum rates of data production and consumption. Based
on these bounds, an algorithm is presented that first determines a bounded interval over
which is queue is guaranteed to be empty (that is, number of productions equals number
of consumptions). It then finds a bound on the queue depth based on the transient
behavior of the queueing system over this finite interval. The primary difference with
the producer-consumer formulation presented here that the queueing system created by
ND cycles is not deterministic, instead the rate of data consumption depends upon the
value of the data. It is more appropriately modeled as either as a queueing system with
multiple arrivals and fixed rate of consumption or as a system with fixed arrivals with
variable rate of consumption. We take the latter approach as described in the following
section.

Recently, Kolkset. al. [KLM93] have proposed use of implicit state enumeration
techniques to determine size of buffers between communicating finite state machines.
The procedure is based on representing the buffer as a finite state machine by modeling
it as a counter. State reachability analysis on the network of interacting finite state
machines is performed to determine the maximum value of the counter used and thus the
minimum size of the buffer is determined. This approach is elegant when all parts of a
system design can be conveniently modeled as finite state machines. Like the approach
in [AB91] it also considers worst case bounds by examining worst case data values.

4.6 Probabilistic Analysis of Min/max and Rate Con-

straints

So far we have considered only deterministic analysis of constraints and their effect on
each other. Such an analysis is carried out by forming algebraic relationships between
operation delays, graph lengths and respective min/max delay and rate constraints. P-
resence of conditional paths aoldD operations in the flow graph model introduces
variability in these parameters that limits the scope of a deterministic analysis of the
constraints. In this section, we first present a probabilistic analysis of constraints (max
delay, min-rate) that lead to creation.®fD cycles in the constraint graph. This analysis
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is based on a treatment of the effect of variable delay operations on the operation of the
producer-consumer model shown earlier.

Next, a general flow graph consisting of mAyD operations defines atochastic
process that consists of several random variables. We present an analysis of the flow
graph to determine operation throughputs for rate constraint analysis by first building
an homomorphism between the flow graph representing the stochastic process and a
discrete Markov chain. This analysis is carried out to verify marginal satisfiability of the
constraints that can not be deterministically satisfiable (Section 4.7).

4.6.1 Meaning of constraint satisfiability

The notion of unbounded delay does not automatically imply infinite delay, bytdke
sibility that for any given value], the delay offered by th& D operation can exceed,
Thus there exists distribution of delay offered by the\"D operation. The situation can
be addressed effectively by formulating the notion of possibility of violation with respect
to the possibility of exceeding a specified bound on the delay af\ffie operations. Let

us consider an example to illustrate the concept.

Example 4.6.11  Constraint satisfiability unde¥Dcycles. Consider design of

Drawing Engine Frame Buffer
lines/sec pixels/sec pixels/sec
—1 — ——
[ I J [ JONONON ] [ NONONON ]
100 K/sec 1-2 M/sec 50 M/sec

a system for generating pixel coordinates for a line drawing shown in Figure above.

The input to the system is a set of coordinates that define the end points of a line.

The system generates the pixel coordinates that lie between the two coordinates.
The number of pixel coordinates for any given line would depend upon the values

of the input coordinates. More pixel coordinates are generated for longer lines.

We are interested in constraints in the input rate (that is, the number of lines per
second that the graphics system is able to accept). This rate varies with the input
data values. In order to guarantee an absolute bound that is always observed, one
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would have to calculate the longest line that can be input and ensure that the system
implementation meets the rate constraint under this worst case. An alternative
would be to characterize an average case of line lengths, and ensure that the system
implementation is able to meet the rate constraint within certain probability of error.

O

For a given\'D-cycle, a constraint violation occurs if the deldyoffered by the\'D
operation exceeds a (deterministic) boufid.) , wheres is a random variable. We define
violation error as maxé — f( u) , 0) . There are various ways to orient the probabilistic
analysis. For a given distribution of one approach would be to find supportable rate
constraints that minimize some measure (absolute, mean-square, etc.) of the violation
error.

An alternative approach is to determine supportable rate constraints that contain the
probability of constraint violation below some acceptable lirait,Or, as is possible in
the case of preindexed loop operations, find an appropriate size of the buffer that contains
probability of a given constraint violation below a given limit. This notion also fits with
the general probability of failure for different parts of the system design. In principle,
once a constraint violation is brought below a certain error probability that is comparable
to probability of failure of other parts of system design the corresponding constraint can
be considerednarginally satisfiable. We take this interpretation to solving satisfiability
problem for delay and rate constraints.

For illustration purposes, let us consider a max-delay constraint of Equation 3.17,
t( v) —# v < w. In order for this constraint to be satisfiable this equation must
hold true for all values ofc. We consider a max-delay timing constramarginally
satisfiable if for a given bounde, 0 < ¢ < 1, P{if v) —#( v») >uw;} < e. That
is, for eachk, the check for constraint satisfiability is considered a trial. A marginally
satisfiable constraint is then found to be satisfied if over a large number of such trials,
the probability of constraint violation is within a certain specified bound.

Associated with eact\"D operation is a variable that represents the loop index.
Recall that for pre-indexed loops,is computed before invocation of the loop operation.

Let us consider: to be arandom variablethat takes value over the set of non-negative
integers. Theevent spaceonsists of all possible assignments of the loop index. Let
Fx( - ) be the probability distribution function associated with random variapteat is,
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Fy is defined over real values such that for a giverfx( ¢) represents the probability
thatx is belowc. In other words,

Fx(e) =P{z< ¢}

The probability density functionfx( - ) is defined as the derivative of the probability
distribution function.

Given the loop index oD operation as a random variable we formulate the problem
of constraint satisfiability as a determination of expected number of data items waiting
and thus the size of the buffer required when the loop index has some nonzero probability
of exceeding the blocking limit. The answer depends upon the choice of the probability
distribution function for the random variable. Based on the distribution of loop index,
the buffer depth and probability of buffer being full is developed. A full buffer leads to
blocking of the producer procegs The following presents statement of the problem.

Given a constraint graph modekwith a preindexedVD cycle I" caused
by abackward edgevith weight«. Assume that the loop index is a random
variable with expected value; and variancer,. Let {( G) be the length of
the loop bodyG,.

Problem P1: Find a boundN on the buffer sizé such that the probability,
Pr{ G blocks} <e
forall £ > N

An alternative formulation of the above problem would be to determine the value of
the backward edge that would satisfy blocking limit. This value can then be propagated
to determine the achievable execution rate.

Problem P2: Given a buffer size df find an upper bound on the weight,
u, of the backward edge that causes the preindeXé®d cycle I', such that

Pr{ G blocks} < e

for all v < w. Note that weight of a backward edge is a negative quantity,
therefore, an upper bound on « refers to a lower bound on the absolute
value of the weighty.
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Problems P1 and P2 are related. For a given acceptable error rate, probabilistic
constraint satisfiability either seeks implementations that meet the required performance
(P1) or seeks achievable performance that meets required implementation costs (P2).
Note that in the limitt — 0 the problems seek a deterministic solution.

4.6.2 Index distribution and bounds on buffer depth

Solution to problems P1 and P2 above depends upon the choice of a probability distri-
bution function, F'x( - ) for the random variable. For analytic simplicity, we treat the
random variable as continuous variable and use these to derive approximations to the
value of the corresponding discrete parameters. We consider the case when the random
variable is unbounded and exponentially distributed. The exponential distribution is cho-
sen due to the fact that the value of the loop index is directly proportional to the interval
of time it takes for the consumer to consume a data from the buffer. It has been shown
that the exponential distribution has the least information (or highest entropy) and is
therefore the most random law that can be used and thus certainly the most conservative
approach [CS61]. Additionally, it is the only distribution with the Markovian property.
For an exponentially distributed loop index, the rates of data production and consumption
follow a Poisson distribution. That is, the times at which data is produced or consumed
(i.e., schedule of I/O operations) imiformly distributed. In other words, thé start

times of an 1/0 operation over an interval [0, T] are distributed as the order statistics of
k uniform random variables on [0, T].

fla) = g (4.43)

with expected valuef,[ X] < and variance? = . 3

3Strictly speaking, the distribution should be expressed.&s)uc#” - U () to indicate one-sided nature
of the function. In the context of flow graphs, the loop indices are always positive. Therefore, for notational
simplicity, we drop the explicit mention of the set functidii) and reflect it by adjusting the integration
limits.
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Lemma 4.3 For a given error probabilitye, the following express the bounds on buffer
depth, %

Ine —Ine
e = In(£t) —In(%/f_l)-‘ ~ {WW (4.44)

whereH X =z <B ; is the expected value of the loop indexand B is the blocking
limit for 1-deep buffer.

Proof: Let % be the size of the buffer needed. The bound for the general
distribution is obtained by consideringvalues of the loop index random
variable. Thek values are assumed to be independent and can be considered
as outcomes of independent trials, or equivalently valuestahdependent
identically distributed (i.i.d.) variables,, >, ..., ;. Now the graph model
Gblocks if any value of the look index exceeds the blocking lidit, or

the sum over thé: variables is greater thal,,_1. We derive an upper
bound on the error probability by using the necessary condition to cause
blocking if the sum of% i.i.d. variables exceeds the boudti, = %- B.

Let y = >-%_,2;. The distribution ofy is given by the convolution of
exponential distributions, each with expected vaﬁueThis is shown to be

the following Erlangian distribution of type-k [GH74]

i y) :%xk_le_w ( 4.45)

For this distribution, the expected value ofis given by F Y] zﬁ and
variancesf = .
For a random variable the moment generating function (MGF) is defined

as the expected value ef*, that is, Mx( t)= H ¢%] which is equivalent

to Laplace transform (LT) of the probability distribution functiofix( ) of X

(by substituting parameter t = -s). By the property of Laplace transforms, LT
of a convolution of two functions, is a product of their Laplace transforms.

Therefore, it can be easily shown that the MGF of a sum of independen-
t random variables is equal to the product of their respective MGFs. In

particular,

My(t) =B’ :ﬁﬁpetxi] :(L)k
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We use this multiplicative property of the MGF in developing a bound on the
probability of buffer being full, by using Markov’s inequality that{Pr >

a} < H X /a. This bound is then improved by minimizing it using the
parameter; as shown below.

Pr{ Gblocks; = Pr{y>k- R}
= Pr{ d¥ >e P} for ¢ >0

ev _ _
Eth | Markov inequality
e 1

_F éY]
rntln ethl

g Y

<
- et kB1

IA

IA

1 1
t=2- g3

VAN
| — |
e

The result follows by computing the lower bound snwvhich is defined as
N.. ¢

Note that ase — 0, N. — oo Figure 34 shows required buffer depth for an
e = 0.01%.

A solution to problem P2 requires determination of an achievable blocking lBit,
for a given buffer depthk. From the blocking limit we can determine the fastest rate of
data production, or the maximum value ©find hence the supportable rate constraint.
The analytic solution to Equation 4.44, uses Lambert’s W funétamd thus not very
useful as a general formula. Instead the Equation 4.44 can be solved numerically using
a solver like Maple [Hec93] for the blocking limif3; for a given values of buffer depth
k= N_, expected loop index; and the error probability.

4W function is a solution of the equation (W)e W(®) = x.[FSC73]
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Minimunbufér depth for exporential distribution
18 - [ [ [ [ i

16
14
12

Buffer 10
depth

O N e O

Loopindex, x

Figure 34: Buffer depth for exponential distributions £ 0.01%)

4.7 Flow Graph as a Stochastic Process

In the previous section we have seen that"®-cycle in the constraint graph for a flow
graph can be treated as a producer-consumer system, the queueing behavior of which
is governed by the values taken by a random variable associated with theVidop
operation. In this section, we examine a flow graph model that consists of sgWéral
operations the behavior of each of these operations is governed by a random variable.
Thus, a flow graphGwith A"D operations corresponds tostochastic processgp, with

the set of random variable$,s; : v; € ND} .

o={a1(t) ,20t), ... y&t) ,t >0} ( 4.46)

The process evolves in time as random variables,take on actual loop index values.

It is easy to see that the random variables share the same event space. Therefore, the
random variables; are defined over eommormprobability space. We develop the process
model by first associating a probability of execution with each verteX(ij . Recall,

from Chapter 3 that at any time a vertex can be in one of the following three states:
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reset enabledanddone We associate a probability with the transition fromemabled
state to adonestate, as defined below

Definition 4.4 Transition probability , p; of a vertex,u; € V{ G is the probability that
a currently enabled vertex transitions to a done state in the next cycle (or step).

This p; defines the probability that a currently executing node will complete its execution
in the next step. Clearly, for a node with a delay,v) = 1 the transition probability is
unity. Later in this section we show that the transition probability of a node with delay
6 /=0 is given b%

We now consider the behavior of the proceswer time by transforming into a finite
state process where the process is in only one state at any time. We define the state of
a process by the set of operations that are enabled at any time. Note that the state of
a process is different from the definition of state of a vertex. Due to the concurrency
inherent in the flow graph model by means of conjoined forks, there may be more than
one operation executing simultaneously. For a flow graph witrertices, that are a
maximum of 2 possible states. However, the structure of the graph limits this state
space based on the partial order on operations. The following example shows possible
states in a flow graph.

Example 4.7.12  States in a stochastic flow graph.

©), ®
/ O\ 4\ /v \
® ® @ - ® ® ®
| V P ¥ i
@\ /@ @\ /@ @\ /@
® ® ®1
s, ab, ad, cb, cd, t s, ab, ad, cd, t s,a,c,b,dt

Figure 35: States of stochastic flow graphs.

Figure 35 shows flow graphs and possible states. In the first flow graph, due to
conjoined fork, the possible states are a product of the states in the two conjoined
paths. In the second example, due to additional dependency from ‘b’ to ‘c’, the
state ‘cb’ is not possible. Finally, in the third flow graph, due to a disjoined fork,
the set of states is the union of states on the mutually exclusive paths.
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Definition 4.5 A transition process gover a graph modelzconsists of a set of states
W={w, i=12...,] W } and a set of probabilitiesp= ( W p) where

is the probability from transition from state; to w; in next step.

The transition probability between two states can be computed from the node transition
probabilities. The following shows an example.

Example 4.7.13  Computation of state transition probabilities. The probability

pa.(1-pd)

- pa)(l pb) - pa)(l pd) _p%‘%m (1-pc)(1-pd)
/0

%t\;) pb (1- pa) pb(l pc) pc.pd

of transition from state ‘s’ to ‘ab’ (where both ‘a’ and ‘b’ are enabled) is 1. The
probability of transition from ‘ab’ to ‘ad’ is computed by the condition that vertex
‘b’ changes state from enable to dong, and vertex ‘a’ stays in the enabled state,
(1-ps). Since the two events are independent, the probability of state transition is
given by the product of individual probabilities]

We assume that the transitions from a state depend only upon the current state and
are independent of the past history of state transitions, that is, the probability of transition
from statew; to w; is independent of the past history leading up to state

Pr{Wk_|_1 = w]‘| W, = Wy, W.1=.. } = Pr{Wk_|_1 = w]‘| W, = wi} ( 4. 48)

Assuming the loop index values to be exponentially distributed (which was shown to be
the case with some justification in the previous section), we are then able to construct a
Markov process fronp.
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Definition 4.6 A Markov chainM is characterized by dransition matrix , P = {p;;}
where
pi; = Pi{Wip1 = wi| Wi = w;}

We consider time homogenous Markov changes for which the transition probability is
independent of the time step,

The Markov chain can be shown to form a positive dynamical system (that is, the
state vector also takes on positive values) [Lue79]. It can be shown the largest eigenvalue
of Pis Ao = 1. Constraint analysis using Markov chain attempts to determine the average
length of time to reach a specified state. Due to the fact that the flow graph model is a
connected graph with a path between every (non-conflicting) vertices (assuming an edge
from sink to source operation indicating restart operation), therefore, the Markov chain
is regular, irreducible and closed. However, it is not always the case that the chain is
aperiodic. But it can be made aperiodic by addition of a variable delay vertex in series
from sink to source operations. For mixed implementation using both hardware and soft-
ware, the software component always contains a runtime scheduler and hence the it can
be modeled as a variable delay vertex in series from sink to the source operations. This
is, however, not true for purely hardware implementations, where the runtime scheduler
operation is zero, and, therefore, the corresponding Markov process may be non-ergodic.

In a regular Markov chain, after a sufficiently large number of steps there exists a
nonzero probability of transition between any two states. From the basic limit theorem, for
a regular Markov chain the normalized eigenvector of the transition matrix corresponding
to its largest eigenvalue determines the steady state occupation probabilities. From ergodic
theory, the inverse of the steady state transition probability gives the interval of visitation
to the state.

Based on this model, the procedure for constraint analysis of a flow graph model,
G, is to first construct a Markov chaill by computing all possible states in which
the equivalent process model, can be. Recall, a state of at any time is the set of
enabled vertices at that time. For this finite state model, we construct the probability of
state transitions based on conditional transition probabilities of vertices in a state. The
Markov chainM is then analyzed to obtain steady state transition probabilities and thus
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the expected visitation intervalD operations. Since a loofyDoperation constitutes

a producer-consumer subsystem, these intervals determine the average times between
invocations of the producer-consumer subsystems, which are then used to obtain bounds
on buffer depths assuming that the producer consumer system is started in the initial state

at the beginning of each visit to a state.

Example 4.7.14 Consider the graph model; shown below. Assume the
loop body for each of the three loop operations takes one cycle.

el oRe
o e

p3

°(
Stochastic Model Corresponding Markov Chain

X(t) = { ri(t), r2(t), r3(t) }

rl, r2, r3 are random variables

Figure 36:Loops in a serialized model.

The corresponding Markov chain is a reachable, closed and irreducible Markov
process.

For exponentially distributed random variables with= 10, 7, = 2073 = 50 the
transition matrix of the Markov chain is

009 0 QO
P=]10.109 O
0O 005 09

Steady state probabilities are given by the normalized eigenvector corresponding to
the largest eigenvalue, that is,

lim P™.e; =] 0. 1250 245Q 625

Wheree; is a column vector with a 1 in th&” row. Now from ergodic theory, the
mean recurrence time for a state in the closed Markov chain is inverse of its steady
state probability. From this we deduce that steady state interval between end of a
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loop to its restart (and therefore the min-rate of operations in that particular loop)
for L1, b, & would be ;1% -10= 70, 60 and 30 respectively.

Therefore, for marginally satisfiable rate constraints@rG1, > and GGz would
be 80, 70, 60 and 30 cycles/sec respectively. Note that:fathe expected delay
is the sum of expected delays bfi, 5, 4. Distribution of the delay is given by
the convolution of individual probability distributions]

Example 4.7.15 Consider loop operations in a fork shown by by the flow
graph below. Again assume that loop bodies are one cycle long.

1-p2

rl@

%
NS P

O \Q

Figure 37:Loops in a fork.

In case of a conjoined fork, statés and 53 belong to the same class. Thus these
states are merged before proceeding. In case of a disjoined;{fdekthe probability
of associated conditional transition. Fey = 10, 7o = 2073 = 50, the transition
matrix is given by
0.9 0. 05 0 02
P = 0. 1p 0.9 O
0. 1I{ 1) 0O 09

The steady state probabilities are [ 0.22 0.22 0.56 ] and [0.208 0.167 0.625 ] for
p. = 0. 5 andp= 0. 4 respectively.

Therefore, marginally satisfiable minimum rates are as follows:

p.=0.4 p.=0. 5
Graph model| (cps) (cps)

G 30.08 | 35.45
Gy 99.76 | 70.91
G 30 49.29

G 55.71 55.71
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Note that latency of7 is expressed as; + max_ », %) . Its distribution function is
frix( ko Fm + fm Fr ) with expected value- 20+ 50 -1+ = 55. 71. Here

20 ' 50

* 1S the convolution function™

Limitations and possible extensions

The stochastic analysis of graph models is not new and has been carried out before by
several researchers for different types of network models. For related work on timed
and stochastic Petri nets see for example [Sha79] [Mol82]. The chief limitation is in
the construction of the possible states for the process which requires enumeration of all
possible paths of execution, and this can lead to explosion in the number of states in
M. Further, the assumption of exponential distribution of loop index values may be fine
for truly ‘random’ loop indices. However, for loops with indices that have deterministic
relationships, this assumption is harder to justify. Aperiodicity of the constructed is not
always guaranteed. However, it can be guaranteed by adding a duoperation

whose corresponding state has a path to every other state in the Markov chain, and
therefore, it belongs to the same class as otheM i@nd is aperiodic, therefore, making

all states inM aperiodic.

A large number of states in a Markov chain makes it harder to analyze the resulting
stochastic matrix for the steady state behavior. The following transformation to collapse
a chain of states in the Makov process can be used to achieve reduction in the number
of states. This reduction is based on a notion of equivalence of Markov chains such that
for a given state in the two chains, the steady state occupation probabilities are the same.
The following defines the concept.

Definition 4.7 Markov processed1; and M, are considerechomomorphic in steady-
state, (HSS)if steady state transition probabilities of states commoMinand M, are
identical.

Theorem 4.6 [State reduction]A chain of statess;, s, ...,;with transition proba-

1 57 =¢+1
pij =

bilities

0 otherwise
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can be reduced to a single state with probability of exiting the si—at?
Proof: ConsiderM ; and M, with transition matrices:
1-p 1-q 1-
1 1 1 1 1 O O q (5
ONOLOREION® H——)
L_J N

p

of p
p_ | (4.49)
e @ O1
i 1-p |
L
P, = ¢ P (4.50)
¢ 1-p

where0;, is zero column vector of dimensioh andl, is ak xk identity
matrix.

M; andM;, are HSS < el - B°- 41 =¢1 - B° - o ( 4. 51)

wheree; is a column vector with a 1 in thé” place, rest being zero. The
largest eigenvalue oP; and P, are 1. The eigenvectors corresponding to
this eigenvalue fo?; and P, are

v = [ll%}
V2 = [l—]

The steady state probabilities of the state- 1 in M; and 2 inM, are given
by the normalized eigenvector. That is,
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Therefore,

M; andM, are HSS & ¢ =1/ k

4.8 Summary

We have developed several notations and concepts in this section. Let us summarize the
main points. The notion of constraint satisfiability is developed based on the ability to
discernexistencea potential schedule of operations that meets the constraint.

For reasons of simplicity, scheduling is considered in two parts: operation scheduling
(or the short term scheduling) and task scheduling (or the long term process scheduling).
While the former can be subject to deterministic constraint satisfiability analysis, such
analysis for the latter is limited in applicability due to the additional non-determinism
inherent in this kind of scheduling. We attempt to capture this non-determinism and
analyze it together with the non-deterministic delay operations.

The run-time scheduler models uncertainty in invocation of graph models and thus
attempts to merge this uncertainty with that of delay\@foperations. This ‘merge’ in
uncertainty is accomplished by redefining short-term constraint satisfiability amime
computation times rather than total execution times. Thu®aperation is transformed
into a fixed-active-delay operation while the uncertainty associated with its actual delay
is delegated to the runtime (or long term) scheduler. Since the idea of active computation
time is naturally suited to a software execution environment the implementation of two
step scheduler is restricted only to software. However, it is conceivable that with appro-
priate control generation scheme this idea can be used for hardware implementation as
well.

The data-dependent delay operations are similarly transformed into fixed delay op-
erations by means of buffers. Probabilistic analysis is used to determine likelihood of
constraint violation based on probability of buffer overflow. It is reasoned that such
analysis is more relevant to answering satisfiability questions of constraints that involve
application of the long term scheduler. The probabilistic analysis is done by construct-
ing a probabilistic producer-consumer system whose behavior is controlled by a random
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variable. Next, we construct a stochastic process by collecting a number of random
variables each corresponding to non-deterministic delay operation. This process is then
transformed into a stationary Markov chain. The Markov chain is analyzed to determine

steady state probabilities. Then using results from ergodic theory we find average interval
between visits to various states which is used to determine satisfiability of constraints on
min-rate of the corresponding flow graph model.

There are several limitations of the producer-consumer formulation on which the
probabilistic analysis is based upon. Firstly, use of buffer in case of preindexed loops
altersthe input/output behavior of the modeled system. Specifically, the events at system
ports are reordered such that the sequence of events at any port still follow the same order,
however, events across ports may be interleaved. In other words, if we consider a port
operation to be an action and specific instances of execution to be events, the partial order
imposed by the system model is the order on actions and not on events. Intuitively this
altered behavior would be acceptable as long as the environment contains no interactions
between separate input/output events (for example synchronization). This may not be true
in general for all systems. As safe approach would be to construct buffered producer-
consumer systems only for those systems where input/output operations do not contain
any explicit sequencing dependencies (i.e., only inter-iteration dependencies).

In this dissertation we concern ourselves only to systems where operations and de-
pendencies are static. In general, long term scheduling also depends on dynamic and
runtime factors and information needed for an efficient schedule is available only at run-
time. These runtime factors include data-dependent dependencies between operations,
data availability and synchronization. These complexities make dynamic scheduling
problem difficult to formulate and analyze. In practice heuristic solutions are sought
for solving such problems. The biggest drawback of runtime scheduling methods is per-
formance loss due to the overheads. Dynamic scheduling techniques are out of the scope
of this research work.



Chapter 5
Software and Runtime Environment

In this chapter we focus on the problem of synthesis of the software component of sys-
tem design. We consider the software portion to be of limited size and mapped to real
memory so that the issues related to virtual memory management are not relevant to this
problem. The objective of software implementation is to generate a sequence of processor
or machine instructions from the set of flow graph models. Due to significant differences
in processor abstractions at the levels of graph model and machine instructions, this task
is performed in two separate steps: (1) generationmbgramin a high-level program-

ming language, C; followed by (2) compilation of the program into machine instructions
by software compiler and assembler for the processor. We assume that the processor is a
predesigned general-purpose component with available compiler and assembler. There-
fore, the important issue in software synthesis is generation of the source-level program.
Most of this chapter is devoted to this step of software synthesis. Towards the end of
this chapter, we discuss important issues related to software compilation and linking.

This chapter is organized as follows. We first present a cost model of the processor in
Section 5.1. In Section 5.2 we present a model of software that allows for satisfaction of
timing constraints for a target architecture that consists of a single processor. Estimation
of software performance in view of the cost model of the target processor is presented in
Section 5.3. Software performance is also affected by the allocation and management of
storage for program and data portions of the software. Estimation of software storage and
its effect on performance is discussed in Section 5.4. Section 5.5 presents an overview

126
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of the steps in synthesis of the software component. These steps are presented in detalil
in Sections 5.6, 5.7 and 5.8. Section 5.9 presents practical issues in generation of the
software. We conclude this chapter by a summary in Section 5.10.

5.1 Processor Cost Model

An implementation of a flow graph in software is characterized by assignment of delays
to operation vertices and choice of a runtime scheduler. The delay of an operation is de-
pendent on the set of processor instructions and delays associated with these instructions.
The instruction set and associated delays are determined by the choice the processor. We
capture processor specific information into a cost model described in this section. The
intermediate format for capturing this cost model is presented in Appendix C.

Processors are thgredesignedhardware components that execute general-purpose
software. To a compiler, a processor is characterized by its instruction set architecture
(ISA) which consists of its instructions and the memory model. We make following
assumptions on the ISA:

e The processor is a general purposgistermachine with only explicit operands in
an instruction (no accumulator or stack). All operands must be named. This refers
to the most general model for code generation. General purpose register machines
is the most dominant architecture in use today and is expected to remain so in
forseeable future [HP9O0].

e The memory addressing is based lpyie-level addressingThis is consistent with
the prevailing practice in the organization of general-purpose computer systems.

A processor instruction consists of an operation and a set of operands on which to
perform the specified operation. While the actual instruction sets for different processors
are different, a commonality can be established based otyf®sof instructions sup-
ported. For our purposes we assumgasicset of instructions listed in Table 3. This set
of basic instructions groups together functionally similar operations. In addition, it also
containsmacrc-operations that may not be available as single instructions, for example,
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call and return. These operations help in software delay estimation by providing addi-
tional information which may not be available purely from looking at the instruction set
of a processor.

There is a significant variation in the types of operands supported on different pro-
cessors. Following the taxonomy in [HP90] we classify ISA in to following categories:

Load-Store (LS): This refers to an ISA where memory operations are confined to two
types of instructions (LOAD) and (STORE). All other instructions use non-memory
operands.

Register-Memory (RM): In this ISA, all instructions may have up to one memory
operand.

Memory-Memory (MM): All operands in an instruction may be memory operands.

Based on this understanding of processor and instruction set architecture we develop
a cost modelto represent the target processor,

I=(%, @ 4, 1 ( 5. 52)
where the

e Execution time functionr,,, represents instruction delay times in cycles for oper-
ations listed in Table 3,

e Address calculation delay function,,, represents effective address calculation
delay times in cycles,

e Memory access time,, is the time in cycles for a memory access. Note that
can also be used to model a memory access with wait states,

e Interrupt response time,, is the maximum time between the activation of an
external interrupt and the beginning of execution of the corresponding interrupt
service routine.
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| Instruction type]

Meaning |

DLX Example |

load
store

move
xchange
alu

mpy
div
comp
call
jump
branch

bc_true
bc_false
return

seti

cli
int_response
halt

Load from memory|
Store to memory

Move registers
Exchange registers
ALU operations

Integer multiply
Integer divide
Compare

Call

Jump

Branch

Branch taken
Branch not taken
Call return

set interrupt

clear interrupt
Interrupt response
Halt

Ib, Ibu, |h, lhu, Iw, Iwl, Iwr, *la, *li
sb, sh, sw, swl, swr, *ulh, *ulhu, *ulw
*ush, *usw

mfhi, mthi, mflo, mtlo, *mov
addi, addiu, andi, ori, xor
add, addu, sub, subu, and, or, xor,
sll, srl, sra, sllv, srlv, sra
lui, *abs, *neg, *negu, *not, *rol, *ror
*seq, *sle, *sleu, *sgt, *sgtu, *sge
*sgeu, *sne

mult, multu

div, divu, *rem, *remu

slti, sltiu, slt, sltu

J, jal, jr, jalr
beq, bne, *bgt, *gge, *bgeu, *gbty
*blt, *ble, *bleu, *bltu
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nor

* = synthesized instruction.

Table 3: Basic instruction set



130 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

The execution time functions,,, mapsassembly language instructions positive
integer delays. The assembly language instructions are generated by the high-level lan-
guage compiler. These instructions usually correspond to instructions supported by the
processor instruction set. However, some assembly language instruction may refer to a
group of processor instructions. Theasacro-assembljanguage instructions are some-
times needed for compilation efficiency and to preserveatbenicityof certain operation
in the flow graph model. The effect of internal hardware pipelining in microprocessors
is modeled as follows. The function,, represents a pipelined operation delay (which
is usually 1 cycle for most operations). A penaltyyof-1 cycles is added to the delay
of the overall program. In addition, pipeline stall penalty is added for instructions
with latencies greater tham. The interrupt response time, is the time that processor
takes to become aware of an external hardware interrupt in a single interrupt system (that
is, when there is no other maskable interrupt is running). For cost model description
purposes, this parameter can be specified as a part of the operation delay function (as
shown by entryint _response in Table 3).

The address calculation functior, , maps a memory addressing mode to the integral
delay (in cycles) encountered by the processor in computing the effective address. An
addressing mode specifies an immediate data, register or memory address location. In
the last case, the actual address used to access the memory is called the effective ad-
dress. Table 4 lists common addressing modes. Square brackets ([]) indicate contents,
for example, [R1] indicates contents of register R1, mem[10] indicates the contents of
memory at address 10.

For completeness sake, this table lists addressing modes that are encountered in
general programs. However, when generating programs from HDL descriptions some of
these modes are never used. For example, a computed reference (register indirect) usually
occurs when the data value is created dynamically or a local variable (stack) is referred
to by means of a pointer or an array index. Neither of these conditions occur when
generating code from HDL. Further, not all the addressing modes may be supported by a
given processor. For example, the DLX processor supports only immediate and register
addressing modes, while the x86 instruction set supports all mentioned addressing modes
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\ Mode | Notation | Explanation Usage |
immediate #4 value = 4 Constants
register R1 value = [R1] Register values
direct (100) value = mem[lOO] Static data
register indirect | (R1) value = mem[[R1]] Pointer/computed address
register offset | (40)R1 value = mem[[R1]+40] Local variables
memory indirect] @(R1) value = m[mem[[Rl]]] Pointer access
indexed 100(R1)(R2)| value = mem[100+[R1]+d*[R2]] Array elementsg

Table 4: Addressing modes

(though with restrictions on which registers can be used in a certain addressing mode).

Storage alignment

Storage alignment is a side-effect of the byte-level addressing scheme assumed for the
processor/memory architecture. Because the smallest object of a memory reference is
a byte, references to objects smaller than a byte must be aligned to a byte. Further,
for memory efficiency reasons, the objects that occupy more than a byte of storage are
assigned an integral number of bytes, which means their addresses must alisméd
For example, address of a 4-byte object (say integer) must be divisible by 4.

Table 5 lists data types and alignment requirements which are taken into account in
the determination of the data size. The size dftauctureis determined by the total
of size requirements of its members. In addition, the structure enat an address
determined by the most restrictive alignment requirement of its members. This may
result in extra storage (upto a maximum 3-bytes per member) for padding. In the case
of a structure consisting entirely of bit fields, there is no padding if the total number
of bits is less than 32 bits. In case of structure widths greater than 32 bits, additional
32-bit words are assigned and members that lie on the boundary of two words are moved
to the subsequent word leaving a padding in the previous word. It is assumed that no
member takes more than 32-bits. Variables with size greater than 32-bits, are bound to
multiple variables represented by an array. The size and alignment requirements are then
multiplied by the number of array elements.
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| Data type| Size| Address alignment Unsigned range | Signed rangg

int 32 %4 2%, .. 211 0...221
short 16 %2 -32, 768...32 7670...65 535
char 8 %1 -128...127 0...255
pointer 32 %4 NA 0...22-1
struct variable. see text.

Table 5: Variable types and storage

Example 5.1.1  Variable storage assignments.

The following shows the set of variables used in the definition of a flow graph
and 'ﬁhe corresponding storage assignments in the software implementation of the
graph.

a[l], b[2], c[3], d[4], e[5] struct { al; b:2; c:3; di4; 5 }
f[33] int f[2]

Minimum storage used in the flow graph model is 8 bytes. However, due to align-
ment requirements the actual data storage is 12 bytes.

5.2 A Model for Software and Runtime System

The concept of a runtime system applies to systems containing a set of operations or tasks
and a set of resources that are used by the tasks. Operations may have dependencies that
imposes a (partial) ordering in which the tasks can be assigned to resources. In general
a runtime system consists of sthedulerand aresource manager The task of the
runtime scheduler is to pick up a subset of tasks from the available set of tasks to run
at a particular time step. The resource manager can be thought of consisting of two
components: a resour@ocator and a resourceinder. The allocator assigns a subset

of resource to a subset of tasks, whereas a binder makes specific assignments of resources
to tasks. The results of the scheduling and resource management tasks are interdependent,
that is, a choice of a schedule affects allocation/binding and vice versa. Depending upon
the nature and availability tasks and resources some or all of these activities can be done
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eitherstaticallyor dynamically A static schedule, allocation or binding make the runtime
system simpler.

In this general framework, most synthesized hardware uses static resource alloca-
tion and binding schemes, and static or relative scheduling techniques as described in
Chapter 4. Due to this static nature, operations that share resources are serialized and the
binding of resources is built into the structure of the synthesized hardware, and thus there
are always enough resources to run the available set of tasks. Consequently, there is no
need for a runtime system in hardware. Similarly, in software, the need for a runtime
system depends upon the whether the resources and tasks (and their dependencies) are
determined at compile time or runtime.

Since our target architecture contains only a single resource, that is, the processor,
the tasks of allocation and binding are trivial, i.e., the processor is allocated and bound
to all routines. However, atatic binding would require determination of satic order
of routines, effectively leading to construction of a single routine for the software. This
would be a perfectly natural way to build the software given the fact that both resources
and tasks and their dependencies are all statically known. However, due to the presence
of AMDoperations in software, a complete serialization of operations may lead to creation
of MDcycles which would make satisfiability determination impossible.

Example 5.2.2  Static linearization leads to creation &fcycles.

Partially ordered constraint graph Completely ordered constraint graph

opl @

opl

d1
—u — wait @ —-u
@ Extra dependency

-.: created due to
op2(12)

static serialization.

op2 @

constraint maxtime from opl to op2 = u cycles;

Consider a part of the flow graph shown in figure above. Any ordering of operations
opl and op2 that puts akDoperationa between these two operations creates an
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pL  p2 p3
O O O .
Al A3 r2 ]ASIC
r3 \

A2

Bus

Figure 38: Software model to avoid creation 8D cycles.
APcycle in the corresponding constraint grapin.

A solution to this problem is to think of software as a setcohcurrent program
threads as sketched in Figure 38. A thread is defined as a linearized set of operations
that may or may not begin by ax®operation. Other than the beginnin@operation,

a thread does not contain afyDoperations. The latency of a thread is defined as sum
of the delay of its operations without including the initi&D operation whose delay is
merged into the delay due to the runtime scheduling funcfion,

The use of multiple concurrent program threads instead of a single program to im-
plement the software avoids the need for complete serialization of all operations which
may create unbounded cycles. In addition it also makes it possible to share resources, in
this case the processor, dynamically.

Example 5.2.3 Consider the concurrent execution of following two graphs in
a system model.: Here the functiof ¥ represents call a resource that is common

Gl G2
while (c1 > 0) { while(c2 > 0) {
a =f(a,b); ¢ = f(c,d);
A write x = a; B—— writey =¢;
cl——; c2—;
} }

to G1 andGo. “A” and “B” are operation tags on the write operations in the two
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graphs. Assume that operations, “A” and “B” are rate constrained. Let us consider
the trace of execution for operations “A” and “B”. A static resource allocation
strategy betweer’; andG'; requires serialization betweémn and G, since there is

only one resource available to implement the functior) f This serialization leads

to either of the following traces:

A, A, A, ..., A, B B B, ... B

or
B, B, B, ..., B, A, A, A, ..., A

On the other hand, when using dynamic allocation of the processor to two pro-
gram threads corresponding @6, and G5, it possible to obtain following trace of
execution:

A, B, A, B, A, B, ...,

where the interval between consecutideand C' operations can be determined
statically and, therefore, it can be constrained. This allows us the possibility to
support execution rate constraints on the write operation at podsd y . In the
former case, due to static serialization@f and (G, an execution rate constraint
would lead to anXPcycle that would only be marginally satisfiable by bounding

the loop indices of the two loop operations. By using dynamic resource allocation,
the rate constraints can now be satisfied deterministically.

In this model of software, satisfiability of constraints on operations belonging to
different threads can checked for marginal satisfiability as defined in Chapter 4 (that
is, assumed a bounded delay on scheduling operations associatetiatberations).
Constraint analysis for software depends upon first arriving at an estimate of the software
performance and size of register/memory data used for the software. We discuss these
two issues next.

5.3 Estimation of Software Performance

A program is compiled into a sequence of machine instructions. Therefore, timing proper-
ties of a program are related to the timing properties of the machines instructions to which
it is eventually translated. Any variability in machine instruction timings is reflected on
the variability of timing of programming-language statements. One approach to software
estimation would be to generate such estimates directly from synthesized and compiled
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machine instructions for a given graph model. However, the process of compilation of
high-level language programs is time intensive and may not be a suitable step when
evaluating tradeoffs among software and hardware implementétidhgrefore, alterna-

tive methods are sought for estimating software timing properties directly from programs
written in high-level languages. When deriving timing properties from programs, several
problems are encountered due to the fact that popular programming languages provide
an inherently asynchronous description of functionality, where the program output is de-
pendent on the timing behavior of its components and of its environment. Attempts
have been made to annotate programs with relevant timing properties [Sha89, Mea89].
Syntax-directed delay estimation techniques have been tried [PS90] which provide quick
estimates based on the language constructs used. However, syntax-directed delay estima-
tion techniques lack timing information that is relevant in the context of the semantics
of operations.

We perform delay estimation on flow graph models for both hardware and software,
using the semantics interpretations of operations in our estimation procedures. A software
delay consists of two components: delay due operations in the flow graph model, and
delay due to the run-time environment. We discuss the run-time environment on constraint
satisfiability in the next chapter. Here we focus on the first component, that is, the delay
of a software implementation of the operations in the flow graph model. For this purpose,
it is assumed that a given flow graph is to be implemented as a single program thread.
Multiple program thread generation is achieved similarly by first identifying subgraphs
corresponding to program threads. This identification of subgraphs is discussed in next
chapter. Software delay then depends upon the delay of operations in the flow graph
modeland operations related to storage management.

Calculations of storage management operations is described in Section 5.4.2.

5.3.1 Operation delay in a software implementation

In order to make effective tradeoffs during partitioning, it is necessary to be able to make
good estimates about software and hardware performance. Such estimates often require

Vulcan-Il does provide commands to perform exact software delay estimations based on direct synthesis
and compilation. See Chapter 7.
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simplifying assumptions that tradeoff modeling accuracy against speed. In estimating
software performance, we make the following assumptions.

1. The system bus is always available for instruction/data reads and writes.
2. All memory accesses are aligned.
3. All memory accesses are to a single-level memory.

Each operationv in the flow graph is characterized by a number of read accesses,
m,(v), a number of write accesses,,(v) and a number of assembly-level operations,
no(v). The software operation delay functiop,is computed as follows:

M) = Yt Hm (o) 4 (0) x m (5.53)

where the operand access time,, is the sum of effective address computation time and
memory access time for memory operands. For some instruction-sets, not all possible
combinations of ALU operations and memory accesses are allowed and often operand
access operations are optimized and overlapped with ALU operation executions thus
reducing the total execution delay. Due to this non-orthogonality in ALU operation
execution and operand access operations, the execution time function of some operations
is often overestimated from real execution delays. In the one-level memory model, the
number of read and write accesses depends upon the fanin and fanout of the operation.

Example 5.3.4  Software delay estimation.

I

{
()

/

For the graph model shown above, assuming addition delay 1 cycle, multiplication
delay is 5 cycles and memory delay 3 cycles.
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Assuming that each non-NOP operation produces a data, that,jsy) =1 and

that the number of memory read operations are given by the number of input edges,
the software delay associated with the graph modeki 3+ . 45+44)xm ; =35
cycles.O

Use of operation fanin and fanout to determine memory operations provides an ap-
proximation for processors with very limited number of available general purpose reg-
isters. Most processors with load-store (LS) instruction set architectures feature a large
number of on-chip registers. Therefore, we develop a model of register usage in these
processors in Section 5.4.2. Based on this model, we determine the memory access
operations and their contribution to the software delay.

ND operations

Wait operations in a graph model induce a synchronization operation in the correspond-
ing software model. Thus, the software delay of wait operations is estimated by the
synchronization overheadhich is related to the program implementation scheme being
used. One implementation of a synchronization operation is to caasataxt switchin

which the waiting program thread is switched out in favor of another program thread. It
is assumed that the software component is computation intensive and thus the wait time
of a program thread can be overlapped by the execution another program thread. After
the communication operation associated with the wait operation is complete, the waiting
program thread is resumed by the runtime scheduler using any specific scheduling policy
in choosing among available program threads. Alternatively, the completion of commu-
nication operation associated with wait operation can also be indicated by means of an
interrupt operation to the processor. In this case, the synchronization delay is computed
as follows:

U nt(ﬂ)) =t Z—I_t s + 0 (5 54)

wheret; is interrupt response time, is interrupt service time, which is typically the
delay of the service routine that performs input read operationtand concurrency
overhead. The notion of concurrency overhead is discussed in Section 5.7.

Link operation are implemented as call operations to separate program threads corre-
sponding to bodies of the called flow graphs. Thus the delay due to these operations is
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accounted for as the delay in implementation of control dependencies between program
threads as discussed in Section 5.6.

5.4 Estimation of Software Size

A software implementation of a flow graph modél,=(V, E) is characterized by a
software size functions”, that refers to the size of prograrfi)’, and static datas’’,
necessary to implement the corresponding program on a given procéssér an
system modelg,
ST(@) = Y TG = 3 [S(Gi) +S (G (5.55)
G, ed G ed

The setS¥ consists of storage required to hold variable values across operations
in the flow graph and across the machine operations. This storage can be in the form
of specific memory locations or the on-chip registers, since no aliasing of data items is
allowed in input HDL descriptiorfs In general,S (G would correspond to a subset of
the variables used to express a software implementati@s thiat is,

Si(G < | MG H AG) (5.56)

where MG refers to the set of variables used by the grapand PG is the set
of input and output ports of7 (as defined in Chapter 3). This inequality is because
not all variables need bkve at the execution time of all machine instructions. At the
execution of a machine instruction, a variable is considered live if it is input to an future
machine instruction. Interpretation of variables in relation to flow graph is discussed in
Section 5.4.2.

In caseSI (G is a proper subset of the variables used in software implementation
of G that is, MG}, additional operations (other than the operation vertice§) iare
needed to perform data transfer between variables and their mappings into $& &gt
In caseS} (G is mapped onto hardware registers, this set of operations is commonly re-
ferred to agegister assignment/reallocation operatiori3ue to a single-processor target

°Register storage of an aliased variable will lead to incorrect behavior due to possible inconsistency in
values stored in the register and the value stored at the memory.
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Runtime
(Chapter 6)

Flow graph
(Chapter 3)

@ ~ \*
R - | Storage | — = ___ .| Overhead | _ goftware delay
Linearize @ allocation @ estimation of G

@ / 641) Variable interval graph 5:42) Spill set

Processor cost model
(5.1)

Figure 39: Software delay estimation flow.

architecture, the cumulative operation delay/¢€; would be constant under any sched-

ule. However, the data sét!! (G of Gwould vary according to scheduling technique
used. Accordingly, the number of operations needed to perform the requisite data transfer
would also depend upon the scheduling scheme chosen. Typically in software compil-
ers a schedule of operations is chosen according to a solution to the register allocation
problem.

The exact solution to the register assignment problem requires solution to the vertex
coloring problem for a conflict graph where the vertices correspond to variables and an
edge indicates simultaneously live variables. The number of available colors corresponds
to the number of available machine registers. It has been shown that this problem is
NP-complete for general graphs[GJ79]. Hence heuristics solutions are commonly used.
Most popular heuristics for code generation use a specific order of execution of successor
nodes (e.g., left neighbour first) in order to reduce the siz86fASU86].

In contrast to the register assignment in conventional software compilers which per-
form simultaneous register assignment and operation linearization, we devise a two step
approach to estimation of data storage and software delays resulting from additional
memory operations.

1. linearize operations that is, find a schedule of operations.
2. Estimate register/memodata transfer operations

This two-step approach is taken to preserve the flexibility in operation scheduling which
may be constrained by timing constraints not present in traditional software compilers.
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Figure 39 illustrates the steps in estimation of software performance.

5.4.1 Operation linearization

Linearization of G refers to finding a complete order of operationsVinG that is
topologically consistent with the partial order @ This complete order corresponds to
a schedule of operations on a single resource, that is, the processor. In the presence of
timing constraints, the problem of linearization can be reduced to the problem of ‘task
sequencing of variable length tasks with release times and deadlines’ which is shown
to be NP-complete in the strong sense [GJ79]. It is also possible that there exists no
linearization of operations that satisfies all timing constraints. Exact and heuristic ordering
schemes under timing constraints are described in [KM92a].

We use a simplified version of the heuristic ordering in [KM92a] based on topological
sorting of the vertices in the acyclic flow graphs. This sorting is performed based on
a vertex elimination scheme that repetitively selects a zero in-degree vertex (i.e., a root
vertex) and outputs it. The following proceduieearize outlines the algorithm. The
input to the algorithm is a constraint graph model consisting of forward and backward
edges as defined in Section 4.2 of Chapter 4. Recall, a backward edge represents a
maximum delay constraint between the initiation times of two operations, whereas a
forward edge represents a minimum delay constraint between the operation initiation
times. By default, a non-zero operation delay leads to a minimum delay constraint
between the operation and its immediate successors.

The algorithm consists of following three steps indicated by the symbpl (

1. Select a root operation to add to the linearization,

2. Perform timing constraint analysis to determine if the addition of the selected root
operation to the linearization constructed thus far leads to a feasible complete order,
else select another root vertex,

3. Eliminate selected vertex and its dependencies, update the set of root operations.

The main part of the heuristic is in selection of a vertex to be output from among a
number of zero in-degree vertices. This selection is based on the criterion that the induced
serialization does not create a positive weight cycle in the constraint graph. Among the
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linearizgG=(V, E ;U E})) {

6(s) =0; @ ={ source vertex of7} ; /* initialize */
if positive_cycle(@

exit; /* no valid linearization exists */
repeat{

M v = extract head); [* vertex with smallest urgency label */
G' =G [* construct new constraint graph */
add edgds, v) in ¢ with weight =6(s); /* select a candidate vertex */
for all w € Qandw#v /* linearize candidates’s siblings */

add edgegv, w) in G’ with weight =4(v);
>l if positive_cycleG /) /* not a feasible linearization */
mark and move to tail of ¢) [* discard candidate */
else{ /* we have a good candidate */
11 if vis head of an edgéu, v) € E,

o(u, v) =6(u, v)—8(s);
for all we sucdv) s.t. predw) =0

Q=Q+H w} ; [* updatewith new root vertices */
removev from ¢} outputw; /* delete vertexv and its successor- */
6(s) =6(s) +0(v); [* -edges inG' ' */
G=G ';
sort )by urgency labels;
¥
} until Q=0 ;

}
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available zero in-degree vertices, we select a subset of vertices based on a two-part criteria.
One criterion is that the selected vertex does not create any additional dependencies or
does not modify weights on any of the existing dependencies in the constraint graph.
For the second criterion, we associate a measurgg#gncywith each source operation

and select the one with the least value of the urgency measure. This measure is derived
from the intuition that a necessary condition for existence of a feasible linearization (i.e.,
scheduling with a single resource) is that the set of operations have a schedule under
timing constraintsassuming unlimited resourced feasible schedule under no resource
constraints corresponds to an assignment of operation start times according the lengths
of the longest path to the operations from the source vertex. Since a program thread
contains noND operations, the length of this path can be computed. However, this
path may contain cycles due to the backward edges created by the timing constraints.
A feasible schedule under timing constraints is obtained by using the operation slacks
to determine the longest path delays to operations. The length of the longest path is
computed by applying an iterative algorithm such as Bellman-Ford algorithm or more
efficiently Liao-Wong algorithm [LW83] that repetitively increases the path length until

all timing constraints are met. This scheduling operation is indicated by the procedure
positivecycles()that either fails when it detects a positive cycle in the constraint graph

or returns a feasible schedule. In case, if the algorithm fails to find a valid assignment
of start times, the corresponding linearization also fails since the existence of a valid
schedule under no resource constraints is a necessary condition for finding a schedule
using a single resource. In case a feasible schedule exists, the operation start times under
no resource constraints define the urgency of an operation.

The two criteria for vertex selection are applied in reverse order if a linearization
fails. At any time, if a vertex being output creates a serialization not in the original flow
graph, a corresponding edge is added in the constraint graph with weight equals delay of
the previous output vertex. With this serialization, the constraint analysis is performed
to check for positive cycles, and if none exists, the urgency measure for the remaining
vertices is recomputed by assigning the new start times, else the algorithm terminates
without finding a feasible linearization.

Since the condition for a feasible linerization used in the urgency measure is not
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sufficient, therefore, the heuristic may fail to find any feasible linearization. It is also
possible for this heuristic to fail while there may exist a valid ordering. Under such
conditions an exact ordering search that considers all possible topological orders can be
applied. The following example illustrates the linearization procedure.

Example 5.4.5  Operation linearization.

@ operation delay

/0
?\ P

N
O ORI
Consider the flow graph shown in the figure above.

Initialize: Q={ v 1}, 6(s) =O0.

By applying the procedur@ositivecycle on this graph, we get the following as-
signment of operation urgency labets,

operation V1 V2 V3 V4 V5 Vg V7
label,o(v) 0 4 2 5 3 6 6

Iteration = 1.
B: v =v 1. Add edge(s, 1) with weight = 0.

>lI: no positive cycle. Feasible.
bll: Q={ v 2, 5} [output = v1] 6(s) =0+8(v 1) =2. Sinceo(v 2) =4 and

o(v3) =2, Qis sorted to bel)={ v 3, »} where the first element represents the
head of()

Iteration = 2:
>l: Candidater =v 3. The new constraint grapfi’ is shown below:

>ll: no positive cycle. Feasible. The assignment of the urgency labels:
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operation S v v3 Vg Vs Vg U7
label,o(v) 0 4 2 5 3 6 6

lil: (v7, ) € By =6(vy, 3) =—4—2=—6. Q={v 2, »}. .
6(s) =246(v 3) =3. Urgencyo(v 2) =4, o(vs) =3. Qis sorted as)={ v 5, »}.
Iteration = 3:

o: Candidatev =v 5. Add edge(s, %) with weight = é(s) =3. The new
constraint grapl;’ is shown below:

&

>ll: no positive cycle. Feasible. The assignment of the urgency labels:

N

operation S V2 V4 Vs Vg U7
label,o(v) 0 6 7 3 6 6

Mil: @={v 2, w, 1}7} m =3446(v 5) =6. Urgency,o(v 2) =
o(ve) =o(v 7) =6.
Iteration = 4.

o: Candidatev =v . Add edge(s, ») with weight = é(s) =6. The new
constraint grapl;’ is shown below:

ONRE OO

BI: positive cycle. Mark and move » to tail of Q@ Q={ v &, u, »} .

Iteration = 5:
>l: Candidater =v . The new constraint grapfi’ is shown below.

BI: positive cycle. Q={ v 7, », ®} .
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S

>: Candidater =v 7. The new constraint graph is shown below.

Iteration = 6:

>ll: no positive cycle. Feasible. The assignment of the urgency labels:

operation S V2 v4 Vg V7
label,o(v) 0 8 9 8 6

bl Q={ v 2, w} Joutput = v7]. 6(s) =642 =8. Urgencyp(v 2) =o(v ) =8.

2 2
2| 2 - =

Iteration = 7:

>l: Candidater =v ,. The new constraint graph is shown below:

Bl: no positive cycles. Feasible. The assignment of urgency labels) =
0, o() =8, o(v 4) =9, o(ve) =9.

blil: Since (ve, w) € E = 6(ve, ») =—2—8 =—10. [output = v,] Q=
{ %, u} .
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Iteration = 8:
>l: Candidater =v . The new constraint graph is shown below:

Sl no positive cycles. Feasiblex(s) =0, o(v ¢) =10, o(v 4) =12.

Bz Q={ v 4}, 6(s) =942 =11. .

O,
)

>1: Candidater = u. The new constraint graph is shown below:

Iteration = 9:

lll
O
>11: no positive cycles. Feasible.

> Q = 0. .

Thus, the linearization returned by the algorithmvis # &, » » & a O

5.4.2 Estimation of register, memory operations

The number of read and write accesses is related to the amount and allocation of static
storage,SH(G). Since it is difficult to determine actual register allocation and usage,
some estimation rules are devised.

Let GP =(V, EP) be the data-flow graph corresponding to a flow graph model,
where every edgdp;, v) € EP represents a data dependency, that,is; v;. Vertices
with no predecessors are called source vertices and vertices with no successors are defined
as sink vertices. Let (v), o(v) be the indegree and outdegree of vertex Let; r=
| { source verticels| and»=| { sink vertices | . Let.randr, be the number of register
read and write operations respectively. Finally, recall thatrepresents the number of
memory read operations amd,, represents the number of memory write operations.
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Each data edge corresponds to a pair of read, write operations. These read and write
operations can be either from memory (Load) or from already register-stored values.
Register values are either a product of load from memory or a computed result. Clearly, all
values that are not computed need to be loaded from memory at least once (contributing to
m,). Further, all computed values that are not used must be stored into the memory at least
once (and thus contribute ta.,). Let R be the total number of unrestricted (i.e., general
purpose) registers available (not including any registers needed for operand storage). In
case the number registefis limited, it may cause additional memory operations due
to register spilling. A register spill causes a register value to be temporarily stored to
and loaded from the memory. This spilling is fairly common in RM/MM processors
and coupled with non-orthogonal instruction sets, result in a significant number of data
transfers either to memory or to register operations (the latter being the most common).
The actual number of spills can be determined exactly given a schedule of machine-level
operations. Since this schedule is not under direct control, therefore, we concentrate on
bounds on the size of the spill sét.

Case I: R=0 In this case, for every instruction, the operands must be fetched from
memory and its result must be stored back into the memory. Therefore,

m, = | H (5.57)
me = | V]| (5.58)

Note that each register read results in a memory read operation and each register
write results in a memory write operation,.(=m ,) and (., =m ).

Case Il: R> R, where R, is the maximum number of live variables at any time. In
this case no spill occurs as there is always a register available to store the result
of every operation.

My =N, §| V| (560)
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Case lll: R<R; At some operation; there will not be a register available to write
the output ofv;. This implies that some register holding the output of operation
will need to be stored into the memory. Depending upon the operati@mosen,
there will be a register spill if output of; is still live, that is, it is needed after
execution of operation;. Of course, in the absence of a spill, there will be no
effect of register reallocation on memory read/write operations.

Let S C V be the set of operations that are chosen for spill.

m, =n i‘|‘ZO(Ui) < Zo(vi) =| E (5.61)
S %
me =n .4 S| <| V] (5.62)

Clearly, the choice of the spill set determines the actual number of memory read and
write operations needed. In software compilation, the optimization problem is then to
choose a spill sety such that"s ov ) is minimized. This is another way of stating the
familiar register allocation problem. As mentioned earlier, the notion of liveness of an
outputo (v ) of an operationp can be abstracted intoanflict graph

The optimum coloring of this graph would provide a solution to the optimum spill
set problem. This problem is shown to be NP-complete for general graphs [Cha82]. In
case of a linearized graph with no conditionals, nodes in the corresponding conflict graph
correspond to intervals of time and an edge indicates an overlap between two intervals.
Therefore, the conflict graph is an interval graph. For linearization purposes, operations
on conditional paths are treated as separate subgraphs that are linearized separately. Recall
that no timing constraint are supported on operations that belong to separate conditional
paths. For interval graphs, the coloring problem can be solved in polynomial time. That
is, a coloring of vertices can be obtained that uses the minimum number of colors, for
example, by using the left-edge algorithm [HS71]. However, a problem occurs when the
number of registers available is less than the minimum number of registers needed. In
this case, outputs from a set of vertices should be spilled to memory and the conflict graph
modified accordingly so that the new conflict graph is colorable. We use the following
heuristic to select operations for the spill. First, a conflict grdphfor a given schedule
is built by drawing an edge betweenandv; if any of the output edges ef, span across
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v;. From this conflict graph, we select a vertexwith outdegree less thaRt This vertex

is then assigned a register different from its neighbours. From this we construct a new
conflict graphG’; by removingy and its fanout edges fror@;. The procedure is then
repeated oG, until we have a vertex with outdegree greater than or equd?. tdn

this case, a vertex is chosen for spilling and the process is continued. Example 5.4.6
illustrates the procedure.

For these calculations, we assume that eachimplemented as a closed sequence of
assembly language instructions, though it is possible that the source language compiler
may rearrange operations. The effect of this rearrangement, however, can assumed to be
only to reduce the total register usage requirements.

Effect of multiregister nodes

The register usage of compilers is determined by the generatiowabfe and Ivalue
[ASUB86]. The rvalue is the result or value of evaluation of an expression (or simply the
right-hand side of an assignment). In the case of logic nodes, the (recursive) organization
of equations gives an estimate of the number of rvalues needed (plus additional rvalues
due to shifts). For most assignment statements, the left side generates a Ivalue and the
right side generates a rvalue. However, in case of pointer assignments and structure
and indirect member references (common in logic nodes) left hand side also generates
rvalues which are subsequently assigned to appropriate lvalue also generated by the left
side. This generation of an rvalue by the left side happens in two cases:

1. Write operation
2. Logic operations

In both cases, the left hand side generates a rvalue that is assigned to a left hand generated
Ivalue.

We extend our estimation procedure for the spill set in the case of operation vertices
with multiple register usage simply by using a weighted graph model where the weight
of each vertex is given by the number of rvalues it generates, th&tis=V, E, w)
wherew(v) =| rval ue(v)| andw(e = v;) =w(v ;). The above relations hold by
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replacing
|V =) w(v) (5.63)
14
| Bl =) we) (5.64)
I

The following proceduresingle thread static storage(G)determines maximum num-
ber of live variablesR;, in a linearized graph modef;. We assume that each operation
vertex requires at least one cycle and hence any data transfer across operation vertices in
the flow graph requires holding register.

Input flow graph modelG(V, E)
Output 5 (G'), static storage for a linear code implementatiort:of
singlethreadstatic storage(G) {

H = linearizg () * linearize vertices */
count = storag = 0 ;
Vu eV (H){ * determine max live variables */
Yv € sucqu)
count = count «w(u > v ) ; [* add new registers */
Vv € predu)
count = count w (v > u ) ; [* subtract registers for completed operations */

storage =maxcount, storage) ;

return storage

}

RM ISA Architectures

Practical RM ISA architectures feature small register sets with non-orthogonal instruc-
tions. That makes register spills a very common occurrence in the compiled code. But
more importantly, due to non-orthogonality of instructions, a substantial number (up to 27
%) of inter-registerdata transfer instructions are generated to position data to appropriate
registers from other registers [HP90]. These instructions do not affect the data storage,
SIT, but these alter the size of the program thread and its delay. It is hard to model such
instructions since these are dependent upon actual algorithms used in software compila-
tion. A better technique would be to perform compilation of the assembly code within



152 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

the system. This provides a greater handle over the estimation of generated instructions.
The following conjecture is suggested to estimate the additional operations.

Conjecture 5.1 For a given graph modek7 =(V, E), the following sum
'=m ,+m ,+ = V| H E| (5. 65)

is constant for all architectures. Here, represents the number of inter-register transfer
operations.

The intuitive reasoning behind this conjecture is that for a machine with no general
purpose registers, there will be no need for inter-register operations since operands can
be loaded directly into the required operand registers, andrthus0. This corresponds
to the case | discussed earlier. In the other two cases, the total number of data movement
operations can not be worse than the case with no registers.

Based on this conjecture, we can estimate the inter-register transfer operations by first
computingm, +m ,, =f (R) as a function of the number of available registe®sand
then applying Equation 5.65 above.

Example 5.4.6 Linearization and data transfer operations.

Consider the flow grapi/, shown in figure below consisting of 11 vertices and 12
edges withn; =3 andn , =2.

@@ @

9 /

/\

Each vertex produces an output variable that is named by the vertex label. Vertices
a, b, ¢ are input read operations, and verticesy are output write operations. A
depth-based linearization results in the following order

C7f7b7€7a7d7 h7i7y7j7$
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| R, | Spill set,= | Memory operationsyz, +m

>4 | {} 5
3|{9 7
2{9, 3, 11} 11

which gives the maximum number of live variablds, =4 according to algorithm
singlethreadstorage R; is the size of the largest clique in the interval graph shown
below. In the interval grapi/;, vertices represent edges@fand an edge between

OO

@Q\@

@\/\®
/@
\

OR©
two vertices in(y; indicates overlap between the corresponding edgés. in

For R > R ; =4: register assignment can be done in polynomial time. The spill
set,= =0. Therefore,;m , =n ; =3 andm ., =n , =2. Total number of memory
operations = 5.

For R =3 the largest clique id7 ; should be of cardinality 3 or less. Far ={9},

the total number of memory operations = 7. F6r={9, 3, 11}, the maximum
number of live registers is reduced to 2, while the number of memory operations
increases to 11. Note that in the worst case of static storage assignment for all
variables in(G, there would be 1#12 =23 memory operations

Note that we are not directly trying to minimize total register usage by the object
program since that abstraction level belongs to the software compiler. The objective
of spill set enumeration is to arrive at an estimate of memory operations assuming that
the program is compiled by a reasonably sophisticated software compiler that achieves
optimum register allocation when the maximum number live variables is less than the



154 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

number of available registers. Clearly this is only an estimate since the actual register
allocation will vary from compiler to compiler. In order to get insight into the effect of
software compilers, we briefly mention the common optimizations performed by most
software compilers in the following section. This discussion is not directly relevant to
the hardware-software co-synthesis scheme proposed by this thesis and for more detailed
discussions on the subject the reader is referred to [ASU86] [HP9O0].

5.4.3 Compiler effects
Compiler directed optimizations fall into following categories:
e Source level optimizations, for example, like procedure inlining.
e Basic-block level optimizations: common subexpression elimination (CSE), con-

stant propagation, expression tree height reduction.

Structure preserving transformations: dead-code elimination; renaming of tempo-
rary variables; interchange of two independent adjacent statements.

Note that these two categories of transformations are already taken care of by the
HDL compiler.

¢ Global optimization: copy propagation, code motion, induction variable elimination
(and other loop related optimizations)

e Machine register allocation

¢ Machine related optimizations: operator strength reduction, pipeline scheduling,
branch offset minimization

Of these, machine register allocation accounts for perhaps the most increase in effi-
ciency (20-50 %). Register allocation is possible and most effective for local variables
which are conventionally stored in the runtime stack. These locals are defined by the
storageM G) associated with the flow graph model.
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5.4.4 Software data size and performance tradeoffs

There exists a tradeoff between code size and data size for a given graph implementation
into software. The storage used bycan be packed to yield smaller data size, but this
results in a larger code size and therefore, greater execution times. On the other hand,
unpacked storage leads to larger data size but the code size is small. The key problem,
therefore, is to choose variables to be packed. One heuristic is to make a distinction
between data and control variables by treating variables that are assigned and tested to
be control variables. An alternative is to use a memory cost funafigorthat assigns a

cost value for a given memory size. This cost function is based on a model of storage
chips which come in various sizes; to m;, (e.g., 4K, 16K, 256K, 1M, 4M, 16M) with

cost per chip of; to ¢y.

C(MG) = [%} ¢ mi<M<m :a (5. 66)
Based on this cost model for the memory storage, we can determine the cost of the
minimum possible data storage based on packing of all the variable. The minimum data
storage is given by:
Mini n= {&-‘ (5. 67)
W
whereWis the width of the memory. Similarly, we can determine the maximum data

storage based on no packing, that is, every data is aligned to a word boundary:

Mupao= Vﬂ (5. 68)

The size of the software is given as the sum of the data size and the program size. In
case of a packed data, the program size increases somewhat due to additional operations
needed to access a packed data value. Between these two extremes of data storage, a set
of variables to be packed can be selected that leads to a lower cost of the memory.

5.5 Software Synthesis

The task of synthesis of software from flow graphs is divided into the following four
steps as shown in Figure 40:
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O O
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Flow graphs Program Threads Program Routines

Figure 40: Steps in generation of the software component

Step 1: Generation of linearized sets of operations oprogram threadsfrom flow
graphs. The operations that belong to a program thread are identified by system
partitioning (described in Chapter 6). The task of program thread generation to
ensure correct dependencies between program threads based on operation depen-
dencies. An optimization calledonvexity serializatioris applied to reduce the
overhead due to these dependencies. Convexity serialization is followed by lin-
earization of operations in subgraphs of the flow graph models. Program thread
generation is discussed in Section 5.6.

Step 2: Generation of program routines from program threads In addition to oper-
ations in the program threads, a program routine also contains operations that make
it possible to achieve concurrency and synchronization between program threads.
The essential problem in program routine generation is implementation of various
program threads for execution on a processor that supports only a single thread of
control at any time. This issue is discussed in Section 5.7.

Step 3: Code generation from program routines As mentioned earlier, for purposes
of retargetability, we generate C-code from program routines. Code generation re-
quires translation of operations defined in the flow graph model into corresponding
operations in C, a high-level programming language, identification of memory lo-
cations, binding of variables to memory addresses. This is discussed in Section 5.8.
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Step 4: Compilation of program routines into processor assembly and object code
C-programs are compiled using existing software compiler for the target proces-
sors. Some issues related to the interface of the object code to the underlying
processor and ASIC hardware must be resolved at this level. These are discussed
in Section 5.9.

5.6 Step I: Generation of Program Threads

A program thread refers to a linearized set of operations in the flow graph model. Op-
erations in a program thread are identified as a result of system partitioning discussed in
next chapter. By construction, a program thread is initiated by a synchronization opera-
tion, such as a blocking communication or a loop synchronization operation. However,
within each thread all operations have a fixed delay. The (unknown) delay in executing
the synchronization operation appears as a delay in scheduling the program thread and
it is not considered a part of the thread latency. Therefore, for a given re-programmable
device the latency of each thread is known statically.

Recall that thewvait operation is referred as a synchronization operation. Depending
upon the number of synchronization operations in a flow graph, the graph model can be
implemented as a single or multiple program threads. In the absence of any synchroniza-
tion, a simple graph model can be translated into a single program thread by ordering
all the operations of the graph model (assuming that such an order exists under timing
constraints§. On the other hand, a hierarchical system model is implemented as a set of
program threads where each thread corresponds to a graph in the model hierarchy.

A partitioning of the system model results in identification of subgraphs in a flow

3Note that if no linearization of a graph model withoutD operations exists under timing constraints,
then there does not exist any linearization using multiple program threads that would meet the timing con-
straints. This is due to the fact that the constraint graph model can be partitioned into strongly-connected-
components (SCCs), such that a linearization of the graph model exists if and only if linearization for each
SCC exists [Ku91]. Since the SCC contains no synchronization operations, therefore, any implementation
into multiple threads will only be worse than a single thread implementation due to additional runtime
overheads required.
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graph model that belong to separate program threads. There may be dependencies be-
tween operations that belong to separate subgraphs and hence separate threads. Repre-
sentation and incorporation of these dependencies is discussed next.

Control Flow in the Software Component

Since multiple program threads may be created out of a graph model each starting with
an A'D operation, software synchronization is needed to ensure correct ordering of op-
erations within the program threads and between different threads. Some threads may
be hierarchically related, that is, dependent whereas some program threads may need
to be executed concurrently based on the concurrency among the corresponding graph
models. Concurrency between program threads can be achieved by using an inter-leaved
computation model as explained later in this section.

Example 5.6.7 Concurrent and dependent program threads.

T1

S

™ ]

Figure above shows subgraphs and corresponding program thil@ads, and 7.
Bold circles indicate synchronization operations. ThreéAgdsnd T, are concurrent
where as thread3s is dependent upof; and7%. O

Since the total number program threads and their dependencies are known statically,
the programs threads are constructed to observe these dependencies. A program thread
is in one of the following three statefetached enabledor running While the details
of the mechanism to enable and select from a set of program threads are described in
Chapter 7, it is sufficient to note here that a detached thread is first enabled before it is
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able to run. The dependencies between program threads are, therefore, implemented by
altering the enabling condition for program threads. In our implementation of hardware-
software systems, this enabling of program threads is achieved by a special run-time
first-in/first-out (FIFO) structure, callecbntrol FIFO . A thread is enabled only when its
located in the control FIFO. Before detaching, a thread performs one or engigeue
operations to this FIFO for its dependent threads as shown in Example 5.6.8 below.

Example 5.6.8 Inter-thread control dependencies.

@ before T1
Thread T1 .
Tl
/ \ <b0dy>
enqueue (T2) on cFIFO
enqueue (T3) on cFIFO after T1
() (1) dash
Flow Graph Thread Control FIFO

Figure 41: Use of enabling condition to build inter-thread dependencies.

Figure 41 shows program threadis and 73 that are enabled by the program thread
T1. The<body> refers to the (linearized) set of operations from the corresponding
graph models for program thredd. Control dependency from thread T1 to T2 is
built into the code of T1 by the enqueue operation on the control FIFO.

A thread dependency on more than one predecessor thread (that is a multiple indegree
(fanin) node in the flow graph) is observed by ensuring multiple enqueue operations for
the thread by means of a counter. For example, a thread node with a indegree of 2 would
contain a synchronization preamble code as indicated by the while statement shown in
Example 5.6.9 below.

Example 5.6.9  Thread with multiple input control dependencies.

Here threadl; is enabled by thread%, and 75. This is accomplished by two
enqueue operations B, and T3 before the thready is ready to run.O

Control transfer for multiple fanin nodes entails program overheads that add to the
latency of the corresponding threads. For this reason, an attempt should be made to reduce



160 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

Thread T1

while (count != 1) @ @
{

count = count + 1;

detach

}
<body>
count =0

enqueue <successor threads> on cFIFO
detach

multiple dependencies for a program thread through a careful dependency analysis. In
case of multiple outdegree nodes in the flow graph, a necessary serialization among
enabling of successor threads occurs. However, this serialization is of little significance
since there exists only a single re-programmable component.

Convexity serialization

In case there is a dependency between two program threads caused by a dependency
between two operations within the bodies of the program threads, this leads to an enabling
operation for the successor thread within the body of the enabling thread. The dependent
thread is run to its execution until just before the dependent operation and then it is
detached before executing the dependent operation. This leads to overheads in execution
of dependent program threads that must be resumed by the runtime scheduler before
completion. An alternative is to modify these ‘in-body’ dependencies between program
threads by making the subgraphs corresponding to program threads convex.

We define a subgraph to mnvexif the subgraph has a single entry and exit op-
erations. For a convex subgraph, the corresponding program thread once invoked can
run its execution to completion without any need to detach in order to observe the de-
pendencies. A convexity serialization is based on the property of partial orders that an
edge from operation to v indicating dependency, >v can be sufficiently replaced by
either a dependency > w wherew is a (transitive) predecessor of that is,w > * v;
or by a dependency > v wherew is a (transitive) successor af that is,u > * w.

Convex serialization is used to obtain convex subgraph. This results in a potential loss of
concurrency, and timing constraint analysis must be performed on the modified constraint
graphs to ensure constraint satisfiability is maintained. However, it makes the task of
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routine implementation easier since all the routines can be implemented as independent
programs with statically embedded control dependencies.

Example 5.6.10  Convex subgraphs.

Figure 42 below shows a flow graph that is to be implemented in software. Op-
erations ‘b’ and ‘c’ represent synchronization operations (defined as anchors in
Chapter 4. Recall that the anchor set of an operation refers the séthobper-
ations that the operation (transitively) depends upon. The determination of which
thread an operation belongs to is made by examination of its anchor set. Operations
with the same anchor set belong to the same program thread. In this example, the
shaded vertices share the same anchor set containing operations ‘b’ and ‘c’.

T ————Tc Th ~————— Tc

Figure 42: Convexity serializations and possible thread implementations.

There are three possible ways to implement the program threads as shown. In all
three cases the dependencies created due to convexity serialization are shown by
dashed arrows. Let consider the first case that leads to two program thigads,
and7.. The edgee, f) can be replaced by an edg¢e, ¢) sincec is a predecessor

of f. Similarly, edge(e, k) can be replaced bie, ¢). This convexity serialization
has two effects: one, it creates two dependent program threads, Wheepends
uponT} and secondly, the edde, ¢ ) creates additional dependeng@y, ¢) that was

not present in the original flow graph. This leads to a potential loss of concurrency
mentioned earlierD

Though only a feature of representation, the use of hierarchy to represent control flow
is well suited to eventual implementation of the software component as a set of program
routines. Since all the operations in a given graph model are eventually executed, the
corresponding routines can be constructed with known and fixed latencies as explained
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earlier. As with the graph model, the uncertainty due to data-dependent loop operations
is related to invocations of the individual routines corresponding to the loop body.

Rate constraints and loop implementations

A software implementation consisting of dynamic invocations of fixed latency program
threads simplifies the task of software characterization for satisfaction of data rate con-
straints. Satisfaction of imposed data rate constraints depends on the performance of the
software component. It was shown in previous chapter that minimum rate constraints on
flow graphs withA/D operations lead td/"D-cycles which can be checked for marginal
satisfiability of the rate constraints. The resulting producer consumer system can be
transformed by means of buffers such that it is better able to meet the rate constraints. In
the following we describe the software realization of these transformations. The simplest
case occurs foweakly preindexetbop operations, for which the loop index is computed
before invocation of the loop and is unaffected by the body of the loop operation. For
these loops, thelynamicloop execution model can be transformed intpseudo-static

loop execution model as follows. Consider, for example, a software component that
consists of reading a value followed by AfiD loop operation shown in Example below.

Example 5.6.11  Consider a mixed implementation shown by the figure below.

port x

P samples/sec

Processor

The ASIC component sends to the processor some data o abran input rate
constraint ofp samples/sec. The function to be implemented by the processor is
modeled by the following HDL process fragment.

process test(x, ...) | Thread T1 Thread T2
in port x [SIZE]; |
{ | read <loop_body>
| enqueue T2 x=x-1
read X ; | detach if not (x <= 0)
repeat | enqueue T2
| detach
<loop-body> |
X =x-1; |

} until (x <= 0); |
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X is a boolean array that represents an integer. In its software implementation,
this behavior is translated into a set of two program threads shown on the right,
where one thread performs the reading operations, and the other thread consists of
operations in the body of the loop. For each execution of thread T1 there are
execution of thread T20

Due to "D loop operation, the input data rate at pei variable and is dependent
upon value ofx as a function of time. For each invocation of thread T1 therexare
invocations of thread T2. In other words, thread T1 can be resumedxafteocations
of thread T2. In absence of any other data-dependency to operations in the loop body,
thread T1 can be restarted before completing all invocations of thread Tfibgring
the data transfer from thread T1 to T2. Further, if variabig used only for indexing the
loop iterations (that is, weakly preindexed loops), the need for inter-thread buffering can
be obviated by accumulating valuexinto a separate loop counter as shown in example
below. We call such an implementation of a loop construct in softwgreeaido-static
loop based on the fact that an upper bound on the number of iterations of the loop body
is statically determined by the data rate constraints on inputs and outputs that are affected
by the A'D loop operation.

Example 5.6.12 Transformation of theV'D loop in Example 5.6.11 into a
pseudo-static loop

process test(x, ...) | Thread T1 Thread T2
in port x [SIZE] |
{ | read <loop-body>
integer repeat-coun t=20; | add op repeat-count--
read X ; | enqueue T2 if I(repeat-count <= 0)
repeat-count = repeat-coun t+ x| detach enqueue T2
repeat | detach
I
<loop-body> |

repeat-count = repeat-count-1; |
} until (repeat-count <=0); |

}

For each execution of thread T1 there are maxn) execution of thread T2 where
constantmis determined by input data rate constrapit,on the read operation in
T1 given by the relation% =(A 1+ Ar2)- T where the thread latencigs and
A1z include synchronization overheadg)( = denotes cycle time of the processor.
O

In this case, we can provide a bound on the rate at which port is read by ensuring
that the read thread, T1, is scheduled, say after utmogérations of the loop body.
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Due to accumulation of repeat-count additional care must be taken to avoid any potential
overflow of this counter. [Generally, overflow can be avoidednifs greater than or
equal to the average value »f In the extreme, it can be guaranteed not to overflow if
mis at least maximum af which is equivalent to assigning worst-case delay to the loop
operation].

5.6.1 Implementation of inter-thread buffers

With concurrent program threads, to a certain extent, we can insulate the input/output data
rates from variable delays due to other threads by buffering the data transfers between
threads. Thus, thénter-thread buffers hold the data in order to facilitate multiple
executions among program threads. Threads containing specific input/output operations
are scheduled at fixed intervals via processterruptsas shown in the Example 5.6.13
below. In this scheme, finite-sized buffers are allocated for each data-transfer between
program threads. In order to ensure the input/output data rates for each thread, we
associate a timer with every 1/0 operation that interrupts the processor once the timer
expires. The associated interrupt service routine performs the respective 1/0 operation
and restarts the timer. In case a data item is not ready the processor can send the previous
output and (optionally) raise an error flag.

Example 5.6.13

Thread T2 Timer Process T1 (interrupt service routine)
<loop_body> timer-- per clock tick read x
x=x-1 if (timer == 0) load timer = CONSTANT
if not (x <=0) interrupt enqueue (x) on dFIFO
enqueue T2 enqueue T2
else detach

x = dequeue dFIFO
detach

Thread T1 is now implemented into an interrupt service routine that is invoked
at each expiration of the timer process. The timer process represents a processor
timer (or an external hardware timer) that is used to generate interrupts at regular
intervals. The interruption intervé&@ONSTANTs determined by the rate constraint

and latencies of interrupt service routines. dFIFO in the interrupt service routine
refers to the buffer between threads T1 and T2.
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This scheme is particularly helpful in the case of widely non-uniform rates of production
and consumption. In this case, the data transfer from processor to ASICs is handled by
the interrupt routines, thereby leading to a relatively smaller program size for the cost of
increased latencies of the interrupt service routines. Chapter 8 presents implementation
costs and performance of this scheme.

Next, we consider the problem of software synchronization and scheduling mecha-
nisms to make a hardware-software system design feasible.

5.7 Step II: Generation of Program Routines

Since the processor is completely dedicated to the implementation of the system model
and all the program threads are known statically, the final program can be generated in
one of following two ways.

1. Generate a single program routine that incorporates all the program threads. This
approach is discussed in Section 5.7.2.

2. Provide for multiple-thread executions by means of operation interleaving as dis-
cussed in Section 5.7.1.

In the first case, we attempt to merge different routines and schedule all the operations
in a single routine. The unbounded delay operations are explicitly handled either by
busy-waiting or by executing specific context-switch operations. In the second case,
concurrency between threads is achieved by interleaved execution on a single processor.
In principle, operation interleaving can be as “finer-grained” as the primitive operations
performed by the processor, that is the assembly instructions. However, we make a
further assumption that interleaving is performed at the level of operations used in the
flow graph model. This assumption is made to avoid otherwise excessive overheads due
to implementation of concurrency at processor instruction level which is out of the scope
of this work.
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5.7.1 Concurrency in software through Interleaving: Coroutines

The problem of concurrent multi-thread implementation is well known[AS83]. In general,
multiple program threads may be implemented as subroutines operating under a global
task scheduler. However, subroutine calling adds overfieadih can be reduced by
putting all the program fragments at the same level of execution. Such an alternative
is provided by implementing different threads as coroutines [Con63]. In this case, the
routines maintain ao-operativerather than &hierarchical relationship by keeping all
individual data as local storage. The coroutines maintain a local state and willingly
relinquish control of the processor at exception conditions which may be caused by
unavailability of data (for example, a data dependency on another thread) or an interrupt.
In case of such exceptions the coroutine switch picks up the processes according to a
predefined priority list. Upon resumption a coroutine execution starts execution from the
position where its was detached last. Implementation of the code for such a scheduler for
coroutines takes approximately 100 bytes in an instruction set that supports both register
and memory operands. To implement a coroutine in a general purpose microprocessor,
each coroutine must have its own stack. There can be two approaches to make the context
switch. One, each process in software knows which process will be executed next, so it
may transfer directly to the next process. In this case, the coroutine transfer is executed
in 34 instructions or 364 clock cycles (for the 8086). The second approach assumes a
third process called task managemwhose function is to provide some priority scheme

to the execution of the processes. This transfer in this case is more expensive, taking
728 clock cycles plus the task manager execution time.

5.7.2 Software implementation using description by cases

Any sequential program can be thought of as a finite-state machine with program counter
acting as a state variable. Based on this concept, we can merge different routines and
describe all operations in a single routine using the methodestcription by cases

[Kin67]. This scheme is simpler than the coroutine scheme presented above. Here we
construct a single program which has a unique state assignment for each synchronization

4The overheads are mostly due to operations to carry out runtime storage management.
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| Implementation | Processor type Overhead cycle$
Subroutine R/M 728
Coroutine R/M 364
Restricted Coroutineg R/M 103
Description by cases R/M 85
Restricted Corouting L/S 19
Description by cases L/S 35

Table 6: Comparison of program thread implementation schemes

operation. A global state register is used to store the state of execution of a thread.
Transitions between states are determined by the runtime scheduling of difféfent
operations based on the data received.

This method is restrictive since it precludes use of nested routines and requires de-
scription as a single switch statement, which in cases of particularly large software de-
scriptions, may be too cumbersome. Overhead due to state save and restore amounts
to 85 clock cycles for every point of non-determinism when implemented on a 8086
processor. Consequently, this scheme entails smaller overheads when compared to the
general coroutine scheme described earlier.

Table 6 summarizes program overhead for different implementation schemes. The
processors are categorized based on their instruction set architectures as described in
Section 5.1.0verhead cyclegefers to the overhead (in cycles) incurred due each transfer
operation from one program thread to another.S@broutineimplementation refers to
translation of program threads to program subroutines that operate under a global task
scheduler (or thenain program). ACoroutineimplementation reduces the overhead by
placing routines in a co-operative, rather than hierarchical, relationship to each other. A
Restricted coroutinemplementation reduces the overhead further by suitably partitioning
the on-chip register storage between program threads such that program counter is the
only register that is saved/restored during a thread transfer. In case of R/M processors the
case description scheme reduces the overhead by reducing amount of ALU operations
in favor of a slight increase in memory input-output operations. By default, Vulcan
generates coroutine based implementation of software.
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5.8 Step lll: Code Synthesis

This section describes the translation of program threads into corresponding C-code.
Since, a program thread essentially consists of a sequence of assignments. Therefore,
its translation into a corresponding imperative language like C can be performed as a
syntax-directed translation of the program threads into C source-code.lvalue for
each assignment can be either a variable, or a bit-vector with a rangavdlbe of an
assignment is an expression which either a variable or one or two operands with a unary
or binary operation respectively.

This translation procedure is described using extended BNF notation. The following
describes the terminal, non-terminal symbols and the printing actions associated with the
syntax-directed translations of the program threads.

Terminal Symbols:

VAR = symbol

SVAR = symbol[h:]]

CONST = value
UOP = ~ - )
BIOP =+ |-l @ > |<<]&|&&][]]I]|

print_assignment()
assignment: Ivalue = rvalue

lvalue : VAR
print symbol = print_rvalue()
VAR

print symbol &= CLEAR_MASK
print symbol |= print_rvalue() << |

}
print_rvalue()

rvalue : opnd
| UOP {print UOP} opnd
| opnd BIOP {print BIOP} opnd
| FUNCTION {print name(} opnd opnd ... {print ) }

opnd : VAR
print symbol

| SVAR
print symbol > > 1 & ~(~O << h-l+1)

| CONST
print value

5.9 Issue in Code Synthesis from Program Routines

As mentioned earlier, we generate C-code from partitioned graph models. The use of a
high-level programming language for software generation provides the ability to generate
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the corresponding object code for most commonly used processors. Whileethiis
getability can be realized for most of the software component, there are certain program
implementation issues that must be addressed while compiling and loading the generated
C-programs. In this section, we address the major practical implementation issues.

5.9.1 Memory allocation

The C-compiler uses two kinds of memory structurestackfor storing local variables

in order to facilitate subroutine calls; andh&ap for dynamically allocating memory
space to run-time generated data structures. When using target systems with limited
available memory (especially in case of microcontrollers where the on-chip memory
is severely constrained), the unconstrained use of stack and heap space may lead to
runtime exceptions that may make the software component non-functional. Fortunately,
the use of both stack and heap can be avoided by performing static memory allocation
in the generated program. Static memory allocation makes the generated pragram
recursive and non-reentrant. The non-recursive nature of the software component is
not an issue since the input graph models are themselves non-recursive, thus ruling out
the possibility of recursion in the generated programs. A non-reentrant program cannot
be entered by more than one task. This is usually a problem in case of general-purpose
computing systems where a program execution must co-exist with other programs and
the operating system software. In our application, the only restriction placed by non-
reentrant code is that the main program and the interrupt service routines must not share
any procedure calls.

5.9.2 Data types

The standard C programming languages supports the following data types: char, short
int, int, long int, float and double. Format compatibility for the encoded/interpreted
data types (types other than bit-vectors) becomes an issue when interfacing a general-
purpose processor to external hardware such as A/D converters. Further, most standard
C-compilers support declaration prefixesnstand volatile. A constdeclared data set
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can be mapped to on-chip read-only memory (ROM). For variables declared as shared-
storage between program threads and as memory-mapped I/O variables, the use of a
volatile declaration preserves these variables from any compiler-driven optimizations.

5.9.3 The C Standard Library

The standard C-library contains procedures that are called by most C-programs. Most
of these procedures are coded as C-programs thus making them portable across systems.
However, some of these procedures are written as assembly programs. Commonly used
assembly routines argetchar() and putchar() that are used for most I/O operations.
These routines must be written for the target processor.

5.9.4 Linking and loading compiled C-programs

When using the routines from the standard C-library, only the routines used by the pro-
gram are loaded into the object image. The object image consists of memory-relocatable
modules. A hardware-software interface often contains fixed memory locations for in-
terface semaphores, hardware devices addresses et cetera. When using relocatable object
code, fixed addresses can be generated and used by the program by creating special re-
locatable modules that are loaded at fixed addresses during executions. Use of smaller
relocatable modules for fixed-address generation avoids the problem of having to create
fixed-address object modules for the entire software component. Example 5.9.14 shows
how such modules can be used to address a fixed location interrupt vector table.

Example 5.9.14  Using relocatable modules to generate fixed-address locations

The interrupt-vector table is located at a fixed address 0xffd6. The following re-
locatable modulesector-table contains pointers to various service routines.
vector-table is compiled separately and loaded at address Oxffd6.

extern void reset();
extern void sci();
extern void spi();

void (* const vector-table[])() = {
sci(), /* SCI service routine */

spi(),
reset,

h
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Interrupt Vector Table

Fixed

/"" Location

Program Relocatable module Memory

Figure 43: Generating fixed addresses from C-programs

5.9.5 Interface to assembly routines

For a variety of reasons, assembly routines are often needed to simplify the task of
hardware-software interface tasks. Most common examples of assembly programs are
programs for runtime startup to setup the environment for the execution of C-coded
programs. A startup routine typically performs the following functions:

1. Load stack pointer (if using a stack)

2. Manipulation of hardware registers. Sometimes, a hardware register must be ini-
tialized within a certain time interval of power-up, and this can only be performed
by an assembly routine.

3. Initialize global variables either by initializing tleitomatic initialization blockn
static RAM memory generated by the C-compiler for auto-initialized variables, or
by using initialized values from a ROM.

The use of in-line assembly routines in C-programs simplifies the task of interfacing
object code to the underlying processor hardware. A common example of in-line assembly
is in enabling/disabling interrupts as shown by the Example below.

Example 5.9.15  Use of in-line assembly.
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main()

_asm("di\n");
<critical code>
_asm("ei\n");

a

As a matter of programming convenience, in-line assembly instructions need not use

explicitly assigned processor registers. Most C-compilers allow the use of C-expressions

as operands to assembly instructions. This allows us to use critical functions as assembly
macros in C source programs as shown by the example below.

Example 5.9.16  C functions as assembly macros

#define sin(x) \

({double _value, _arg = (x) ; \

asm ("fsinx %1, %0" : "=f" (_value) : "f* (Larg)); \
_value; })

The assembly instructiosinx uses C expressionas an operand. Type declaration

+ indicates that a floating point register must be used for this operand:r A
declaration indicates that output is a floating point register. The output operand
value Mmust be a write-only-value O

5.10 Summary

While it is relatively straightforward to generate the actual program code from flow
graphs, synthesis of software is complicated by the timing constraints. A model for the
software and the runtime system is presented that consists of a set of program threads
which are initiated by synchronization operations. Use of multiple program threads avoids
need for a complete serialization of operations which may otherwise ctéBtecycles

in the constraint graph.

Under timing constraints, linearization of a part of a flow graph may also not be pos-
sible. A heuristic linearization algorithm is suggested to perform operation linearization
as a topological sort with a measure of urgency of scheduling operations based on timing
constraint analysis on an unconstrained implementation.
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The software generation is performed in steps, whereby first we create a linearized
set of operations collected into program threads. The dependencies between program
threads is built into the threads by means of additional enabling operations for depen-
dent threads. Further additional overhead operations are added to facilitate concurrency
between program threads either by means of subroutine calling, or as coroutines or as
a program with case descriptions. Finally, the routines are compiled into machine code
using compiler for the processor.



Chapter 6
System Partitioning

In this chapter we address the problem of partitioning of system functionality with the
objective of achieving an implementation into separate components. The partitioning
problem is of two typesthomogenou®r heterogenous The objective of homogenous
partitioning is to partition a system functionality into minimal number of parts such that
all parts are implemented completely in hardware or software. Homogenous partitioning
for hardware is typically done under size constraints on each of the parts, whereas for
software implementations, the objective of partitioning is typically to increase resource
utilization in order to achieve speedup in overall execution time.

We focus here on the heterogenous partitioning problem, where the objective is to
partition the system model for implementation into hardware and software components.
One approach to heterogenous partitioning would be to consider it as a generalization of
the homogenous partitioning problem by treating the processogasexalized resourge
i.e., a resource that can implement multiple types of operations. However, there are in-
herent differences in the model of computation used for implementation of hardware and
software models. As was discussed in Chapter 3 the software component implements
model functionality as amstruction-drivencomputation with a statically allocated mem-
ory space. On the other hand, hardware components essentially opedsataabkiven
reactive components. Further, due differences in the primitive operations in hardware and
software components, the two computations proceed at very different instantaneous rates
of execution. Because of these differences in the models and rates of computation used

174
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by hardware and software components, it is necessary to allow multiple executions of

individual hardware and software models with respect to each other to achieve efficient

hardware-software system implementation. Further, the difference in the rates of compu-

tations causes variations in the rates of communication between hardware and software
components and thus entails a higher communication overhead than purely hardware or
software partitions, due to necessary handshake and buffering mechanisms.

Clearly, the problem of partitioning into hardware and software is much more com-
plex than partitioning for implementations into purely hardware or software. Often this
partitioning is carried out at levels of abstraction that are higher than what can be mod-
eled using conventional modeling schemes. In absence of requisite modeling capability,
the system partitioning simply can not be carried out without human interaction. Thus,
there exists a strong relationship between the models used for capturing system function-
ality and the abstraction level at which the partitioning is carried out. Fortunately, to a
great extent partitioning at various levels of abstraction can be carried out independently
so long as the objectives of partitioning are kept distinct. For example, a partition of
functionality into electrical and mechanical components can be carried out without obvi-
ating a need for subsequent partitioning of the electronic components into multiple chips
or boards. The partitioning procedure presented in this chapter attempts to perform a
division of functionalityat the level of operations specified in the hardware description
languageand is by no means a substitute for ‘conceptual’ partitioning usually carried out
at higher levels of abstractions. Indeed, it attempts to supplement the conceptual design
process by providing the system designer a means to handle the complexity associated
with a detailed design description consisting of language-level operations.

Against this broad context, the problem of system partitioning refers specifically to
a partition of the system model as described in Chapter 3. Recall that a system model
consists of a set of flow graphs. A flow graph model refers to the hierarchy of flow
graphs that implements a function or a process. This partitioning can be developed as
a collective set oftransformationson the flow graph model that achieve the correct
separation of functionality as embodied by the flow graphs. Since the flow models are
developed to allow estimation of performance and constraint analysis for hardware and
software, this analysis can be used in conjunction with partitioning transformations to



176 CHAPTER 6. SYSTEM PARTITIONING

ensure that partitioning objectives are met.

The partitioning problem for a flow graph refers to the assignment of operations in
the graph to hardware or software. This assignment to hardware or software determines
the delay of the operation. Further, the assignment of operations to a processor and
to one or more application-specific hardware circuit involves additional delays due to
communication overhead#\ny good partitioning scheme must attempt to minimize this
communication. Further, as operations in software are implemented on a single processor,
increasing the number of operations in software increases the degree of utilization of the
processor. Consequently, the overall system performance is determined by the effect of
hardware-software partition on performance parameters that go beyond the area and delay
attributes described in Chapter 3. Therefore, the key to achieving an effective partition
is to develop an appropriast modelthat captures relevant performance parameters
from the attributes of the flow graphs. This cost model is described next.

6.1 Partition Cost Model

The partition cost model is built upon the processor cost mfidaid the software model
using multiple program threads both described in Chapter 5. Figure 44 illustrates the
software model shown in Figure 38 in Section 5.2 further and shows various components
of the partition cost model and their relationship to the target architecture. The software
component is characterized by following properties:

1. Thread latency, \; (seconds) indicates the upper bound on the execution delay of
a program thread.

2. Thread reaction rate, p; (per second) is the invocation rate of the program thread.
A bound on the reaction rate of the program thread is determined by the imposed
rate constraintson the operations within the program thread.

3. Size of software S is the size of memory and data to implement the software.

The hardware component is characterized by its size. The hardwareSsizes
expressed in terms of number of cells needed to implement hardware using a specific
library of gates. It provides a measure of the actual area of hardware implementation.
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Figure 44: Components of the partition cost model
A hardware-software implementation is characterized by the following parameters.

1. Processor utilization, P indicates utilization of the processor. It is defined as
P=>X-o (6. 69)
=1

2. Bus utilization, B (per second) is a measure of the total amount of communication
taking place between the hardware and software. For a setvafriables to be
transferred between hardware and software,

B = ZT]‘ (6 70)
7=1

r; is the inverse of the minimum time interval (in seconds) between two consecutive
samples for variableg . This interval is determined by the rate constraint on the
input/output operation associated with a variable.

A patrtition of the system modet is refers to a partition of the flow graphs dninto
two groups such that one is implemented into hardware and the other into software. Since
a flow graph may be partitioned into hardware-software implementations, this separation
is modeled by transformations on the flow graph that generate two separate interacting
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flow graphs. Since these transformations may, in general, require replication of vertices
and edges in order to correctly model functionality, a partition of the flow graph is not
exactly a partition of graphs in the mathematical sense, that is, there may be an overlap of
vertices across partitions. This situation is not peculiar to hardware-software partitioning
but a necessary side-effect of partitioning at a behavioral level of abstraction.

Given the partitioning cost model, the problem of partitioning a specification for
implementation into hardware and software can then be stated as follows:

Problem P1: Given a system modeb, as set of flow graphs, and timing
constraints between operations, create a partitioftb) =¢ s p in to two
sets of flow graph mode®y and ¢s such that a hardware implementation
of ¢ and a software implementation @ implementsp and the following
is true:

1. Timing constraints are satisfied for all flow graphsdip and @5,

2. Processor utilizationP<l,

3. Bus utilization,B< B The bound on bus utilization is a function of
bus bandwidth and memory latency.

4. A partition cost function,
f(@) =a 1-Su(Pg) —a 2+ S"(Ps)+b - B< - Pd - |n} (6.71)

is minimized. Herdn{ defines the cumulative size of variabteshat
are transferred across the partition, argl, @, b, ¢ andd are positive
constants.

Parameters;, @, b, ¢ andd represent desired tradeoff among size of hardware, soft-
ware implementation, processor and bus utilization and the communication overheads.
Let us first consider the size metric$y and S”. The size of hardware is computed
from the size attribute of a operation.

Su(Pu)= > Su(Gi)= > > Sk) (6. 72)

G, €dy GiE@HUEV(®
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Since S(v) is a local property of the vertex, it does not include hardware costs for
control and scheduling logic circuits. Next, the software size is computed as

ST(@s)= > ST(G) = 3 [Si(Gi)+S [(G))]
Gi€dg Gi€dg
We use the following (worst case) approximation for the program size as the number of
rvalues denoted byw, associated with a vertex. That is,

S;Y(v) =0(w(v)) =A|rval ue(v)|)

where () refers to the order-of approximation. This approximation is based on the
observation that the number of instructions generated by a compiler would be related
to the number ofrvalues Of course, global optimizations will reduce the number of
instructions below this bound. However, use of this bound gives us a measure of the
software size during partitioning phase. It should be pointed out that in some compilers,
the number of instructions generated for a language-level operation may be more than
rvalues specially if certairrvalueslead to more than one assembly instructions. This may
happen especially during transformation that change the underlying operator, for example,
operator strength reduction. Still, the proportionality assumption for the program size to
the number ofvaluesis valid.

The data size5!’(v) is harder to calculate from operation-level attributes, since reg-
ister allocation affects the total data storage globally. From Ing. 5.56 in Section 5.4 we
have a bound on the data size as:

Si'(G) MG HP(G)|

where MG) is the storage variables associated wittand P(G) is the set of input

and output ports ofz. When partitioning a flow graph model into two models, to the
first order we can assume that the data/get) is replicated in both partitions in order

to ensure correct functionality of the resulting partitioned graph models. The effect of
a move of an operation on data storage is to change the set of input and output ports
of G. Even though this change increases the software size, it does not help the goal of
maximization of operations in the software. Instead, this change is accounted for as an
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adverse effect on the quality of the partition by increasing its communication overhead,
m Therefore,

Sf(v) =0 =5 @5 Z Z Aufv)) (6. 73)

Gi€PsveV( Q)

The next three parameters in the cost functiéh, Pand m are related to the
communication cost of the partition and the number of operations in the program threads.
All of these parameters can, therefore, be calculated from operation dependencies and
their attributes in the flow graph. Let us assign a weigfity, v) to the edggu, v) as
the size of data transfer from vertexto vertexv. For our implementations, a control
transfer from is simulated by means a data transfer on a port. The communication cost
| refers to the sum of edge weights over the edges that lie across the pattition,

The task of hardware-software partitioning requires evaluation and selection of op-
eration vertices in the individual flow graphs. An exact solution to the constrained
partitioning problem, that is, a solution that minimizes the partition cost function requires
evaluation of a large number of operation groupings which is typically exponentially
related to the number of operations in the system model. As a result, heuristics to find
a ‘good’ solution are often used with the objective of finding an optimal value of the
cost function. This optimality of the cost function is defined over grouping of opera-
tions achieved by some neighbourhood selection operations. Our heuristics to solving
the partitioning problem starts with a constructive initial solution which is then improved
by an iterative procedure by moving operations across the partition as explained by the
following pseudo-code.

> construct initial partitionww«— @ ¢

computef (wp)
repeat{
>l select a group of operations to move
create new partitiong’
>l compute f (=)

if f(o) <f(=)
accept movew s '
}until no more operations to move
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Before describing the heuristics, let us first take a look at the nature of the cost
function that is used to direct the heuristic search. The cost function consists of a set
of properties for example,Sy, 9', B B min our case. Since a large number of group
of operations are possible candidates for iterative improvement, the computation of the
cost function,f (=) significantly affects the overall time complexity of the procedure. A
cost function consisting of properties that require evaluation of the entire graph model at
each step of the iteration would add to the complexity of the search procedure. On the
other hand, an ideal case would be a cost function that camcbementallyupdated from
previous value, that is, the change in the cost function can be computed quickly. Such
a quick estimation also allows for variable-depth neighbourhood search methods also
such as Kernighan-Lin [KL70] or Fidducia-Matheysis [FM82], where many hypothetical
alternatives can be explored to select the ‘best’ group of operations to move. Let us first
examine the type of properties that constitute a cost function.

6.2 Local versus Global Properties

We need to capture not only the effects ssfesof hardware and software parts but
also the effect otiming behavior of these portions, as captured by processor and bus
utilization, into the partition cost function. During partitioning iteration, a movement of
an operation across the partition causes a change in its delay and therefore the latency of
the flow graph.

In general, it is hard to capture the effect of a partition on timing performance during
partitioning stage. Part of the problem lies in the fact that timing properties are usually
globalin nature, thus making it difficult to make incremental computations of the partition
cost function which is essential in order to develop effective partition algorithms. For
each local move, the timing properties must be calculated for the entire graph model,
which adds to the computational complexity of the heuristic search process.

Traditionally, there exists a spectrum of techniques in partitioning, and use of timing
properties in driving the partitioning search process. On one end of the spectrum are
partitioning schemes for hardware circuits which are mostly focussed on optimizing area
(and pinout) of resulting circuits and do not use timing properties. On the other end of
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Figure 45: Use of timing properties in partition cost function

the spectrum are partitioning schemes in software world where the objective of parti-
tioning is to create a set of programs to execute on multiple processors. These schemes
do make extensive use of statistical timing properties in order to drive the partitioning
algorithm [Sar89]. The distinction between these two extremes of hardware and software
partitioning is drawn by the flexibility to schedule operations. Hardware partitioning
attempts to divide circuits which implement scheduled operations, therefore, there is not
much need to consider the effect of partition on overall latency which is to a great extent
dependent upon the choice of schedule for the operatidnsontrast, the program-level
partitioning problem addresses operations that are scheduled at run-time. Because of this
ability to schedule operations at run time, the timing properties are more complex and
dependent upon the operating environment and external input to the software. Thus, a
statistical measure is often used to capture the timing properties of a partition.

As shown in Figure 45, we take an intermediate approach to partitioning for hard-
ware/software systems, where we use deterministic bounds to compute timing properties
that are incrementally computable in the partition cost function, that is, the new partition
cost function can be computed in constant time. This is accomplished by using a software

Ipartitioning for unscheduled flow graphs was considered in [GM90] that considers a cost function
using latency and size properties. The update of the latency in the inner loop of search for the best group
of operations was achieved by an approximation technique that allowed for incremental update of the
latency, even though it is a global property.
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model in terms of a set of program threads as shown in Figure 44 and a partition cost
function, f, that is a linear combination of its variables. Thus, the characterization of
software using\, p, PandBparameters makes it possible to calculate static bounds

on software performance. Use of these bounds is helpful in selecting appropriate parti-
tion of system functionality between hardware and software. However, it also has the
disadvantage of overestimating performance parameters. For example, the actual proces-
sor and bus utilization depends upon the distribution of data values and communication
based on actual data values being transferred across the partition. Instead we determine
the feasibility of a partition based on the worst case scenario and ensure that this worst
case scenario is handled by the partition alternatives being evaluated by the partition cost
function.

6.3 Partitioning Feasibility

A system partition into an application-specific and a re-programmable component is
consideredfeasible when it implements the original specifications and it satisfies the
performance constraints. We assume that the hardware and software compilation, done
using standard tools, preserves the functionality. We, therefore, concentrate on constraints.
There are two kinds of constraints that are used to determine feasibility of a partition:

1. Timing constraints as min/max delay and execution rate constraints, and

2. Performance constraints in terms of processor and bus utilization and ensuring that
the a given runtime scheduler is able to meet constraints on software.

As mentioned earlier, when partitioning system model into hardware and software
components the data rates may not be uniform across models. The discrepancy in data-
rates is caused by the fact that the application-specific hardware and re-programmable
components may be operated off different clocks and the system execution model supports
multi-rate executions that makes it possible to produce data at a rate faster than it can be
consumed by the software component when using a using a finite sized buffer. In presence
of multi-rate data transfers, feasibility of hardware-software partition is determined by
the fact that for all data transfers across a partition, the production and consumption
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data rates are compatible with a finite and size-constrained interface buffer. That is, for
any data transfer across partition, data consumption rate is at least as high as the data
production rate. The production and consumption rates for a data transfer are defined by
the reaction rate of the corresponding flow graphs.

6.3.1 Effect of runtime scheduler

The runtime scheduler refers to tmeain program in software that integrates calls to
various program threads implemented as coroutines. As explained in Chapter 5, the
runtime system used here mainly consists of a scheduler that invokes program threads at
runtime. This scheduler can be of the following two types:

¢ Non-preemptive runtime scheduler. Here a program thread executes either to
its completion or to the point when it detaches itself voluntarily (for example, to
observe dependence on another program thread). Most common examples of non-
preemptive schedulers are first-in-first-out (FIFO) or round-robin (RR) schedulers.
FIFO schedulers select a program thread strictly on the basis of the time when it
is enabled. A RR scheduler repetitively goes through a list of program threads
arranged in a circular queue. A non-preemptive scheduler may alpodréized
or non-prioritized Priority here refers to the selection of program threads from
among a set of enabled threads. Both strict FIFO and RR maintain the order to data
arrival and data consumption, no starvation is possible. A prioritized discipline may
however lead to starvation. Alterations in scheduling discipline are then sought to
ensure fairness, that is, the best prioritized discipline leads to least likelihood of a
starvation.

e Preemptive runtime scheduler These schedulers provide the ability to preempt
a running program thread by another program thread. Preemption generally leads
to improved response time to program threads at increased cost of implementation.
This ability to preempt is tied to an assignment of priorities to program threads.
The primary criterion in design of a preemptive scheduling scheme is in select-
ing appropriate priority assignment discipline that lead to most feasible schedules.
Priority selection can bestatic where the priorities do not change at run time, for
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example rate-monotonic priorities [LL73], dynamic for example deadline-driven
priorities [LW82].

We have so far considered only non-preemptive runtime scheduling techniques. The
reason for this is to keep the synthesized software simple. As was discussed in Chapter 5,
the implementation of multiple program threads in a preemptive runtime environment
leads to additional states for the program threads which adds to the overhead delay
caused by the runtime scheduler. This is not to say that non-preemptive scheduling
techniques are always sufficient for embedded systems. However, the very ability to do
runtime scheduling of operations provides a substantial departure from static scheduling
schemes used in hardware synthesis, and for the co-synthesis approach formulated here as
an extension of high-level synthesis techniques, the choice of a non-preemptive runtime
system provides a first step towards synthesizing embedded systems.

The basis for analysis of the runtime scheduler is provided by the intuition that its
is sufficient to show the feasibility of the scheduler by considering the case when all
threads are enabled at the same time. This observation has been used in analysis of
several runtime scheduling algorithms and has been formalized by Mok [Mok83].

A necessary condition to ensure that the reaction rates of all program threads can
be satisfied by the processor is given by the constraint that processor utilization is kept
below unity, i.e.,

P11 (6. 74
However, this condition is not sufficient. Consider the following example.

Example 6.3.1  Program threads and processor utilization.

Consider a software consisting of two program thredgsand 7%:

1
A1=10cycles , a=0. Ol_m per cycle

1
A2 =100 cycles , g =0. 001_m per cycle
The processor utilizationP = 10x 0. 01+ 100x 0. 001 = 0. 2 is well below
unity. However, in the worst, using FIFO scheduling, thrdadis enabled after
10+ 100= 110 cycles. Thus supportable reaction ratefgris 0. 0091 orﬁ) per
cycle which is less thap;. O
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For a program thread in a non-preemptive non-prioritized FIFO runtime scheduler, a
sufficient condition to ensure satisfaction of its reaction ratis given by the following
condition:

1 > YN (6. 75)

€ v threadsk
This inequality follows from the case when all the program threads are enabled simulta-
neously. In this case, a program thread is enabled again only after completing execution
of all other program threads. Note that this condition is only sufficient. It is also neces-
sary and sufficient for independent threads. In case of dependent program threads, only
a subset of the total program threads are enabled for execution, that is, those threads that
do not depend upon execution of the current thread. Therefore, the necessary condition
will be weaker and can be estimated by summation over enabled program threads in
Ing. 6.75.

From Ing. 6.75, a sufficient condition for software reaction rate satisfiability is to

ensure that
1

> Y (6. 76)

Omax vy threadsk
where pmax =Mmax ; o; defines the maximum reaction rate over all program threads. It is
interesting to note that the same condition for worst case reaction rate also applies for
RR schedulers, though the average case performance differs.

Remark 6.1 (Prioritized runtime scheduler) A prioritized FIFO sched-
uler consists of aset of FIFO buffers that are prioritized such that after
completion of a thread of execution the scheduler goes through the buffers
in the order of their priority. The program threads are assigned a specific
priority ¢» and are enqueued in the corresponding FIFO buffer. Thus, among
two enabled program threads, the one with the higher priority is selected. The
effect of this priority assignment is to increase theeragereaction rates for
the program threads with higher priority at the cost of decrease iavae
agereaction rate for the low priority threads. Recall that in a non-prioritized
scheduler the supportable reaction rate is fixed for all threads as the inverse
of the sum over all thread latencies. Unfortunately, the worst case scenario
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gets considerably worse in case of a prioritized scheduler: it is possible that
a low priority thread may never be scheduled due to starvation.

The average case performance improvement can be intuitively understood by
the following analysis. Consider a softwareofthreads, 7y, %, ..., T

with reaction ratesp;, o, ..., prespectively. Let)(T;) be the priority
assignment of one of the levels from 1iltpwith / being the highest priority
and 1 being the lowest priority. For each thread, let us ddfaekground
processor utilizatioras

(L) = > Ak Ok (6. 77)
Vo 2 (%) <y(d
That is,n(7;) provides a measure of the processor utilization by the set of
program threads with priority strictly lower thaf(T;). Thus theavailable
processor utilization for threads with priorities greater than equal 10 ) is
given by 1+ (7 ;). On an average, this can be seen as an extension in the
latency of program threads. Let us defineedfective latency\’ as

A = ﬁ(}l) (6. 78)
The average case feasibility condition is now defined as
L > > A (6. 79
o(T2)

thread Ty 3 (&) >4T)

As an aside we note that a prioritized scheduler can be used in conjunction
with a preemptive scheme. Here, the effect of priority assignment on support-
able reaction rates can be estimated by considering a reduction in available
processor utilization for a thread, caused by scheduling of higher priority
threads. This reduction in processor utilization can be modeled as increase
in the effectivelatency of the program threads, with the difference that the
execution of a program thread is now spread over a non-contiguous time
interval. For a review of the scheduling analysis using preemptive schemes
please see [SR88].
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To summarize, the notion of feasibility of a partition between hardware and software
buids upon the feasibility of each of the two components and additional constraints on
processor and bus utilization. To be specific, a flow gra@h,c® g is considered
feasible if it meets the timing constraints under the assignment of hardware operation
delays and no runtime scheduler. A flow gragh, €& s is considered feasible if it
meets the imposed timing constraints under the assignment of software operation delays
and software storage operations and there exists a feasible linearization of operations
in G; under the timing constraints. Timing constraint satisfiability can be checked by
the procedureshecksatisfiabilityas described in Chapter 4. Similarly, linearization can
be checked by the procedure outlined in Chapter 5. A partitiog of ¢ s and @y is
considered feasible if:

1. for all G; €@ 4, G, is hardware feasible,
2. forall G; €@ ¢, G, is software feasible,

3. For all program threads; in software, @5

L >3 A

maxo(T;) -
This condition also ensures that processor utilization is below unity.
4. Bus bandwidthB< B

We now consider possible approaches to realizing a partition of the system model in
to flow graphs for hardware and software.

6.4 Partitioning Based on Separation of Control and Ex-
ecute Procedures

A partition of functionality can be obtained by considering the system model as consisting
of interactingcontrol and executionprocedures. The execution procedures perform data
manipulation where as the control procedures direct the flow of execution and data. There
are two possibilities:
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Hardware Control Software Data

Data FIFO
SW Entry Points

~[—~ |—

Figure 46: Partitioning into Hardware Control and Software Execute Processes

1. The hardware generates the address and data values for software execute process
to start executing. In Figure 46 the software consists of a set of looping routines.
The input data and loop counts are provided to the software addressing unit by the
hardware.

2. The software control provides a mechanism to dynamically schedule hardware
resources. This case is similar to microcoded machines where microcode uses
different hardware resources to control flow of execution.

While promising, neither these approaches are considered further since the system model
does not explicitly make a distinction between control and execute procedures. Thus

separation of control and execute portion would require an extensive set of transformations

to the flow graph model.

6.5 Partitioning Based on Division of VD Operations

Our procedure for partitioning a flow graph model is based on the iterative improvement
procedure presented in Section 6.1. There are three main components to this procedure:

I. Creation of initial partition. The initial partition is constructed by creating program
threads for each of th&loop operations in the flow graph model. It is assumed
that for all the external synchronization operations, a corresponding rate constraint
is provided, which is used as a property of the environment with which the system
interacts. Due to this property, rates of data transfer for all inputs to the software is
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known. This rate of data transfer then defines the reaction rate of the corresponding
destination program thread. On the other hand, the rate of data production from the
software is determined by achievable reaction rate of the associated program thread.
Feasibility of a partition is checked by applying the routoteeckfeasibility.

ll. Selection of a group of operations to move across partition.Selection of opera-

tions requires a check for partitioning feasibility. Among the available vertices we
pick operation vertices with known and bounded delay. With this vertex moved
across the partition to software, its attributes are updated and the corresponding
graph model is checked for constraint satisfiability by applying the procedure
checksatisfiability in Chapter 4. If the move is a partitioning feasible more, the
next vertex to be selected is one of the immediate successors of the vertex moved.
This way, the group of vertices selected for a move constitutes path in the flow
graph. This heuristic selection is made to reduce the communication cost.

lll. Update of the cost function. After the initial computation of the cost function,

changes to the cost function are computed incrementally. A vertex move from
hardware to software, entails the following changes to the partition cost function:

Af =a 1 AS g —a 2 AS T 4b AB— AP And (6. 80)

1. Hardware siz&5y is reduced by the size attribute of the vertex according to
Equation 6.72. So the reduction in cost function due to move of vertex,
into software is given by

Af|SH:a1'S(v)

2. Software size5'’ is increased by thevalue attribute w of the vertex according
to Equation 6.73. So the reduction in cost function is given by

A | gn =a 2-w(v)

Note that the effect of an operation move into software is to increase the size
of the software which decreases the cost function.
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3. The change in communication costy is computed by examining the neigh-
bours of vertexp. This is also used to compute the change in bus utilization,
A8

4. Processor utilizatiorfis computed by considering two cases. One where the
reaction rate of the destination thread is unaffected. In this case the reduction
in cost function due to vertex move,to threadk is given by

Af[p=c-0x6(v)

wheresé (v ) refers to the software delay of operation In case, the operation
move changes the reaction rate of a thread;tothe effect on cost function
reduction is given by

Af|p =clo}o(v) Heol =0 ©)Ad]

The algorithm to perform graph-based partitioning is described by the following
pseudo-code. Starting with a system model, it examines flow graph models that in
¢ corresponding to each process model for possible partition. Procgaph partition
returns ataggedgraph indicating its partition into two graphs. Vertices in a tagged graph
are labeled according to their partition membership. This graph is then subject to parti-
tion transformations described later in Section 6.6 such that the resulting graphs correctly
implement the specified functionality.

Input System model¢ = { G} , Processor model/, Bus bandwidtl8, Runtime overheady
Output Partitioned system graph modél,= ¢ ¢ U &5

partition(®) {
bs =Py =10;
for each process graph {#; € ¢ {
graphpartition(“); [* returns a tagged grapldy; */
( G, Gs) = partitiontransformation(y); /* create separate graphs */
b5 =PsU{ G}
Py =y U{ G}
¥
¥
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graph.partition(G) {
Vg =V;
Vs =10,
>l forv e V(G {
if v is an D link operation
} Vs=Vs+{v},

create software thread§’y);

compute reaction rateg, for each thread;

if not checkfeasibility(Vy, 14)
exit ;
foin = f(Ver, 15);
repeat{
for vertexv € Vi andv is not D {
>l f min = moveg);
} until no further reduction ing,;
return(y, 16);
}

moveg) {
if check feasibility(Vy — { v}, ¢4+ {v})
=11 if Af >0

Vg=Vg—{v};
Ve=Vs+{v};
fmln_fmln Al

update software threads;

CHAPTER 6. SYSTEM PARTITIONING

[* create initial partition */

[* create initial| ¥| routines */

/* based on rate constraints */
/* no feasible solution exists */
/* initialize cost function */

[* pick a det. delay operation from hw */
* select operations to move to sw */

[* considerv for move fromy to Vg */

/* move this operation to sw */

update thread reaction rate of the destination thread,;

for u € succp) andu €
move:);
return fyin;

}
checkfeasibility@y, &) {
for all G, € &y
if not checksatisfiability(7,);
return not feasible;
for all G; € &g
if not checksatisfiability(7;);
return not feasible;
forall T; qﬁg

'f(max o( D) <Dk k)
return not feasible;
if B>8
return not feasible;
return feasible;

* identify successor for move */

* check partition feasibility */
/* check timing constraints for hardware */

/* check timing constraint for software */

/* runtime scheduler */

/* check bus utilization */
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The markersi> indicate the main steps of the algorithms as described earlier in the
beginning of this section. The algorithm uses a greedy approach to selection of vertices
for move into®s. There is no backtracking since a vertex moved mtostays in that
set throughout rest of the algorithm. For each vertex move, the change in the partition
cost function,4f is computed in constant time. The constraint satisfiability algorithm
checksatisfiabilitycomputes the all pair longest paths in the constraint graph which using
Floyd's algorithm runs in(|V| ®) time. Since this satisfiability check is done for each
possible vertex move, therefore, the complexity of the algorith@( j&7| 4).

6.6 Partition Related Transformations

From a partition of vertices in the input flow graph, a set of behavior-preserving graph
transformations are applied in order to generate resulting interacting flow graphs. These
transformations implement the abstract cut of the graph model. The following transfor-
mations are applied:

Replication - refers to replication of a vertex. This usually done to preserve the behavior
of the conditional paths to a vertex.

Insertion of IBC vertices - An edge that crosses a partition represents a communica-
tion between hardware and software. Depending upon the reaction rate of the
producing and consumer graph models, this communication can be either blocking,
nonblocking or buffered. Implementation of these communications is discussed in
Section 7.2.2. Appropriate interblock communication (IBC) vertices are added to
support the communication and synchronization between operations across parti-
tions.

In order to preserve the original sequencing dependencies for correct behavior, when
the called model is partitioned into two sets of operations it is essential to duplicate the
link vertex corresponding to the two model calls as shown in Figure 47. The link vertex,
C', is duplicated into two link vertice<,1 andC2 each of which calls the respective graph
model. Note that dependency edges ¢ ), (¢, b), (d, ¢), (¢, e) are modified accordingly in
order to preserve the original sequencing dependencies.
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Figure 47: Partition of link vertices

When the partitioned vertices that lie on conditional paths, it is important to maintain
the semantics of the conditional vertex by ensuring that the conditional logic associated
with the path to the operation is properly replicated in both partitions. In case of link
vertices related to loops, these vertices also contains logical conditions to either terminate
the call. In this case also the link vertex replication with additional control edges is
necessary in order to preserve the original behavior. Partitioning of a condition vertex
is achieved by duplicating first the condition vertex (which represents the operation that
computes the conditional clause) and corresponding join vertex in the (well-formed) flow
graph. The original and replicated vertices are assigned to different partitions.

6.7 Summary

Partitioning of a system model into hardware and software is a difficult problem due
the local and global properties of the costs involved in partitioning. Our approach to
partitioning is characterized by development of a suitable partition cost model that makes

it possible to incorporate both size and performance parameters into the partitioning
objective function, while at the same time allowing efficient incremental computation of
the cost function. This capability achieved by means of using deterministic bounds on
performance parameters such as processor and bus utilization using worst case analysis. A
disadvantage of this approach is the possible overestimation of the utilization parameters.
Based on our analysis of the runtime scheduler, we develop constraints on partitions that
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ensure feasibility of the partition to meet imposed constraints. This feasibility makes
use of the notion of constraint satisfiability as developed in Chapter 4 and proceeds by
performing graph analysis on individual hardware or software constraint graph models.
Our partitioning procedure is one of building an initial partition based on l&bp
operations, and then developing an iterative improvement procedure that uses partitioning
feasibility in selecting operations to be moved across the partition while maintaining
satisfiability of the imposed timing constraints.



Chapter 7
System Implementation

Hardware-software cosynthesis is not a single task but consists of a series of tasks.
These tasks are related to modeling of functionality and constraints, analysis of con-
straints, model transformations to ensure constraint satisfiability, partitioning of the model
and partitioning-related transformations, synthesis of hardware and software components,
simulation of the final system design. These subtasks have been implemented in a general
framework called VU L ¢ A N, that allows user interaction at each step of the cosynthesis
process and guides the system designer to the goal of realizing a mixed system design.
This chapter discusses the implementation of the Vulcan system and its relationship to
other tools to accomplish synthesis and simulation of hardware-software systems.

Further, the target architecture presented in Section 1.7.1 of Chapter 1 is simple
and leaves open many different possible ways of implementing the hardware-software
interface and communication mechanisms. We present the architectural choices made by
Vulcan and possible extensions and alternatives. We conclude this chapter by a discussion
of our approach to the cosimulation of hardware-software systems.

7.1 Vulcan System Implementation

Vulcan is written in the C programming language and consists of approximately 60,000
lines of code. Through its integration with the Olympus Synthesis System [MKMT90]
and DLX processor compilation and simulation tools [HP90], it provides a complete path

196
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Figure 48: Co-synthesis flow.
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Hardware synthesis

for synthesis of hardware and software foHardwareCdescriptions. A block diagram
of the co-synthesis flow was shown in Figure 11 in Chapter 1 and is reproduced in
Figure 48 for convenience.

The input to Vulcan consists of two components: a description of sylteationality
and a set oflesign constraintsThe design constraints consists of timing constraints and

constraints on parameters used during the co-synthesis process. Timing constraints are
specified along with the system functionality lHardwareCby means of theattribute
mechanism. These attributes make use of statenags that identify the operation
subject to constraints.
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Example 7.1.1  HardwareC description is annotated by the following attribute
commands to specify minimum and maximum execution rate constraints, identify
loop index variables, and specify clock names and cycle times.

.attribute “constrainkminrate—maxrate [<nunt>] of <tag> = <nunt> cps” Rate constraints

.attribute “loop-index<str> [<nunt>]" Index variable
.attribute “clock<str> [<nunt>]" Clock signal
.constraint mintime from<tag> to <tag> = <num> cycles Min delay
.constraint maxtime fromctag> to <tag> = <nun> cycles Max delay

O

This input is first compiled into a sequencing graph model (SIF) using the program
HercurLes [KM90b] by applying a series of compiler-like transformations. The se-
guencing graph model is then translated into the bilogic flow graph model by performing
the following operations:

1. Identify signal wait operations: these operations are specified as loop operations
with an empty loop body, e.g.,while(reset); " which defines just a (busy-
wait) implementation of the corresponding wait operation. The signal wait opera-
tions are unimplemented by defined as an atowa@t operations.

2. Merge SIF graphs on conditional hierarchies.
3. ldentify storage variables for each graph body.
4. Classify loop operations as pre- or post-indexed.

Some guidelines must be observed when specifying HardwareC inputs for cosynthesis
purposes. The arithmetic operations must be bound to resources in order to prevent
Hercules from generating combinational logic operations to implement the respective
operations. This can be done by mapping and binding arithmetic operations to specific
library functions or to ‘dummy’ operators which are translated into respective operators
without associated function calls. This limitation has to do with the fact that even though
the semantics of SIF is general enough to support arithmetic operations on multi-bit
variables, the hardware synthesis of these operations must be carried out by explicit
function/procedure calls to specific library modules.
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7.1.1 Data organization in Vulcan

The organization of data in Vulcan is shown in Figure 49. Vulcan maintains a list of
hierarchically connected graph models. The flow graph models may be implemented or
unimplemented. In addition, Vulcan maintains a list of processor cost models and cost
models for implementation of software and hardware. The format of the processor cost
model is described in Appendix C. The cost model for hardware and software store
the results of actual hardware and software synthesis and are updated by the mapping
results from hardware synthesis, and by parsing the dissembler output respectively. The
algorithms for analysis and transformations are applied on these graph models. At this
time, all transformations of the graph model are user driven. The model manipulation
routines automatically update the list of models after transformations and update the cost
models and attributes with the result of analysis.



200 CHAPTER 7. SYSTEM IMPLEMENTATION

7.1.2 Command organization in Vulcan

Vulcan provides an interactive menu-driven interface that is modeled after theUnix
shell and was originally developed by Frederic Mailhot [MKMT90]. This interface pro-
vides the typical shell commands related to directory and file management, input/output
redirection, aliasing and history commands. Three levels of command complexity is
supported and command abbreviation is provided for advanced users. In addition, the
interface provides a ‘freeze’ command that saves the state of Vulcan system and data into
a dump file that can be restored later in case there is a need to back to some previous
step of the co-synthesis process. This user interface is supported across all the tools in
the Olympus Synthesis System, thus making it convenient for the user to move among
the tools in the same session.

Figure 50 shows the organization of Vulcan subsystems and their relationship to
hardware and software synthesis. Vulcan consists of following sub-systems. For each
of these sub-systems a command menu is presented that lists the commands relevant
to the subsystem. A history stack maintains the subsystems being used by the user.
This allows for excursions into different subsystems as needed (for example, model
manipulations related to constraint analysis may use synthesis results instead of using
estimation routines).

1. Model maintenance and manipulationgcommandenter _model ) supports ma-
nipulations and constraint satisfiability analysis on the flow graph model. The
maintenance functions include reading and writing of graph models, and cost mod-
el for the processors, identification of data and control dependencies and types of
loop operations.

2. Model partitioner (commandEnter _partitioner ) Partitioning is accom-
plished by first ‘tagging’ a flow graph model, followed by creation of individual
flow graph models through partitioning transformations. Assignment of graphs is
made on the basis of partitioning feasibility analysis that checks for constraint sat-
isfiability of hardware and software implementations of the individual flow graphs,
and feasibility of the runtime scheduler to support the hardware and software por-
tions based on processor and bus utilization.
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Figure 51: Flow of software synthesis in Vulcan

3. Hardware synthesis(commandEnter _hardware ) is performed by passing the
corresponding sequencing graph model to progrAms £ andCE R E s in the Olym-
pus synthesis system.

4. Software synthesis(commandEnter _software ) consists of tasks of program
thread identification, serializations, generation of routines. Figure 51 shows the
command flow in generation of the software component. The software synthesis
also performs generation of scheduling routines (enqueue, dequeue) and hardware-
software interface routines (transfie) for the runtime system.
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5. Interface synthesis and model simulationgcommandenter _interface ) In-
terface description is currently entered manually from specified models and inter-
face protocols. Simulation of the mixed hardware-software system is performed
by the program Poseidon described in Section 7.3.

The supported commands in each of the subsystem are listed in Table 7.

7.2 Implementation of Target Architecture in Vulcan

As mentioned earlier, there are several issues that must be resolved in order to bring the
target architecture described in Section 1.7.1 closer to a realization. Among the important
issues in iits implementation are use of communication and synchronization mechanisms
and the architecture of the interface between hardware and software components. We
assume that the communication across hardware-software is carried out over a commu-
nication bus. We further assume that only the processor is the bus master, thus obviating
a need for implementation of bus arbitration logic in the dedicated hardware.

7.2.1 System synchronization

System synchronization refers to mechanism for achieving synchronization between con-
currently operation hardware and software components. Due to pseudo-concurrency in
the software component, that is, concurrency simulated by means of operation interleav-
ing, a data transfer from hardware to software must be explicitly synchronized. Using
a polling strategy, the software component can be designed to peioermeditated
transfersfrom the hardware components based on its data requirements. This requires
static scheduling of the hardware component so that the software is able to receive the
data when it needs it. In cases where the software functionality is communication limit-
ed, that is, the processor is busy-waiting for an input-output operation most of the time,
such a scheme would be sufficient. Further, in the absence ofVahyoperations, the
software component in this scheme can be simplified to a single program thread and a s-
ingle data channel since all data transfers are serialized. However, this would not support



204

CHAPTER 7. SYSTEM IMPLEMENTATION

| Command | Description
Model maintenance and manipulations
buildrp Build resource utilization pool
checksatisfiability Constraint satisfiability analysis
dataflow Extract data-flow dependencies
flatten Flatten a flow graph
hierarchy Display hierarchy

list, rename, delete, prin
readsif, readcpu

tModel maintenance
Read sequencing model, processor cost model

Model partitioner

augment Augment a model with partitioning info
checkfeasible Partitioning feasibility analysis
cut Cut a tagged flow graph into two graphs
cuthier Show cut hierarchy
readattr, writeattr Read/write partitioning attributes
setp Set partitioning parameters
ki KL based partitioning heuristic to tag graphs
untag Untag a partitioned graph

Hardware synthesis
evallogic Evaluate hardware cost usitfe BE andCE R E S
mkblock Make an interconnection block for partitioned models
synthesize Pass model tdle BE andCE R Es for synthesis into hard
readcost Read synthesis cost model froHE B E

Software synthesis
linearize Linearization heuristic under timing constraints
blinearize Perform a breadth-based linearization heuristic
dlinearize Perform a depth-based linearization heuristic
estimspill Determine the spill set
estimdelay Estimate delay for software implementation of a flow grag
mkconvex Convexity serialization for a flow graph
mkthreads Generation threads
mkmain Write runtime scheduler
packboolean Pack storage of boolean variables
printcode C-code translation from flow graph
read/writeasm Read/write an assembly file

read/writedis_.asm

Read/write a dissembler output

Interface

write_poseidon |

Write interface description t#0s ET DON

Table 7: Vulcan (Rev 0) subsystems and commands.

ware

h
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any branching nor reordering of data arrivals since dynamic scheduling of operations in
hardware would not be supported.

In order to accommodate different rates of execution of the hardware and the software
components, and due t§"D operations, we look for @ynamicscheduling of different
threads of execution. Such a scheduling is done based on the availability of data. This
scheduling is by means ofantrol FIFO structure which attempts to enforce the policy
that the data items are consumed in the order in which they are produced. The hardware-
software interface consists of data queues on each channel and a FIFO that holds the
identifiers for the enabled program threads in the order in which their input data arrives.
The control FIFO depth is sized with the number of threads of execution, since a program
thread is stalled pending availability of the requested data. Thus the maximum number
of places in the control FIFO buffer would be the maximum number of threads in the
system. Example 7.2.2 below shows an example of the interface between hardware and
software.

Example 7.2.2  Hardware-Software Interface

System Bus

up_en
= . q_rq
FIFO Data |«
Processor control
up_ab logic Queue
0Oxee000
gn cf_ak
ControlFIFO

Figure 52: Control FIFO schematic

Figure 52 shows schematic connection of the FIFO control signaks $amgle data
gueue In this example, the data queuernieemory mapped at address 0Oxee000
while the data queue request signal is identified by bit O of address Oxee004 and
enable from the microprocessor (ep) is generated from bit O of address Oxee008.

The control logic needed for generation of the enqueue is described by a simple
state transition diagram shown in Figure 53. The control FIFO is ready to enqueue
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u p_%

done

up_en &q_rq

n=0
g cf_ak

Figure 53: FIFO control state transition diagram

(indicated bygn = 1) a process id if the corresponding data requestq) is
high and the process has enabled the thread for executpreli). Signalup _ab
indicates completion of a control FIFO read operation by the processor.

In case of multiple fanin queues, trequeue rq is generated by OR-ing the
requests of all inputs to the queues. In case of multiple-fanout queues, the signal
dequeue _rq is generated also by OR-ing all dequeue requests from the gaeue.

The control FIFO and associated control logic can be implemented either in hardware
as a part of the ASIC component or in software. In the case that the control FIFO is
implemented in software, the FIFO control logic is no longer needed since the control flow
is already in software. In this case, therq lines from the data queues are connected to
the processor unvectored interrupt lines, where the respective interrupt service routines
are used to enqueue the thread identifier tags into the control FIFO. During the enqueue
operations, the interrupts are disabled in order to preserve integrity of the software control
flow. The protocol governing the enqueue and dequeue operations to the control FIFO
are described using guarded commands in a interface description file that is input to the
system co-simulator described in Section 7.3. Example 7.2.3 below shows a specification
for the control FIFO based on two threads of execution.

Example 7.2.3 Specification of the control FIFO based on two threads of
execution.

queue [2] controlFIFO [1];
queue [16] line_queue [1], circle_queue [1];

when ((line_queue.dequeue_rg+ & !line_queue.empty) & !controlFIFO.full) do
controlFIFO enqueue #1;

when ((circle_queue.dequeue_rg+ & !circle_dequeue.empty) & !controlFIFO.full)
do controlFIFO enqueue #2;

when (controlFIFO.dequeue_rg+ & !controlFIFO.empty) do controlFIFO dequeue
dIx.0xff000[1:0];

dIx.0xff000[2:2] = !controlFIFO.empty;
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In this example, two data queues with 16 bits of width and 1 bit of depth,
line _queue andcircle _queue, and one queue with 2 bits of width and 1

bit of depthcontrolFIFO  are declared. The guarded commands specify the con-
ditions on which the number 1 or the number 2 are enqueued — here, a '+’ after
a signal name means a positive edge and a ‘-’ after the signal means a negative
edge. The first condition states that when a request for a dequeue on the queue
line _queue comes and the queue is not empty and the quemerolFIFO  is

not full, then enqueue the value 1 in thentrolFIFO . The last command just
specifies a direct connection between sigmal controlFIFO.empty and bit

2 of signaldlx.0xff000 . O

7.2.2 Communication protocols

The hardware-software interface protocol is classified as ori#oaking non-blocking

or buffered A blocking communication protocol is expressed as a sequence of simpler
operations on ports and additional control signal to implement the necessary handshake.
For example, to implement a blocking read operation on a chanhatdditional control
signals t_rq’ and ‘c_ak’ would be needed as shown in the Example below.

Example 7.2.4 A blocking read operation.

bread(c) => [
write c_rq = 1;
wait(c_ak);
< read(c);
write c_rq = 0; >
]

O

While it is easy to connect two blocking or two non-blocking read-write operations,
connection of two disjoint read/write operations on a channel requires handling of special
cases. For example, consider a connection between blocking read and non-blocking write
operations below.

Example 7.2.5 Blocking/Non-blocking channel connections.
Blocking read and non-blocking write

Blocking read Non-blocking write

[ [
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Producer Consumer
c_rq c_ak
c > C
c_ak c_rq
write c_rq = 1; write ¢c_rq = 1,
wait(c_ak); < writ e ¢ = value; write c_rq = 0; >
< read(c); write c_rq = 0; > ]

]

Blocking write and non-blocking read

Non-blocking read Blocking write
[ [
write c_rq = 1; write ¢c_rq = 1,
< read(c); write c_rq = 0; > wait(c_ak);
] < writ e ¢ = value; write c_rq = 0; >

]

A non-blocking/non-blocking read/write connection results in one cycle read and
write operations. However, a blocking/non-blocking connection requires two clock
cycles for the non-blocking operation

A buffered communication is facilitated by a finite-depth interface buffer with corre-
sponding read and write pointers. The communication protocol consists of I/0O operation
as well as manipulation of the read, write pointers as shown by the example below.

Example 7.2.6  Buffered communication protocol.

Producer Consumer
write_ptr
read_ptr
[
read (buff[read_ptr]); write bufflwrite_ptr] = value;
read_ptr++ modulo N; write_ptr++ modulo N;

] ]

Under normal operatiomead _ptr # write _ptr . Violation of this condition
indicates either a buffer is full or empty depending on whether the increment of
write _ptr causes violation or the increment ifad _ptr causes the violation.

O
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7.2.3 Hardware-software interface architecture

The choice of the hardware-software interface protocol depends on the corresponding
data transfer requirements imposed on the system model. In the case of known data-rates
where (non-blocking) synchronous data transfers are possible, the interface contains an
interface buffer memory for data transfer. A different policy-of-use for the interface buffer

is adopted when transferring data or control information across the hardware-software
partition. Therefore, the interface buffer consists of two parts: a data-transfer buffer and
a control-transfer buffer (Figure 54). The data-transfer buffer uses an associative memory
with statically determinediags, while the control-transfer buffer uses a FIFO policy-of-use

in order to dynamically schedule multiple threads of execution in the software. Associated
with each data-transfer we assign a unique tag which consists of two parts, software thread
id and the specific data-transfer id. Since all the threads and all input/output operations
are known, the tags are determined statically. The tag of a thread can be, for example, its
entry point in the memory in case of a ROM code. In addition, the data-buffer contains
a request flag (RQ bit) associated with each tag to facilitate the demand scheduling of
various threads in software. Figure 55 explainsritieglus operandif data transfer across

a hardware-software partition. In the software, a thread of execution is in the compute
state as long as it has all the available data as shown in Figure 55(a). In case of a
dependency on another program thread or a graph model in hardware, the corresponding
RQ bit is raised and the thread is detached as shown Figure 55(c). The processor then
selects a new thread of execution from the control FIFO as shown in Figure 55(b). In
case of data arrival to the interface buffer, if the corresponding RQ bit is on, its tag is
put into the control FIFO as shown in Figure 55(c).

Note that the interface architecture described here shows ontechanisticview
of the hardware-software synchronization concepts presented before. Its implementation
may be made simpler and yet achieve the same effect. For example, the functionality
of the associative memory buffer can be translated into a software thread while using a
simpler memory structure.
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INTERFACE BUFFER POLICY-OF-USE

DIRECT-MAPPED BUFFER FOR 1AG RQ DATA
DATA TRANSFER:

1. Tags determined statically

2. RQ used for demand scheduling
of SW

d [[ ar [ a2 [[ a3 ]
3. MW/DW ratio to support ~—DW—>]
multiple HW executions

- MW

FIFO BUFFER FOR DYNAMIC
CONTROL FLOW:

1. Control flow modifications from:

a. Memory Read or
b. Interrupt driven or
c. A dedicated Input Port

Figure 54: Hardware and Software Interface Architecture

PROCESS MODEL

initial
compuge

TASK SWITCH MODEL INTERFACE BUFFER MODEL

U
Hit Control FIFO: >
| T
v

Miss
y

V4 +data(j)
] frps i . data(i)
i wait(i) _mSS  { ready(i) e
i refers to the program thread associated with ND operation, i

(b)

(©)
Figure 55: Hardware and Software Interface Model
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7.3 Co-simulation Environment.

In this section, we briefly review major simulation concepts and techniques followed by
a presentation of our approach to simulation of hardware-software systems.

Most simulators fall into one of the two categories: continuous or discrete event
simulators. Continuous simulations occur frequently in control and systems engineering.
In the context of underlying synchronous digital components, we are interested in dis-
crete event simulations. In discrete event simulation, a simulation model of the system is
exercised based on events on the inputs. Most discrete event simulators maintain a time-
ordered queue of events. The queue may be centralized in a synchronous discrete event
simulation or it may be distributed based on an asynchronous discrete event simulation.
Examples of event-driven simulators using a global time scale are most simulators used
for VHDL language [Sha86]. A frequent alternative to dynamic scheduling of events
in discrete event simulation isompiled codesimulation [WHPZ87]. In some circles, it
is also known as a statically-scheduled or an oblivious simulator. In a compiled code
simulation, there is no dynamic selection of events, as events are scheduled statically by
a preprocessing step before the simulation begins. This avoids the overheads associated
with management of event queue and event dispatch in event driven simulations at the
potential cost of increased number of component evaluations. This can be done, for
example, by treating components in a VHDL description as subroutines and their inter-
connection as variables. The resulting code can then be simulated by merely following
the execution of the compiled code without the need for detailed event queues. This
approach, also lacks detailed simulation information which may be needed to capture the
so-called ‘transient events'.

Simulation of a system consisting of interacting hardware and software components
faces a practical problem in concurrent simulation due to a large disparity in the time
scales over whichrelevanthardware and software actions are defined. An event driv-
en simulation will seem to obviate this problem since it only simulates a network or
component only when some events are generated, irrespective of the actual time scales.
However, in practice large number of events are generated at the smallest interval of
time granularity, hence a discrete event simulation is excessively slowed down due to its
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need to evaluate all the events. A common approach to handling complexity in concur-
rent simulations is to perform arocess-orientedimulation as opposed to event-oriented
simulations. A process-oriented simulation can be thought of as a level of abstraction
above event-orient simulations [Fis91] where the input specification in terms of concur-
rent processes is eventualtpmpiledinto an event-oriented simulation. This approach,
however, does not make actual simulations any faster.

As a result of the above-mentioned practical problems in simulation of large systems,
the design of a fast simulator applicable to co-simulation of hardware and software
systems is an active area of research [BHLMar] [OH93].

We use progranPos 1 boN [GCM92b] that provides a practical environment for
co-simulation of multiple functional models. Figure 56 shows the organization of the
simulator. The input to Poseidon consists of specification of a collection of functional
models and their associated simulators. Also, associated with each model, is a clock signal
that is specified as an in-phase multiple of a common clock signal. Thus a hardware-
software system is assumed to be centrally clocked.

The models specified in Poseidon can be implemented either in hardware or software.
The software component is compiled into the assembly code of the target processor.
Poseidon currently supports simulation of the assembly code for the DLX microprocessor.
The hardware component can be simulated either before or after structural synthesis phase
by using their respective simulators.

Poseidon carries out the hardware-software simulation by concurrently executing re-
spective simulators for different input models. This is achieved by invoking each of the
individual simulators at every cycle of the basic system clock, of which all other clock are
a multiple. It maintains a queue of events which stores all simulation events on specified
signals sorted by their activation times. After simulating an event, the resulting events
are engqueued in the simulation queue. For each simulation cycle, all of the different
simulators are invoked.

An input specification to Poseidon consists of following parts:

1. Model declarations These consist of declarations of the concurrently executing
simulation models. Models can be either software or hardware models. Each model
has an associated clock signal and clock cycle-time used for its simulation. It is
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System Graph Model

Ariadne
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SLIF Netlist
(Gate-level Description)

DLX Assembly Code
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a. Interface protocol between models
b. event-driven simulation of multiple models
¢ multiple clocks and clock rates between models

Figure 56: Event-driven Simulation of a Mixed System Implementation

assumed that the clock cycle-times are a rational multiple of a basic system clock.
Further it is assumed that different models supply (latch) data at the interface using
flip-flops at the interface edge-triggered by their respective clock signals.

2. Model interconnections The interface between different system components is
specified byconnection@mong models. A connection between two models may be
either a direct connection through a wire, or a port connection through a register or
a queue. Queues can have multiple fanins and fanouts. Signal assignments indicate
direct connections between respective models. For connections such as queues that
require existence of additional control signals for synchronization, it is possible to
group signals having identical synchronization requirements together for a given
set of synchronization signals.

3. Communication protocols Interface protocol for data-transfer is specified via
guardedcommands [Dij75]. A guarded command is a command which is executed
only when some precondition is true. Each precondition is specified as a logic
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equation of signal values and transitions. There are four commands recognized by
the connection typesEnqueueanddequeueare used for queues port connections
andload andstoreare used for register port connections.

4. System outputs Outputs to be observed during simulation runs may be indicated
by direct connections to the internal signals in the system model.

For illustration purposes, we consider a simple example of two moBetsjucer
and Consumer that are connected by means of a finitely sized queue as shown in the
Figure 57 in the following example.

Example 7.3.7 A producer-consumer system.

InRq

comm
D]]]I V;\_ Producer

inChannel

outPort —« <
OutAk

Figure 57: Producer consumer system.

Let us consider the case when the the producer model is implemented in software
and the consumer model in hardware. The follow lists the interface description for
this implementation.

# Models

model 10 io 1.0 /locall/ioDir 10;

model P dix 1.0 /local/ProducerDir Producer;

model C mercury 3.0 /local/ConsumerDir Consumer;

# Connections

queue [4] comm[3];
C.RESET = I0.RESET;
C.r[0:0] = 10.r[0:0];

# Communication protocol

P.0xff004[0:0] = !comm.full;

C.b_rg = !comm.empty;

when (P.0Oxff00OO_wr + & ! comm.full) do comm[0:3] enqueue P.0xff000[0:3];
when (C.b_ak + & ! comm.empty) do comm[0:3] dequeue C.b[0:3];

# Outputs

10.inChannel[0:3] = P.0xff000[0:3];
10.0outPort[0:3] = C.c[0:3];
10.InRq = P.0xff000_wr;
10.0utAk = C.b_ak;

The three first lines of the specification declare the models to be simulated. Model
i0 models the external system inputs and outputs. The following parameter specifies
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the clock period of the clock signal associated with the respective model. A value
of 3.0 for the consumer model indicates that consumer is implemented in an ASIC
technology that uses a clock signal that is three times slower than the clock used
by the reprogrammable component, which is usually a custom designed component.
The system input/outputs are sampled here at the same rate as the consumer. The last
two parameters specify the directory location where the model description can be
found and the model name. Tiggleue statement declares a queue nantinm

which is 4 bits wide and 3 words deep. We use andak signals to implement

a blocking communication protocol as indicated by the guarded commands. A
‘+’ suffix indicates rising edge transition of the corresponding signal. A ‘-’ suffix
indicates falling edge transition. Symbols ‘& and ‘!’ indicate the Booleeard and

not operations.

The remaining commands are related to the interconnection of the interface. The
meaning of an assignment is as followsnd the r-value coming from the output

of some event,queue or register to the input of the |-value of the assignirteat

first assignment?.RESET = C.RESET = IO.RESET,;, for example, binds the
signal RESET coming from 1O to the signaRESET going to P and C. The last
assignments specify the signals which will be seen at the end of the simulation.

Figure 58 show®oseidorsimulation results for the case when the software producer
model is slower than the consumer model implemented in hardware. As shown in
Figure 57,inChannel refers to the output of the producer model, whilgPort

refers to the output of the consumer model. As expected, consumer being the faster
process is always ready for the new data by asserting the smyrialk .

Figure 59 shows the simulation results for the case when the consumer model is
slower than the producer model. In this case a three-deep queue is rapidly filled
slowing down the enqueuing of data.

As mentioned, Poseidon provides cycle-by-cycle simulation of concurrent models.
This approach to hardware-software co-simulation in Poseidon has the advantage of sim-
ulating and verifying accurate relationships in time ordering of operations across models.
It is also necessary in the context of our target system architecture that uses the same
bus for interface to memory and ASIC hardware. Because of this commonality, explicit
cycle-by-cycle simulations of all transactions over the common bus are required in order
to be able to simulate the entire system. However, it has the disvantage of long simulation
times since it simulates the mixed system at every cycle-step.

A more efficient model of simulation would be to use a distributed clock system
in which the individual clocks perform local synchronizations. The primary advantage
in such anevent-drivenco-simulation the individual simulation time-scales may not be
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Figure 59: Example simulation: software consumer, hardware producer
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Figure 58: Example simulation: software producer, hardware consumer
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synchronized. Recent work has shown the limited possibility of distributed clock event-
driven simulations for hardware-software systems [tHM93]. In order to make such a
simulation possible, it will be necessary to separate and hide the processor-level events
from events related to hardware-software interactions. This is important since there may
be numerous processor-level events that have very little or no impact on the interaction
of the processor with the dedicated hardware.

We conclude by noting that the choice of the target architecture also determines the
type of simulator needed for co-simulation A target architecture such as used in this work,
exposes the hardware components to events on the common system bus.

7.4 Summary

In this chapter, we have presented the Vulcan framework that allows explorations into the
system co-synthesis by evaluating hardware and software alternatives and their respective
constraint satisfiability as developed in previous chapter. Due to the choice of a simple
target architecture, many possible system realizations are possible. We have presented
our choice of system implementation and organization of the interface and hardware-
software synchronization mechanisms. Co-simulation of mixed systems remains to be a
hard problem due to disparity in the time scales over which relevant events for hardware
and software defined. Alternative means of achieving co-simulation are discussed.



Chapter 8
Examples and Results

This chapter presents results of system co-synthesis for benchmark examples. We
present following two case studies in hardware-software co-design and compare hardware-
software implementations against purely hardware implementations:

Graphics controller design. The purpose of the graphics controller is to provide a dedi-
cated controller for generating actual pixel coordinates from parameters for different
geometries. The input to the controller is a specification of the geometry and it-
s parameters, such as end points of a line. The current design handles drawing
of lines and circles. However, it is a modular design, where additional drawing
capabilities can be added. The controller is intended for use in a system where
the graphics controller accepts input geometries at the rate of 200 thousand per
second, and outputs at about 2 million sample per second to a drawing buffer that
is connected to a (CRT) device controller. Typically the path from the drawing
buffer to the CRT controller runs at a substantially higher rate of about 40 million
samples per second.

Network controller design. This controller implements the functionality of a carrier-
sense, collision-detection protocol for handling multiple accesses over a shared
communication medium. The controller works under specified timing constraints.
However, a deterministic resolution of the timing constraints is difficult due to
non-deterministic operations involved in handling multiple, variable-length data

218
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Figure 60: Graphics controller block diagram
packets.

8.1 Graphics Controller

Figure 60 shows the architecture of the graphics controller. The controller outputs pixel
coordinates for lines and circles given the end coordinates (and radius in case of circle).
The input to the controller is a queue of coordinates that are picked by the controller as
soon as the previous drawing is finished. The rate at which these coordinates are picked
up defines the input data rate. At the output of the controller is a video random access
memory (RAM) buffer that provides for a high bandwidth path to the CRT controller.

8.1.1 Implementation

A mixed implementation of the controller design consists of line and circle drawing
routines in the software component while the ASIC hardware performs initial coordinate
generation and coordinates the transfer of data to the video RAM. The software component
consists of two threads of execution corresponding to the line and circle drawing routines.
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Figure 61: Graphics controller implementation

Both program threads generate coordinates that are used by the dedicated hardware. The
data-driven dynamic scheduling of the program threads is achieved by a 3-deep control
FIFO. The circle and line drawing program threads are identified by id numbers 1 and 2
respectively. The program threads are implemented using the coroutine scheme described
in Section 5.7.1.

Figure 62 shows the main program in case of a hardware control FIFO implementation.
Like the line and circle drawing routines, this program is compiled using existing C-
compiler. The transfer routines are coded manually. Appendix D lists the transfer routines
for hardware and software implementations of the control FIFO buffer.

Table 8 compares the performance of different program implementations using control
FIFO either in hardware or in software component. The hardware implementation of a
control FIFO with fanin 3, when synthesized into hardware and mapped to LS| 10K library
of gates, costs 228 gates. An equivalent software implementation adds 388 bytes to the
overall program size of the software component. Note that the cost of hardware control
FIFO increases as the number of data queues increases. On the other hand, software
implementation of control FIFO using interrupt routines (as described in Section 5.6.1)
to perform the control FIFO enqueue operations offers lower implementation cost for a
50% increase in the thread latencies.

In case of a software implementation of control FIFO, the enqueue and dequeue
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#include "transfer_to.h"

int lastPCIMAXCOROUTINES] = { scheduler, circle, linemain};
int current=MAIN;

int *control FIFO_out = (int *) Oxaa0000;
int *control FIFO = (int *) Oxab0000;
int *control FIFO_outak = (int *) Oxac0000;

#include "line.c”
#include "circle.c"

void main(){
resume (SCHEDULER);
h

int nextCoroutine;
void scheduler() {

resume (LINE);

resume (CIRCLE);

while ('RESET) {

do{
nextCoroutine = * control FIFO;
} while ((nextCoroutine & 0x4) != 0x4);
resume (nextCoroutine & 0x3);

}

Figure 62: Graphics controller software component using hardware control FIFO

operations are written in C programming language, which are then compiled for DLX
assembly. Figure 63 shows the main program in case of a software control FIFO. The
overhead due to enqueue and dequeue operations is reduced further by manually optimiz-
ing the assembly code as indicated by the entry ‘Opt. Software CFIFQ’. This one time
optimization of enqueue and dequeue routines, which does not affect the C-code descrip-
tion of the program threads, leads to a reduction in the program size and program thread
overhead to 29.4% thereby improving the rate at which the data is output. Note that data
input and output rates have been expressed in terms of number of cycles it takes to input
or output a coordinate. Due to a purely data-dependent behavior of program threads, the
actual data input and output rates would vary with respect to value of the input data. In
this example simulation, the input rate has been expressed for a simultaneous drawing of
a line and 5 pixel radius with width of 1 pixel each and the results are accurate to one
pixel. An input rate of 81 cycles/coordinate corresponds to approximately 0.25 million
samples/sec for a processor running at 20 MHz. Similarly, a peak circle output rate of
30 cycles/coordinate corresponds to a rate of 0.67 million samples/sec.
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#include "transfer_to.h"

int *intl_ak = (int *) 0xb0000O0;
int *int2_ak = (int *) 0xc00000;

int controlFIFO[16]; * Definition of queues */
int queuein=0, queueout=0, empty=1, full=0;

enqueue(id)
int id;
{

gueuein = (queuein + 1) & Oxf;
controlFIFO[queuein] = id;

empty = 0O;
full = (queuein == queueout);
}
dequeue()
gueout = (queout + 1) & Oxf;
full = 0;
empty = (queuein == queueout);
return controlFIFO[queueout];
}

int lastPC[MAXCOROUTINES] = {scheduler, circle, line,main};
int current=MAIN;

#include "line.c"
#include “circle.c"

void main(){
resume (SCHEDULER);

int nextCoroutine;

void scheduler() {
resume (LINE);
resume (CIRCLE);
while (1) {
while (empty);
transfer_to (dequeue());

}

Figure 63: Graphics controller software component using software control FIFO
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Scheme

Program | Synchronization Input

Output data rate'

size

(bytes)

overhead
delay
(% cycles)

data rate™!
(cycles per
coordinate)

(cycles/coordinate)

line

circle

ave. | peak

ave. | peak

Hardware CFIFO
Software CFIFO
Opt. Software CFIFQ

5972
6588
6360

0
50
29.4

81
95
95

535.2| 330
749.5| 502
651 | 407

76.4 | 30
106.8| 31
94 31

Table 8: A comparison of control FIFO implementation schemes
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Figure 64: Graphics controller simulation
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| Implementation | Size | Performance]
Complete hardware implementatignl0,642 gates 14.70
Mixed implementation 228 gates, 5972 bytes 0.25

Table 9: Graphics controller implementations.

Figure 64 shows a simulation of the mixed implementatignout andy_out are
the coordinates generated by the line thread routkwcle  andycircle  are the
coordinates generated by the circle thread routine. Note that these latter coordinates are
generated in burst mode, since the circle thread routine explores symmetries to generate
the coordinates. The values at the top of¢beatrolFIFO  are also shown in the figure.
CF.ready signals that theontrolFIFO  is never empty after initialization. We show
also the synchronization between the data queues, the lines and circle threads and the
scheduler.controlFIFO  _rd shows when the scheduler polls tbentrolFIFO  to
obtain the next thread idcontrolFIFO _wr shows the transfer of control-flow from
the line and circle threads. Finallyl rq (oc rq) shows when the data fifo for the line
(circle) enqueues the corresponding thread ids to signal that new coordinates are already
available.

Table 9 presents a comparison of hardware and mixed implementation of the con-
troller. Performance here is related to the input rate expressed in million samples/sec.
Performance of a pure software implementation of the controller depends strongly upon
the choice of the runtime system. A conventional subroutine based scheduler would
add substantial overheads due to storage management operations. On the other hand, a
software control FIFO implementation can be treated as a form of pure software imple-
mentation (using interrupts) which gives an input rate of 0.21 million samples/sec for a
software size of 6360 bytes.
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8.2 Network Controller

The network controller manages the processes of transmitting and receiving data frames
over a network under CSMA/CD protocol, commonly used in Ethernet networks. CS-
MA/CD refers to Carrier Sense Multiple Access with Collision Detection protocol used
to facilitate communication among many stations over a shared medium (or channel). It
is defined by IEEE 802.3 standard. Briefly, CS means that any station wishing to transmit
‘listens’ first and defers its transmission until the channel is clear. MA implies simulta-
neous accesses by multiple stations is allowed without the use of any central arbitration.
CD refers to collision detection protocol used to detect simultaneous transmission by two
or more stations.

The purpose of this controller is to off-load the host CPU from managing commu-
nication activities. The controller contains two independent 16 byte wide receive and
transmit FIFO buffers. The controller provides a small repertoire of eight instructions
that let the host CPU program the machine for specific operations (transmit some data
from memory, for example). The controller provides following functions:

e Data Framing and De-Framing e Error Detection
e Network/Link Operation e Data Encoding
e Address sensing e Memory Access

8.2.1 Host CPU-controller interface

Both the CPU and the controller share a bus which can be controlled either by CPU or
by the controller. The exclusivity of bus-master is ensured by handshake signals used
between the two. The shared bus consists of all Address and Data lines.

In additions to CPU and controller, the bus is also connected to system memory. The
controller contains a PC which contains the address from where its next instruction fetch
occurs.

8.2.2 Controller operation

A typical controller operation consists of the following steps:
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1. host cpu invokes the controller by write and a memory mapped address,

2. the controller responds by making a request for bus control,

3. once acknowledged the controller initiates memory read operation to receive com-
mand operations,

4. once initialized the controller relinquishes control of the bus to host cpu.

In the event of acollision, the controller manages the ‘jam’ period, random wait
and retry process by re-initializing the DMA pointers without CPU intervention. In case
of any errors in the received data, the controller re-initializes the DMA pointers and
reclaims any data buffers containing the bad frame. All the transmitted and received data
is manchester encoded/decoded.

Micro-
Processor

Local Memory

Local Bus

Receive Unit

Host DMA-RCVD
CPU
<—— RXE
RCVD-FRAME [T |RCVD-BUFFER|=—| RCVD-BIT
<—— RXD
Memory ——= TXD
- DMA-XMIT XMIT-FRAME |—= XMIT-BIT
—= TXE
Transmit Unit
i - CRS
ENQUEUE |—= —= EXEC-UNIT
- CDT

Execute Unit

Network Coprocessor

System
Bus

Figure 65: Network controller block diagram
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Command Description

start address to store frame in global memary
stop no parameter is needed

ctaddr controller address on network domain
sifr interframe spacing in bytes

jam time in bytes jam is inserted on line

jam inserted in the network line
preamble | number of preamble bytes
preamble byte sent

frdelim end of frame byte

start of frame byte

Table 10: Network controller instruction set

8.2.3 Controller architecture

The controller architecture is modeled after the target system architecture shown in Sec-
tion 1.7.1. A modification is addition of a local memory and local bus in order to reduce
the system bus bandwidth. The controller can be thought of logically consisting of fol-
lowing functional units: execute, transmit and the receive unit. The network controller
block diagram is shown in Figure 65.

The Execute unit provides for fetching and decoding of controller instructions. It
provides a repertoire of eight instructions listed in Table 10. Reeeive unitreceives
frames and stores them into memory. The host cpu sets aside an adequate amount of buffer
space and then enables the controller. Once enabled, frames arrived asynchronously. The
controller must always be ready to receive the data and store them into a free memory
area. The controller checks each received frame for an address match. If a match occurs,
it stores the destination and source address and length field in the next available free
space. Once an entire frame is received without errors, the controller does the following:

e updates the actual count of the frames received
o fetches address of the next free receive buffer

e interrupts the cpu
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Start of frame Source Data End of frame
n bytes 2 2 m bytes 2
Preamble Destination Data length CRC

Figure 66: Format of an ethernet frame

Given a pointer to the memory, tAigansmit unit generates the preamble start frame
delimiter, fetches the destination address and length field from the transmit command,
inserts its unique address as the source address, fetches data field from buffers pointed
by the transmit command, computes and appends CRC at the end of the frame.

Figure 66 shows the format of the transmit frame. After sending a frame, the trans-
mission unit waits some time until it starts the transmission of another frame. This
interframe spacing is set by the command SIFR.

The important rate and timing constraints on the controller design are: the maximum
input/output bit rate is 10 Mb/sec; maximum propagation delay is 48;4maximum
jam time is 4.8us and the minimum inter-frame spacing is 672

8.2.4 Network controller implementation results

The network controller is modularly described as a set of 13 concurrently executing
processes which interact with each other by means of 24 send and 40 receive operations.
The totalHardwareCdescription consists of 1036 lines of code.

A mixed implementation following the approach outlined in Section 6.5 was attempt-
ed by describing the software component as a single program using case descriptions.
Table 11 shows the results of synthesis of application-specific hardware component of
the system implementations that was synthesized in the Olympus Synthesis System and
mapped using LSI logic 10K library of gates. Table 12 shows synthesis results using
ACTEL library of gates. The software component is implemented in a single program
containing case switches corresponding to 17 synchronization points as described in Sec-
tion 5.7.2. With reference to Figure 65, the software component consists of the execution
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Micro-
Processor
y Local Memory
- 7 >
= CRS
SYNCHRONIZATION BUFFERS
<——». DMA-RCVD | “ coT
Host | _
CPU ‘?
—— RXE
RCVD-FRAME |<— [RCVD-BUFFER |<— RCVD-BIT
<—— RDX
=~ TXD
Memory < DMA-XMIT |—= XMIT-FRAME |—={ XMIT-BIT
—TXE
\

Figure 67: Network controller implementation

unit and portions of th®MArcvd andDMAxmit blocks. The reception and transmis-
sion of data on the network line is handled by the application-specific hardware running
at 20 MHz. The total interface buffer cost is 314 bits of memory elements. Table 13 lists
statistics on the code generated by existing software compilers for the network controller
software component implementation.

By contrast, a purely hardware implementation of the network controller requires
10882 gates (using LSI 10K library). Thus by a mixed hardware-software implementa-
tion, we are able to achieve a 20 MHz controller operation while decreasing the overall
hardware cost to only one application-specific chip (or 23% in terms of gate count). The
reprogrammability of software components makes it possible to increase the controller
functionality, for example addition of self-test and diagnostic features, with little or no
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| Unit Process | Area| Delay |

Transmit Unit| xmit_bit 271| 14.31 ns
xmit_frame | 3183 | 37.15 ns
DMA _xmit | 2560| 45.06 ns
Receive Unit | DMA_rcvd | 400| 27.51 ns
rcvd_bit 2821 12.30 ns
rcvd_buffer | 127 | 22.09 ns
rcvd.frame | 1571| 38.12 ns

| Controller | | 8394 45.06 ns|

Table 11: Network controller synthesis results using LS/ library gates

| Unit Process | Area] Delay |

Transmit Unit| xmit_bit 268 | 128.10 ns
xmit_frame | 2548 | 246.0 ns
DMA _xmit | 2028 | 472.85 ns
Receive Unit | DMA_rcvd | 563 | 236.65 ns
rcvd_bit 211 | 115.50 ns
rcvd_buffer | 121 | 199.28 ns
rcvd.frame | 1226 | 298.40 ns

| Controller | | 7022] 472.85 ng

Table 12: Network controller synthesis results using Actel gates

| Target Processof Pgm & Data Size Max Delay |

R3000, 10 MHz 8572 bytes 56 cycles, 5.6us
8086, 10 MHz 1295 bytes 115 cycles, 11.5%s

Table 13: Network controller software component
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increase in dedicated hardware required. Finally, we note that a purely software imple-
mentation of the controller would allow for a maximum of 2 cycles for sampling the
input bit stream, and therefore, is quite unlikely to meet the performance constraints.
Figure 68 shows a results of simulation of the final network controller design. This
simulation portion shows when the controller is being programmed for transmission.
Instructions are supplied to the controller by external programmer (the host CPU) which
are enqueue in a 1l-deep quewdqueue The last pulse on signaitqueue _ak
indicates transmission enable instruction after which data is transmitted serially through

signal TXD.
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Figure 68: Network controller simulation



Chapter 9

Summary, Conclusions and Future
Work

We have addressed the broad problem of hardware-software co-synthesis for digital sys-
tems. This formulation of the co-synthesis problem is based on the extension of the
high-level synthesis techniques to system-level by generalizing the concept the resources,
and treating the processor as anottesource This treatment of processor in a system
design proves to be fundamentally different mindset than is the case in the conventional
system design, where most of the system design issues revolve around utilizing the max-
imum performance out of the processor. However, due to the differences in the execution
rate and timing of operations, the problems of software generation and its interface to the
hardware are much more complicated than the problems of operation scheduling and re-
source allocation in high-level synthesis. Our extension of high-level synthesis approach
toward system cosynthesis is howhere more apparent than in the input language used.
We start with a description of system functionality in a hardware description language
(HDL). This choice of HDL is made for two primarily practical reasons. One, it provides

us a means of comparison to an existing path from purely hardware implementations
starting from the same input. Two, it constrains the scope of input description well e-
nough so that a simple graph based model can be used to abstract this specification on
which systematic analysis and transformations needed for cosynthesis can be developed.
But this choice of a hardware description language is far from being ideal. The chief
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limitation being use of extensive control flow structure necessary to describe the func-
tionality in an algorithmic manner. These control flow structures ultimately translate into
an hierarchical organization of graph models, that is not easy to alter. In particular, these
structures strongly influence the system partitioning and program thread generation and
alternative specifications of the same system functionality lead to different cosynthesis
results.

From the input description using a HDL, we develop a graph based model that is
applicable to synthesis of both hardware and software due to its explicit treatment of
operation-level concurrency and synchronization. The graph model is devised to sup-
port implementations of graph models that execute at very different speeds by means
of message-passing based communications between models. The absence of any shared
memory between different process models obviates the need for lock-step executions of
separate graph models. At the same time, the operations within a graph model commu-
nicate by means of shared memory, providing a way for efficient individual hardware
or software implementations. Through this dichotomy of communication implementa-
tion, a hardware-software system is described at the level of individual graphs as being
implemented in either hardware or software.

Based on this graph based model, the problem of cosynthesis is broken into subprob-
lems of performance modeling and estimation for hardware and software, the identifica-
tion of hardware and software and finally the synthesis and integration of hardware and
software components. Identification of hardware and software is based on an analysis of
the timing constraints. The timing constraints are of two types: minimum and maximum
delay constraints between time of execution of pairs of operations and upper and lower
bounds on the rate of execution of an operation. In conventional terms, the min/max
delay constraints are ‘latency-type’ constraints, whereas the execution rate constraints
are ‘throughput-type’ constraints, though the definitions of latency and throughput must
be clearly understood in the context of multiple rate systems modeled by the flow graphs.
Constraint analysis proceeds by attempting to determine if the constraints are satisfied
by an an implementation by performing graph analysis on the constraint graph model.
However, such an analysis is not always conclusive. The cases when the deterministic
constraint analysis fails are identified by presence of cycles containing data-dependent
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loop or synchronization operations (collectively referred tov@®operations). A notion

of marginal satisfiability of constraints is developed that determines probabilistic satisfac-
tion of timing constraints under a specified bound on the probability of violations. This
constraints analysis is made a part of the partitioning procedure in determining which
flow graphs should be implemented either in hardware or in software.

Synthesis of hardware is carried out by use of high-level synthesis techniques. Though
central to the task of hardware-software cosynthesis, synthesis of hardware forms a part of
the previous research on Olympus synthesis systems, and is not considered in this disser-
tation. Synthesis of software poses challenging issues due to the need for serialization of
all operations and development of a low overhead runtime system. We use a FIFO-based
runtime scheduler to implement the software as a set of multiple concurrent coroutines.
The overhead due to such a scheduler is characterized. Finally, the hardware-software
system is put together by design of a low overhead hardware-software interface.

It is clear that research in hardware-software co-synthesis spans several disciplines
from CAD-theoretic aspects of algorithms for constraint analysis and partitioning to
system implementation issues of concurrency and run-time systems to support multi-
programming and synchronization. This dissertation makes one of the first attempts at
developing the various sub-problems that are solved in an effort to develop an effective
and practical co-synthesis approach. In the process, several simplifications are made, all
in an attempt to keep the focus on essentials of the co-synthesis problem while delegat-
ing peripheral (though sometimes no less important) problems to a workable engineering
solution. As a result, we are able to put together a complete co-synthesis solution for
system designs that are modeled using hardware description languages. We have demon-
strated the feasibility of achieving co-synthesis, thus validating the basic hypothesis of
the thesis.

9.1 Future Work

Due to the broad scope of transformations needed to realize interacting hardware and
software components that can execute at widely different rates, which synchronize only
when necessary, what is needed is a representation of the system model that is structurally
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as simple the flow graph model used here, and yet it supports ease in implementation of
a variety of transformations primarily related to altering the flow of control and data. For
control purposes an algebraic approach appears to be promising. For example, consider
the following two pieces of code, the outer most while statement explicitly models the
infinite repetition:

while(1) { while(1) {
if (condition) while (condition)
a A; a: A
b: B; b: B;
} }

While it is hard to reason about their equivalence when abstracted as graph models,
it is easy to capture them algebraically, for example, as path expressions where simplifi-
cations based on axiomatic rules can be made. For the example, the control flow can be
shown to be equivalent by proving the following equivalenge+b )“ =(a *b ¥ where
w represents infinite repetition. However, this abstraction is not sufficient either since
it completely ignores the data flow. In this context, models that provide encapsulation
of both data and control flow, albeit as different levels of abstraction would find more
appeal in system cosynthesis.

Hardware-software interface remains to be a key area where the need for appropriate
abstractions is most keenly felt. This is perhaps because in our formulation of the
cosynthesis problem the abstraction of interface takes a step backwards due to the choice
of hardware description language to specify system functionality. Most HDLs either
ignore the interface abstraction completely or mix the issues in interface functionality and
its format, in a manner which akin to the similaritydata typesanddata formatsn low
level program languages. An unfortunate side-effect of inadequate interface abstraction
is the strong dependence of the hardware functionality upon the type of interface chosen
for the system design, and in most HDLs, the functionality must be completely rewritten
once the system interface or the protocol(s) used to implement interface are altered. To
be sure, the problem of interface abstraction at system-level is more complicated than
the development of data types in programming languages, due to the fact that interface
formats are intimately tied to the timing behavior of system. Thus a need exists to
devise abstraction mechanisms that not only consider spatial format of data in terms of
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organization and encoding of bits and words, but also temporal relationships, for example,
multiplexing and synchronization relationships between data objects.

Finally, several extensions of the target architecture are possible and must be explored
in order to broaden the applicability of cosynthesis to embedded systems. We have so
far considered only single processor systems. However, there is no reason that multiple
processor can not be used in such systems to improve performance. However, a multi-
level memory model must be supported in order to efficiently implement a multiple
processor target architecture.
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Appendix A

A Note on HardwareC

HardwareCwas developed by Ku and De Micheli [KM90a] as an input language for
specification for synchronous digital circuitddardwareCfollows much of the syntax

and semantics of the programming language, C with modifications necessary for correct
and unambiguous hardware modeling. Like C, the primitive operatioHardwareC
consists of an assignment operation with a procedural call being the means of abstraction
of sub-specifications. Procedural calls correspond to modular specification of different
components of the hardware. No recursive calls of any form are allowed.

A HardwareC specification consists dilocksof statements which are identified by
enclosing parentheses. The blocks are structured so that no two blocks are overlapped
partially. That is, given any two blocks, they are either disjoint or one block is contained
by the other block. Like C, no nested procedure declarations are allowed. Therefore, any
variable that is non-local to any procedure is non-local to all procedures. Local variables
are scopedexically with the inner-most nested rule for structured blocks.

The basic entity for specifying system behavior ipr@cess A process executes
concurrently with other processes in the system specification. A process restarts itself
on completion of the last operation in the process body. Thus, there exists an implied
outer-most loop that contains the body of the process. In other languages, this loop
can be specified by an explicit outer loop statement. Operations within a process body
need not be executed sequentially (as is the case in a process specification in VHDL, for
example). A process body can be specified with varying degrees of parallelism such as
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parallel (), data-parallel {}) or sequential ([]).

In addition, the HDL uses specification declarative model calls as blocks that
describe physical connections and structural relationships between constituent processes.
For hardware modeling purposes, both timing and resources constraints are allowed in
the input specifications. Timing constraints are specified as min/max delay attributes
between labeled statements whereas resource constraints are specified as user-specified
bindings of process and procedure calls to specific hardware model instances.

Timing semantics. It is assumed that operations are performed synchronously using a
global clock with a fixed cycle time. Accordingly, loop and procedure calls are assumed
to be synchronous operations. There is no explicit delay associated with individual as-
signment statements (except in case of explicit register/port load operations as mentioned
later). An assignment operation may take zero or non-zero delay time. This actual delay
depends upon the delay characteristics of the resource(s) used to implement specified
operation(s).

In case of multiple assignments to the same variable there are two possible interpre-
tations:

1. the last assignment or
2. an assignment after some delay

Resolution of which interpretation is to be used is performed by a reference stack
algorithm [KM92a]. This algorithm performs variable propagation by instantiating values
of the variables in the right-hand side of the assignments. In the case of variables that must
be used before being reassigned a new value, second interpretation is adopted where ‘some
delay’ corresponds to delay of ‘at least’ one cycle time. In addition, this interpretation can
also be enforced on some assignments regardless of whether the assignment is referenced
or not, by use of an explicit ‘load’ prefix that assigns a delay of precisely one cycle time
to the respective assignment operation.



Appendix B
Bilogic Graphs

Bilogic flow graphs were introduced in Chapter 3. These graphs are similar control
graphs [Cer72] which direct the flow of control in the following three ways:

1. Sequencing by means of directed edges between vertices;

2. Concurrent branching and merge is achieved by means of a conjoined fork or
merge;

3. Conditional branching and merge is achieved by means of a disjoined fork and
merge.

In a bilogic graph all vertices can have multiple fanin and fanout edges which are either
conjoined or disjoined. In this thesis we concern ourselves with well-formed bilogic
graphs, that is, graphs where a forks/merge is either conjoined or disjoined but not both.
Bilogic flow graphs can be made well-formed by introduction of additional fork and
merge vertices.

Theorem B.1 Given a bilogic graph(;; ;.4 let G..i 1 . ,0€ @ graph created by treating
all fanin and fanout edges to be only conjoined. Then,

KM(Gbilog)c:“g(Gunilog)c (B 81)

Proof: For a given bilogic graph;;; , 4. IS length vector is defined as an
expression over scalars representing fixed delays associated with operations
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in the graph. This expression is constructed using the composition rules
described earlier. We show by induction, that any disjoined composition in
the expression can be replaced by a conjoined expression without altering
the maximum value of the expression.

For the base case, when two scalars are disjoined, the maximum refers to the
largest of the two scalars elements, which is also the largest element in case
of conjoined composition of two scalars. Next, at any step, let us suppose
that the maximum over subexpressiafysand ¢, is same for both unilogic

and bilogic graphs, then the maximum over their composition is expressed
as:

max(y &) = max ¢ ai]olj]), i =L..df, j =1...14
= = max max( 1f7],2f5]))
= = max( _, @)

Thus, the maximum of path length over the composition is identical for both
disjoined and conjoined compositions. Therefore, by induction the maximum
over any expression using conjoined and disjoined operators is same when
the disjoined operators are replaced by conjoined operators, that is,

maxﬁ(Gbi l ogz——cmaxg_(Gbi l og)|@—>® :maxg_(Gunz l og) c

t

Bilogic graphs are series-parallel graphs. Based on this property, the following out-

lines the procedure for computing the paths lengths.
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compute-length(v)

{
switch | succ(v)
case 0: returr(v ); break
case 1: returfi(v ) ©l(succ(v)); break;
case>2: switch fork-type
case conjoined; returfv ) O[ Qe s e ( Hw)]; break;
case disjoined; returti(v ) [P w € succ (v w)]; break;
1
@ig—lv_’é)
{
k=1
for. =1...|4] do
forj =1...|{,| do
dp =C 1[i ] Ho[j ];
k =k H1;
returngl)
1
@6—17_6)
{ for: =1...]4] do
forj =1...|4| do
di ;=L ];
returngl)
1
@(6—17_6)
k=1

for. =1...|4] do
forj =1...|{,| do
dy =max(( 1[i],2[7]);
kE =k 41,
returngl)
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Processor Characterization in Vulcan

The follows the syntax of the CPU characteristics file with typical values for the DLX
microprocessor indicated by comments. Comments begin with symbol ‘#'.

.cpumodel <processor_name> ;

.cycle_time <num> n s ; # 40 ns
Joad <num> cycle s ; # 2

.address [<str>] *, # a0 al ..
.data [<str>] * 5 # do dl ..
.interrupt  [<str>] * 5 #int0 intl ..

.reset <str > ; # RESET
.max_gpr <num > ; # 31

.bus_model ;
.address_size <num > ; # 32
.data_size <num > ; # 32
type [<muxed> , <de_muxed> ] ; # de_muxed

.de_muxed ;
.mem_read <str > ; # rd
.mem_write <str > ; # wr
.io_read <str > ; # iord
.io_write <str > ; # iowrite
.end_de_muxed ;

.muxed ;
sread <str> ;
write <str> ;
o <str> ;
.mem <str> ;
.end_de_muxed ;

.bus_hold <str> ;
.bus_ack <str> ;

.end_bus_model ;

.timing_model ;
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# timing model

.read_access <num> cycle s; #1
.write_access <num> cycle s; #1

Joad <num> cycle s ; # 2, Note CPl = 1.4 cycles.
.store <num> cycle s ; # 2

.move <num> cycle s ; # 1
xchange <num> cycle s ; # 1

.alu <num> cycle s ; # 1
.mpy <num> cycle s ; # 6
.div <num> cycle s ; # 24

.comp <num> cycle s ; # 1

.call <num> cycle s ; # 1, Note CPl = 1.2 cycles.
Jump <num> cycle s ; # 1

.branch <num> cycle s ; # 1

.bc_true <num> cycle s ; # 2

.bc_false <num> cycle s; #1, CPlI =15 cycles.
.return <num> cycle s, #1

# interrupts are all fixed target locations

.seti <num> cycle s ; # 1

.cli <num> cycle s ; #1

.int_response <num> cycle s ; # 10 cycles
.halt <num> cycle s ; # 10 cycles

# EA calculation delays
.address_modes ;

.immediate <num> cycle s ; # 0

.register <num> cycle s; #0
.direct <num> cycle s; #1
.reg_indirect <num> cycle s; #1

.mem_indirect <num> cycles ;
.indexed <num> cycles ;
.other <num> cycle s ; # 10

.end_address_modes ;
.end_timing_model ;
.endcpumodel ;
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Runtime Scheduler Routines

This appendix lists the routines used to implement the context switch or the
“transfer  _to ” function in the runtime scheduler. We consider two implementations:
hardware implementation of control FIFO, and software implementation of control FIFO.

Hardware Control FIFO. The FIFO buffer and the associated control logic are syn-
thesized in hardware. This leads to a simple runtime scheduler.

.global _transfer_to
;; void transfer_to (newroutine)
;; int newroutine;
_transfer_to:
;i lastPClcurrent] = r31;
Ihi r3,(_current>>16)&0xffff
addui r3,r3,(_current&Oxffff)
add r6,r0,r3
Iw r3,0(r3)
Ihi r4,(_lastPC>>16)&O0xffff
addui r4,r4,(_lastPC&Oxffff)
add r7,r0,r4
slli r3,r3,#2
add r3,r4,r3
sw 0(r3),r31
;; 131 = lastPC[newroutine];
Iw r3,0(r14)
slli r3,r3,#2
add r3,r7,r3
Iw r31,0(r3)
;; current = newroutine;
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Iw r5,0(r14)
sw 0(r6),r5
jr r31

nop

Software Control FIFO. The FIFO buffer and control are implemented in software. A
data transfer from hardware to software is facilitated by means of an interrupt operation.

.align 4
.global _transfer_to
;; void transfer_to (newroutine)
;; int newroutine;
_transfer_to:
cli
;i lastPClcurrent] = r31;
Ihi r3,(_current>>16)&0xffff
addui r3,r3,(_current&Oxffff)
add r6,r0,r3
Iw r3,0(r3)
Ihi r4,(_lastPC>>16)&O0xffff
addui r4,r4,(_lastPC&Oxffff)
add r7,r0,r4
slli r3,r3,#2
add r3,r4,r3
sw 0(r3),r31
;; 131 = lastPC[newroutine];
Iw r3,0(r14)
slli r3,r3,#2
add r3,r7,r3
Iw r31,0(r3)
;; current = newroutine;
Iw r5,0(r14)
sw 0(r6),r5
movi2s r31
rfe
nop

.align 4
.global _intl
_intl:
sw -4(rl4),r3
sw -8(rl4),r4
sw -12(r14),r5

; *intl_ak = 0
Ihi r3,0x00b0
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addui r3,r3,0
sw 0(r3),r0

; empty = 0

Ihi r3,(_empty>>16)&0xffff
addui r3,r3,(_empty&O0xffff)
sw 0(r3),ro

; queuein = (queuein + 1) & Oxf
Ihi r5,(_queuein>>16)&O0xffff

addui r5,r5,(_queuein&0xffff)

Iw r3,0(r5)

add r3,r3,#1

and r3,r3,#15

sw 0(r5),r3

add r5,r0,r3

; controlfifo[queuein] = 1

Ihi r4,(_controlfifo>>16)&O0xffff
addui r4,r4,(_controlfifo&0xffff)
slli r3,r3,#2

add r3,r4,r3

addi r4,r0,#1

sw 0(r3),r4

; full = (queuein == queueout)
Ihi r4,(_queueout>>16)&0xffff
addui r4,r4,(_queueout&Oxffff)
Iw r4,0(r4)

seq 5,r5,r4

Ihi r3,(_full>>16)&O0xffff
addui r3,r3,(_full&Oxffff)
sw 0(r3),r5

;; Restore the saved registers
Iw r5,-12(r14)

w r4,-8(r14)

Iw r3,-4(r14)

rfe

nop

< similarly for other interrupts >

RUNTIME SCHEDULER ROUTINES
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Index of Notations

Symbol Description §

N Set of natural numbers

zZ+ Set of positive integers

G Flow graph model 3.3
V Set of vertices in graph 3.3
E Set of edges in graph 3.3
X Enabling expression 3.3
v A operation vertex 3.3
e A directed edge 3.3
> Dependency 3.3
- Control dependency 3.3
- Data dependency 3.3
>* Transitive dependency 3.3
¢ System model 3.3
G* Hierarchy relation 3.3.2
G Transitive closure of7 3.3

S State of a vertex 3.3.3
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Symbol Description §
Sry $, 9 Vertex state values 3.3.3
I(G) Implementation of¢ 3.3.4
r Runtime scheduler 3.34
S Hardware size of an operation 3.34
MG Variables used byr 3.3.4
P(G) Graph model pinout 3.3.4
1) Operation delay function 3.34
AMG), MT) Graph/Thread latency 3.34
l Path length 3.34
¢ Path length vector 3.3.4
l Smallest element of 3.34
Cag Largest element of 3.34
© Sequential composition operator 3.34
® Conjoined composition operator 3.34
P Disjoined composition operator 3.34
P Instantaneous rate of execution 3.34
P Discrete rate of execution 3.34
T Cycle time associated with a model 3.34
p Rate of execution 3.34
0 Rate of reaction 3.34
y Overhead delay 3.34
AND Non-deterministic delay operation 3.4.2
1y Execution start time 3.6
I, u Min/max delay constraints 3.6
r, R Rate constraints 3.6
r¢ Relative rate constraint 3.6
r Runtime scheduler 4.1
2 Operation scheduler 4.1
2, Static schedule function 4.1
12, (Unilogic) relative schedule 4.1
2. (Bilogic) relative schedule 4.1
0 Offset 4.1
A Anchor set 4.1
A, Bilogic anchor set 4.1
| - d Infinity norm 4.1
CD Conditional delay operation 4.1
Gr Constraint graph 4.2
G, Parent graph ofF 4.3
G, Parent process graph 6f 4.3
ol Upper bound on overheag 4.3
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Symbol Description §

N Uy —C 4.3
Vaw Overhead due to context switch 4.3
x Loop index variable 4.3
p(v) Mobility of operationv 4.3
Pu Longest path from source to sink through 4.3

I Multi-rate concurrency 3.5

h Single-rate concurrency 3.5
r NMDcycle 4.5

B, Blocking limit 45.2
By, Blocking limit for k-deep buffer 4.5.3
Pr{} Probability of an event 4.6
Fx() Probability distribution function of r.vz 4.6
fx() Probability density function of r.vz 4.6

€ Acceptable probability of constraint violation 4.6
N, Buffer depth for exponentially distributed loop index 4.6.2
7, EX] Expected value of r.vz 4.6.2
fr(x) Erlangian distribution of typé 4.6.2
Mx(t) Moment generating function of r.w 4.6.2
W Lambert’s W function 4.6.2
9] Stochastic process 4.7
D Transition probability 4.7
w State of a transition process 4.7
Pi State transition probability 4.7
P State transition matrix 4.7
M Markov Process 4.7
§) Event space 4.6
T Upper bound on loop index 4.6
* Convolution function 4.7
€k Column vector withk?*entry as 1 rest 0 4.7
[ k xk identity matrix 4.7
O Zero column vector of sizé 4.7
o(w) Set of terminal output nodes far

H(w) Set of terminal input nodes fas

I Processor cost model 5.1
Top Execution time function 51
Teq Address calculation delay function 5.1
tm Memory access time 5.1
t; Interrupt response time 5.1
ISA Instruction set architecture 5.1
RM ISA with register/memory operands 5.1
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Symbol Description §
LS ISA with load/store operations 51
MM ISA with memory/memory operands 51
n Operation delay in software 5.3.1
m, Number of memory read operations 5.3.1
My Number of memory write operations 531
N, Number of assembly operations 5.3.1
Mi nt r Synchronization delay of an operation 53.1
s Software size for processaér 54
Sf Software program size for processir 54
Si Software data size for processar 5.4
GP Flow graph with only data dependencies 5.4.2
Ty Number of register read operations 5.4.2
Tow Number of register write operations 5.4.2
= Spill vertex set 5.4.2
Gy Conflict (interference) graph 5.4.2
w Number ofrvalues 5.4.2
R, Maximum number of live variables 5.4.2
C Memory cost model 5.4.4
P Processor utilization 6.1
B Bus utilization 6.1
w A partition of the system model 6.1
P Priority of a program thread 6.3




